1
|
The Effect of Glutamatergic Modulators on Extracellular Glutamate: How Does this Information Contribute to the Discovery of Novel Antidepressants? Curr Ther Res Clin Exp 2019; 91:25-32. [PMID: 31871505 PMCID: PMC6911922 DOI: 10.1016/j.curtheres.2019.100566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
The complexity of glutamatergic signaling challenges glutamate modulator usage. Functional biomarkers are needed to understand the MOA of glutamate modulators. Evaluating drug effect on EAATs' kinetics may add to antidepressant discovery.
Background In the search for new antidepressants, clinical researchers have been using drugs that simultaneously modulate multiple targets. During preclinical and clinical trials, the glutamatergic modulators riluzole and ketamine have received particular attention. Glutamatergic agents have a modulatory effect on synaptic transmission, so they can act on both neurons and astrocytes. In addition to influencing the quantity of glutamate released, these modulators can also affect the expression, localization, and functionality of glutamate-binding sites. Objective This review discusses the complexity of the glutamatergic system, the ambiguity of data regarding glutamate levels in patients with depression, as well as the mechanisms of action for riluzole and ketamine, which includes their relation to the physiology of glutamatergic transmission. The principal aim is to contribute to the development of novel glutamatergic antidepressant medications whilst emphasizing the need for innovative approaches that evaluate their effects on extracellular glutamate. Methods Literature was obtained via PubMed by searching the term depression in combination with each of the following terms: riluzole, ketamine, and glutamate. The search was restricted to full-text articles published in English between 1985 and 2018 relating to both the modulatory mechanisms of glutamatergic-binding proteins and the antidepressant actions of these medicines. Articles about mechanisms associated with synaptic plasticity and antidepressant effects were excluded. Results Although experimental data relates glutamatergic signaling to the pathophysiology of major depression and bipolar disorder, the role of glutamate—as well as its extracellular concentration in patients with said disorders—is still unclear. Riluzole's antidepressant action is ascribed to its capacity to reduce glutamate levels in the synaptic cleft, and ketamine's effect has been associated with increased extracellular glutamate levels. Conclusions The strategy of using glutamatergic modulators as therapeutic agents requires a better understanding of the role of glutamate in the pathophysiology of depression. Gaining such understanding is a challenge because it entails evaluating different targets as well as the effects of these modulators on the kinetics of glutamate uptake. Essentially, glutamate transport is a dynamic process and, currently, it is still necessary to develop new approaches to assay glutamate in the synaptic cleft. ORCID: 0000-0002-3358-6939.
Collapse
|
2
|
Sagheddu C, Aroni S, De Felice M, Lecca S, Luchicchi A, Melis M, Muntoni AL, Romano R, Palazzo E, Guida F, Maione S, Pistis M. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology 2015; 97:383-93. [PMID: 26113399 DOI: 10.1016/j.neuropharm.2015.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
In humans, affective consequences of neuropathic pain, ranging from depression to anxiety and anhedonia, severely impair quality of life and are a major disease burden, often requiring specific medications. Depressive- and anxiety-like behaviors have also been observed in animal models of peripheral nerve injury. Dysfunctions in central nervous system monoamine transmission have been hypothesized to underlie depressive and anxiety disorders in neuropathic pain. To assess whether these neurons display early changes in their activity that in the long-term might lead to chronicization, maladaptive plasticity and affective consequences, we carried out in vivo extracellular single unit recordings from serotonin neurons in the dorsal raphe nucleus (DRN) and from dopamine neurons in ventral tegmental area (VTA) in the spared nerve injury (SNI) model of neuropathic pain in rats. Extracellular dopamine levels and the expression of dopamine D1, D2 receptors and tyrosine hydroxylase (TH) were measured in the nucleus accumbens. We report that, two weeks following peripheral nerve injury, discharge rate of serotonin DRN neurons and burst firing of VTA dopamine cells are enhanced, when compared with sham-operated animals. We also observed higher extracellular dopamine levels and reduced expression of D2, but not D1, receptors and TH in the nucleus accumbens. Our study confirms that peripheral neuropathy induces changes in the serotonin and dopamine systems that might be the early result of chronic maladaptation to persistent pain. The allostatic activation of these neural systems, which mirrors that already described as a consequence of stress, might lead to depression and anxiety previously observed in neuropathic animals but also an attempt to cope positively with the negative experience.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Sonia Aroni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Marta De Felice
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Salvatore Lecca
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Antonio Luchicchi
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Miriam Melis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Italy
| | - Rosaria Romano
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, 80138 Naples, Italy; Department of Anaesthesiology, Surgery and Emergency, The Second University of Naples, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, The Second University of Naples, 80138 Naples, Italy
| | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Italy.
| |
Collapse
|
3
|
Kumar P, Berghorst LH, Nickerson LD, Dutra SJ, Goer FK, Greve DN, Pizzagalli DA. Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience 2014; 266:1-12. [PMID: 24508744 DOI: 10.1016/j.neuroscience.2014.01.058] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/26/2023]
Abstract
Anhedonia is one of the core symptoms of depression and has been linked to blunted responses to rewarding stimuli in striatal regions. Stress, a key vulnerability factor for depression, has been shown to induce anhedonic behavior, including reduced reward responsiveness in both animals and humans, but the brain processes associated with these effects remain largely unknown in humans. Emerging evidence suggests that stress has dissociable effects on distinct components of reward processing, as it has been found to potentiate motivation/'wanting' during the anticipatory phase but reduce reward responsiveness/'liking' during the consummatory phase. To examine the impact of stress on reward processing, we used a monetary incentive delay (MID) task and an acute stress manipulation (negative performance feedback) in conjunction with functional magnetic resonance imaging (fMRI). Fifteen healthy participants performed the MID task under no-stress and stress conditions. We hypothesized that stress would have dissociable effects on the anticipatory and consummatory phases in reward-related brain regions. Specifically, we expected reduced striatal responsiveness during reward consumption (mirroring patterns previously observed in clinical depression) and increased striatal activation during reward anticipation consistent with non-human findings. Supporting our hypotheses, significant Phase (Anticipation/Consumption)×Stress (Stress/No-stress) interactions emerged in the putamen, nucleus accumbens, caudate and amygdala. Post hoc tests revealed that stress increased striatal and amygdalar activation during anticipation but decreased striatal activation during consumption. Importantly, stress-induced striatal blunting was similar to the profile observed in clinical depression under baseline (no-stress) conditions in prior studies. Given that stress is a pivotal vulnerability factor for depression, these results offer insight to better understand the etiology of this prevalent disorder.
Collapse
Affiliation(s)
- P Kumar
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, MA, USA.
| | - L H Berghorst
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - L D Nickerson
- Department of Psychiatry, Harvard Medical School, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - S J Dutra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - F K Goer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
| | - D N Greve
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - D A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
4
|
Effects of prenatal immune activation and peri-adolescent stress on amphetamine-induced conditioned place preference in the rat. Psychopharmacology (Berl) 2012; 222:313-24. [PMID: 22290326 PMCID: PMC3410038 DOI: 10.1007/s00213-012-2646-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
RATIONALE Addiction is a disease of learning and memory, as learning processes underlying acquisition, extinction, and reinstatement of drug-paired associations play central roles in addiction. Early developmental stress enhances risk for drug problems in adulthood. Environmental factors influencing learning and memory processes relevant to addiction remain incompletely characterized. OBJECTIVES To determine effects of prenatal immune activation and developmental stress on conditioned place preference to amphetamine, and reversal learning. METHODS Pregnant Sprague-Dawley rats were injected with polyinosinic:polycytidylic acid (poly I:C) or vehicle on gestational day 14. Half of the male offspring received 2 h of restraint stress at post-natal day 35. Behavioral testing was performed in adulthood. RESULTS Restraint stress inhibited acquisition of place preference to low-dose amphetamine (0.5 mg/kg), while poly I:C treatment had no measurable effect on place preference acquisition. In contrast, drug-induced reinstatement of preference for drug-paired chamber was enhanced in offspring of poly I:C-treated dams [F(1,25)05.31, p00.03]. Performance on a Morris water maze reversal learning task was impaired in poly I:C offspring. Reversal learning performance was correlated with place preference reinstatement in non-stressed (r200.42, p00.0095), but not stressed rats (r2 00.04, p00.49). CONCLUSIONS Prenatal immune activation enhances drug induced reinstatement of conditioned place preference. These data demonstrate longstanding impact on behaviors with potential influence on risk for drug relapse as a consequence of prenatal immune activation. Further study is needed to determine clinical and epidemiological consequences of similar exposures in human populations.
Collapse
|
5
|
Ossewaarde L, Qin S, Van Marle HJ, van Wingen GA, Fernández G, Hermans EJ. Stress-induced reduction in reward-related prefrontal cortex function. Neuroimage 2011; 55:345-52. [DOI: 10.1016/j.neuroimage.2010.11.068] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 11/30/2022] Open
|
6
|
Abstract
In anesthetized animals, dopamine neurons fire in tonic and phasic firing modes hypothesized to be regulated by dissociable circuit mechanisms. Salient events critical to learning, reward processing, and attentional selection elicit transient phasic bursts. It is unclear, however, how burst activity contributes to sustained firing patterns in awake animals and if behavioral conditions known to affect dopaminergic neurotransmission change impulse activity levels. Acute stress is known to increase extracellular dopamine in the striatum and the prefrontal cortex. In this study, we have used multiunit recording to define and follow activity patterns in single dopaminergic neurons across days and to determine how restraint, a model of acute stress, changes tonic and phasic firing patterns. Long-term recording shows that a population of 23 putative dopamine neurons has heterogeneous firing profiles under baseline conditions. In all, 62% showed significant burst activity under resting conditions, while others showed predominantly regular (17%) or random (21%) activity patterns. Restraint increased mean firing rate in all dopamine neurons, but preferentially increased burst firing in neurons with higher burst rates under resting conditions. Finally, we show that increased burst firing can persist 24 h after a single exposure to stress. These data indicate that subsets of dopamine neurons may be sensitive to circuit mechanisms activated by stress and that persistent changes in burst firing may be evidence of synaptic plasticity. Furthermore, increased burst firing may be a mechanism through which stress augments extracellular dopamine in selected terminal regions.
Collapse
Affiliation(s)
- Kristin K Anstrom
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
7
|
Abstract
Stress is the major epigenetic factor that contributes to the etiology, pathophysiology, and treatment outcome of most psychiatric disorders. Understanding the mechanisms by which stress contributes to these processes can have important implications for improving therapeutic outcome. Considering that a dysfunctional prefrontal cortex has been implicated in many psychiatric disorders, such as schizophrenia and mood disorders, delineating mechanisms by which stress affects prefrontal cortex (PFC) function is critical to our understanding of the role of stress in influencing the disease process. This paper will review recent mechanistic information about the effects of stress on dopamine and glutamate neurotransmission in the PFC.
Collapse
Affiliation(s)
- Bita Moghaddam
- Department of Neuroscience, 446 Crawford Hall, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
8
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
9
|
Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 2002; 51:775-87. [PMID: 12007451 DOI: 10.1016/s0006-3223(01)01362-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In most psychiatric disorders, stress is the major nongenomic factor that contributes to the expression or exacerbation of acute symptoms, recurrence or relapse after a period of remission, and treatment outcome. Delineation of mechanisms by which stress contributes to these processes is fundamental to understanding the disease process and for improving outcome. In this article, evidence is reviewed to indicate that many central aspects of stress response, including activation of the hypothalmic-pituitary-adrenal (HPA) axis and dopamine neurotransmission, are modulated, and in some cases mediated, by glutamate neurotransmission in the prefrontal cortex (PFC). It is suggested that activation of glutamatergic neurotransmission in the PFC presents a common mechanism by which stress influences normal and abnormal processes that sustain affect and cognition. Although monoamines, in particular dopamine, have been considered the major culprits in the adverse effects of stress in disorders such as addiction and schizophrenia, it is likely that in a vulnerable brain with an underlying PFC pathophysiology, abnormal stress-activated monoaminergic neurotransmission is secondary to anomalies in cortical glutamate neurotransmission. Thus, understanding the contribution of glutamate-mediated processes to stress response through the use of experimental models that involve disrupted PFC function can provide insights to the fundamental pathophysiology of stress-sensitive psychiatric disorders and lead to novel strategies for treatment and prevention.
Collapse
Affiliation(s)
- Bita Moghaddam
- Department of Psychiatry, Yale University School of Medicine, VA Medical Center 116A/2, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Adamec RE, Burton P, Shallow T, Budgell J. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure--implications for anxiety associated with posttraumatic stress disorder. Physiol Behav 1999; 65:723-37. [PMID: 10073474 DOI: 10.1016/s0031-9384(98)00226-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It has been proposed that NMDA-dependent long-term potentiation (LTP) of limbic system circuits controlling defensive behavior underlies stressor-induced lasting increases in anxiety-like behavior (ALB). Findings in cats given the stress-inducing beta-carboline, FG-7142, support this hypothesis. An animal model of lasting affective change following traumatic stress has recently been developed. In this model, lasting increases in anxiety-like behavior (ALB) assessed in the elevated plus maze are produced by a single 5-min exposure of a rat to a cat. Rats become more anxious in the plus maze for up to 3 weeks after the exposure. The present study demonstrates that blockade of NMDA receptors in rats with MK-801, AP7, or CPP, given 30 min prior to exposure to a cat, prevents the increase in ALB assessed 1 week later. MK-801 or AP7, given 30 min after exposure to a cat, do not prevent the increase in ALB seen 1 week later, however. MK-801, but not CPP or AP7, promotes approaches to cats during exposure. This "fearlessness" may reflect some anxiolytic action of MK-801. Approach to cats following injection of MK-801 was eliminated by prior injection of Prazosin. Prazosin did not interfere with the block of increases in ALB following cat exposure, however. These findings are consistent with the view that NMDA receptors are involved in initiation, but not maintenance of neural changes mediating lasting increases in anxiety following severe stress. The significance of these findings for PTSD are discussed.
Collapse
Affiliation(s)
- R E Adamec
- Department of Psychology, Memorial University, St. John's, Newfoundland, Canada.
| | | | | | | |
Collapse
|
11
|
Gil M, Armario A. Chronic immobilization stress appears to increase the role of dopamine in the control of active behaviour in the forced swimming test. Behav Brain Res 1998; 91:91-7. [PMID: 9578443 DOI: 10.1016/s0166-4328(97)00109-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously, we have demonstrated that chronic exposure to immobilization (IMO) did not modify the influence of catecholamines on active behaviour of rats in the holeboard, but clearly increased the role of these amines in the forced swimming test (FST). In the present experiment, it was studied whether or not chronic IMO altered the role of dopamine in the two tests. Adult male Sprague-Dawley rats were left either undisturbed or subjected daily to 2 h of IMO stress for 12 days. On the following day, half of the rats were administered saline and the others the dopamine antagonist haloperidol (0.5 mg/kg). Then the rats remained undisturbed in the animal room (controls) or were subjected to acute IMO for 2 h. Finally, all animals were exposed consecutively to the holeboard (4 min) and the FST (5 min). In non-chronically stressed rats, acute IMO depressed behaviour in the holeboard but not in the FST. In chronic IMO rats the inhibitory effect of acute IMO on holeboard activity was slightly reduced as compared to controls. Acute IMO increased struggling in rats previously exposed to chronic IMO but did not alter struggling in non-chronically stressed rats. Whereas the inhibition caused by haloperidol treatment in the active behaviour of rats in the holeboard was not altered by chronic IMO, the inhibitory effect of haloperidol in the active behaviour of rats in the FST was greater after chronic IMO, particularly in rats also subjected to acute IMO. These data suggest that chronic IMO stress potentiates the role of dopamine in a specific behavioural task such as the FST and adds support to the previously published data demonstrating enhanced behavioural and neurochemical responses to dopamine-related drugs after chronic stress.
Collapse
Affiliation(s)
- M Gil
- Departament de Biologia Cellular i de Fisiologia, Facultat de Ciències, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
12
|
Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 1997; 77:65-73. [PMID: 9044375 DOI: 10.1016/s0306-4522(96)00435-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acute stress has been associated with activation of glutamate efflux in forebrain structures. The present study sought to characterize the extracellular dynamics of glutamate in response to acute and repeated stress in the prefrontal cortex and hippocampus in rats. One-minute sampling of extracellular glutamate levels was performed during repeated tail-pinch stress. Animals were stressed three times, beginning at approximately 10.30 a.m. and continuing at 2.5-h intervals. In the prefrontal cortex, the initial 10-min tail pinch produced a robust increase in extracellular levels of glutamate. This increase was apparent immediately (i.e. 1 min) after the start of the stress procedure. The second tail pinch produced a smaller increase in glutamate levels while the third tail pinch did not significantly increase these levels. In the hippocampus, the initial stress response was smaller in magnitude than that observed in the prefrontal cortex. Furthermore, responses to subsequent tail pinches were similar to that seen following the first tail pinch. Treatment with diazepam (3 mg/kg/i.p.) 30 min before the first stress session abolished the stress response in the prefrontal cortex and hippocampus. However, in the prefrontal cortex, the second tail pinch (performed approximately 3 h after diazepam administration) produced a robust increase in glutamate efflux. In contrast, in the hippocampus of diazepam-treated rats, the second tail pinch produced a small delayed response. Pretreatment with saline resulted in non-significant responses to all three tail pinches in the prefrontal cortex. The present study suggests that: (i) stress produces a rapid increase in glutamate efflux in the prefrontal cortex and hippocampus, (ii) repeated stress reveals tolerance in the glutamatergic response in the prefrontal cortex, (iii) saline and diazepam pretreatment reduce the stress-induced efflux of glutamate in the prefrontal cortex, and (iv) exposure to diazepam may prevent the prefrontal cortex from adapting its response to the subsequent stressor. These finding are consistent with the role of the prefrontal cortex as a region which may regulate reactions to aversive stimuli.
Collapse
Affiliation(s)
- J Bagley
- Department of Psychiatry, Yale University School of Medicine, VA Medical Center 116A/2, West Haven, CT 06516, USA
| | | |
Collapse
|
13
|
Bryson HM, Fulton B, Benfield P. Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs 1996; 52:549-63. [PMID: 8891467 DOI: 10.2165/00003495-199652040-00010] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Riluzole, a benzothiazole, affects neurons by 3 mechanisms: by inhibiting excitatory amino acid release, inhibiting events following stimulation of excitatory amino acid receptors and stabilising the inactivated state of voltage-dependent sodium channels. It has demonstrated neuroprotective activity in vivo and in vitro. Results from 2 randomised double-blind placebo-controlled trials in patients with amyotrophic lateral sclerosis (ALS; motor neuron disease) have demonstrated that riluzole can extend survival and/or time to tracheostomy. After 18 months, the relative risk of death or tracheostomy with riluzole 100 mg/day was reduced by 21%. Although riluzole slowed the rate of deterioration in muscle strength in the first trial, this was not confirmed in the second, larger trial. Riluzole had no effect on any other functional or secondary variable. Gastrointestinal effects, anorexia, asthenia, circumoral paraesthesia and dizziness were reported more frequently with riluzole than placebo. Elevated alanine aminotransferase levels were observed in 10.6 versus 3.8% of patients treated with riluzole 100 mg/day versus placebo, leading to treatment withdrawal in 3.8 versus 2.1% of patients. In conclusion, riluzole is the first drug that has been shown to have an effect on survival in patients with ALS. Although the effect of riluzole was modest, it has allowed some insight into the pathogenesis of ALS from which future gains may be made.
Collapse
Affiliation(s)
- H M Bryson
- Adis International Limited, Auckland, New Zealand
| | | | | |
Collapse
|
14
|
Levy AD, Rittenhouse PA, Li Q, Yracheta J, Kunimoto K, Van de Kar LD. Influence of repeated cocaine exposure on the endocrine and behavioral responses to stress in rats. Psychopharmacology (Berl) 1994; 113:547-54. [PMID: 7862874 DOI: 10.1007/bf02245238] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have determined that chronic cocaine exposure inhibits the serotonergic stimulation of hormone secretion. The present experiments were conducted to determine whether the endocrine responses to stress could be a useful approach to assess the influence of cocaine exposure on neuronal function. Male rats received twice daily injections of cocaine (1-15 mg/kg, IP) for 7 days. Animals were subsequently exposed to different stressors, i.e. conditioned emotional stress utilizing a low (0.5 mA) or high (1.5 mA) intensity footshock during training, or to immobilization stress. Immediately after the stress procedures, blood samples were collected for radioimmunoassay of plasma corticosterone, prolactin, and renin concentrations. Repeated cocaine exposure attenuated the stress-induced elevations of corticosterone and prolactin secretion, and attenuated some of the behavioral effects of the low intensity conditioned emotional stress. When exposed to the high intensity conditioned emotional stress, cocaine did not alter the endocrine or behavioral effects of stress. Finally, repeated cocaine exposure modified the immobilization stress-induced elevation of renin secretion; low doses of cocaine (1 or 5 mg/kg) attenuated, while higher doses (10 mg/kg) potentiated the renin response to immobilization stress. Thus, the influence of repeated cocaine exposure on the endocrine and behavioral responses to stress appears to depend upon the type and intensity of the stressor. Compared with previous studies which found altered neuroendocrine responses to serotonin releasers and agonists following cocaine exposure, the hormonal responses to stress are less consistently modified by cocaine.
Collapse
Affiliation(s)
- A D Levy
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | | | | | | | | | | |
Collapse
|
15
|
Toru M, Kurumaji A, Ishimaru M. Excitatory amino acids: implications for psychiatric disorders research. Life Sci 1994; 55:1683-99. [PMID: 7968248 DOI: 10.1016/0024-3205(94)00337-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The hyperdopaminergic theory of schizophrenia may account for some types of schizophrenia, but schizophrenia with negative symptoms or resulting in a chronic state of deterioration after repeated relapses cannot be explained by this theory. This minireview first discusses the interactions between dopamine and excitatory amino acid (EAA) neurons to produce abnormal behavior. Secondly, it deals with the influence of the psychotropic drugs on EAA, such as the relationship between phencyclidine and the hypoglutamate theory, the involvement of EAA in behavioral sensitization induced by amphetamines, the interactions between antipsychotic, antidepressant and antianxiety drugs and EAA, considering the possibility of developing newer psychotropic drugs related with EAA. Finally, glutamate receptors measured in postmortem schizophrenic brains are tabulated and the bases of the hypoglutamate hypothesis are discussed.
Collapse
Affiliation(s)
- M Toru
- Department of Neuropsychiatry, Tokyo Medical and Dental University School of Medicine, Japan
| | | | | |
Collapse
|
16
|
Sorg BA, Kalivas PW. Behavioral sensitization to stress and psychostimulants: Role of dopamine and excitatory amino acids in the mesocorticolimbic system. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s1044-5765(05)80042-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Panconi E, Roux J, Altenbaumer M, Hampe S, Porsolt RD. MK-801 and enantiomers: potential antidepressants or false positives in classical screening models? Pharmacol Biochem Behav 1993; 46:15-20. [PMID: 8255906 DOI: 10.1016/0091-3057(93)90310-p] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the present experiments, the noncompetitive NMDA antagonist 5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclo-hepten-5,10-imine (MK-801) and its (+) and (-) enantiomers were tested in classical screening models used to detect potential antidepressants. The drug and its enantiomers were active in the tail suspension test (TST). The racemate was also active in the forced swimming test (FST). The effects in these tests occurred, however, at doses with marked stimulant activity. Further investigations (reserpine, apomorphine, and yohimbine tests) could not confirm the suspected antidepressant activity. Other NMDA antagonists--2-amino-7-phosphonoheptanoic acid (AP7), kynurenic acid, and 1-glutamic acid diethylester (GDEE)--showed no activity in the TST. These findings throw doubt concerning the potential antidepressant activity of MK-801 and other NMDA antagonists.
Collapse
Affiliation(s)
- E Panconi
- Research Department, Laboratories SARGET, Mérignac, France
| | | | | | | | | |
Collapse
|
18
|
Grace AA. Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm (Vienna) 1993; 91:111-34. [PMID: 8099795 DOI: 10.1007/bf01245228] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A unique model of DA system regulation is presented, in which tonic steady-state DA levels in the ECF act to down-regulate the response of the system to pulsatile DA released by DA cell action potential generation. This type of regulation is similar in many respects to the phenomenon proposed to mediate the action of norepinephrine on target neurons; i.e., an increase in the "signal-to-noise" ratio as measured by postsynaptic cell firing (Freedman et al., 1977; Woodward et al., 1979). However, in this model the signal and the noise are neurochemical rather than electrophysiological. Furthermore, the "noise" (tonic DA in the ECF) actually down-regulates the "signal" (phasic DA release) directly, and thereby provides a "signal" of its own that affects the system over a longer time-course. Therefore, the difference between signal and noise may also depend on the time frame under which such determinations are made.
Collapse
Affiliation(s)
- A A Grace
- Department of Behavioral Neuroscience, University of Pittsburgh, PA
| |
Collapse
|
19
|
Grace AA. The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1992; 36:91-131. [PMID: 1356143 DOI: 10.1007/978-3-7091-9211-5_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Antipsychotic drugs are known to block dopamine receptors soon after their administration, resulting in an increase in dopamine neuron firing and dopamine turnover. Nonetheless, antipsychotic drugs must be administered repeatedly to schizophrenics before therapeutic benefits are produced. Recordings from dopamine neurons in rats have revealed that chronic antipsychotic drug treatment results in the time-dependent inactivation of dopamine neuron firing via over-excitation, or depolarization block. Furthermore, the clinical profile of the response to antipsychotic drugs appears to correspond to the dopamine system affected: antipsychotic drugs that exert therapeutic actions in schizophrenics inactivate dopamine neuron firing in the limbic-related ventral tegmental area, whereas drugs that precipitate extrapyramidal side effects cause depolarization block of the motor-related substantia nigra dopamine cells. One factor that remains unresolved with regard to the actions of antipsychotic drugs is the relationship between dopamine turnover and depolarization block--i.e., why does a significant level of dopamine release or turnover remain after antipsychotic drug treatment if dopamine cells are no longer firing? We addressed this question using an acute model of neuroleptic-induced depolarization block. In this model, dopamine cells recorded in rats one month after partial dopamine lesions could be driven into depolarization block by the acute administration of moderate doses of haloperidol. However, similar doses of haloperidol, which were effective at increasing dopamine levels in the striatum of intact rats, failed to change dopamine levels in lesioned rats. This is consistent with a model in which neuroleptic drugs exert their therapeutic effects in schizophrenics by causing depolarization block in DA cells, thereby preventing further activation of dopamine neuron firing in response to external stimuli. Thus, attenuating the responsivity of the dopamine system to stimuli may be more relevant to the therapeutic actions of antipsychotic drugs than receptor blockade or decreases in absolute levels of dopamine, which could presumably be circumvented by homeostatic adaptations in this highly plastic system.
Collapse
Affiliation(s)
- A A Grace
- Department of Behavioral Neuroscience, University of Pittsburgh, PA
| |
Collapse
|
20
|
Behrens S, Gattaz WF. MK-801 induced stereotypies in rats are decreased by haloperidol and increased by diazepam. J Neural Transm (Vienna) 1992; 90:219-24. [PMID: 1285950 DOI: 10.1007/bf01250962] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of haloperidol and diazepam were investigated on stereotypies (wall contacts and turn rounds) induced by the non-competitive NMDA antagonist MK-801 in rats. Haloperidol (0.03, 0.10, 0.25 and 0.40 mg/kg body weight) caused a dose-dependent antagonism whereas diazepam (3.0 and 5.0 mg/kg) caused a dose-dependent agonism of the stereotypies induced by 0.30 mg/kg MK-801 (all drugs given intraperitoneal). Conversely, diazepam (5.0 mg/kg) given alone reduced significantly the number of spontaneous wall contacts and turn rounds. The paradoxial stimulation of MK-801 induced stereotypies by diazepam could be explained by a shift between positive and negative corticostriatothalamic feedback loops envolving GABAergic neurons in favour of the former.
Collapse
Affiliation(s)
- S Behrens
- Unit Neurobiology of Functional Psychoses, Central Institute of Mental Health, Mannheim, Federal Republic of Germany
| | | |
Collapse
|
21
|
Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA. Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 1992; 11:330-41. [PMID: 1354399 DOI: 10.1002/syn.890110408] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The responses of human neocortical neurons to iontophoretic application of excitatory amino acids and their modulation by dopamine (DA) were studied in vitro. Brain slices were obtained from children undergoing surgery for intractable epilepsy. Application of N-methyl-D-aspartate (NMDA) to the slices induced slow depolarizations accompanied by decreased input conductances and sustained action potentials in cortical neurons. Glutamate produced rapid depolarizations and firing with few changes in input conductances. Quisqualate also induced depolarization and firing, but input conductances increased during the rising phase of the membrane depolarization. Iontophoretic application of DA alone produced no change in membrane potential or input conductance. However, when DA was applied in conjunction with the excitatory amino acids, it produced contrasting effects. With either bath application of DA or when iontophoresis of DA preceded application of NMDA, the amplitude of the membrane depolarizations and the number of action potentials were increased, whereas the latency of these responses decreased. In contrast, DA decreased the amplitude of the depolarizations and the number of action potentials evoked by glutamate or quisqualate. The fact that DA affects responses to NMDA and glutamate or quisqualate in opposite directions is of considerable importance to the understanding of cellular mechanisms of neuromodulation and the role of DA in cognitive processing and in epilepsy.
Collapse
Affiliation(s)
- C Cepeda
- Mental Retardation Research Center, University of California, Los Angeles 90024-1759
| | | | | | | | | |
Collapse
|
22
|
Rao TS, Mick SJ, Cler JA, Emmett MR, Dilworth VM, Contreras PC, Gray NM, Wood PL, Iyengar S. Effects of sigma ligands on mouse cerebellar cyclic guanosine monophosphate (cGMP) levels in vivo: further evidence for a functional modulation of N-methyl-D-aspartate (NMDA) receptor complex-mediated events by sigma ligands. Brain Res 1991; 561:43-50. [PMID: 1686745 DOI: 10.1016/0006-8993(91)90747-j] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the present investigation, the effects of sigma ligands [WY-47384 [8-fluoro-2,3,4,5-tetrahydro-2[3-(3-pyridinyl)propyl)1H- pyrido(4,3b)indole], (+)-pentazocine, (+)-SFK 10,047 (N-allylnormetazocine), mafoprazine, opipramol, dextromethorphan, dextrorphan, (+)-3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine], (-)-butaclamol, DTG [1,3-di(2-tolyl)guanidine], rimcazole, ifenprodil and BMY-14802 [alpha-(fluorophenyl)-4-(5-fluoropyrimidinyl)-1-piperazine butanol]] on harmaline-, pentylenetetrazol (PTZ)-, methamphetamine (MA)- and D-serine-induced increases in mouse cerebellar levels of cGMP were determined. Ifenprodil, BMY-14802, dextromethorphan, dextrorphan, (+)-SKF 10,047, opipramol and mafoprazine reversed harmaline-, PTZ-, MA- and D-serine-induced increases in levels of cGMP. Rimcazole reversed only the harmaline-induced response. WY-47384 reversed harmaline-, MA-, D-serine-, but not PTZ- or quisqualate-induced increases in levels of cGMP. (+)-Pentazocine attenuated harmaline- and D-serine-, but not PTZ- and MA-induced cGMP responses. Haloperidol did not affect harmaline- and D-serine-induced cGMP responses. (+)-3-PPP and (-)-butaclamol did not affect any of the responses studied. Furthermore, (+)-3-PPP-induced increases in levels of cGMP were reversed by the competitive N-methyl-D-aspartate (NMDA) antagonist, CPP]3-(2-carboxypiperazin-4-yl)propyl- 1-phosphonic acid, the non-competitive NMDA antagonist, (+)-MK-801 (dizocilipine maleate), the NMDA-associated glycine receptor antagonist, HA-966 (3-amino-1-hydroxypyrrolidin-2-one), the partial glycine agonist, DCS (D-cycloserine) as well as by the sigma ligands, ifenprodil, WY-47384, (+)-pentazocine, (+)-SKF 10,047, dextromethorphan and dextrorphan but not by rimcazole.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T S Rao
- Searle Research and Development, G.D. Searle-Monsanto Co., St. Louis, MO 63198
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991; 41:1-24. [PMID: 1676137 DOI: 10.1016/0306-4522(91)90196-u] [Citation(s) in RCA: 1234] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel mechanism for regulating dopamine activity in subcortical sites and its possible relevance to schizophrenia is proposed. This hypothesis is based on the regulation of dopamine release into subcortical regions occurring via two independent mechanisms: (1) transient or phasic dopamine release caused by dopamine neuron firing, and (2) sustained, "background" tonic dopamine release regulated by prefrontal cortical afferents. Behaviorally relevant stimuli are proposed to cause short-term activation of dopamine cell firing to trigger the phasic component of dopamine release. In contrast, tonic dopamine release is proposed to regulate the intensity of the phasic dopamine response through its effect on extracellular dopamine levels. In this way, tonic dopamine release would set the background level of dopamine receptor stimulation (both autoreceptor and postsynaptic) and, through homeostatic mechanisms, the responsivity of the system to dopamine in these sites. In schizophrenics, a prolonged decrease in prefrontal cortical activity is proposed to reduce tonic dopamine release. Over time, this would elicit homeostatic compensations that would increase overall dopamine responsivity and thereby cause subsequent phasic dopamine release to elicit abnormally large responses.
Collapse
Affiliation(s)
- A A Grace
- Department of Behavioral Neuroscience, University of Pittsburgh, PA 15260
| |
Collapse
|
24
|
Evidence for involvement of N-methyl-D-aspartate receptor in tonic inhibitory control of dopaminergic transmission in rat medial frontal cortex. Neurosci Lett 1990; 120:101-4. [PMID: 1981384 DOI: 10.1016/0304-3940(90)90178-c] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bilateral infusion of DL-2-amino-5-phosphonovalerate (DL-APV) (which is a competitive antagonist for N-methyl-D-aspartate (NMDA) receptor) into the medial frontal cortex of conscious rats increased the amount of 3,4-dihydroxyphenylacetic acid (DOPAC) and the DOPAC/dopamine (DA) ratio in the cortical area. Moreover, intra-prefrontal injection of DL-APV, D-APV, DL-2-amino-7-phosphonoheptanoate and 3-[(+/-])-2-carboxypiperazin-4-yl]-propyl-1-phosphonate (which are selective NMDA receptor antagonists), but not the L-isomer of APV and gamma-glutamyl-aminomethyl sulphonate (a relative antagonist for non-NMDA receptors), facilitated prefrontal DA utilization in a NMDA-reversible manner. These findings suggest that NMDA-type excitatory amino acid receptors may be involved in a tonic inhibitory regulation of dopaminergic transmission in the medial frontal cortex in vivo.
Collapse
|
25
|
Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990; 185:1-10. [PMID: 2171955 DOI: 10.1016/0014-2999(90)90204-j] [Citation(s) in RCA: 557] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inescapable, but not escapable, stress inhibits the induction of Long Term Potentiation (LTP) in the CA1 region of hippocampus, a process that is dependent upon activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Since inescapable stress also produces a syndrome of behavioral depression sensitive to clinically effective antidepressants, we examined the actions of functional antagonists at the NMDA receptor complex in animal models commonly used to evaluate potential antidepressants. A competitive NMDA antagonist (2-amino-7-phosphonoheptanoic acid [AP-7]), a non-competitive NMDA antagonist (Dizolcipine [MK-801]), and a partial agonist at strychnine-insensitive glycine receptors (1-aminocylopropanecarboxylic acid [ACPC]) mimicked the effects of clinically effective antidepressants in these models. These findings indicate that the NMDA receptor complex may be involved in the behavioral deficits induced by inescapable stress, and that substances capable of reducing neurotransmission at the NMDA receptor complex may represent a new class of antidepressants. Based on these findings, the hypothesis that pathways subserved by the NMDA subtype of glutamate receptors are involved in the pathophysiology of affective disorders may have heuristic value.
Collapse
Affiliation(s)
- R Trullas
- Laboratory of Neuroscience, National Institutes of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|