1
|
Sehatpour P, Kantrowitz JT. Finding the Right Dose: NMDA Receptor-Modulating Treatments for Cognitive and Plasticity Deficits in Schizophrenia and the Role of Pharmacodynamic Target Engagement. Biol Psychiatry 2024:S0006-3223(24)01552-X. [PMID: 39218136 DOI: 10.1016/j.biopsych.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) and related deficits in learning (plasticity) are among the leading causes of disability in schizophrenia. Despite this, there are no Food and Drug Administration-approved treatments for CIAS, and the development of treatments has been limited by numerous phase 2/3 failures of compounds that showed initial promise in small-scale studies. NMDA-type glutamate receptors (NMDARs) have been proposed to play an important role in schizophrenia; moreover, the NMDAR has a well-characterized role in cognition, learning, and neuroplasticity. We review previously published clinical trials in CIAS that focused on NMDAR modulator treatments, focusing on published and recent developments of the use of novel NMDAR-modulating treatments for CIAS both alone and combined with plasticity/learning paradigms to enhance learning. We use this discussion of previous studies to highlight the importance of incorporating pharmacodynamic target engagement biomarkers early in treatment development, which can help predict which compounds will succeed or fail in phase 3. A range of direct and indirect NMDAR modulators are covered, including D-serine, D-cycloserine, memantine, and glycine and first-generation glycine transport inhibitors (e.g., sarcosine and bitopertin), as well as recent positive studies of iclepertin, a novel glycine transport inhibitor, and luvadaxistat, a D-amino acid oxidase inhibitor that increases brain D-serine levels, and indirect noninvasive brain stimulation NMDAR-modulating treatments. Several examples of successful use of pharmacodynamic target engagement biomarkers for dose/drug discovery are emphasized, including the mismatch negativity, auditory steady state, and time-frequency event-related potential approaches.
Collapse
Affiliation(s)
- Pejman Sehatpour
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York
| | - Joshua T Kantrowitz
- New York State Psychiatric Institute, New York, New York; College of Physicians and Surgeons, Columbia University, New York, New York; Nathan Kline Institute, Orangeburg, New York.
| |
Collapse
|
2
|
France G, Volianskis R, Ingram R, Bannister N, Rothärmel R, Irvine MW, Fang G, Burnell ES, Sapkota K, Costa BM, Chopra DA, Dravid SM, Michael-Titus AT, Monaghan DT, Georgiou J, Bortolotto ZA, Jane DE, Collingridge GL, Volianskis A. Differential regulation of STP, LTP and LTD by structurally diverse NMDA receptor subunit-specific positive allosteric modulators. Neuropharmacology 2022; 202:108840. [PMID: 34678377 PMCID: PMC8803579 DOI: 10.1016/j.neuropharm.2021.108840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Different types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands. These observations suggest that PAMs of NMDAR function, depending on their subtype selectivity, might differentially regulate STP, LTP and LTD. To test this hypothesis, we secondly performed experiments in rodent hippocampal slices with UBP714 (a GluN2A/2B preferring PAM), CIQ (a GluN2C/D selective PAM) and UBP709 (a pan-PAM that potentiates all GluN2 subunits). We report here, for the first time, that: (i) UBP714 potentiates sub-maximal LTP and reduces LTD; (ii) CIQ potentiates STP without affecting LTP; (iii) UBP709 enhances LTD and decreases LTP. We conclude that PAMs can differentially regulate distinct forms of NMDAR-dependent synaptic plasticity due to their subtype selectivity. This article is part of the Neuropharmacology Special Issue on ‘Glutamate Receptors – NMDA receptors’. NMDAR-dependent STP, LTP and LTD can be dissociated pharmacologically GluN2A/2B PAM UBP714 potentiates LTP and reduces LTD GluN2C/D PAM CIQ potentiates STP without affecting LTP NMDAR pan-PAM UBP709 potentiates LTD and reduces LTP
Collapse
Affiliation(s)
- G France
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Volianskis
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - R Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - N Bannister
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Rothärmel
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - M W Irvine
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G Fang
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - E S Burnell
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - K Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - B M Costa
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA & Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - D A Chopra
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - S M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - A T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - D T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - J Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Z A Bortolotto
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G L Collingridge
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - A Volianskis
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
3
|
Resistance exercise improves learning and memory and modulates hippocampal metabolomic profile in aged rats. Neurosci Lett 2021; 766:136322. [PMID: 34737021 DOI: 10.1016/j.neulet.2021.136322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
Physical activity has been considered an important non-medication intervention to preserve mnemonic processes during aging. However, how resistance exercise promotes such benefits remains unclear. A possible hypothesis is that brain-metabolic changes of regions responsible for memory consolidation is affected by muscular training. Therefore, we analyzed the memory, axiety and the metabolomic of aged male Wistar rats (19-20 months old in the 1st day of experiment) submitted to a 12-week resistance exercise protocol (EX, n = 11) or which remained without physical exercise (CTL, n = 13). Barnes maze, elevated plus maze and inhibitory avoidance tests were used to assess the animals' behaviour. The metabolomic profile was identified by nuclear magnetic resonance spectrometry. EX group had better performance in the tests of learning and spatial memory in Barnes maze, and an increase of short and long-term aversive memories formation in inhibitory avoidance. In addition, the exercised animals showed a greater amount of metabolites, such as 4-aminobutyrate, acetate, butyrate, choline, fumarate, glycerol, glycine, histidine, hypoxanthine, isoleucine, leucine, lysine, niacinamide, phenylalanine, succinate, tyrosine, valine and a reduction of ascorbate and aspartate compared to the control animals. These data indicate that the improvement in learning and memory of aged rats submitted to resistance exercise program is associated by changes in the hippocampal metabolomic profile.
Collapse
|
4
|
Meftah A, Hasegawa H, Kantrowitz JT. D-Serine: A Cross Species Review of Safety. Front Psychiatry 2021; 12:726365. [PMID: 34447324 PMCID: PMC8384137 DOI: 10.3389/fpsyt.2021.726365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Background:D-Serine, a direct, full agonist at the D-serine/glycine modulatory site of the N-methyl-D-aspartate-type glutamate receptors (NMDAR), has been assessed as a treatment for multiple psychiatric and neurological conditions. Based on studies in rats, concerns of nephrotoxicity have limited D-serine research in humans, particularly using high doses. A review of D-serine's safety is timely and pertinent, as D-serine remains under active study for schizophrenia, both directly (R61 MH116093) and indirectly through D-amino acid oxidase (DAAO) inhibitors. The principal focus is on nephrotoxicity, but safety in other physiologic and pathophysiologic systems are also reviewed. Methods: Using the search terms "D-serine," "D-serine and schizophrenia," "D-serine and safety," "D-serine and nephrotoxicity" in PubMed, we conducted a systematic review on D-serine safety. D-serine physiology, dose-response and efficacy in clinical studies and dAAO inhibitor safety is also discussed. Results: When D-serine doses >500 mg/kg are used in rats, nephrotoxicity, manifesting as an acute tubular necrosis syndrome, seen within hours of administration is highly common, if not universal. In other species, however, D-serine induced nephrotoxicity has not been reported, even in other rodent species such as mice and rabbits. Even in rats, D--serine related toxicity is dose dependent and reversible; and does not appear to be present in rats at doses producing an acute Cmax of <2,000 nmol/mL. For comparison, the Cmax of D-serine 120 mg/kg, the highest dose tested in humans, is ~500 nmol/mL in acute dosing. Across all published human studies, only one subject has been reported to have abnormal renal values related to D-serine treatment. This abnormality did not clearly map on to the acute tubular necrosis syndrome seen in rats, and fully resolved within a few days of stopping treatment. DAAO inhibitors may be nephroprotective. D-Serine may have a physiologic role in metabolic, extra-pyramidal, cardiac and other systems, but no other clinically significant safety concerns are revealed in the literature. Conclusions: Even before considering human to rat differences in renal physiology, using current FDA guided monitoring paradigms, D-serine appears safe at currently studied maximal doses, with potential safety in combination with DAAO inhibitors.
Collapse
Affiliation(s)
- Amir Meftah
- College of Physicians and Surgeons, Columbia University, New York City, NY, United States
- New York State Psychiatric Institute, New York City, NY, United States
| | - Hiroshi Hasegawa
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Joshua T. Kantrowitz
- College of Physicians and Surgeons, Columbia University, New York City, NY, United States
- New York State Psychiatric Institute, New York City, NY, United States
- Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
5
|
Efficacy of adjunctive D-Cycloserine for the treatment of schizophrenia: a systematic review and meta-analysis of randomized controlled trials. J Neural Transm (Vienna) 2021; 128:253-262. [PMID: 33439362 DOI: 10.1007/s00702-020-02292-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
D-Cycloserine is a partial agonist at the glycine site of the N-methyl-D-aspartate (NMDA) receptor. Results have been inconsistent in trials on the efficacy of D-Cycloserine in patients with schizophrenia. We examined the efficacy of D-Cycloserine against negative and cognitive symptoms (primary and co-primary outcomes). Secondary outcomes were efficacy of D-Cycloserine against positive symptoms and the examination of early treatment outcomes. A systematic literature search was carried out using following selection criteria: Population = Patients with Schizophrenia; Intervention = Trials using D-Cycloserine either as monotherapy or adjuvant therapy; Comparison = Placebo or active comparator; Outcome = Change in negative symptoms, cognitive symptoms and positive symptoms; Study design = Randomized controlled trials with parallel design. We used the Cochrane Collaboration tool for risk of bias for study quality appraisal. Effect sizes for trials were calculated separately for negative, positive and cognitive symptom dimensions using the DerSimonian-Laird random effects model. Seven studies (pooled N = 413) provided data for meta-analysis. The pooled Standardized Mean Difference (SMD) for negative, cognitive, and positive symptom change scores were - 0.32 (95% CI, - 0.75 to 0.11), - 0.05 (95% CI, - 0.91 to 0.81), and - 0.08 (95% CI, - 0.37 to 0.20), respectively. No significant improvement was noted with regard to early outcome. I2 values for heterogeneity were 61%, 67%, and 0% for studies assessing negative, cognitive, and positive symptom ratings, respectively. D-Cycloserine did not exhibit significant efficacy in treating negative, cognitive, or positive symptoms of schizophrenia at either study-defined endpoint (4-36 weeks) or at four weeks (early outcome).
Collapse
|
6
|
Yao L, Wang Z, Deng D, Yan R, Ju J, Zhou Q. The impact of D-cycloserine and sarcosine on in vivo frontal neural activity in a schizophrenia-like model. BMC Psychiatry 2019; 19:314. [PMID: 31653237 PMCID: PMC6814999 DOI: 10.1186/s12888-019-2306-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie the pathogenesis of schizophrenia. Specifically, reduced function of NMDARs leads to altered balance between excitation and inhibition which further drives neural network malfunctions. Clinical studies suggested that NMDAR modulators (glycine, D-serine, D-cycloserine and glycine transporter inhibitors) may be beneficial in treating schizophrenia patients. Preclinical evidence also suggested that these NMDAR modulators may enhance synaptic NMDAR function and synaptic plasticity in brain slices. However, an important issue that has not been addressed is whether these NMDAR modulators modulate neural activity/spiking in vivo. METHODS By using in vivo calcium imaging and single unit recording, we tested the effect of D-cycloserine, sarcosine (glycine transporter 1 inhibitor) and glycine, on schizophrenia-like model mice. RESULTS In vivo neural activity is significantly higher in the schizophrenia-like model mice, compared to control mice. D-cycloserine and sarcosine showed no significant effect on neural activity in the schizophrenia-like model mice. Glycine induced a large reduction in movement in home cage and reduced in vivo brain activity in control mice which prevented further analysis of its effect in schizophrenia-like model mice. CONCLUSIONS We conclude that there is no significant impact of the tested NMDAR modulators on neural spiking in the schizophrenia-like model mice.
Collapse
Affiliation(s)
- Lulu Yao
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Zongliang Wang
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Di Deng
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Rongzhen Yan
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Jun Ju
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Das I, Estevez MA, Sarkar AA, Banerjee-Basu S. A multifaceted approach for analyzing complex phenotypic data in rodent models of autism. Mol Autism 2019; 10:11. [PMID: 30911366 PMCID: PMC6417187 DOI: 10.1186/s13229-019-0263-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/21/2019] [Indexed: 12/26/2022] Open
Abstract
Autism (MIM 209850) is a multifactorial disorder with a broad clinical presentation. A number of high-confidence ASD risk genes are known; however, the contribution of non-genetic environmental factors towards ASD remains largely uncertain. Here, we present a bioinformatics resource of genetic and induced models of ASD developed using a shared annotation platform. Using this data, we depict the intricate trends in the research approaches to analyze rodent models of ASD. We identify the top 30 most frequently studied phenotypes extracted from rodent models of ASD based on 787 publications. As expected, many of these include animal model equivalents of the “core” phenotypes associated with ASD, such as impairments in social behavior and repetitive behavior, as well as several comorbid features of ASD including anxiety, seizures, and motor-control deficits. These phenotypes have also been studied in models based on a broad range of environmental inducers present in the database, of which gestational exposure to valproic acid (VPA) and maternal immune activation models comprising lipopolysaccharide (LPS) and poly I:C are the most studied. In our unique dataset of rescue models, we identify 24 pharmaceutical agents tested on established models derived from various ASD genes and CNV loci for their efficacy in mitigating symptoms relevant for ASD. As a case study, we analyze a large collection of Shank3 mouse models providing a high-resolution view of the in vivo role of this high-confidence ASD gene, which is the gateway towards understanding and dissecting the heterogeneous phenotypes seen in single-gene models of ASD. The trends described in this study could be useful for researchers to compare ASD models and to establish a complete profile for all relevant animal models in ASD research.
Collapse
Affiliation(s)
- Ishita Das
- MindSpec Inc., 8280 Greensboro Drive, Suite 150, McLean, VA 22102 USA
| | - Marcel A Estevez
- MindSpec Inc., 8280 Greensboro Drive, Suite 150, McLean, VA 22102 USA
| | - Anjali A Sarkar
- MindSpec Inc., 8280 Greensboro Drive, Suite 150, McLean, VA 22102 USA
| | | |
Collapse
|
8
|
Role of endocannabinoids in the hippocampus and amygdala in emotional memory and plasticity. Neuropsychopharmacology 2018; 43:2017-2027. [PMID: 29977073 PMCID: PMC6098035 DOI: 10.1038/s41386-018-0135-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
Abstract
Posttraumatic stress disorder (PTSD) is characterized by the reexperiencing of a traumatic event and is associated with slower extinction of fear responses. Impaired extinction of fearful associations to trauma-related cues may interfere with treatment response, and extinction deficits may be premorbid risk factors for the development of PTSD. We examined the effects of exposure to a severe footshock followed by situational reminders (SRs) on extinction, plasticity, and endocannabinoid (eCB) content and activity in the hippocampal CA1 area and basolateral amygdala (BLA). We also examined whether enhancing eCB signaling before extinction, using the fatty acid amide hydrolase (FAAH) inhibitor URB597, could prevent the shock/SRs-induced effects on fear response and plasticity. URB597 administered systemically (0.3 mg/kg) or locally into the CA1 or BLA (0.1 µg/side) prior to extinction decreased fear retrieval and this effect persisted throughout extinction training and did not recuperate during spontaneous recovery. A low dose of the CB1 receptor antagonist AM251 (0.3 mg/kg i.p. or 0.01 µg/0.5 µl intra-CA1 or intra-BLA) blocked these effects suggesting that the effects of URB597 were CB1 receptor-dependent. Exposure to shock and reminders induced behavioral metaplasticity with opposite effects on long-term potentiation (LTP) in the hippocampus (impairment) and the BLA (enhancement). URB597 was found to prevent the opposite shock/SR-induced metaplasticity in hippocampal and BLA-LTP. Exposure to shock and reminders might cause variation in endogenous cannabinoid levels that could affect fear-circuit function. Indeed, exposure to shock and SRs affected eCB content: increased 2-arachidonoyl-glycerol (2-AG) and N-arachidonylethanolamine (AEA) levels in the CA1, decreased serum and BLA AEA levels while shock exposure increased FAAH activity in the CA1 and BLA. FAAH inhibition before extinction abolished fear and modulated LTP in the hippocampus and amygdala, brain regions pertinent to emotional memory. The findings suggest that targeting the eCB system before extinction may be beneficial in fear memory attenuation and these effects may involve metaplasticity in the CA1 and BLA.
Collapse
|
9
|
Kantrowitz JT, Swerdlow NR, Dunn W, Vinogradov S. Auditory System Target Engagement During Plasticity-Based Interventions in Schizophrenia: A Focus on Modulation of N-Methyl-D-Aspartate-Type Glutamate Receptor Function. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:581-590. [PMID: 29656951 PMCID: PMC6062454 DOI: 10.1016/j.bpsc.2018.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/31/2022]
Abstract
Cognitive deficits are predictive of long-term social and occupational functional deficits in schizophrenia but are currently without gold-standard treatments. In particular, augmentation of auditory cortical neuroplasticity may represent a rate-limiting first step before addressing higher-order cognitive deficits. We review the rationale for N-methyl-d-aspartate-type glutamate receptor (NMDAR) modulators as treatments for auditory plasticity deficits in schizophrenia, along with potential serum and electroencephalographic target engagement biomarkers for NMDAR function. Several recently published NMDAR-modulating treatment studies are covered, involving D-serine, memantine, and transcranial direct current stimulation. While all three interventions appear to modulate auditory plasticity, direct agonists (D-serine) appear to have the largest and most consistent effects on plasticity, at least acutely. We hypothesize that there may be synergistic effects of combining procognitive NMDAR-modulating approaches with auditory cortical neuroplasticity cognitive training interventions. Future studies should assess biomarkers for target engagement and patient stratification, along with head-to-head studies comparing putative interventions and potential long-term versus acute effects.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, New York.
| | - Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Walter Dunn
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
10
|
Brainch N, Virani S, Bazzi L. D-Cycloserine: A Novel Antidepressant to Be Explored? Psychiatr Ann 2018. [DOI: 10.3928/00485713-20180308-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Swerdlow NR, Tarasenko M, Bhakta SG, Talledo J, Alvarez AI, Hughes EL, Rana B, Vinogradov S, Light GA. Amphetamine Enhances Gains in Auditory Discrimination Training in Adult Schizophrenia Patients. Schizophr Bull 2017; 43:872-880. [PMID: 27798224 PMCID: PMC5472129 DOI: 10.1093/schbul/sbw148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Targeted cognitive training (TCT) of auditory processing enhances higher-order cognition in schizophrenia patients. TCT performance gains can be detected after 1 training session. As a prelude to a potential clinical trial, we assessed a pharmacological augmentation of cognitive therapy (PACT) strategy by testing if the psychostimulant, amphetamine, augments TCT gains in auditory processing speed (APS) in schizophrenia patients and healthy subjects (HS). HS and schizophrenia patients were tested in a screening session (test 1), followed by a double-blind crossover design (tests 2-3), comparing placebo vs amphetamine (10 mg; 7 d between tests). On each test day, 1 hour of Posit Science "Sound Sweeps" training was bracketed by 2- to 4-minute pre- and post-training assessments of APS. Training consisted of a speeded auditory time-order judgment task of successive frequency modulation sweeps. Auditory system "learning" (APS post- vs pre-training) was enhanced by amphetamine (main effect of drug: P < .002; patients: d = 0.56, P < .02; HS: d = 0.39, nonsignificant), and this learning was sustained for at least 1 week. Exploratory analyses assessed potential biomarker predictors of sensitivity to these effects of amphetamine. Amphetamine enhances auditory discrimination learning in schizophrenia patients. We do not know whether gains in APS observed in patients after 1 hour of TCT predict clinical benefits after a full course of TCT. If amphetamine can enhance the therapeutic effects of TCT, this would provide strong support for a "PACT" treatment paradigm for schizophrenia.
Collapse
Affiliation(s)
- Neal R. Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Melissa Tarasenko
- Department of Psychiatry, University of California, San Diego, La Jolla, CA;,VISN-22 Mental Illness Research, Education, and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| | - Savita G. Bhakta
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Jo Talledo
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Alexis I. Alvarez
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Erica L. Hughes
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Brinda Rana
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | | | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla, CA;,VISN-22 Mental Illness Research, Education, and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
12
|
Schade S, Paulus W. D-Cycloserine in Neuropsychiatric Diseases: A Systematic Review. Int J Neuropsychopharmacol 2015; 19:pyv102. [PMID: 26364274 PMCID: PMC4851259 DOI: 10.1093/ijnp/pyv102] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/03/2015] [Indexed: 11/15/2022] Open
Abstract
D-Cycloserine, known from tuberculosis therapy, has been widely introduced to neuropsychiatric studies, since its central active mechanism as a partial NMDA-agonist has been found. In this review, we evaluate its therapeutic potential in neuropsychological disorders and discuss its pitfalls in terms of dosing and application frequency as well as its safety in low-dose therapy. Therefore, we identified 91 clinical trials by performing a Medline search. We demonstrate in part preliminary but increasing evidence that D-cycloserine may be effective in various psychiatric diseases, including schizophrenia, anxiety disorders, addiction, eating disorders, major depression, and autism as well as in neurological diseases, including dementia, Alzheimer's disease, and spinocerebellar degeneration. D-Cycloserine in low-dose therapy is safe, but there is still a need for new drugs with higher specificity to the different N-methyl-D-aspartate-receptor subunits.
Collapse
Affiliation(s)
- Sebastian Schade
- University Medical Center, Georg-August University, Department of Clinical Neurophysiology, Robert-Koch Straße 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
13
|
Billard JM. D-Serine in the aging hippocampus. J Pharm Biomed Anal 2015; 116:18-24. [PMID: 25740810 DOI: 10.1016/j.jpba.2015.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Experimental evidences now indicate that memory formation relies on the capacity of neuronal networks to manage long-term changes in synaptic communication. This property is driven by N-methyl-D-aspartate receptors (NMDAR), which requires the binding of glutamate but also the presence of the co-agonist D-serine at the glycine site. Defective memory function and impaired brain synaptic plasticity observed in aging are rescued by partial agonist acting at this site suggesting that this gating process is targeted to induce age-related cognitive defects. This review aims at compelling recent studies characterizing the role of D-serine in changes in functional plasticity that occur in the aging hippocampus since deficits are rescued by D-serine supplementation. The impaired efficacy of endogenous D-serine is not due to changes in the affinity to glycine-binding site but to a decrease in tissue levels of the amino acid resulting from a weaker expression of the producing enzyme serine racemase (SR). Interestingly, neither SR expression, D-serine levels, nor NMDAR activation is affected in aged LOU/C rats, a model of healthy aging in which memory deficits do not occur. These old animals do not develop oxidative stress suggesting that the D-serine-related pathway could be targeted by the age-related accumulation of reactive oxygen species. Accordingly, senescent rats chronically treated with the reducing agent N-acetyl-cysteine to prevent oxidative damage, show intact NMDAR activation linked to preserved D-serine levels and SR expression. These results point to a significant role of D-serine in age-related functional alterations underlying hippocampus-dependent memory deficits, at least within the CA1 area since the amino acid does not appear as critical in changes affecting the dentate gyrus.
Collapse
Affiliation(s)
- Jean-Marie Billard
- Center of Psychiatry and Neurosciences, Paris Descartes University, Sorbonne Paris City, UMR U894, Paris 75014 France.
| |
Collapse
|
14
|
Cain CK, McCue M, Bello I, Creedon T, Tang DI, Laska E, Goff DC. d-Cycloserine augmentation of cognitive remediation in schizophrenia. Schizophr Res 2014; 153:177-83. [PMID: 24485587 PMCID: PMC4547356 DOI: 10.1016/j.schres.2014.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/21/2022]
Abstract
d-Cycloserine (DCS) has been shown to enhance memory and, in a previous trial, once-weekly DCS improved negative symptoms in schizophrenia subjects. We hypothesized that DCS combined with a cognitive remediation (CR) program would improve memory of a practiced auditory discrimination task and that gains would generalize to performance on unpracticed cognitive tasks. Stable, medicated adult schizophrenia outpatients participated in the Brain Fitness CR program 3-5 times per week for 8weeks. Subjects were randomly assigned to once-weekly adjunctive treatment with DCS (50mg) or placebo administered before the first session each week. Primary outcomes were performance on an auditory discrimination task, the MATRICS cognitive battery composite score and the Scale for the Assessment of Negative Symptoms (SANS) total score. 36 subjects received study drug and 32 completed the trial (average number of CR sessions=26.1). Performance on the practiced auditory discrimination task significantly improved in the DCS group compared to the placebo group. DCS was also associated with significantly greater negative symptom improvement for subjects symptomatic at baseline (SANS score ≥20). However, improvement on the MATRICS battery was observed only in the placebo group. Considered with previous results, these findings suggest that DCS augments CR and alleviates negative symptoms in schizophrenia patients. However, further work is needed to evaluate whether CR gains achieved with DCS can generalize to other unpracticed cognitive tasks.
Collapse
Affiliation(s)
- Christopher K. Cain
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962,Child and Adolescent Psychiatry Department, NYU Langone Medical Center, One Park Avenue, New York City, NY, USA, 10016
| | - Margaret McCue
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Iruma Bello
- Psychiatry Department, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA.
| | - Timothy Creedon
- Psychiatry Department, Harvard Medical School, 401 Park Drive, Boston, MA 02215, USA.
| | - Dei-in Tang
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
| | - Eugene Laska
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Donald C. Goff
- Psychiatry Department, NYU Langone Medical Center, 550 First Avenue, New York City, NY, USA, 10016,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
| |
Collapse
|
15
|
Sultan S, Gebara EG, Moullec K, Toni N. D-serine increases adult hippocampal neurogenesis. Front Neurosci 2013; 7:155. [PMID: 24009551 PMCID: PMC3756301 DOI: 10.3389/fnins.2013.00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022] Open
Abstract
Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA) receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.
Collapse
Affiliation(s)
- Sebastien Sultan
- Department of Fundamental Neurosciences, University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
16
|
Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnár E, Lodge D, Jane DE. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2012; 64:13-26. [PMID: 22796429 DOI: 10.1016/j.neuropharm.2012.06.051] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 12/31/2022]
Abstract
NMDA receptors (NMDARs) play an important role in neural plasticity including long-term potentiation and long-term depression, which are likely to explain their importance for learning and memory. Cognitive decline is a major problem facing an ageing human population, so much so that its reversal has become an important goal for scientific research and pharmaceutical development. Enhancement of NMDAR function is a core strategy toward this goal. In this review we indicate some of the major ways of potentiating NMDAR function by both direct and indirect modulation. There is good evidence that both positive and negative modulation can enhance function suggesting that a subtle approach correcting imbalances in particular clinical situations will be required. Excessive activation and the resultant deleterious effects will need to be carefully avoided. Finally we describe some novel positive allosteric modulators of NMDARs, with some subunit selectivity, and show initial evidence of their ability to affect NMDAR mediated events. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Graham L Collingridge
- MRC Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol BS1 3NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Potier B, Turpin FR, Sinet PM, Rouaud E, Mothet JP, Videau C, Epelbaum J, Dutar P, Billard JM. Contribution of the d-Serine-Dependent Pathway to the Cellular Mechanisms Underlying Cognitive Aging. Front Aging Neurosci 2010; 2:1. [PMID: 20552041 PMCID: PMC2874399 DOI: 10.3389/neuro.24.001.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/07/2010] [Indexed: 01/04/2023] Open
Abstract
An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-methyl-d-aspartate receptors (NMDA-R) by its agonist d-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous d-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of d-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of d-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the d-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.
Collapse
Affiliation(s)
- B Potier
- Centre de Psychiatrie et Neurosciences, INSERM, U894, Faculté de Médecine, Université Paris Descartes Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Khiroug SS, Pryazhnikov E, Coleman SK, Jeromin A, Keinänen K, Khiroug L. Dynamic visualization of membrane-inserted fraction of pHluorin-tagged channels using repetitive acidification technique. BMC Neurosci 2009; 10:141. [PMID: 19948025 PMCID: PMC2794868 DOI: 10.1186/1471-2202-10-141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 11/30/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Changes in neuronal excitability, synaptic efficacy and generally in cell signaling often result from insertion of key molecules into plasma membrane (PM). Many of the techniques used for monitoring PM insertion lack either spatial or temporal resolution. RESULTS We improved the imaging method based on time-lapse total internal reflection fluorescence (TIRF) microscopy and pHluorin tagging by supplementing it with a repetitive extracellular acidification protocol. We illustrate the applicability of this method by showing that brief activation of NMDA receptors ("chemical LTP") in cultured hippocampal neurons induced a persistent PM insertion of glutamate receptors containing the pHluorin-tagged GluR-A(flip) subunits. CONCLUSION The repetitive acidification technique provides a more accurate way of monitoring the PM-inserted fraction of fluorescently tagged molecules and offers a good temporal and spatial resolution.
Collapse
Affiliation(s)
- Serguei S Khiroug
- Neuroscience Center, University of Helsinki, FIN-00014, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
19
|
Li YH, Han TZ. Glycine modulates synaptic NR2A- and NR2B-containing NMDA receptor-mediated responses in the rat visual cortex. Brain Res 2007; 1190:49-55. [PMID: 18048007 DOI: 10.1016/j.brainres.2007.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/30/2007] [Accepted: 11/03/2007] [Indexed: 11/17/2022]
Abstract
In the central nervous system, activation of N-methyl-d-aspartate receptor (NMDA-R) glycine binding sites is a prerequisite for activation of synaptic NMDA-Rs by the excitatory neurotransmitter glutamate. Here we used patch-clamp recordings in transverse slice preparations to study whether the glycine binding site of the NMDA-R saturates and to determine their subunit composition in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA-R-mediated component of miniature excitatory postsynaptic currents (mEPSCs) could be potentiated by exogenously applied glycine. Similar results were obtained by exogenously applied d-serine. A specific antagonist for NR2B-NMDA-Rs, Ro 25-6981, reduced NMDA-R-mediated mEPSCs, and glycine with Ro 25-6981 enhanced NMDA-R-mediated mEPSCs. Moreover, Zn2+, an NR2A-NMDA-R antagonist, also reduced NMDA-mediated mEPSCs and glycine with Zn2+ enhanced the NMDA-mediated mEPSCs. Our data indicate that the glycine binding site of synaptic NR2A-containing and NR2B-containing NMDA-Rs does not saturate and that glycine may act as a modulator of NMDA-R-mediated transmission in layer II/III pyramidal neurons of the rat visual cortex.
Collapse
Affiliation(s)
- Yan-Hai Li
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Zhuque Dajie 205, Xi'an, Shannxi 710061, PR China
| | | |
Collapse
|
20
|
Kushner MG, Kim SW, Donahue C, Thuras P, Adson D, Kotlyar M, McCabe J, Peterson J, Foa EB. D-cycloserine augmented exposure therapy for obsessive-compulsive disorder. Biol Psychiatry 2007; 62:835-8. [PMID: 17588545 DOI: 10.1016/j.biopsych.2006.12.020] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/15/2006] [Accepted: 12/02/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND D-cycloserine (DCS), a glutamatergic partial N-methyl-d-aspartate (NMDA) agonist, can facilitate extinction learning related to cued fear in animals and humans. We predicted that DCS would accelerate obsession-related distress reduction in patients with obsessive-compulsive disorder (OCD) undergoing extinction-based exposure therapy. METHODS We administered DCS (125 mg) or placebo in a double-blind fashion to individuals with OCD approximately 2 hours before each exposure session. RESULTS D-cycloserine decreased both the number of exposure sessions required to achieve clinical milestones and the rate of therapy dropout. After four exposure sessions, patients in the DCS group reported significantly greater decreases in obsession-related distress compared with the placebo group; however, after additional sessions, the placebo group tended to catch up. CONCLUSIONS D-cycloserine augmentation has the potential to increase the efficiency, palatability, and overall effectiveness of standard exposure therapy for OCD.
Collapse
Affiliation(s)
- Matt G Kushner
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota 55454, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Igartua I, Solís JM, Bustamante J. Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1. Neuropharmacology 2007; 52:1586-95. [PMID: 17462677 DOI: 10.1016/j.neuropharm.2007.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/13/2007] [Accepted: 03/05/2007] [Indexed: 11/29/2022]
Abstract
The negative symptoms of schizophrenia are reverted by treatment with glycine or other agonists of the glycine-B site which facilitate NMDA receptor function. On the other hand, there are experimental observations showing that exogenous application of glycine (0.5-10mM) results in a long-lasting potentiation of glutamatergic synaptic transmission (LTP-GLY). The characterization of the mechanisms underlying LTP-GLY could be useful to develop new therapies for schizophrenia. The main goal of this work is to deepen the understanding of this potentiation phenomenon. The present study demonstrates in rat hippocampal slices that superfusion of glycine 1mM during 30 min produces a potentiation of excitatory postsynaptic potentials in CA3-CA1 pathway lasting at least 1h. Glycine application does not modify neither presynaptic fiber volley nor paired-pulse facilitation of synaptic potentials. This LTP-GLY is independent of both strychnine-sensitive glycine receptors and nifedipine-sensitive calcium channels. Interestingly, LTP-GLY is not inhibited but strengthened by NMDA receptors antagonists such as AP-5 or MK-801. In contrast, LTP-GLY is partially or totally blocked with the antagonists of glycine transporter GLYT1, sarcosine or ALX-5407, respectively. These results indicate that LTP-GLY requires the activation of GLYT1, a glycine transporter co-localized and associated to NMDA receptors. In addition, the fact that NMDA receptor inhibition increases LTP-GLY magnitude, opens the possibility that these receptors could have a negative control on GLYT1 activity.
Collapse
Affiliation(s)
- Itziar Igartua
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | |
Collapse
|
22
|
Teo JTH, Swayne OB, Rothwell JC. Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation. Clin Neurophysiol 2007; 118:1649-51. [PMID: 17502166 DOI: 10.1016/j.clinph.2007.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 04/11/2007] [Accepted: 04/13/2007] [Indexed: 11/24/2022]
|
23
|
Li YH, Han TZ. Glycine Binding Sites of Presynaptic NMDA Receptors May Tonically Regulate Glutamate Release in the Rat Visual Cortex. J Neurophysiol 2007; 97:817-23. [PMID: 17093111 DOI: 10.1152/jn.00980.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the CNS, activation of N-methyl-d-aspartate receptor (NMDA-R) glycine binding sites is a prerequisite for activation of postsynaptic NMDA-Rs by the excitatory neurotransmitter glutamate. Here we provide electrophysiological evidence that the glycine binding sites of presynaptic NMDA-Rs regulate glutamate release in layer II/III pyramidal neurons of the rat visual cortex. Specifically, our results reveal that the frequency of miniature excitatory postsynaptic currents is significantly reduced by 7-chloro-kynurenic acid (7-Cl KYNA), a NMDA-R glycine binding site antagonist, and glycine or d-serine reverses this effect. Similar results are obtained when the open-channel NMDA receptor blocker, MK-801, is included in the recording pipette. Our data indicate that the glycine binding site of postsynaptic NMDA-Rs is not saturated. Moreover, they suggest that presynaptic NMDA-Rs are located in layer II/III pyramidal neurons of the rat visual cortex and that the glycine binding site of presynaptic NMDA-Rs tonically regulates glutamate release.
Collapse
Affiliation(s)
- Yan-Hai Li
- Dept. of Physiology, School of Medicine, Xi'an Jiaotong University, Zhuque Dajie 205, Xi'an, Shaanxi 710061, PR China
| | | |
Collapse
|
24
|
Maekawa M, Watanabe M, Yamaguchi S, Konno R, Hori Y. Spatial learning and long-term potentiation of mutant mice lacking D-amino-acid oxidase. Neurosci Res 2005; 53:34-8. [PMID: 15996778 DOI: 10.1016/j.neures.2005.05.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
We evaluated the role of D-amino-acid oxidase on spatial learning and long-term potentiation (LTP) in the hippocampus, since this enzyme metabolizes D-amino-acids, some of which enhance the N-methyl-D-aspartate receptor functions. The Morris water maze learning and the LTP in the CA1 area of the hippocampal slice were observed in wild-type mice and mutant mice lacking D-amino-acid oxidase. The mutant mice showed significantly shorter platform search times in the water maze and significantly larger hippocampal LTPs than the wild-type mice. These results suggest that the abundant D-amino-acids in the mutant mouse brain facilitate hippocampal LTP and spatial learning.
Collapse
Affiliation(s)
- Masao Maekawa
- Department of Physiology and Biological Information, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | |
Collapse
|
25
|
Stouffer EM, Petri HL, Devan BD. Effect of D-serine on a delayed match-to-place task for the water maze. Behav Brain Res 2004; 152:447-52. [PMID: 15196813 DOI: 10.1016/j.bbr.2003.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 10/02/2003] [Accepted: 10/08/2003] [Indexed: 11/18/2022]
Abstract
The effect of the amino acid d-serine, a partial NMDA receptor agonist, on a delayed match-to-place task in the water maze was examined. Twenty-four male rats were first trained to attain baseline measurements, then administered D-serine or saline. Rats administered D-serine (100 mg/kg, i.p.) before swim trials did not show a decrease in escape latencies, but did show an increase in swim time spent within the previous days' escape platform location.
Collapse
Affiliation(s)
- Eric M Stouffer
- Department of Psychology, Laboratory of Comparative Neuropsychology, Towson University, Towson, MD 21252-0001, USA.
| | | | | |
Collapse
|
26
|
Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 2004; 29:1573-8. [PMID: 15199378 DOI: 10.1038/sj.npp.1300517] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
D-Cycloserine (CYC), a partial N-methyl-D-aspartate (NMDA) agonist, has been shown to improve cognitive functions in humans. However, the neurophysiological basis of this effect is unclear so far. We studied the impact of this drug on long-lasting after-effects of transcranial direct current (tDCS)-generated motor cortical excitability shifts, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials. While anodal tDCS enhances motor cortical excitability, cathodal tDCS diminishes it. Both effects seem to be NMDA receptor dependent. D-CYC selectively potentiated the duration of motor cortical excitability enhancements induced by anodal tDCS. D-CYC alone did not modulate excitability. The potency of this drug to consolidate neuronal excitability enhancements, most probably by stabilizing the strengthening of NMDA receptors, which is a probable neurophysiological derivate of learning processes, makes it an interesting substance to improve cognitive functions.
Collapse
Affiliation(s)
- Michael A Nitsche
- Department Clinical Neurophysiology, Georg-August-University, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
The glycine transporter type 1 inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 2003. [PMID: 12930797 DOI: 10.1523/jneurosci.23-20-07586.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycine acts as a necessary coagonist for glutamate at the NMDA receptor (NMDAR) complex by binding to the strychnine-insensitive glycine-B binding site on the NR1 subunit. The fact that glycine is normally found in the brain and spinal cord at concentrations that exceed those required to saturate this site has led to the speculation that glycine normally saturates NMDAR-containing synapses in vivo. However, additional lines of evidence suggest that synaptic glycine may be efficiently regulated in synaptic areas by the glycine transporter type 1 (GlyT1). The recent description of a potent and selective GlyT1 inhibitor (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine [NFPS]) provides a tool for evaluation of the hypothesis that inhibition of GlyT1 may increase synaptic glycine and thereby potentiate NMDAR function in vivo. In the present study, we found that (+)-NFPS demonstrated >10-fold greater activity in an in vitro functional glycine reuptake assay relative to the racemic compound. In vivo, (+/-)-NFPS significantly enhanced long-term potentiation in the hippocampal dentate gyrus induced by high-frequency electrical stimulation of the afferent perforant pathway. Furthermore, (+)-NFPS induced a pattern of c-Fos immunoreactivity comparable with the atypical antipsychotic clozapine and enhanced prepulse inhibition of the acoustic startle response in DBA/2J mice, a strain with low basal levels of prepulse inhibition. Collectively, these data suggest that selective inhibition of GlyT1 can enhance NMDAR-sensitive activity in vivo and also support the idea that GlyT1 may represent a novel target for developing therapeutics to treat disorders associated with NMDAR hypofunction.
Collapse
|
28
|
Atkinson BN, Bell SC, De Vivo M, Kowalski LR, Lechner SM, Ognyanov VI, Tham CS, Tsai C, Jia J, Ashton D, Klitenick MA. ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol Pharmacol 2001; 60:1414-20. [PMID: 11723250 DOI: 10.1124/mol.60.6.1414] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-affinity glycine transport in neurons and glial cells is a primary means of inactivating synaptic glycine. We have synthesized a potent selective inhibitor of glycine transporter 1 (GlyT1), and characterized its activity using a quail fibroblast cell line (QT6). The glycine transporters GlyT1A, GlyT1B, GlyT1C, and GlyT2 were stably expressed in QT6 cells. The transporters expressed in these cells exhibited appropriate characteristics as described previously for these genes: Na(+)/Cl(-) dependence, appropriate K(m) values for glycine uptake, and appropriate pharmacology, as defined in part by the ability of N-methyl glycine (sarcosine) to competitively inhibit glycine transport. Furthermore, the characteristics of the transporters in the cell lines recapitulate the characteristics of glycine transporters observed in tissue preparations. We developed a sarcosine derivative, (R)-(N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (ALX 5407), and examined its activity against the cloned glycine transporters. ALX 5407 completely inhibited glycine transport in the GlyT1 cells, with an IC(50) value of 3 nM, but had little or no activity at the human GlyT2 transporter, at other binding sites for glycine, or at other neurotransmitter transporters. The inhibition of glycine transport was essentially irreversible. ALX 5407 represents a novel tool in the investigation of N-methyl-D-aspartate-receptor function. This class of drug may lead to novel therapies in the treatment of schizophrenia.
Collapse
Affiliation(s)
- B N Atkinson
- Allelix Neuroscience, Inc., Cranbury, New Jersey, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nikbakht MR, Stone TW. Suppression of presynaptic responses to adenosine by activation of NMDA receptors. Eur J Pharmacol 2001; 427:13-25. [PMID: 11553359 DOI: 10.1016/s0014-2999(01)01171-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions between adenosine and NMDA receptors has been investigated using the paired-pulse paradigm in hippocampal slices. This technique allows the study of drug effects specifically at presynaptic terminals. The inhibitory effect of adenosine on population spikes, and the decrease of paired-pulse inhibition assessed using either population spikes or population excitatory postsynaptic potentials, were suppressed by performing the experiments in magnesium-free medium, or by superfusion of the slices with N-methyl-D-aspartate (NMDA) at a concentration (4 microM) which did not itself affect potential size. The suppressant effect of NMDA was prevented by 2-amino-5-phosphonopentanoic acid. All these interactions were still seen in the presence of bicuculline methobromide, 30 microM. Neither alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) nor kainate produced a suppression of adenosine responses. The presence of NMDA did not modify the effects of baclofen on population potentials or paired-pulse inhibition. Activating NMDA receptors by the induction of long-term potentiation or by superfusion with glycine also reduced significantly the effects of adenosine on population spikes and paired-pulse interactions. Increasing population potential size by a mechanism which did not involve the activation of NMDA receptors (increasing stimulus strength) did not change sensitivity to adenosine. When adenosine receptor-selective agonists were tested, it was found that NMDA did not modify the inhibitory effect of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine, but did enhance the excitatory effect of the adenosine A(2A) receptor agonist 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680). The combined response to NMDA and CGS21680 was prevented by the adenosine A(2A) receptor selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385). It is concluded that NMDA receptor activation can suppress neuronal sensitivity to adenosine by acting at presynaptic sites, and that this interaction results from an increase in the excitatory action of adenosine A(2A) receptors, rather than a depression of A(1) receptor function.
Collapse
Affiliation(s)
- M R Nikbakht
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
30
|
Berger AJ, Isaacson JS. Modulation of motoneuron N-methyl-D-aspartate receptors by the inhibitory neurotransmitter glycine. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:23-7. [PMID: 10084706 DOI: 10.1016/s0928-4257(99)80133-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies in the central nervous system have shown that glycine is a co-agonist with glutamate at central N-methyl-D-aspartate receptors (NMDA-Rs). However, there is considerable controversy as to whether the glycine site on NMDA-Rs is saturated. If this site were not saturated then glycine released from glycinergic synaptic terminals might 'spill-over' and activate NMDA-Rs. Since motoneurons have both NMDA and glycine synapses these neurons present an optimal substrate for testing whether the glycine binding site of NMDA-Rs is activated by transmitter released from glycine synaptic terminals. Using an in vitro brainstem slice preparation we report on initial experiments to investigate whether the glycine binding site of NMDA-Rs is saturated in motoneurons. Specifically, we investigated the question of whether the response of neonatal rat hypoglossal motoneurons (HMs) to a brief application of NMDA is enhanced by the presence of exogenous glycine. We found that exogenously applied glycine (1 mM) enhanced the NMDA activated membrane current. We conclude that in brainstem slices the glycine site at motoneuronal NMDA-Rs is not saturated, and that synaptically-released glycine may modulate NMDA-Rs mediated responses.
Collapse
Affiliation(s)
- A J Berger
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle 98195-7290, USA
| | | |
Collapse
|
31
|
Berger AJ, Dieudonné S, Ascher P. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 1998; 80:3336-40. [PMID: 9862928 DOI: 10.1152/jn.1998.80.6.3336] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J. Neurophysiol. 80: 3336-3340, 1998. At central synapses occupation of glycine binding sites of N-methyl--aspartate receptors (NMDA-Rs) is a necessary prerequisite for the excitatory neurotransmitter glutamate to activate these receptors. There is conflicting evidence as to whether glycine binding sites normally are saturated. If they are not, then alterations in local glycine concentration could modulate excitatory synaptic transmission. By using an in vitro brain stem slice preparation we investigated whether the glycine site is saturated for synaptically activated NMDA-Rs in neonatal rat hypoglossal motoneurons. We found that the NMDA-R-mediated component of spontaneous miniature excitatory postsynaptic currents could be potentiated by exogenously applied glycine as well as by -serine. The effects of glycine were observed only at concentrations (100 microM or more) two orders of magnitude above the apparent dissociation constant of glycine from NMDA receptors. In contrast, -serine, a nontransported NMDA-R glycine site agonist, was effective in the low micromolar range, i.e., at concentrations similar to those found to be effective on isolated cells or on outside-out patches. We conclude that at these synapses the glycine concentration around synaptic NMDA-Rs is set below the concentration required to saturate their glycine site and is likely to be stabilized by a powerful glycine transport mechanism.
Collapse
Affiliation(s)
- A J Berger
- Laboratoire de Neurobiologie, Ecole Normale Supérieure, 75005 Paris, France
| | | | | |
Collapse
|
32
|
Abe K, Sugiura M, Shoyama Y, Saito H. Crocin antagonizes ethanol inhibition of NMDA receptor-mediated responses in rat hippocampal neurons. Brain Res 1998; 787:132-8. [PMID: 9518580 DOI: 10.1016/s0006-8993(97)01505-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously found that crocin (crocetin di-gentiobiose ester) antagonizes the inhibitory effect of ethanol on long-term potentiation in the rat hippocampus in vivo and in vitro. To explore mechanisms underlying the antagonism of crocin against ethanol, we investigated the effects of ethanol and crocin on synaptic potentials mediated by N-methyl-d-aspartate (NMDA) receptors in the dentate gyrus of rat hippocampal slices. Synaptic potential mediated by non-NMDA receptors was recorded in normal medium (1.3 mM Mg2+), while NMDA receptor-mediated synaptic potential was isolated in low (0.13 mM) Mg2+ medium containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM). Crocin (10 microM) alone did not affect synaptic potentials mediated by non-NMDA nor NMDA receptors. Non-NMDA response was slightly inhibited by 100 mM ethanol, while NMDA response was selectively inhibited by lower concentrations (10-50 mM) of ethanol. Crocin (10 microM) did not affect the inhibition of non-NMDA response by 100 mM ethanol, but significantly blocked the inhibition of NMDA response by 10-50 mM ethanol. In addition, we performed whole-cell patch recording with primary cultured rat hippocampal neurons, and confirmed that crocin blocked ethanol inhibition of inward currents evoked by application of NMDA. These results suggest that crocin specifically antagonizes the inhibitory effect of ethanol on NMDA receptor-mediated responses in hippocampal neurons.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113, Japan
| | | | | | | |
Collapse
|
33
|
Wang RY, Arvanov VL. M100907, a highly selective 5-HT2A receptor antagonist and a potential atypical antipsychotic drug, facilitates induction of long-term potentiation in area CA1 of the rat hippocampal slice. Brain Res 1998; 779:309-13. [PMID: 9473706 DOI: 10.1016/s0006-8993(97)01174-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, we have shown that M100907, a highly selective 5-HT2A receptor antagonist and a putative atypical antipsychotic drug (APD), markedly potentiates N-methyl-D-aspartate (NMDA) responses and excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation of the Schaffer collaterals in CA1 hippocampal pyramidal cells. Furthermore, it enhances the induction of long-term potentiation (LTP) of CA1 synapses. If our findings can be extended to other atypical APDs, which are known to possess a relatively high affinity to 5-HT2A receptors, they may account for the purported efficacy of atypical APDs in alleviating some negative symptoms and improving cognitive and executive functions. In addition, the possibility of using M100907 as a nootropic should be further tested.
Collapse
Affiliation(s)
- R Y Wang
- Department of Psychiatry and Behavioral Science, SUNY at Stony Brook, NY 11794-8790, USA.
| | | |
Collapse
|
34
|
Lanza M, Makovec F. Cognition Enhancing Profile of CR 2249, a New NMDA-Glycine Site Modulator. CNS DRUG REVIEWS 1997. [DOI: 10.1111/j.1527-3458.1997.tb00326.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Lanza M, Bonnafous C, Colombo S, Revel L, Makovec F. Characterization of a novel putative cognition enhancer mediating facilitation of glycine effect on strychnine-resistant sites coupled to NMDA receptor complex. Neuropharmacology 1997; 36:1057-64. [PMID: 9294970 DOI: 10.1016/s0028-3908(97)00092-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of (S)-4-amino-5-[(4,4-dimethylcyclohexyl)amino]-5-oxo-pentanoic acid ((S)CR 2249), a new chemical entity selected among a series of glutamic acid derivatives, were investigated on N-methyl-D-aspartate (NMDA)-evoked release of [3H]noradrenaline from rat hippocampal slices. (S)CR 2249 facilitated glycine-mediated reversion of kynurenate antagonism at strychnine-insensitive glycine receptors coupled to the NMDA receptor. The potency of glycine (EC50 = 21.5 microM +/- 4.2) was not significantly influenced by (S)CR 2249. Nevertheless, the efficacy of the glycine effect was enhanced in a concentration-dependent manner (3-10-30 microm) by (S)CR 2249. The interaction of (S)CR 2249 with NMDA receptors was also studied with binding experiments, in which we examined the effect of (S)CR 2249 on the modulation by glutamate, glycine and spermine of [3H]dizocilpine (MK-801) binding. (S)CR 2249, increased [3H]MK-801 binding in a concentration-dependent manner and we found positive cooperative interactions between glycine and (S)CR 2249, indicating that (S)CR 2249 probably acts at a separate allosteric site to increase NMDA receptor functionality.
Collapse
Affiliation(s)
- M Lanza
- Rotta Research Laboratorium S.p.A., Monza (MI), Italy
| | | | | | | | | |
Collapse
|
36
|
Abstract
It has long been assumed that L-forms of amino acids exclusively constitute free amino acid pools in mammals. However, a variety of studies in the last decade has demonstrated that free D-aspartate and D-serine occur in mammals and may have important physiological function in mammals. Free D-serine is confined predominantly to the forebrain structure, and the distribution and development of D-serine correspond well with those of the N-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. As D-serine acts as a potent and selective agonist for the strychnine-insensitive glycine site of the NMDA receptor, it is proposed that D-serine is a potential candidate for an NMDA receptor-related glycine site agonist in mammalian brain. In contrast, widespread and transient emergence of a high concentration of free D-aspartate is observed in the brain and periphery. Since the periods of maximal emergence of D-aspartate in the brain and periphery occur during critical periods of morphological and functional maturation of the organs, D-aspartate could participate in the regulation of these regulation of these developmental processes of the organs. This review deals with the recent advances in the studies of presence of free D-aspartate and D-serine and their metabolic systems in mammals. Since D-aspartate and D-serine have been shown to potentiate NMDA receptor-mediated transmission through the glutamate binding site and the strychnine-insensitive glycine binding site, respectively, and have been utilized extensively as potent and selective tools to study the excitatory amino acid system in the brain, we shall discuss also the NMDA receptor and uptake system of D-amino acids.
Collapse
Affiliation(s)
- A Hashimoto
- Department of Pharmacology, Takai University School of Medicine, Kanagawa, Japan.
| | | |
Collapse
|
37
|
Rigby M, Le Bourdellès B, Heavens RP, Kelly S, Smith D, Butler A, Hammans R, Hills R, Xuereb JH, Hill RG, Whiting PJ, Sirinathsinghji DJ. The messenger RNAs for the N-methyl-D-aspartate receptor subunits show region-specific expression of different subunit composition in the human brain. Neuroscience 1996; 73:429-47. [PMID: 8783260 DOI: 10.1016/0306-4522(96)00089-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of the messenger RNAs encoding N-methyl-D-aspartate receptor subunits in neurologically normal post-mortem human brain was studied by in situ hybridization. In the caudate, putamen and nucleus accumbens strong hybridization signals were observed for N-methyl-D-aspartate R1-1 messenger RNA but much weaker signals for N-methyl-D-aspartate R1-3 and N-methyl-D-aspartate R1-4, N-Methyl-D-aspartate R1-2 was not detectable. N-methyl-D-aspartate R2B was the only N-methyl-D-aspartate R2 subunit detected in these nuclei. In the hippocampus the messenger RNAs for both N-methyl-D-aspartate R1-1 and N-methyl-D-aspartate R1-4 were strongly expressed in the dentate gyrus, CA3-CA1 pyramidal cells, subiculum, entorhinal cortex and perirhinal cortex. Much lower expression was seen for N-methyl-D-aspartate R1-2 and N-methyl-D-aspartate R1-3. The messenger RNAs for both N-methyl-D-aspartate R2A and N-methyl-D-aspartate R2B, but not N-methyl-D-aspartate R2C, subunits were expressed in the hippocampus. In the temporal cortex all N-methyl-D-aspartate RI isoforms were expressed (N-methyl-D-aspartate R1-1 and N-methyl-D-aspartate R1-4 being the most abundant) and N-methyl-D-aspartate R2A and N-methyl-D-aspartate R2B but not N-methyl-D-aspartate R2C were also moderately expressed. In the brain stem N-methyl-D-aspartate R1-4 was strongly expressed in various nuclei including the locus coeruleus, nucleus centralis superior and deep pontine nuclei. Only weak expression was seen for N-methyl-D-aspartate RI-1 and N-methyl-D-aspartate R1-3 but not N-methyl-D-aspartate RI-2; of the N-methyl-D-aspartate R2 subunits only N-methyl-D-aspartate R2C was found to be expressed in these nuclei. In the cerebellum all the N-methyl-D-aspartate I isoforms were expressed (mostly N-methyl-D-aspartate R1-4) in the Purkinje layer which also expressed N-methyl-D-aspartate R2A and N-methyl-D-aspartate R2C. In the molecular layer cells were found expressing N-methyl-D-aspartate R1-4 and N-methyl-D-aspartate R2B and cells in the granule layer were found to express N-methyl-D-aspartate R1-1, N-methyl-D-aspartate R1-3 and N-methyl-D-aspartate R1-4 and N-methyl-D-aspartate R2C only. Preliminary studies indicated that the messenger RNA for the N-methyl-D-aspartate R2D subunit was not expressed in the above areas of brain. These results give the first demonstration of the distribution of N-methyl-D-aspartate receptor subunit messenger RNAs in the human brain. The region-specific expression of subunit combinations suggests a heterogeneity of N-methyl-D-aspartate receptors with diverse physiological/pathophysiological roles and provides a rationale for the development of discriminatory N-methyl-D-aspartate receptor antagonists to target selective neuronal populations.
Collapse
Affiliation(s)
- M Rigby
- Merck, Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, U.K
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hanse E, Gustafsson B. Staurosporine impairs both short-term and long-term potentiation in the dentate gyrus in vitro. Neuroscience 1994; 58:263-74. [PMID: 8152538 DOI: 10.1016/0306-4522(94)90033-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study shows that the protein kinase inhibitor staurosporine impairs the transient (< 60 min) potentiation (short-term potentiation) evoked by a weak tetanus to about the same extent as the more stable potentiation (long-term potentiation) evoked by a strong tetanus. This effect on short-term and long-term potentiation was seen both as a reduced magnitude and an increased decay rate, the latter being increased by about 50% compared to that seen under normal conditions. Comparison with potentiations evoked at different strengths in control solution suggested that much, but not all, of the increased decay rate observed in the presence of staurosporine could be explained by an impared induction. Staurosporine did not affect the N-methyl-D-aspartate-mediated field excitatory postsynaptic potential evoked by low-frequency stimulation or the magnitude of N-methyl-D-aspartate-mediated currents during high-frequency tetanization. This result suggests that the induction is impaired at a stage not related to the N-methyl-D-aspartate-mediated calcium influx. The present results suggest that short-term and long-term potentiation cannot be separated on the basis of protein kinase dependence. They do not support the common notion that short-term and long-term potentiation are mechanistically separate entities. Instead, the results support the view that long-term potentiation has a variable duration/stability dependent on the induction conditions and that protein kinase activation, via an action on induction mechanisms, contributes to its stabilization.
Collapse
Affiliation(s)
- E Hanse
- Department of Physiology, University of Göteborg, Sweden
| | | |
Collapse
|