1
|
Song IU, Im JJ, Jeong H, Na SH, Chung YA. Possible neuroprotective effects of rasagiline in Alzheimer's disease: a SPECT study. Acta Radiol 2021; 62:784-790. [PMID: 32646230 DOI: 10.1177/0284185120940264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The current lack of effective treatments for Alzheimer's disease (AD) and the rapidly increasing burden of the disease highlight the urgent need to find new treatments. Despite accumulating evidence of the beneficial effects of rasagiline in neurodegenerative diseases such as Parkinson's disease, the effects of rasagiline on the brains of patients with AD have not been elucidated. PURPOSE To examine the effects of rasagiline on regional cerebral flow (rCBF) in patients with AD using single photon emission computed tomography (SPECT). MATERIAL AND METHODS Among 22 patients with AD, 11 patients received adjunctive rasagiline at 1 mg/day in conjunction with acetylcholinesterase inhibitors (AChEI); 11 patients were only treated with AChEI for about 1.6 years. All patients underwent brain technetium-99m hexamethylpropylene amine oxime SPECT scans and clinical assessments at baseline and follow-up visits. Annual percent changes in rCBF were compared between the groups in a voxel-wise manner. RESULTS SPECT analysis revealed that the rasagiline-treated group showed more increased rCBF in the cingulate gyrus, inferior frontal gyrus, putamen, and thalamus compared to the comparison group (P < 0.005). CONCLUSION We demonstrated that adjunctive rasagiline treatment may have beneficial effects on brain perfusion in patients with AD, suggesting potential neuroprotective effects.
Collapse
Affiliation(s)
- In-Uk Song
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jooyeon Jamie Im
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeonseok Jeong
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hee Na
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Interactions Between MPTP-Induced and Age-Related Neuronal Death in a Murine Model of Parkinson’s Disease. Can J Neurol Sci 2015. [DOI: 10.1017/s0317167100041494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT:Abiotrophy is hypothesized to explain the onset and time course of deficits in Parkinson’s disease (PD) Abiotrophy includes: 1) exposure to agent(s) causing the death of dopaminergic nigrostriatal neurons (DNSns), 2) gradual death of DNSns with age, 3) summation of 1) and 2) until DNSn numbers fall below a threshold for detectable neurological deficits. Murine DNSn death following methyl-phenyl-tetrahydropyridine (MPTP) exposure occurs according to an exponential relationship while age-related death of DNSns occurs according to a second exponential relationship. Summing the two exponential losses overestimates experimental DNSn death showing a simple abiotrophic model is not sufficient. Aged murine DNSns greatly increase their dopamine synthesis and the density of their striatal axon terminals which may explain the above threshold. Murine DNSns die gradually after MPTP exposure and L-deprenyl treatment rescues MPTP-damaged DNSns by a previously undiscovered action, altering the abiotrophic interactions and possibly explaining the slowed progression of PD found with deprenyl treatment.
Collapse
|
3
|
Harikrishna Reddy D, Misra S, Medhi B. Advances in Drug Development for Parkinson's Disease: Present Status. Pharmacology 2014; 93:260-71. [DOI: 10.1159/000362419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
|
4
|
Henchcliffe C, Schumacher HC, Burgut FT. Recent advances in Parkinson’s disease therapy: use of monoamine oxidase inhibitors. Expert Rev Neurother 2014; 5:811-21. [PMID: 16274338 DOI: 10.1586/14737175.5.6.811] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monoamine oxidase inhibitors inhibit dopamine metabolism and are therefore effective in treating Parkinson's disease, a condition associated with progressive striatal dopamine deficiency secondary to degeneration of dopaminergic neurons in the substantia nigra. Selegiline is currently the most widely used monoamine oxidase-B inhibitor for Parkinson's disease, but has a low and variable bioavailability, and is metabolized to L-methamphetamine and L-amphetamine that carry a risk for potential neurotoxicity. There are two new approaches that circumvent these potential disadvantages. First, selegiline orally disintegrating tablets provide a novel delivery form of selegiline, avoiding first pass metabolism by rapid absorption through the oral mucosa, thus leading to significantly lower plasma concentrations of L-metamphetamine and L-amphetamine. Selegiline orally disintegrating tablets prove to be clinically effective and safe in patients with moderately advanced Parkinson's disease. Second, rasagiline is a new monoamine oxidase inhibitor, without known neurotoxic metabolites. In large clinical trials, rasagiline proves effective as monotherapy in early Parkinson's disease, as well as adjunctive therapy to levodopa in advanced disease. Clinical data suggest, in addition, a disease-modifying effect of rasagiline that may correlate with neuroprotective activity of monoamine oxidase-B inhibitors in animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Claire Henchcliffe
- Weill Medical College of Cornell University, Department of Neurology and Neuroscience, 428 East 72, Street, Suite 400, NY 10021, USA.
| | | | | |
Collapse
|
5
|
Naoi M, Maruyama W, Inaba-Hasegawa K. Revelation in the neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 2014; 13:671-84. [PMID: 23739004 DOI: 10.1586/ern.13.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Parkinson's disease, cell death of dopamine neurons in the substantia nigra progresses and neuroprotective therapy is required to halt neuronal loss. In cellular and animal models, selegiline [(-)deprenyl] and rasagiline, inhibitors of type B monoamine oxidase (MAO)-B, protect neuronal cells from programmed cell death. In this paper, the authors review their recent results on the molecular mechanisms by which MAO inhibitors prevent the cell death through the induction of antiapoptotic, prosurvival genes. MAO-A mediates the induction of antiapoptotic bcl-2 and mao-a itself by rasagiline, whereas a different mechanism is associated with selegiline. Rasagiline and selegiline preferentially increase GDNF and BDNF in nonhuman primates and Parkinsonian patients, respectively. Enhanced neurotrophic factors might be applicable to monitor the neurorescuing activity of neuroprotection.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan.
| | | | | |
Collapse
|
6
|
Abstract
Rasagiline is a monoamine oxidase type-B inhibitor used as monotherapy or in addition to levodopa in the treatment of Parkinson's disease. Once daily administration of rasagiline makes it easy to use, and allows good compliance by patients and adherence to therapy. Several multicenter studies have noted the effectiveness of rasagiline on both motor and non-motor symptoms, which require a complex pharmacologic approach, such as cognitive disorders. A recent study also reported a rapid action of rasagiline on motor symptoms. Positive findings have been highlighted by an economic model study. This review analyzes the main studies of rasagiline, with particular attention to the effectiveness of the drug on motor symptoms.
Collapse
|
7
|
Youdim MBH. Multi target neuroprotective and neurorestorative anti-Parkinson and anti-Alzheimer drugs ladostigil and m30 derived from rasagiline. Exp Neurobiol 2013; 22:1-10. [PMID: 23585716 PMCID: PMC3620452 DOI: 10.5607/en.2013.22.1.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 11/28/2022] Open
Abstract
Present anti-PD and -AD drugs have limited symptomatic activity and devoid of neuroprotective and neurorestorative property that is needed for disease modifying action. The complex pathology of PD and AD led us to develop several multi-target neuroprotective and neurorestorative drugs with several CNS targets with the ability for possible disease modifying activity. Employing the pharmacophore of our anti-parkinson drug rasagiline (Azilect, N-propagrgyl-1-R-aminoindan), we have developed a series of novel multi-functional neuroprotective drugs (A) [TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)], with both cholinesterase-butyrylesterase and brain selective monoamine-oxidase (MAO) A/B inhibitory activities and (B) the iron chelator-radical scavenging-brain selective monoamine oxidase (MAO) A/B inhibitor and M30 possessing the neuroprotective and neurorescuing propargyl moiety of rasagiline, as potential treatment of AD, DLB and PD with dementia. Another series of multi-target drugs (M30, HLA-20 series) which are brain permeable iron chelators and potent selective brain MAO inhibitors were also developed. These series of drugs have the ability of regulating and processing amyloid precursor protein (APP) since APP and alpha-synuclein are metaloproteins (iron-regulated proteins), with an iron responsive element 5"UTR mRNA similar to transferring and ferritin. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats after oral doses. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain. Ladostigil acts like an anti-depressant in the forced swim test in rats, indicating a potential for anti-depressant activity. Ladostigil prevents the destruction of nigrostriatal neurons induced by infusion of neurotoxin MPTP in mice. The propargylamine moiety of ladostigil confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells. The multi-target iron chelator M30 has all the properties of ladostigil and similar neuroprotective activity to ladostigil, but is not a ChE inhibitor. M30 has a neurorestorative activity in post-lesion of nigrostriatal dopamine neurons in MPTP, lacatcystin and 6-hydroxydopamine animal models of PD. The neurorestorative activity is related to the ability of the drug to activate hypoxia inducing factor (HIF) which induces the production of such neurotrophins as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and erythropoietin as well as glia-derived neurotrophic factor (GDNF). The unique multiple actions of ladostigil and M30 make the potentially useful drugs for the treatment of dementia with Parkinsonian-like symptoms and depression.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion Rappaort Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Haifa, Haifa 30196, Israel. ; Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
8
|
Geldenhuys WJ, Van der Schyf CJ. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2012; 8:115-29. [DOI: 10.1517/17460441.2013.744746] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Werner J Geldenhuys
- Northeast Ohio Medical University, College of Pharmacy, Neurotherapeutics Emphasis Group, Department of Pharmaceutical Sciences,
Rootstown, 4209 State Route 44, P.O. Box 95, OH 44272, USA ;
| | - Cornelis J Van der Schyf
- Northeast Ohio Medical University, College of Pharmacy, Neurotherapeutics Emphasis Group, Department of Pharmaceutical Sciences,
Rootstown, 4209 State Route 44, P.O. Box 95, OH 44272, USA ;
| |
Collapse
|
9
|
|
10
|
Choi DY, Lee MK, Hong JT. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol Dis 2012; 49:159-68. [PMID: 22922220 DOI: 10.1016/j.nbd.2012.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/12/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022] Open
Abstract
Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival.
Collapse
Affiliation(s)
- Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea; College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Republic of Korea; Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Myung Koo Lee
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Republic of Korea; Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, Republic of Korea.
| |
Collapse
|
11
|
Bolognesi ML, Melchiorre C, Van der Schyf CJ, Youdim M. Discovery of Multi-Target Agents for Neurological Diseases via Ligand Design. DESIGNING MULTI-TARGET DRUGS 2012. [DOI: 10.1039/9781849734912-00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The incidence of neurological disorders in the developed world is rising in concert with an increase in human life expectancy, due in large part to better nutrition and health care. Even as drug discovery efforts are refocused on these disorders, there has been a dearth in the introduction of new disease-modifying therapies to prevent or delay their onset, or reverse their progression. Mounting evidence points to complex and heterogeneous etiopathologies that underlie these diseases. Therefore, it is unlikely that disorders in this class will be mitigated by any single drug that acts exclusively on a single pathway or target. The rational design of novel drug entities with the ability to simultaneously address multiple drug targets of a complex pathophysiology has recently emerged as a new paradigm in drug discovery. Similarly to the concept of multi-target agents within the psychopharmacology field, ligand design has gained an increasing prominence within the medicinal chemistry community. In this chapter we discuss several examples of select chemical scaffolds (polyamines, alkylxanthines, and propargyl carbamates) wherein these concepts were applied to develop novel drug candidates for Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Moussa Youdim
- Technion Israel Institute of Technology Haifa Israel
| |
Collapse
|
12
|
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, currently affecting 1.5 million people in the US. In this review, we describe the diagnostic and pathological features of Parkinson's disease, as well as its clinical course. We then review pharmacologic treatments for the disease, with a particular focus on therapies adjunctive to levodopa and specifically the role of rasagiline. We review the four pivotal rasagiline trials, and discuss rasagiline and its use as adjunctive therapy for Parkinson's disease. Finally, we discuss potential side effects, drug interactions, and other practical aspects concerning the use of rasagiline in Parkinson's disease.
Collapse
Affiliation(s)
- Kathryn D Gaines
- Department of Neurology, Aurora Advanced Healthcare, Milwaukee, WI
| | | |
Collapse
|
13
|
|
14
|
Riederer P, Laux G. MAO-inhibitors in Parkinson's Disease. Exp Neurobiol 2011; 20:1-17. [PMID: 22110357 PMCID: PMC3213739 DOI: 10.5607/en.2011.20.1.1] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/17/2011] [Indexed: 01/27/2023] Open
Abstract
Monoamine oxidase inhibitors (MAO-I) belong to the earliest drugs tried in Parkinson's disease (PD). They have been used with or without levodopa (L-DOPA). Non-selective MAO-I due to their side-effect/adverse reaction profile, like tranylcypromine have limited use in the treatment of depression in PD, while selective, reversible MAO-A inhibitors are recommended due to their easier clinical handling. For the treatment of akinesia and motor fluctuations selective irreversible MAO-B inhibitors selegiline and rasagiline are recommended. They are safe and well tolerated at the recommended daily doses. Their main differences are related to (1) metabolism, (2) interaction with CYP-enzymes and (3) quantitative properties at the molecular biological/genetic level. Rasagiline is more potent in clinical practise and has a hypothesis driven more favourable side effect/adverse reaction profile due to its metabolism to aminoindan. Both selegiline and rasagiline have a neuroprotective and neurorestaurative potential. A head-to head clinical trial would be of utmost interest from both the clinical outcome and a hypothesis-driven point of view. Selegiline is available as tablet and melting tablet for PD and as transdermal selegiline for depression, while rasagiline is marketed as tablet for PD. In general, the clinical use of MAO-I nowadays is underestimated. There should be more efforts to evaluate their clinical potency as antidepressants and antidementive drugs in addition to the final proof of their disease-modifying potential. In line with this are recent innovative developments of MAO-I plus inhibition of acetylcholine esterase for Alzheimer's disease as well as combined MAO-I and iron chelation for PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatic and Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany
| | | |
Collapse
|
15
|
Neuroprotective profile of the multitarget drug rasagiline in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:127-49. [DOI: 10.1016/b978-0-12-386467-3.00007-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Rasagiline: A novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 2010; 92:330-44. [DOI: 10.1016/j.pneurobio.2010.06.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/17/2022]
|
17
|
Why should we use multifunctional neuroprotective and neurorestorative drugs for Parkinson's disease? Parkinsonism Relat Disord 2009; 13 Suppl 3:S281-91. [PMID: 18267251 DOI: 10.1016/s1353-8020(08)70017-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, with no available drugs able to prevent the neuronal cell loss characteristic in brains of patients suffering from PD. Due to the complex cascade of molecular events involved in the etiology of PD, an innovative approach towards neuroprotection or neurorescue may entail the use of multifunctional pharmaceuticals that target an array of pathological pathways, each of which is believed to contribute to events that ultimately lead to neuronal cell death. Here we discuss examples of novel multifunctional ligands that may have potential as neuroprotective and neurorestorative therapeutics in PD. The compounds discussed originate from synthetic chemistry as well as from natural sources where various moieties, identified in research to possess neuroprotective and neurorestorative properties, have been introduced into the structures of several monomodal drugs, some of which are used in the clinic.
Collapse
|
18
|
Hauser RA, Lew MF, Hurtig HI, Ondo WG, Wojcieszek J, Fitzer-Attas CJ. Long-term outcome of early versus delayed rasagiline treatment in early Parkinson's disease. Mov Disord 2009; 24:564-73. [DOI: 10.1002/mds.22402] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Weinreb O, Mandel S, Bar-Am O, Yogev-Falach M, Avramovich-Tirosh Y, Amit T, Youdim MBH. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer's disease drugs. Neurotherapeutics 2009; 6:163-74. [PMID: 19110207 PMCID: PMC5084264 DOI: 10.1016/j.nurt.2008.10.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of the multimodal drugs, ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] and the newly designed multifunctional antioxidant iron chelator, M-30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline). Ladostigil combines, in a single molecule, the neuroprotective/neurorestorative effects of the novel anti-Parkinsonian drug and selective monoamine oxidase (MAO)-B inhibitor, rasagiline (Azilect, Teva Pharmaceutical Co.) with the cholinesterase (ChE) inhibitory activity of rivastigmine. A second derivative of rasagiline, M-30 was developed by amalgamating the propargyl moiety of rasagiline into the skeleton of our novel brain permeable neuroprotective iron chelator, VK-28. Preclinical experiments showed that both compounds have anti-Alzheimer's disease activities and thus, the clinical development is oriented toward treatment of this type of dementia. This review discusses the multimodal effects of two rasagiline-containing hybrid molecules, namely ladostigil and M-30, concerning their neuroprotective molecular mechanisms in vivo and in vitro, including regulation of amyloid precursor protein processing, activation of protein kinase C, and mitogen-activated protein kinase signaling pathways, inhibition of cell death markers and upregulation of neurotrophic factors. Altogether, these scientific findings make these multifunctional compounds potentially valuable drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, 31096 Haifa, Israel
- grid.6451.60000000121102151Department of Pharmacology, Technion-Faculty of Medicine, P.O.B. 9697, 31096 Haifa, Israel
| | - Silvia Mandel
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, 31096 Haifa, Israel
- grid.6451.60000000121102151Department of Pharmacology, Technion-Faculty of Medicine, P.O.B. 9697, 31096 Haifa, Israel
| | - Orit Bar-Am
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, 31096 Haifa, Israel
- grid.6451.60000000121102151Department of Pharmacology, Technion-Faculty of Medicine, P.O.B. 9697, 31096 Haifa, Israel
| | - Merav Yogev-Falach
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, 31096 Haifa, Israel
- grid.6451.60000000121102151Department of Pharmacology, Technion-Faculty of Medicine, P.O.B. 9697, 31096 Haifa, Israel
| | - Yael Avramovich-Tirosh
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, 31096 Haifa, Israel
- grid.6451.60000000121102151Department of Pharmacology, Technion-Faculty of Medicine, P.O.B. 9697, 31096 Haifa, Israel
| | - Tamar Amit
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, 31096 Haifa, Israel
- grid.6451.60000000121102151Department of Pharmacology, Technion-Faculty of Medicine, P.O.B. 9697, 31096 Haifa, Israel
| | - Moussa B. H. Youdim
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, 31096 Haifa, Israel
- grid.6451.60000000121102151Department of Pharmacology, Technion-Faculty of Medicine, P.O.B. 9697, 31096 Haifa, Israel
| |
Collapse
|
20
|
Weinreb O, Amit T, Bar-Am O, Youdim MBH. Induction of neurotrophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: new insights and implications for therapy. Ann N Y Acad Sci 2008; 1122:155-68. [PMID: 18077571 DOI: 10.1196/annals.1403.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are the most common neurodegenerative disorders, although there is no drug or therapeutic treatment to demonstrate disease-modifying effects. Previous work has proposed that neurodegeneration is linked to a lack of trophic support in those neurons and brain areas associated with PD and AD. Indeed, previous studies have found that neurotrophic factors (NTFs) support neuronal survival in various cellular and animal models of PD and AD. Thus, attention has begun to turn to the possibility of NTF neuroprotective-neurorescue therapies for these diseases, indicating that NTFs may be of significant clinical importance as exogenously supplied or endogenously induced elements that obliterate neuronal deficits and degeneration. We have recently reported that the anti-PD drug rasagiline, the anti-AD drug ladostigil, and their propargyl moiety, propargylamine, enhanced the expression levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, endogenous NTFs associated with activation of phosphatidylinositol 3-kinase, protein kinase, and mitogen-activated protein kinase cell signaling/survival pathways. These studies indicate that the induction of NTFs by rasagiline and ladostigil might suppress apoptosis and induce neurorescue in neurodegenerative disorders and may support the drugs' possible disease-modifying mechanism of action.
Collapse
Affiliation(s)
- Orly Weinreb
- Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O. Box 9697, 31096 Haifa, Israel
| | | | | | | |
Collapse
|
21
|
Dashtipour K, Chen JJ, Lew MF. Rasagiline for the management of Parkinson’s disease. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/14750708.5.2.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Stefanova N, Poewe W, Wenning GK. Rasagiline is neuroprotective in a transgenic model of multiple system atrophy. Exp Neurol 2007; 210:421-7. [PMID: 18222424 DOI: 10.1016/j.expneurol.2007.11.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 11/14/2007] [Accepted: 11/16/2007] [Indexed: 10/22/2022]
Abstract
Rasagiline is a novel selective irreversible monoamine oxidase-B (MAO-B) inhibitor recently introduced for the symptomatic treatment of Parkinson disease. Like other propargylamines rasagiline has also shown neuroprotective effects independent of MAO-B-inhibition in various in vitro and in vivo models. The present study was performed to test the potential of rasagiline as a disease-modifying agent in multiple system atrophy (MSA) using a transgenic mouse model previously described by our group. (PLP)-alpha-synuclein transgenic mice featuring glial cytoplasmic inclusion pathology underwent 3-nitropropionic acid intoxication to model full-blown MSA-like neurodegeneration. Two doses of rasagiline were used (0.8 and 2.5 mg/kg) for a treatment period of 4 weeks. Rasagiline-treated animals were compared to placebo saline-treated mice by evaluation of motor behaviour and neuropathology. Motor behavioural tests including pole test, stride length test and general motor score evaluation showed improvements in motor deficits associated with 2.5 mg/kg rasagiline therapy. Immunohistochemistry and histology showed significant reduction of 3-NP-induced neuronal loss in striatum, substantia nigra pars compacta, cerebellar cortex, pontine nuclei and inferior olives of MSA mice receiving 2.5 mg/kg rasagiline. The results of the study indicate that rasagiline confers neuroprotection in a transgenic mouse model of MSA and may therefore be considered a promising disease-modifying candidate for human MSA.
Collapse
Affiliation(s)
- Nadia Stefanova
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
23
|
Abstract
Rasagiline (Azilect) is a novel, selective, irreversible second-generation inhibitor of monoamine oxidase type B (MAO-B). It is administered orally once daily and is approved in the US, Canada, Mexico, Israel and the EU for use as monotherapy and as adjunct therapy in the treatment of Parkinson's disease. Results of well designed clinical studies indicate that rasagiline is effective as initial monotherapy and improves Parkinson's symptomatology in patients with early Parkinson's disease. In addition, when administered in conjunction with levodopa, in patients with moderate to advanced disease and motor fluctuations, rasagiline reduces mean daily 'off' time and increases daily 'on' time without troublesome dyskinesias, compared with controls. Rasagiline is generally well tolerated as monotherapy and adjunctive therapy and is administered once daily. Thus, rasagiline, administered as a simple and convenient dosage regimen, is a well tolerated and effective option for monotherapy in patients with early Parkinson's disease and for adjunctive therapy in patients with moderate to advanced disease.
Collapse
Affiliation(s)
- Vicki Oldfield
- Wolters Kluwer Health | Adis, Auckland, New Zealand, an editorial office of Wolters Kluwer Health, Conshohocken, Pennsylvania, USA
| | | | | |
Collapse
|
24
|
Mandel SA, Sagi Y, Amit T. Rasagiline Promotes Regeneration of Substantia Nigra Dopaminergic Neurons in Post-MPTP-induced Parkinsonism via Activation of Tyrosine Kinase Receptor Signaling Pathway. Neurochem Res 2007; 32:1694-9. [PMID: 17701352 DOI: 10.1007/s11064-007-9351-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
The anti-Parkinson drug rasagiline (Azilect), an irreversible and selective monoamine oxidase (MAO)-B inhibitor, was shown to possess neuroprotective activities, involving multiple survival pathways among them the up-regulation of protein kinase C (PKC)alpha, PKCepsilon, the anti-apoptotic Bcl-2, Bcl-xL, and Bcl-w and the induction of brain-derived- and glial cell line-derived neurotrophic factors (BDNF, GDNF). More recently, employing conventional neurochemical techniques, as well as transcriptomic and proteomic screening tools, combined with a biology-based clustering method, it was shown that rasagiline also possesses neurorescue/neurogenesis activity in mice midbrain dopaminergic neurons when given chronically, post-MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). This action was attributed to the activation of cell signaling mediators associated with neurotrophic factors responsive-tyrosine kinase receptor (Trk) pathway, including ShcC, SOS, AF6, Rin1, and Ras and the increase in the Trk-downstream effecter phosphatidylinositol 3 kinase (PI3K) protein and its substrate, Akt/PKB. It is interesting to determine whether a similar effect is seen in Parkinsonian patients after long-term treatment with rasagiline, which may have implications as a possible disease modifying agent.
Collapse
Affiliation(s)
- Silvia A Mandel
- Eve Topf Center of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Technion-Rappaport Faculty of Medicine, P.O. Box 9697, Haifa, 31096, Israel.
| | | | | |
Collapse
|
25
|
Hung AY, Schwarzschild MA. Clinical trials for neuroprotection in Parkinson??s disease: overcoming angst and futility? Curr Opin Neurol 2007; 20:477-83. [PMID: 17620885 DOI: 10.1097/wco.0b013e32826388d6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW To summarize recently published results of neuroprotection trials for Parkinson's disease, and discuss them in the context of evolving concepts in clinical study design and animal models. RECENT FINDINGS Despite compelling preclinical evidence from laboratory models suggesting potential neuroprotective benefits, the antioxidant, antiapoptotic, antiexcitotoxic, immunomodulatory and neurotrophic agents studied to date have not shown clear benefit in human studies. The futility study design, an alternative approach focused on efficiently excluding less promising compounds, has been adopted recently to investigate four candidate neuroprotectants. A delayed-start trial design has also been introduced in a study of the monoamine oxidase inhibitor rasagiline, demonstrating a possible neuroprotective effect as well as its clear symptomatic benefit. In parallel with these clinical innovations, preclinical research initiatives are identifying new animal models that more closely resemble the clinical course and pathology of Parkinson's disease. SUMMARY Angst over disappointing results of neuroprotection trials in Parkinson's disease has engendered efforts to refine animal models at one end of the therapeutics pipeline, and to optimize clinical trial design at the other. Building on new insights into the genetics, epidemiology and pathogenesis of Parkinson's disease, these recent improvements in 'translational infrastructure' will enhance the prospects of achieving the critical goal of slowing the progression of disability.
Collapse
Affiliation(s)
- Albert Y Hung
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
26
|
Van der Schyf CJ, Geldenhuys WJ, Youdim MBH. Multifunctional neuroprotective–neurorescue drugs for Parkinson’s disease. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is a severe neurodegenerative disorder, with no drugs currently approved to prevent the neuronal cell loss characteristic of brains of patients suffering from PD. Owing to the complex etiology of PD, an innovative approach towards neuroprotection or neurorescue may be the use of multifunctional pharmaceuticals that target an array of pathological pathways, each of which is believed to contribute to the cascade that ultimately leads to neuronal cell death. In this review, we discuss examples of novel multifunctional ligands that may have potential as neuroprotective–neurorescue therapeutics in PD. The compounds discussed originate from synthetic chemistry as well as from natural sources.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Northeastern Ohio Universities College of Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Werner J Geldenhuys
- Northeastern Ohio Universities College of Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Moussa BH Youdim
- Eve Topf and National Parkinson Foundation (US) Centers of Excellence for Neurodegenerative Diseases, Technion-Faculty of Medicine, Efron St, PO Box 9697, Haifa 31096, Israel
| |
Collapse
|
27
|
Abstract
BACKGROUND Levodopa, in combination with a dopa decarboxylase inhibitor, provides the greatest symptomatic benefit with the fewest short-term side effects in the treatment of Parkinson disease (PD). However, the disease continues to progress, and the long-term use of levodopa is associated with the development of motor fluctuations and dyskinesias. REVIEW SUMMARY Alternatives to the use of levodopa in early PD include monoamine oxidase B (MAO-B) inhibitors, dopamine agonists, and amantadine. Although no medication has been proven to slow the progression of Parkinson disease, preclinical studies have demonstrated neuroprotective effects of MAO-B inhibitors, and a recent study of rasagiline found that PD patients treated with rasagiline for 12 months experienced less progression of symptoms than patients treated with placebo for 6 months followed by rasagiline for 6 months. Several clinical trials have demonstrated that the initial use of a dopamine agonist to which levodopa can be added is associated with fewer motor complications than treatment with levodopa alone. In addition, preclinical studies suggest that adjunctive use of the catechol-O-methyltransferase (COMT) inhibitor entacapone when levodopa is first introduced may be associated with fewer motor complications than treatment with levodopa alone. CONCLUSION Treatment of early PD with an MAO-B inhibitor, dopamine agonist, or amantadine, may provide useful alternatives to treatment with levodopa. Adding entacapone at the initiation of levodopa therapy may reduce the development of motor complications. Long-term studies are required to evaluate the potential long-term benefits of these treatment strategies.
Collapse
Affiliation(s)
- Robert A Hauser
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of South Florida and Tampa General Healthcare, Tampa, Florida 33606, USA.
| | | |
Collapse
|
28
|
Sagi Y, Mandel S, Amit T, Youdim MBH. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis 2006; 25:35-44. [PMID: 17055733 DOI: 10.1016/j.nbd.2006.07.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 07/04/2006] [Accepted: 07/25/2006] [Indexed: 01/15/2023] Open
Abstract
The anti-Parkinson monoamine oxidase (MAO)-B inhibitor rasagiline (Azilect) was shown to possess neuroprotective activities, involving the induction of brain-derived- and glial cell line-derived neurotrophic factors (BDNF, GDNF). Employing conventional neurochemical techniques, transcriptomics and proteomic screening tools combined with a biology-based clustering method, we show that rasagiline, given chronically post-MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), exerts neurorescue/neurotrophic activity in mice midbrain dopamine neurons. Rasagiline induced the activation of cell signaling mediators associated with neurotrophic factors responsive-tyrosine kinase receptor (Trk) pathway including ShcC, SOS, AF6, Rin1 and Ras and the increase in the Trk-downstream effector phosphatidylinositol 3 kinase (PI3K) protein. Confirmatory Western and immunohistochemical analyses indicated activation of the substrate of PI3K, Akt and phosphorylative inactivation of glycogen synthase kinase-3beta and Raf1. Thus, the activation of Ras-PI3K-Akt survival pathway may contribute to rasagiline-mediated neurorescue effect. It is interesting to determine whether a similar effect is seen in parkinsonian patients after long-term treatment with rasagiline.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Blotting, Western
- Cell Survival/drug effects
- Cells, Cultured
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Dopamine/physiology
- Dopamine Agents
- Enzyme Activation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry
- Indans/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Monoamine Oxidase Inhibitors/pharmacology
- Nerve Degeneration/pathology
- Nerve Degeneration/prevention & control
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuroprotective Agents/pharmacology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/pathology
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Substantia Nigra/drug effects
- Substantia Nigra/pathology
- Substantia Nigra/physiology
Collapse
Affiliation(s)
- Yotam Sagi
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Rappaport Faculty of Medicine, POB 9697, 31096 Haifa, Israel
| | | | | | | |
Collapse
|
29
|
Youdim MBH, Amit T, Bar-Am O, Weinreb O, Yogev-Falach M. Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs; ladostigil. Neurotox Res 2006; 10:181-92. [PMID: 17197368 DOI: 10.1007/bf03033355] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of several multifunction drugs. These include ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], which combines the pharmacophore-neuroprotective effects of rasagiline, a selective monoamine oxidase (MAO)-B inhibitor, with the cholinesterase (ChE) inhibitory activity of rivastigmine or iron chelating moiety such as M30. In the case of M30 the pharmacophore of brain permeable iron chelator VK-28 plus the MAO inhibitor-neuroprotective propargylamine moiety of rasagiline are combined in a single molecule as a potential treatment for Alzheimer's disease, Lewy body disease, and Parkinson's disease with dementia. Here, we discuss the activities of ladostigil in terms of its cholinesterase cognitive enhancing potential, antiParkinson, antidepressant, neuroprotection and APP (amyloid precursor protein) processing potential. One major attribute of ladostigil is its neuroprotective activity in neuronal cell cultures and in vivo. Employing an apoptotic model of neuroblastoma SK-N-SH cells, the molecular mechanism of its neuroprotective activity has been determined. The current studies show that ladostigil significantly decreased apoptosis via inhibition of the cleavage and prevention of caspase-3 activation through a mechanism related to regulation of the Bcl-2 family proteins, resulting in reduced levels of Bad and Bax and induced levels of Bcl-2. In addition, ladostigil elevated the levels of pPKC(pan). We have also followed the regulation of APP processing and found that ladostigil markedly decreased apoptotic-induced levels of holo-APP, as well as stimulated the release of the non-amyloidogenic soluble APP (sAPPalpha) into the conditioned medium via a established protein kinsae C-MAPkinase dependent pathway. Similar to ladostigil, its S-isomer, TV3279, which is a ChE inhibitor lacking MAO inhibitory activity, exerted similar neuroprotective properties and APP processing, suggesting that the mode of action is independent of MAO inhibition. These effects were shown to reside in the propargylamine moiety. These findings indicate that the dual actions of the anti-apoptotic-neuroprotective activity and the ability to modulate APP processing, could make ladostigil a potentially valuable drug for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Rappaport Family Faculty of Medicine, Eve Topf and NPF Centers for Neurodegenerative Diseases Department of Pharmacology Haifa, Israel.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Despite the current efficacious symptomatic approaches, the search is on for new therapies for Parkinson's disease that can control the cardinal symptoms of the disease (tremor, rigidity and bradykinesia), control/prevent motor complications induced by long-term levodopa, act on non-motor disease symptoms (dementia, dysautonomia, pain, insomnia, falls) and halt disease progression. Rasagiline is a monoamine oxidase-B inhibitor that has demonstrated efficacy against the cardinal symptoms of Parkinson's disease when used as monotherapy in early Parkinson's disease, and as an adjunct to levodopa in advanced disease stages. It reduces the duration and severity of poor symptom response episodes in fluctuating patients. Preliminary results allow discussion of putative effects of rasagiline on some non-motor signs and disease progression. This article outlines the evidence surrounding the efficacy and safety of rasagiline, and discusses its potential to address some of the currently unmet needs of Parkinson's disease therapy.
Collapse
Affiliation(s)
- Olivier Rascol
- Department of Clinical Pharmacology, Clinical Investigation Center and Neurosciences Institute, Faculty of Medicine, 37 Allees Jules Guesde, Toulouse 31073, France.
| |
Collapse
|
31
|
Chen JJ, Ly AV. Rasagiline: A second-generation monoamine oxidase type-B inhibitor for the treatment of Parkinson's disease. Am J Health Syst Pharm 2006; 63:915-28. [PMID: 16675649 DOI: 10.2146/ajhp050395] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The pharmacology, pharmacokinetics, clinical efficacy, and safety of rasagiline are reviewed. SUMMARY Rasagiline is a novel, investigational propargylamine that irreversibly and selectively inhibits monoamine oxidase type B (MAO-B). Rasagiline demonstrates complete and selective inhibition of MAO-B and is at least five times more potent than selegiline. Unlike selegiline, which is metabolized to amphetamine derivatives, rasagiline is biotransformed to the nonamphetamine compound aminoindan. Clinical studies have revealed that rasagiline is associated with improved outcomes in patients with early Parkinson's disease (PD) and also reduces "off" time in patients with moderate to advanced PD with motor fluctuations. Rasagiline is rapidly absorbed by the gastrointestinal tract and readily crosses the blood-brain barrier. The optimal therapeutic dosage is 0.5-1 mg administered orally once daily. Rasagiline appears to be well tolerated, although elderly patients may be more prone to treatment-emergent adverse cardiovascular and psychiatric effects. At the recommended therapeutic dosage of up to 1 mg once daily, tyramine restriction is unnecessary. In addition to MAO-B inhibition, rasagiline has demonstrated neuroprotective properties in experimental laboratory models. The mechanisms whereby rasagiline exerts neuroprotective effects are multifactorial and include upregulation of cellular antioxidant activity and antiapoptotic factors. CONCLUSION Rasagiline is an investigational selective and irreversible inhibitor of MAO-B that has demonstrated efficacy and safety for the treatment of PD. Whether rasagiline is associated with clinically significant neuroprotection is the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Jack J Chen
- School of Pharmacy, Loma Linda University, 11262 Campus Street, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
32
|
Weinreb O, Amit T, Bar-Am O, Sagi Y, Mandel S, Youdim MBH. Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:457-65. [PMID: 17017568 DOI: 10.1007/978-3-211-45295-0_69] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Our recent studies aimed to elucidate the molecular and biochemical mechanism of actions of the novel anti-Parkinson's drug, rasagiline, an irreversible and selective monoamine oxidase (MAO)-B inhibitor and its propargyl moiety, propargylamine. In cell death models induced by serum withdrawal in rat PC12 cells and human SH-SY5Y neuroblastoma cells, both rasagiline and propargylamine exerted neuroprotective and neurorescue activities via multiple survival pathways, including: stimulation of protein kinase C (PKC) phosphorylation; up-regulation of protein and gene levels of PKCalpha, PKCepsilon and the anti-apoptotic Bcl-2, Bcl-xL, and Bcl-w; and up-regulation of the neurotrophic factors, BDNF and GDNF mRNAs. Rasagiline and propargylamine inhibited the cleavage and subsequent activation of pro-caspase-3 and poly ADP-ribose polymerase. Additionally, these compounds significantly down-regulated PKCgamma mRNA and decreased the level of the pro-apoptotic proteins, Bax, Bad, Bim and H2A.X. Rasagiline and propargylamine both regulated amyloid precursor protein (APP) processing towards the non-amyloidogenic pathway. These structure-activity studies have provided evidence that propargylamine promoted neuronal survival via neuroprotective/neurorescue pathways similar to that of rasagiline. In addition, recent study demonstrated that chronic low doses of rasagiline administered to mice subsequently to 1 methyl-4 phenyl 1,2,3,6 tetrahydropyridine (MPTP), rescued dopaminergic neurons in the substantia nigra pars compacta via activation of the Ras-PI3K-Akt survival pathway, suggesting that rasagiline may possess a disease modifying activity.
Collapse
Affiliation(s)
- O Weinreb
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
33
|
Blandini F. Neuroprotection by rasagiline: a new therapeutic approach to Parkinson's disease? CNS DRUG REVIEWS 2005; 11:183-94. [PMID: 16007239 PMCID: PMC6741719 DOI: 10.1111/j.1527-3458.2005.tb00269.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuronal death in Parkinson's disease (PD) may originate from the reciprocal interactions of a restricted number of conditions, such as mitochondrial defects, oxidative stress and protein mishandling, which would favor a state of apoptotic cell death in the nigrostriatal pathway. The search for pharmacological treatments able to counteract the nigrostriatal degeneration, possibly by interfering with these phenomena, has recently raised considerable interest in rasagiline [R(+)-N-propargyl-1-aminoindan], a potent, selective, and irreversible inhibitor of monoamine oxidase B (MAO-B). Rasagiline, like selegiline, is a propargylamine, but is approximately 10 times more potent. Unlike selegiline, rasagiline is not metabolized to amphetamine and/or methamphetamine and is devoid of sympathomimetic activity. Numerous experimental studies, conducted both in vitro and in vivo, have shown that rasagiline possesses significant protective properties on neuronal populations. The pro-survival effects of the drug appear to be linked to its propargyl moiety, rather than to the inhibitory effect on MAO-B. Rasagiline's major metabolite, aminoindan--which possesses intrinsic neuroprotective activity--may also contribute to the beneficial effects of the parent compound. Rasagiline has been recently evaluated in early PD patients, with results that are consistent with slowing the progression of the disease. Therefore, the neuroprotective activity shown by the drug under experimental conditions may be reflected in the clinic, thus providing new perspectives for the treatment of PD.
Collapse
Affiliation(s)
- Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Neurological Institute C. Mondino, Via Mondino, 2 27100 Pavia, Italy.
| |
Collapse
|
34
|
Chen JJ, Swope DM. Clinical pharmacology of rasagiline: a novel, second-generation propargylamine for the treatment of Parkinson disease. J Clin Pharmacol 2005; 45:878-94. [PMID: 16027398 DOI: 10.1177/0091270005277935] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rasagiline is a novel second-generation propargylamine that irreversibly and selectively inhibits monoamine oxidase type B (MAO-B). For the management of Parkinson disease (PD), rasagiline is efficacious across the span of PD stages ranging from monotherapy in early disease to adjunctive treatment in patients with advancing disease and motor fluctuations. Rasagiline completely and selectively inhibits MAO-B with a potency 5 to 10 times greater than selegiline. Unlike the prototype propargylamine selegiline, which is metabolized to amphetamine derivatives, rasagiline is biotransformed to aminoindan, a non-amphetamine compound. Rasagiline is well tolerated with infrequent cardiovascular or psychiatric side effects, and at the recommended therapeutic dose of up to 1 mg once daily, tyramine restriction is unnecessary. In addition to MAO-B inhibition, the propargylamine chain also confers dose-related antioxidant and antiapoptotic effects, which have been associated with neuroprotection in multiple experimental models. Thus, in addition to symptomatic benefits, rasagiline offers the promise of clinically relevant neuroprotection.
Collapse
Affiliation(s)
- Jack J Chen
- Movement Disorders Center, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
35
|
Youdim MBH, Fridkin M, Zheng H. Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 2005; 126:317-26. [PMID: 15621213 DOI: 10.1016/j.mad.2004.08.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Degeneration of nigrostriatal dopamine neurons and cholinergic cortical neurones are the main pathological features of Parkinson's disease (PD) and for the cognitive deficit in dementia of the Alzheimer' type (AD) and in dementia with Lewy bodies (DLB), respectively. Many PD and DLB subjects have dementia and depression resulting from possible degeneration of cholinergic and noradrenergic and serotonergic neurons. On the other hand, AD patients may also develop extrapyramidal features as well as depression. In both PD and AD there is, respectively, accumulation of iron within the melanin containing dopamine neurons of pars compacta and with in the plaques and tangle. It has been suggested that iron accumulation may contribute to the oxidative stress induced apoptosis reported in both diseases. This may result from increased glia hydrogen peroxide producing monoamine oxidase (MAO) activity that can generate of reactive hydroxyl radical formed from interaction of iron and hydrogen peroxide. We have therefore prepared a series of novel bifunctional drugs from the neuroprotective-antiapoptotic antiparkinson monoamine oxidase B inhibitor, rasagiline, by introducing a carbamate cholinesterase (ChE) inhibitory moiety into it. Ladostigil (TV-3326, N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate), has both ChE and MAO-AB inhibitory activity, as potential treatment of AD and DLB or PD subjects with dementia Being a brain selective MAO-AB inhibitor it has limited potentiation of the pressor response to oral tyramine and exhibits antidepressant activity similar to classical non-selective MAO inhibitor antidepressants by increasing brain serotonin and noradrenaline. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats and antagonizes scopolamine-induced inhibition of spatial learning. Ladostigil like MAO-B inhibitor it prevents MPTP Parkinsonism in mice model and retains the in vitro and in vivo neuroprotective activity of rasagiline. Ladostigil, rasagiline and other propargylamines have been demonstrated to have neuroprotective activity in several in vitro and in vivo models, which have been shown be associated with propargylamines moiety, since propargylamines itself possess these properties. The mechanism of neuroprotective activity has been attributed to the ability of propargylamines-inducing the antiapoptotic family proteins Bcl-2 and Bcl-xl, while decreasing Bad and Bax and preventing opening of mitochondrial permeability transition pore. Iron accumulates in brain regions associated with neurodegenerative diseases of PD, AD, amyotrophic lateral sclerosis and Huntington disease. It is thought to be involved in Fenton chemistry oxidative stress observed in these diseases. The neuroprotective activity of propargylamines led us to develop several novel bifunctional iron chelator from our prototype brain permeable iron chelators, VK-28, possessing propargylamine moiety (HLA-20, M30 and M30A) to iron out iron from the brain. These compounds have been shown to have iron chelating and monoamine oxidase A and B selective brain inhibitory and neuroprotective-antiapoptotic actions.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion Faculty of Medicine, Efron St., PO Box 9697, Haifa 31096, Israel.
| | | | | |
Collapse
|
36
|
Dunnett SB. Chapter V Motor function(s) of the nigrostriatal dopamine system: Studies of lesions and behavior. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0924-8196(05)80009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
37
|
Stern MB, Marek KL, Friedman J, Hauser RA, LeWitt PA, Tarsy D, Olanow CW. Double-blind, randomized, controlled trial of rasagiline as monotherapy in early Parkinson's disease patients. Mov Disord 2004; 19:916-23. [PMID: 15300656 DOI: 10.1002/mds.20145] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rasagiline (N-propargyl-1(R)-aminoindan) mesylate is a potent, selective, and irreversible monoamine oxidase-B inhibitor. This study was designed to evaluate the safety, tolerability, and preliminary efficacy of rasagiline monotherapy in early Parkinson's disease (PD) patients not receiving levodopa. The study was performed as a multicenter, parallel-group, double-blind, randomized, placebo-controlled, 10-week study. Fifty-six PD patients were randomly assigned to rasagiline mesylate 1, 2, or 4 mg once daily, or placebo. A 3-week dose-escalation period was followed by a 7-week maintenance phase. At week 10, the mean (+/-SE) changes from baseline in total Unified Parkinson's Disease Rating Scale (UPDRS) score were -1.8 (+/-1.3), -3.6 (+/-1.7), -3.6 (+/-1.2), and -0.5 (+/-0.8) in the rasagiline 1, 2, and 4 mg/day and placebo groups, respectively. Analysis of responders showed that 28% of patients (12 of 43) receiving rasagiline had an improvement in total UPDRS score of greater than 30%, compared with none of the patients receiving placebo (P < 0.05, Fisher's exact test). The frequency and types of adverse events reported by rasagiline-treated and placebo-treated patients were similar. These results suggest that rasagiline monotherapy is well tolerated and efficacious in early PD.
Collapse
|
38
|
Thébault JJ, Guillaume M, Levy R. Tolerability, Safety, Pharmacodynamics, and Pharmacokinetics of Rasagiline: A Potent, Selective, and Irreversible Monoamine Oxidase Type B Inhibitor. Pharmacotherapy 2004; 24:1295-305. [PMID: 15628826 DOI: 10.1592/phco.24.14.1295.43156] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To investigate the tolerability, safety, pharmacodynamics, and pharmacokinetics of rasagiline after once-daily oral administration of single or repeated doses. DESIGN A randomized, double-blind, placebo-controlled, three-way, single-dose study and a randomized, double-blind, placebo-controlled, repeated-dose study. SETTING Clinical research center in France. SUBJECTS Healthy male volunteers aged 18-40 years (12 in the single-dose study, 24 in the repeated-dose study). INTERVENTION In the single-dose study, subjects received, in a randomized sequence, single doses of placebo, rasagiline 1 mg, and rasagiline 5 mg; or placebo, rasagiline 2 mg, and rasagiline 10 mg. Six subjects received an additional single dose of rasagiline 20 mg. There was a 2-week washout period between each dose. In the repeated-dose study, subjects were randomized to receive rasagiline 2 mg, 5 mg, or 10 mg, or placebo once/day for 10 days. MEASUREMENTS AND MAIN RESULTS To assess tolerability and safety, patients underwent physical examinations, vital sign measurements, 12-lead electrocardiograms, clinical laboratory testing, and bleeding time studies. To determine platelet monoamine oxidase type B (MAO-B) activity and rasagiline pharmacokinetics, blood and urine samples were taken. In the single-dose study, rasagiline 1-20 mg was well tolerated. Each dose significantly inhibited platelet MAO-B activity. In the repeated-dose study, all doses of rasagiline were well tolerated; almost full inhibition of platelet MAO-B activity was achieved with each rasagiline dose. CONCLUSION Rasagiline is well tolerated at doses up to 20 mg once/day and is a potent inhibitor of platelet MAO-B in humans.
Collapse
|
39
|
Youdim MBH, Arraf Z. Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology 2004; 46:1130-40. [PMID: 15111020 DOI: 10.1016/j.neuropharm.2004.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 01/07/2004] [Accepted: 02/03/2004] [Indexed: 11/27/2022]
Abstract
Lithium has been reported to exert neuroprotective activity in several neuronal cell cultures and in vivo models against glutamate toxicity. Since this action was reported to be associated with alterations in the antiapoptotic Bcl-2 family proteins, the effect of chronic lithium diet on the ability of the parkinsonism neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to deplete striatal dopamine in mice was determined. Mice were fed for with a diet containing 1.1, 2.2, 3.3, and 4.4 g/kg lithium chloride (LiCl) for 4 weeks, during which time serum levels of lithium were monitored. The 3.3 g/kg lithium diet gave serum level value very similar to what is observed in lithium therapy in man and the 4.4 g/kg well above this. At the end of this period the mice received 24 mg/kg MPTP i.p. once daily for 3 days. A direct relation was established with the increase in serum lithium and its ability to prevent MPTP induced depletion of striatal dopamine (DA) and its metabolites DPOAC and HVA. With the diet containing the highest lithium concentration there was an almost complete prevention of striatal dopamine depletion and the reduction in tyrosine hydroxylase activity and protein and it prevented the increase in dopamine turnover (DOPAC + HVA/DA) normally observed in MPTP treatment. Lithium did not interfere with the metabolism of MPTP, or with its brain uptake, since, the level of its monoamine oxidase (MAO) B derived metabolite, MPP+, in the striata of lithium and non-lithium treated mice were almost identical. Striatal Bcl-2 was significantly decreased, while Bax was increased in MPTP treated mice. Lithium treatment not only increased striatal Bcl-2 in control mice, but also prevented its reduction as induced by MPTP, and an opposing effect was seen with Bax. The neuroprotective action of lithium in this model of Parkinson's disease has been attributed to its antiapoptotic activity which among other factors includes induction of Bcl-2 and reduction of Bax.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion, Efron Street, P.O. Box 9697, Haifa 31096, Israel.
| | | |
Collapse
|
40
|
Youdim MBH, Amit T, Falach-Yogev M, Bar Am O, Maruyama W, Naoi M. The essentiality of Bcl-2, PKC and proteasome–ubiquitin complex activations in the neuroprotective-antiapoptotic action of the anti-Parkinson drug, rasagiline. Biochem Pharmacol 2003; 66:1635-41. [PMID: 14555244 DOI: 10.1016/s0006-2952(03)00535-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The anti-Parkinson drug, rasagiline, a irreversible propargyl possessing monoamine oxidase B inhibitor can protect neurons in vitro and in vivo from a variety of neurotoxic insults including SIN-1, glutamate, the parkinsonism inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, N-methyl-(R)-salsolinol and including beta amyloid protein. Recent studies have shown that rasagiline rapidly modulates intracellular signaling pathways involved in cell survival and death. Specifically rasagiline activates Bcl-2, Bcl-xl, protein kinase C (PKC) and reduces Bax in a variety of cells including PC-12 and neuroblastoma human dopamine derived SH-SY5Y cells. These enzymes play key roles in cellular events including modulation of apoptotic processes, neuronal plasticity and amyloid precursor protein processing. This pharmacological action of rasagiline is also associated with the prevention of the neurotoxin induced fall in mitochondrial membrane potential, opening of mitochondria permeability transition pore, activation of proteasome-ubiquitin complex, inhibition of cytochrome c release and prevention of caspase 3 activation, similar to the actions of cyclosporin A or Bcl-2 over expression in SH-SY5Y cells. Rasagiline and its various derivatives induces PKC dependent release of soluble amyloid precursor protein alpha and which is blocked by inhibitors of alpha-secretase, PKC and MAPK-dependent signaling. Structure-activity relationship with various propargyl containing derivatives of rasagiline including propargylamine itself has shown that the above described pharmacological action of these compounds resides in the propargylamine moiety. These results have provided a new understanding into the mechanism of neuroprotective actions of rasagiline and its anti-Alzheimer drug derivatives TV3326 and TV3279, which are relevant for therapy of Parkinson's disease, Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Technion-Faculty of Medicine, Efron Street, P.O. Box 9697, Haifa 31096, Israel.
| | | | | | | | | | | |
Collapse
|
41
|
Sagi Y, Weinstock M, Youdim MBH. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J Neurochem 2003; 86:290-7. [PMID: 12871570 DOI: 10.1046/j.1471-4159.2003.01801.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
(R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.
Collapse
Affiliation(s)
- Yotam Sagi
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research, Technion-Faculty of Medicine, Haifa, Israel
| | | | | |
Collapse
|
42
|
Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim M. A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:555-61. [PMID: 12787840 DOI: 10.1016/s0278-5846(03)00053-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Degeneration of cholinergic cortical neurons is one of the main reasons for the cognitive deficit in dementia of the Alzheimer type (AD) and in dementia with Lewy bodies (DLB). Many subjects with AD and DLB have extrapyramidal dysfunction and depression resulting from degeneration of dopaminergic, noradrenergic and serotoninergic neurons. We prepared a novel drug, TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate), with both cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activity, as potential treatment of AD and DLB. TV-3326 inhibits brain acetyl and butyrylcholinesterase (BuChE) in rats after oral doses of 10-100 mg/kg. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain by more than 70% but has almost no effect on these enzymes in the small intestine in rats and rabbits. The brain selectivity results in minimal potentiation of the pressor response to oral tyramine. TV-3326 acts like other antidepressants in the forced swim test in rats, indicating a potential for antidepressant activity. Chronic treatment of mice with TV-3326 (26 mg/kg) prevents the destruction of nigrostriatal neurons by the neurotoxin MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). In addition to ChE and MAO inhibition, the propargylamine moiety of TV-3326 confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells that results from prevention of the fall in mitochondrial membrane potential and antiapoptotic activity. These unique multiple actions of TV-3326 make it a potentially useful drug for the treatment of dementia with Parkinsonian-like symptoms and depression.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Hebrew University Hadassah School of Medicine, Ein Kerem, 91120, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
43
|
Youdim MBH, Weinstock M. Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline. Mech Ageing Dev 2002; 123:1081-6. [PMID: 12044957 DOI: 10.1016/s0047-6374(01)00391-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of studies have shown that the selective monoamine oxidase (MAO)-B inhibitor l-selegiline has neuroprotective activities in several cell culture systems and in vivo. The suggestion has been made that the propargyl moiety in this molecule may have some intrinsic neuroprotective activity not related to its ability to bind covalently to MAO B and inhibit it. We have therefore developed a number of novel drugs based on rasagiline (N-propargyl-1R-(+)-aminoindan), a potent anti-Parkinson-propargyl-containing MAO-B inhibitor drug with structural resemblance to selegiline, for the treatment of Alzheimer's disease. These drugs possess a carbamate moiety for cholinesterase (ChE), and a propargyl group for MAO inhibition. The R-enantiomer of these compounds (TV3326) has ChE and MAO inhibitory activities in vivo and retains the neuroprotective properties of rasagiline. It also exhibits anti-depressant activity in animal models. The S-enantiomer does not inhibit MAO and has no anti-depressant activity, but it has similar ChE inhibitory and neuroprotective activities. Thus MAO inhibition by propargylamines is not a pre-requisite for neuroprotection. Rather, propargylamines have some intrinsic neuroprotective property whose mechanism of action requires further elucidation.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Faculty of Medicine, Eve Topf and NPF Centers, 31096, Haifa, Israel.
| | | |
Collapse
|
44
|
Youdim MB, Weinstock M. Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 2001; 21:555-73. [PMID: 12043833 DOI: 10.1023/a:1015131516649] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rasagiline (N-propargyl-1-(R)-aminoindan) is a selective, irreversible monoamine oxidase B (MAO B) inhibitor which has been developed as an anti-Parkinson drug. In controlled monotherapy and as adjunct to L-dopa it has shown anti-Parkinson activity. In cell culture (PC-12 and neuroblastoma SH-SY5Y cells) it exhibits neuroprotective and anti-apoptotic activity against several neurotoxins (SIN-1, MPTP, 6-hydroxydopamine and N-methyl-(R)-salsolinol) and ischemia. In vivo, it reduces the sequelae of traumatic brain injury in mice and speeds their recovery. The neuroprotective activity of rasagaline does not result from MAO B inhibition, since its S-enantiomer, TVP1022, which has 1000-fold weaker MAO inhibitory activity, exhibits similar neuroprotective properties. Introduction of a carbamate moiety into the rasagiline molecule to confer cholinesterase inhibitory activity for the treatment of Alzheimer's disease, resulted in compounds TV3326 [(N-Propargyl-(3R)Aminoindan-5-YL)-Ethyl Methyl Carbamate] and its S-enantiomer TV3279 [(N-Propargyl-(3S)Aminoindan-5-YL)-Ethyl Methyl Carbamate], which retain the neuroprotective activities of rasagiline and TVP1022. They also antagonize scopolamine-induced impairments in spatial memory. In addition, TV3326 exhibits brain-selective MAO A and B inhibitory activity after chronic administration and has antidepressant-like activity in the forced swim test. This is associated with an increase in brain levels of serotonin. The anti-apoptotic activity of these propargylamine-containing derivatives may be related to their ability to delay the opening of voltage-dependent anion channels (VDAC), which are part of the mitochondrial permeability transition pore. The propargylamine moiety is responsible for the increase in the mitochondrial family of Bcl-2 proteins, prevention in the fall in mitochondrial membrane potential, prevention of the activation of caspase 3, and of translocation of glyceraldehyde-3-phosphate dehydrogenase from the cytoplasm to the nucleus. The latter processes are closely associated with neurotoxin-induced apoptosis. Rasagiline interacts with and prevents the binding of PKI 1195 to the pro-apoptotic peripheral benzodiazepine receptor, which together with Bcl-2, hexokinase, porin, and adenine nucleotide translocator constitutes part of the VDAC. Furthermore, rasagiline, TV3326 and TV3279 are able to influence the processing of amyloid precursor protein by activation of alpha-secretase and increasing the release of soluble alpha APP in rat PC-12 and human neuroblastoma SH-SY5Y cells and in rat and mice cortex and hippocampus. This process has been shown to involve the upregulation of PKC and MAP kinase. It is quite likely that the induction of Bcl-2 and activation of PKC by rasagiline and TV3326 is closely linked to the anti-apoptotic action of these drugs and their ability to process APP by activation of alpha-secretase.
Collapse
Affiliation(s)
- M B Youdim
- Eve Topf and National Parkinson Foundation Centers for Neurodegenerative Diseases Research, Department of Pharmacology, Technion-Faculty of Medicine, Haifa, Israel.
| | | |
Collapse
|
45
|
Youdim MB, Wadia A, Tatton W, Weinstock M. The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 2001; 939:450-8. [PMID: 11462801 DOI: 10.1111/j.1749-6632.2001.tb03656.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The antiapoptotic and neuroprotective activity of irreversible monoamine oxidase (MAO) B inhibitor, rasagiline [R(+)-N-propargyl-1-aminioindan], its S-isomer (TVP1022) and TV 3219, a novel anti-Alzheimer cholinesterase-MAO inhibitor drug derived from rasagiline were examined in PC12 cells cultures and in vivo. We found that these drugs have potent antiapoptotic and neuroprotective activities in response to serum and NGF withdrawal in partially neuronally differentiated PC12 cells and prevent the fall in mitochondrial membrane potential, the first step in cell death. Closed head injury studies in mice have shown that both rasagiline and TVP1022 are neuroprotective. All these compounds possess a propargyl moiety, which normally is responsible for irreversible inactivation of MAO, as is seen with rasagiline. However, neither TVP1022 nor TV3219 are MAO inhibitors, both share the antiapoptotic and neuroprotective actions of rasagiline, indicating that MAO inhibition is not a prerequisite for neuroprotection and that the propargyl moiety exhibits intrinsic neuroprotective pharmacological activity that requires identification.
Collapse
Affiliation(s)
- M B Youdim
- Technion-Faculty of Medicine, Eve Topf and NPF Neurodegenerative Disease Centers, Efron Street, Bat Galim, Haifa, Israel.
| | | | | | | |
Collapse
|
46
|
Castagnoli KP, Steyn SJ, Petzer JP, Van der Schyf CJ, Castagnoli N. Neuroprotection in the MPTP Parkinsonian C57BL/6 mouse model by a compound isolated from tobacco. Chem Res Toxicol 2001; 14:523-7. [PMID: 11368550 DOI: 10.1021/tx000224v] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidemiological evidence suggests a lower incidence of Parkinson's disease in smokers than in nonsmokers. This evidence, together with the lower levels of brain monoamine oxidase (MAO) activity in smokers and the potential neuroprotective properties of MAO inhibitors, prompted studies which led to the isolation and characterization of 2,3,6-trimethyl-1,4-naphthoquinone (TMN), an MAO-A and MAO-B inhibitor which is present in tobacco and tobacco smoke. Results of experiments reported here provide evidence that this compound protects against the MPTP-mediated depletion of neostriatal dopamine levels in the C57BL/6 mouse. These results support the hypothesis that the inhibition of MAO by constituents of tobacco smoke may be related to the decreased incidence of Parkinson's disease in smokers.
Collapse
Affiliation(s)
- K P Castagnoli
- Harvey W. Peters Center, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061-0212, USA.
| | | | | | | | | |
Collapse
|
47
|
Speiser Z, Levy R, Cohen S. Effects of N-propargyl-1-(R)aminoindan (rasagiline) in models of motor and cognition disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1998; 52:287-300. [PMID: 9564629 DOI: 10.1007/978-3-7091-6499-0_29] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-propargyl-1-(R)aminoindan (rasagiline) is a new and selective irreversible MAO-B inhibitor, currently being considered as the mesylate salt for potential therapy in certain neurological disorders. It has been studied in animal models of cognition and motor dysfunction. Its ability to restore normal motor activity was determined in models of acute drug-induced dopaminergic dysfunction: Its effects in improving cognition and memory deficits was studied in adult and senescent rats that had been exposed to prolonged hypoxia, then subjected to the passive and active avoidance tests. In alpha-methyl-p-tyrosine (alpha-MpT)-induced hypokinesia (100-120 mg/kg, i.p.) pretreatment with rasagiline at 2.5 mg/kg i.p. restored motor activity to control level. But pretreatment with reserpine abolished the protective effect of rasagiline. Rasagiline at 0.5 mg/kg/day was protective against alpha-MpT also in hypoxia-lesioned rats. In haloperidol-induced catalepsy in rats (1.5 mg/kg, s.c.) or mice (4-6 mg/kg s.c.), rasagiline improved recovery of normal locomotion, gait and coordination at 0.4-2.4 mg/kg i.p. and 1.8-1.5 mg/kg i.p., respectively. In amphetamine-induced stereotypy (0.6 mg/kg s.c., rasagiline potentiated this effect at 1.5 mg/kg i.p. In hypoxia-induced impairment of memory and learning, rasagiline at 0.32-0.5 mg/kg/day per os improved performance of adult rats in passive and active avoidance, and of senescent rats in active avoidance. Selegiline was either ineffective or less effective at equivalent doses. Racemic N-propargyl-1-aminoindan (AGN-1135), besides being of lower potency, had a different dose-dependency than rasagiline in antagonizing haloperidol-induced catalepsy or alpha-MpT-induced hypokinesia. 1-(R)aminoindan ((R)AI), a metabolite of rasagiline, in relatively high doses produced effects that were distinct in certain respects from those of rasagiline.
Collapse
Affiliation(s)
- Z Speiser
- Department of Physiology and Pharmacology, Tel Aviv University, Israel
| | | | | |
Collapse
|
48
|
Cesura AM, Pletscher A. The new generation of monoamine oxidase inhibitors. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1992; 38:171-297. [PMID: 1609114 DOI: 10.1007/978-3-0348-7141-9_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Irreversible and unspecific inhibitors of MAO were the first modern antidepressants, but after an initial success they fell into discredit due to adverse side effects. In the past two decades interest in MAO inhibitors has been renewed because of progress in basic research, a milestone being the finding that there are two subtypes of MAO, MAO-A and MAO-B. These are distinct proteins with high amino acid homology, coded by separate genes both located on the short arm of the human chromosome X. The enzyme subforms show different substrate specificities in vitro and different distributions within the central nervous system and in peripheral organs. In the central nervous system of man MAO-A seems to be mainly involved in the metabolism of 5 HT and noradrenaline, whereas 2-phenylethylamine and probably dopamine are predominantly deaminated by MAO-B. In the intestinal tract tyramine is mainly metabolized by MAO-A. These characteristics indicate distinct physiological functions of the two MAO-subforms. Several irreversible and reversible non-hydrazine inhibitors with relative selectivities for one of the MAO-subforms have been developed. They belong to various chemical classes with different modes of enzyme inhibition. These range from covalent mechanism based interaction (e.g. by propargyl- and allylamine derivatives) to pseudosubstrate inhibition (e.g. by 2-aminoethyl-carboxamides) and non-covalent interaction (e.g. by brofaromine, toloxatone and possibly moclobemide). The most important pharmacological effects of the new types of MAO inhibitors are those observed in neuropsychiatric disorders. The inhibitors of MAO-A show a favorable action in various forms of mental depression. The drugs seem to have about the same activity as other types of antidepressants, including tricyclic and related compounds as well as classical MAO inhibitors. The onset of action of the MAO-A inhibitors is claimed to be relatively fast. Other possible indications of these drugs include disorders with cognitive impairment, e.g. dementia of the Alzheimer type. In subjects with Parkinson's disease the MAO-B inhibitor L-deprenyl exerts a L-dopa-sparing effect, prolongs L-dopa action and seems to have a favorable influence regarding on-off disabilities. The action is in general transitory (months to several years). In addition L-deprenyl has been shown to delay the necessity for L-dopa treatment in patients with early parkinsonism. Whether the drug influence the progression of the disease is still a matter of debate. L-deprenyl also appears to have some antidepressant effect (especially in higher doses) and to exert a beneficial influence in other disorders, e.g. dementia of the Alzheimer type.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A M Cesura
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | |
Collapse
|
49
|
Leinweber FJ. Drug disposition in the mammalian eye and brain: a comparison of mechanisms. Drug Metab Rev 1991; 23:133-246. [PMID: 1868775 DOI: 10.3109/03602539109029758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- F J Leinweber
- Department of Drug Metabolism, Hoffmann-La Roche, Nutley, New Jersey 07110
| |
Collapse
|
50
|
Sayre LM. Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Lett 1989; 48:121-49. [PMID: 2672418 DOI: 10.1016/0378-4274(89)90168-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The various biochemical mechanisms considered to explain the selective dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are reviewed. MPTP is metabolized by monoamine oxidase in the brain, ultimately yielding 1-methyl-4-phenylpyridinium cation (MPP+), which is accumulated in dopamine cells by the high-affinity dopamine uptake pump. Cell death appears to reflect a compromise in energy production arising as a result of the Nernstian concentration of MPP+ inside mitochondria and persistent inhibition of Site 1 of the respiratory chain. The structural features underlying each biochemical step involved in the expression of neurotoxicity are described, and the implications of the MPTP phenomenon to efforts aimed at elucidating the pathogenesis of idiopathic parkinsonism are discussed.
Collapse
Affiliation(s)
- L M Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|