1
|
Wang Y, Ma Y, Hu J, Cheng W, Jiang H, Zhang X, Li M, Ren J, Li X. Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats. Neuroscience 2015; 301:363-74. [DOI: 10.1016/j.neuroscience.2015.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/31/2022]
|
2
|
Carlton SM, Zhou S, Govea R, Du J. Group II/III metabotropic glutamate receptors exert endogenous activity-dependent modulation of TRPV1 receptors on peripheral nociceptors. J Neurosci 2011; 31:12727-37. [PMID: 21900552 PMCID: PMC3209953 DOI: 10.1523/jneurosci.6558-10.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 12/13/2022] Open
Abstract
There is pharmacological evidence that group II and III metabotropic glutamate receptors (mGluRs) function as activity-dependent autoreceptors, inhibiting transmission in supraspinal sites. These receptors are expressed by peripheral nociceptors. We investigated whether mGluRs function as activity-dependent autoreceptors inhibiting pain transmission to the rat CNS, particularly transient receptor potential vanilloid 1 (TRPV1)-induced activity. Blocking peripheral mGluR activity by intraplantar injection of antagonists LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] (LY) (20, 100 μm, group II/III), APICA [(RS)-1-amino-5-phosphonoindan-1-carboxylic acid] (100 μm, group II), or UBP1112 (α-methyl-3-methyl-4-phosphonophenylglycine) (30 μm, group III) increased capsaicin (CAP)-induced nociceptive behaviors and nociceptor activity. In contrast, group II agonist APDC [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] (0.1 μm) or group III agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP-4) (10 μm) blocked the LY-induced increase. Ca(2+) imaging in dorsal root ganglion (DRG) cells confirmed LY enhanced CAP-induced Ca(2+) mobilization, which was blocked by APDC and l-AP-4. We hypothesized that excess glutamate (GLU) released by high intensity and/or prolonged stimulation endogenously activated group II/III, dampening nociceptor activation. In support of this, intraplantar GLU + LY produced heat hyperalgesia, and exogenous GLU + LY applied to nociceptors produced enhanced nociceptor activity and thermal sensitization. Intraplantar Formalin, known to elevate extracellular GLU, enhanced pain behaviors in the presence of LY. LY alone produced no pain behaviors, no change in nociceptor discharge rate or heat-evoked responses, and no change in cytosolic Ca(2+) in DRG cells, demonstrating a lack of tonic inhibitory control. Group II/III mGluRs maintain an activity-dependent autoinhibition, capable of significantly reducing TRPV1-induced activity. They are endogenously activated after high-frequency and/or prolonged nociceptor stimulation, acting as built-in negative modulators of TRPV1 and nociceptor function, reducing pain transmission to the CNS.
Collapse
Affiliation(s)
- Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA.
| | | | | | | |
Collapse
|
3
|
Lennon SM, Rivero G, Matharu A, Howson PA, Jane DE, Roberts PJ, Kelly E. Metabotropic glutamate receptor mGlu2 is resistant to homologous agonist-induced desensitization but undergoes protein kinase C-mediated heterologous desensitization. Eur J Pharmacol 2010; 649:29-37. [PMID: 20826132 DOI: 10.1016/j.ejphar.2010.08.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 07/21/2010] [Accepted: 08/25/2010] [Indexed: 11/17/2022]
Abstract
To investigate the susceptibility of the group II metabotropic glutamate receptor mGlu2 to agonist-induced desensitization, the receptor was stably expressed in Chinese hamster ovary (CHO-mGlu2) or C6 glioma cells (C6-mGlu2). Exposure of CHO-mGlu2 cells to the group II mGlu receptor agonist (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (LCCG-1; 10 μM) for up to 15 h did not affect the subsequent ability of LCCG-1 to inhibit forskolin-stimulated cAMP accumulation. Similarly, in C6-mGlu2 cells, prolonged exposure to LCCG-1 also did not affect the subsequent ability of LCCG-1 to inhibit cAMP formation. In contrast, exposure of CHO-mGlu2 cells to the protein kinase C activator phorbol myristate acetate (PMA) suppressed the ability of LCCG-1 to inhibit cAMP formation. Using an in vitro model of group II mGlu receptor activity, the hemisected neonatal rat spinal cord preparation, the ability of the selective group II agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate ((2R,4R)-APDC) to depress the fast component of the dorsal root-evoked ventral root potential (fDR-VRP) did not desensitize when applied for up to 2 h. Together these results indicate that in contrast to most G protein-coupled receptors, the mGlu2 receptor is resistant to agonist-induced homologous desensitization, and that in vitro data suggests that resistance to desensitization is a physiologically relevant property of this mGlu receptor subtype.
Collapse
Affiliation(s)
- Siân M Lennon
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | |
Collapse
|
4
|
Stachowicz K, Kłodzińska A, Palucha-Poniewiera A, Schann S, Neuville P, Pilc A. The group III mGlu receptor agonist ACPT-I exerts anxiolytic-like but not antidepressant-like effects, mediated by the serotonergic and GABA-ergic systems. Neuropharmacology 2009; 57:227-34. [PMID: 19539634 DOI: 10.1016/j.neuropharm.2009.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Our earlier studies have demonstrated that (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid ACPT-I, a group III mGlu receptor agonist, produced anxiolytic-like and antidepressant-like actions after central administration. Here we describe the anxiolytic-like effects of ACPT-I after intraperitoneal administration in the stress-induced hyperthermia (SIH), elevated plus-maze (PMT) tests in mice and in the Vogel test in rats. However, the compound did not produce antidepressant-like effects in the tail suspension test (TST) or in the forced swim test (FST) in mice. The potential anxiolytic effect of ACPT-I (20 mg/kg) in the SIH test was inhibited by the benzodiazepine receptor antagonist flumazenil (given i.p., 10 mg/kg), and by a 5-HT(1A) receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635) (0.1 mg/kg s.c.). At the same time, ritanserin (0.5 mg/kg i.p.), the 5-HT2A/C receptor antagonist, did not change the anxiolytic-like effects of ACPT-I. The results of these studies indicate that the GABA-ergic and serotonergic systems are involved in the potential anxiolytic action of ACPT-I.
Collapse
Affiliation(s)
- K Stachowicz
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
5
|
Schröder U, Müller T, Schreiber R, Stolle A, Zuschratter W, Balschun D, Jork R, Reymann K. The potent non-competitive mGlu1 receptor antagonist BAY 36-7620 differentially affects synaptic plasticity in area cornu ammonis 1 of rat hippocampal slices and impairs acquisition in the water maze task in mice. Neuroscience 2008; 157:385-95. [DOI: 10.1016/j.neuroscience.2008.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 07/31/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
6
|
Pałucha-Poniewiera A, Kłodzińska A, Stachowicz K, Tokarski K, Hess G, Schann S, Frauli M, Neuville P, Pilc A. Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology 2008; 55:517-24. [PMID: 18619473 DOI: 10.1016/j.neuropharm.2008.06.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 06/05/2008] [Accepted: 06/18/2008] [Indexed: 11/24/2022]
Abstract
Several lines of evidence implicate dysfunction of glutamatergic neurotransmission in the pathophysiology of schizophrenia. Previous behavioral studies have indicated that metabotropic glutamate (mGlu) receptors may be useful targets for the treatment of psychosis. It has been shown that agonists and positive allosteric modulators of group II mGlu receptors produce potential antipsychotic effects in behavioral models of schizophrenia in rodents. Group III mGlu receptors seem to be also promising targets for a variety of neuropsychiatric and neurodegenerative disorders. However, despite encouraging data in animal models, most ligands of group III mGlu receptors still suffer from weak affinities, incapacity to cross the blood-brain barrier or absence of full pharmacological characterization. These limitations slow down the validation process of group III mGlu receptors as therapeutic targets. In this work, we choose to study an agonist of group III mGlu receptors (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid (ACPT-I) using intraperitoneal administration in three animal behavioral models predictive of psychosis or hallucinations. The results of the present study show that ACPT-I, given at doses of 10 or 30mg/kg, decreased MK-801-induced hyperlocomotion and at a dose of 100mg/kg decreased amphetamine-induced hyperlocomotion in rats. Furthermore, ACPT-I dose-dependently decreased DOI-induced head twitches in mice and suppresses DOI-induced frequency and amplitude of spontaneous EPSPs in slices from mouse brain frontal cortices. These data demonstrate that ACPT-I is a brain-penetrating compound and illustrates its promising therapeutic role for the treatment of schizophrenia.
Collapse
Affiliation(s)
- A Pałucha-Poniewiera
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pilc A, Ossowska K. Metabotropic glutamate receptors. Amino Acids 2007; 32:165-7. [PMID: 17245617 DOI: 10.1007/s00726-006-0315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 10/23/2022]
|
8
|
Cavelier P, Attwell D. Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol 2005; 564:397-410. [PMID: 15695241 PMCID: PMC1464434 DOI: 10.1113/jphysiol.2004.082131] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tonic release of glutamate into the extracellular space of the hippocampus and striatum is non-vesicular, and has been attributed largely to a cystine-glutamate exchanger which is blockable by the glutamate analogue (S)-4-carboxyphenylglycine (CPG). Tonic glutamate release may be functionally important: modulation of this release in the striatum has been suggested to underlie relapse in the use of cocaine. We monitored tonic glutamate release in area CA1 of hippocampal slices by measuring the glutamate receptor-mediated current evoked in pyramidal cells on block of Na(+)-dependent glutamate uptake with dl-threo-beta-benzyloxyaspartate (TBOA). Superfused cystine increased tonic glutamate release, and this increase was blocked by CPG, but CPG did not affect tonic glutamate release in the absence of superfused cystine. Tonic glutamate release was not affected by blocking gap junctional hemichannels with 18alpha-glycyrrhetinic acid, blocking ATP receptors with pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), blocking Ca(2)(+)-dependent exocytosis from neurones with Cd(2)(+) or bafilomycin, blocking Ca(2)(+)-dependent release from glia with indomethacin, or blocking anion channels with 5-nitro-2-(3-phenylpropyl amino) benzoic acid (NPPB) or tamoxifen. However tonic glutamate release was reduced by 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), and was potentiated by inhibiting astrocytic conversion of glutamate to glutamine with methionine sulfoximine. These data suggest that although cystine-glutamate exchange is present in the hippocampus it does not generate significant tonic release of glutamate when the extracellular [cystine] is at a physiological level, and that tonic glutamate release is at least partly from astrocytes and is mediated by a DIDS-sensitive mechanism. Theoretical calculations suggest that a significant fraction of tonic glutamate release in hippocampal slices could occur via diffusion of glutamate across lipid membranes.
Collapse
Affiliation(s)
- Pauline Cavelier
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
9
|
Capogna M. Distinct properties of presynaptic group II and III metabotropic glutamate receptor-mediated inhibition of perforant pathway-CA1 EPSCs. Eur J Neurosci 2004; 19:2847-58. [PMID: 15147318 DOI: 10.1111/j.1460-9568.2004.03378.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
I have compared the effects of group II or III metabotropic glutamate receptor (mGluR) activation on monosynaptic excitatory responses recorded intracellularly from CA1 pyramidal neurons of rat hippocampus and evoked by perforant pathway stimulation in vitro. The excitatory postsynaptic currents (EPSCs) were reduced either by the group II mGluR agonist LY354740 (500 nM, 31 +/- 6% of control) or by the group III agonist L-AP4 (400 microM, 53 +/- 5% of control). Both drugs enhanced EPSC paired-pulse facilitation (range 125-189% of control). These effects were blocked by the broad-spectrum mGluR antagonist LY341495 (1 or 20 microM) which when applied alone did not significantly change the EPSCs elicited at low (0.1-0.2 Hz) or higher (1-100 Hz) frequency of stimulation. Prior reduction of the EPSCs induced by L-AP4 did not occlude the subsequent inhibition elicited by LY354740. The effect of LY354740, but not that of L-AP4, was blocked in the presence of the cAMP analogue Sp-cAMPS (20 microM) and with the K(+) channel antagonist alpha-dendrotoxin (125 nM). In contrast, the effect of L-AP4, but not that of LY354740, was prevented by the calmodulin inhibitor ophiobolin A (25 microM) and with the N-type Ca(2+) channel antagonist omega-conotoxin-GVIA (1 microM). In the presence of the P/Q type Ca(2+) channel antagonist omega-agatoxin-IVA (400 nM), the EPSCs were depressed either by LY354740 or by L-AP4. Groups II and III mGluRs are segregated at the presynaptic terminal, and there are distinct differences between the properties of the presynaptic inhibition mediated by these two groups of receptors.
Collapse
Affiliation(s)
- Marco Capogna
- Medical Research Council, Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
10
|
O'Neill MF, Heron-Maxwell C, Conway MW, Monn JA, Ornstein P. Group II metabotropic glutamate receptor antagonists LY341495 and LY366457 increase locomotor activity in mice. Neuropharmacology 2003; 45:565-74. [PMID: 12941370 DOI: 10.1016/s0028-3908(03)00232-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The group II metabotropic glutamate receptor (mGluR) antagonists LY341495 and LY366457 were profiled for their effects on locomotor activity in mice. Both compounds significantly increased locomotor activity. Observational studies showed that rearing was also selectively increased. LY366457-induced hyperactivity was significantly attenuated by the selective D1 dopamine receptor antagonist SCH23390 and also by the D2 dopamine receptor antagonist haloperidol but only at doses that significantly suppressed spontaneous locomotion. The selective 5-HT(2A) antagonist MDL100907 had no effect on LY366457-induced hyperactivity, while the less selective 5-HT(2A-C) antagonist ritanserin had only a modest effect. In all cases, the doses of antagonists that reduced the locomotor response to LY366457 were greater than those previously shown to reduce the locomotor response to the psychostimulants amphetamine and cocaine and MK-801. Pretreatment with reserpine also significantly attenuated the response to LY366457, possibly implicating a monoaminergic substrate in the mediation of this effect. The phenomenonology and pharmacology of the locomotor activation induced by the mGluR antagonists differs markedly from that induced by locomotor stimulants such as amphetamine, cocaine or MK-801. These results suggest that group II mGluRs may be involved in the tonic suppression of locomotor and exploratory activity, and this suppression can be disinhibited in the presence of a group II mGluR antagonist.
Collapse
Affiliation(s)
- Michael F O'Neill
- Eli Lilly and Company Ltd, Behavioural Pharmacology, Lilly Research Centre, Erl Wood Manor, Sunninghill Rd., Windlesham, Surrey GU20 6PH, UK.
| | | | | | | | | |
Collapse
|
11
|
Shen KZ, Johnson SW. Group II metabotropic glutamate receptor modulation of excitatory transmission in rat subthalamic nucleus. J Physiol 2003; 553:489-96. [PMID: 14500768 PMCID: PMC2343573 DOI: 10.1113/jphysiol.2003.052209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patch pipettes were used to record currents in whole-cell configuration to study the effects of group II metabotropic glutamate receptor (mGluR) stimulation on synaptic transmission in slices of rat subthalamic nucleus. Evoked glutamatergic excitatory postsynaptic currents (EPSCs) were reversibly reduced by the selective group II mGluR agonist (2'S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) in a concentration-dependent manner, with an IC50 of 0.19 +/- 0.05 microM. DCG IV (1 microM) had no effect on inhibitory postsynaptic currents mediated by GABA. DCG IV-induced inhibition of EPSCs was reversed by the selective group II mGluR antagonist LY 341495 (100 nM) and mimicked by another selective group II agonist (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I). Inhibition of EPSC amplitude by DCG IV and L-CCG-I was associated with an increase in the paired-pulse ratio of EPSCs. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (2 microM) reduced the inhibitory effect of DCG IV on EPSCs. However, the response to DCG IV was not affected by the protein kinase A (PKA) activator forskolin (20 microM), by the adenylyl cyclase inhibitor MDL 12230A (20 microM), or by the phosphodiesterase inhibitor Ro 20-1724 (50 microM). DCG IV-induced inhibition of EPSCs was reduced by the non-selective protein kinase inhibitors H-7 (100 microM), H-8 (50 microM) and HA-1004 (100 microM). These results suggest that group II mGluR stimulation acts presynaptically to inhibit glutamate release by a PKC-dependent mechanism in the subthalamic nucleus.
Collapse
Affiliation(s)
- Ke-Zhong Shen
- Departments of Neurology, and Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
12
|
Takamori K, Hirota S, Chaki S, Tanaka M. Antipsychotic action of selective group II metabotropic glutamate receptor agonist MGS0008 and MGS0028 on conditioned avoidance responses in the rat. Life Sci 2003; 73:1721-8. [PMID: 12875903 DOI: 10.1016/s0024-3205(03)00509-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study was designed to investigate the antipsychotic-like effects of selective group II metabotropic glutamate receptor (mGluR) agonists, 5-[2-[4-(6-fluoro-1H-indole-3-yl) piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (MGS0008) and (1R, 2S, 5S, 6S)-2-amino-6-fluoro-4-oxobicyclo[3.1.0]hexane-2,6-dicarboxylic acid monohydrate (MGS0028) on conditioned avoidance responses in rats. MGS0008 (1, 3 and 10 mg/kg, p.o.) and MGS0028 (0.3, 1 and 3 mg/kg, p.o.) significantly and reduced conditioned avoidance responses in a dose-dependent fashion. Similar effects were seen with LY418426 (0.3, 1 and 3 mg/kg, p.o.), but not with LY354740 (3, 10 and 30 mg/kg, p.o.), both of which are selective agonists for group II mGluR. Since this effect is seen with a wide range of antipsychotics, such as haloperidol and clozapine [Life Sciences 71 (2002) 947], group II mGluR agonists deserve further attention for possible antipsychotic activity.
Collapse
Affiliation(s)
- Kazuaki Takamori
- Research Management Section, Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403, Yoshino-cho, Saitama, Japan.
| | | | | | | |
Collapse
|
13
|
Kew JNC, Pflimlin MC, Kemp JA, Mutel V. Differential regulation of synaptic transmission by mGlu2 and mGlu3 at the perforant path inputs to the dentate gyrus and CA1 revealed in mGlu2 -/- mice. Neuropharmacology 2002; 43:215-21. [PMID: 12213275 DOI: 10.1016/s0028-3908(02)00084-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Group II metabotropic glutamate (mGlu) receptors can act as presynaptic autoinhibitory receptors at perforant path inputs to the hippocampus under conditions of high frequency synaptic activation. We have used mGlu2 -/- mice to examine the relative roles of mGlu2 and mGlu3 in the regulation of perforant path synaptic transmission mediated by both the selective group II receptor agonist, DCG-IV, and by synaptically released glutamate. Field excitatory postsynaptic potentials evoked by stimulation of either the perforant path inputs to the dentate gyrus mid-moleculare or the CA1 stratum lacunosum moleculare were inhibited by DCG-IV with IC(50) values and maximum percentage inhibition of: 169 nM (60%) and 41 nM (72%) in wild-type mice and 273 nM (19%) and 116 nM (49%) in mGlu2 -/- mice, respectively. Activation of presynaptic group II mGlu autoreceptors by synaptically released glutamate, as revealed by a LY341495-mediated increase in the relative amplitude of a test fEPSP evoked after a conditioning burst, was observed in both the dentate gyrus and the stratum lacunosum of wild-type, but not mGlu2 -/- mice. These observations demonstrate that activation of mGlu3 receptors can regulate synaptic transmission at perforant path synapses but suggest that mGlu2 is the major presynaptic group II autoreceptor activated by synaptically released glutamate.
Collapse
Affiliation(s)
- James N C Kew
- F. Hoffmann-La Roche Ltd, Preclinical CNS Research, CH-4070 Basel, Switzerland.
| | | | | | | |
Collapse
|
14
|
Kew JN, Ducarre JM, Pflimlin MC, Mutel V, Kemp JA. Activity-dependent presynaptic autoinhibition by group II metabotropic glutamate receptors at the perforant path inputs to the dentate gyrus and CA1. Neuropharmacology 2001; 40:20-7. [PMID: 11077067 DOI: 10.1016/s0028-3908(00)00118-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pharmacological activation of metabotropic glutamate receptors (mGluRs) can inhibit synaptic transmission; however, relatively little evidence exists regarding the physiological conditions under which such autoreceptors are activated by synaptically released glutamate. Bath application of selective group II mGluR agonists profoundly inhibited field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of the perforant path inputs to both the mid-molecular layer of the dentate gyrus and the stratum lacunosum moleculare of the CA1. Application of the group II selective mGluR antagonist LY341495 resulted in an increase in the relative amplitude of a test fEPSP evoked 200 ms after a conditioning burst, but not after a single conditioning stimulus, in both pathways. Antagonist application also resulted in a marked increase in the relative amplitude of test population spikes evoked in the dentate gyrus following a conditioning burst. These observations are consistent with a presynaptic autoinhibitory action of group II metabotropic receptors that is revealed following burst stimulation of the pathway, consistent with their localisation in the preterminal zone. Activation of group II mGluRs during theta-gamma pattern discharge of projection neurones in the entorhinal cortex is likely to play an important role in the regulation of synaptic transmission and plasticity in the perforant pathway.
Collapse
Affiliation(s)
- J N Kew
- F. Hoffmann-La Roche Ltd, Pharma Division, Preclinical CNS Research, Building 70/343, CH-4070, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Popik P, Kozela E, Pilc A. Selective agonist of group II glutamate metabotropic receptors, LY354740, inhibits tolerance to analgesic effects of morphine in mice. Br J Pharmacol 2000; 130:1425-31. [PMID: 10903986 PMCID: PMC1572198 DOI: 10.1038/sj.bjp.0703438] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2000] [Revised: 04/12/2000] [Accepted: 04/26/2000] [Indexed: 11/08/2022] Open
Abstract
1. Antagonists of glutamate N-methyl-D-aspartate (NMDA) subtype receptor inhibit the development of tolerance to the antinociceptive effects of opioids. Another way to inhibit the function of glutamate receptors is the stimulation of presynaptic metabotropic group II (mGluRII) receptors. Because LY354740 ((+)-2-aminobicyclo [3,1,0] hexane-2,6-dicarboxylic acid) is the first systemically active agonist of group II mGlu receptors, we investigated if this compound might inhibit the development of tolerance to antinociceptive effects of morphine and fentanyl. 2. As assessed by cumulative dose-response approach in the tail-flick test, administration of 10 mg kg(-1) morphine bid s.c. to male Albino Swiss mice for 6 days, right-shifted morphine dose-response curve by approximately 4 fold. In a separate group of mice, 12 injections of 0.04 mg kg(-1) of fentanyl over 3 days, right-shifted fentanyl dose-response curve by approximately 3.3 fold. 3. In experiment 1, LY354740 (1 and 10, but not 0.1 mg kg(-1)) as well as the reference compound, an uncompetitive NMDA receptor antagonist memantine (7.5 mg kg(-1)) inhibited the development of morphine tolerance. Neither LY354740 (10 mg kg(-1)) nor memantine (7.5 mg kg(-1)) affected the development of tolerance to fentanyl. In experiment 2, neither LY354740 (1 and 10 mg kg(-1)) nor memantine (7.5 mg kg(-1)) affected the tail-flick antinociceptive response, or the acute antinociceptive effect of morphine. 4. The present results are the first to suggest that the development of antinociceptive morphine tolerance may be inhibited by metabotropic group II glutamate agonist.
Collapse
Affiliation(s)
- P Popik
- Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | | | | |
Collapse
|
16
|
Kłodzińska A, Chojnacka-Wójcik E, Pałucha A, Brański P, Popik P, Pilc A. Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 1999; 38:1831-9. [PMID: 10608278 DOI: 10.1016/s0028-3908(99)00066-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite there being a lot of biochemical data about metabotropic glutamate (mGlu) receptors, our knowledge of the behavioural effects of mGlu receptor agonists/antagonists is still inadequate. LY 354740 is a systemically active agonist of group II mGlu receptors. After peripheral administration, LY 354740 produced anxiolytic-like effects in the conflict drinking test in rats and a four-plate test in mice. It was also found that LY 354740 decreased spontaneous locomotor activity in mice, but did not disturb motor coordination. In behavioural models of depression including the despair test and a tail suspension test, LY 354740 did not produce antidepressant-like effects. LY 354740 inhibited the naloxone-induced symptoms of morphine withdrawal in morphine-dependent mice. The above results indicate that agonists of group II mGlu receptors may play a role in the therapy of anxiety and/or drug-dependence states. The brain sites of action of LY 354740 need to be identified and the mechanism of both the above described effects remains to be elucidated.
Collapse
Affiliation(s)
- A Kłodzińska
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Smetna, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Behrens MM, Strasser U, Heidinger V, Lobner D, Yu SP, McDonald JW, Won M, Choi DW. Selective activation of group II mGluRs with LY354740 does not prevent neuronal excitotoxicity. Neuropharmacology 1999; 38:1621-30. [PMID: 10530823 DOI: 10.1016/s0028-3908(99)00098-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent reports have suggested a role for group II metabotropic glutamate receptors (mGluRs) in the attenuation of excitotoxicity. Here we examined the effects of the recently available group II agonist (+)-2-Aminobicyclo[3.1.0]hexane-2-6-dicarboxylic acid (LY354740) on N-methyl-D-aspartate (NMDA)-induced excitotoxic neuronal death, as well as on hypoxic-ischemic neuronal death both in vitro and in vivo. At concentrations shown to be selective for group II mGluRs expressed in cell lines (0.1-100 nM), LY354740 did not attenuate NMDA-mediated neuronal death in vitro or in vivo. Furthermore, LY354740 did not attenuate oxygen-glucose deprivation-induced neuronal death in vitro or ischemic infarction after transient middle cerebral artery occlusion in rats. In addition, the neuroprotective effect of another group II agonist, (S)-4-carboxy-3-phenylglycine (4C3HPG), which has shown injury attenuating effects both in vitro and in vivo, was not blocked by the group II antagonists (2 S)-alpha-ethylglutamic acid (EGLU), (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), or the group III antagonist (S)-alpha-methyl-3-carboxyphenylalanine (MCPA), suggesting that this neuroprotection may be mediated by other effects such as upon group I mGluRs.
Collapse
Affiliation(s)
- M M Behrens
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons. Neuropharmacology 1999; 38:1569-76. [PMID: 10530818 DOI: 10.1016/s0028-3908(99)00095-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The specific metabotropic glutamate receptor (mGluR)5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) is able to potentiate NMDA and AMPA responses recorded from ventral roots of the isolated hemisected baby rat spinal cord. Previously we have demonstrated that activation of group I mGluRs (mGluR1 and mGluR5) with the broad spectrum mGluR agonist 1S,3R-1-amino-1,3-cyclopentanedicarboxylate (ACPD) produced potentiation of ionotropic glutamate responses. In contrast to ACPD-induced potentiation, however, no evidence for an involvement of protein kinase C (PKC) is found in the CHPG-induced potentiation of both NMDA and AMPA depolarization because the PKC blockers chelerythrine chloride or calphostin C did not antagonize this effect. Moreover, in the absence of Ca2+ in the perfusing medium or depleting intracellular Ca2+ stores with thapsigargin or dantrolene did not modify the CHPG-induced enhancement of NMDA depolarizations. Phorbol-12,13-diacetate (PDA), on the other hand, was able to attenuate this effect, which was reversed by chelerythrine chloride. These results suggest that both mGluR5 and mGluR1 may act to enhance ionotropic glutamate responses but the two types of mGluRs may have different intracellular mechanisms of action.
Collapse
Affiliation(s)
- A Ugolini
- Pharmacology Department, GlaxoWellcome Medicines Research Centre, Verona, Italy
| | | | | |
Collapse
|
19
|
Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:83-120. [PMID: 9974152 DOI: 10.1016/s0165-0173(98)00050-2] [Citation(s) in RCA: 657] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electrophysiological research on mGluRs is now very extensive, and it is clear that activation of mGluRs results in a large number of diverse cellular actions. Studies of mGluRs and on ionic channels has clearly demonstrated that mGluR activation has a widespread and potent inhibitory action on both voltage-gated Ca2+ channels and K+ channels. Inhibition of N-type Ca2+ channels, and inhibition of Ca(++)-dependent K+ current, IAHP, and IM being particularly prominent. Potentiation of activation of both Ca2+ and K+ channels has also been observed, although less prominently than inhibition, but mGluR-mediated activation of non-selective cationic channels is widespread. In a small number of studies, generation of an mGluR-mediated slow excitatory postsynaptic potential has been demonstrated as a consequence of the effect of mGluR activation on ion channels, such as activation of a non-selective cationic channels. Although certain mGluR-modulation of channels is a consequence of direct G-protein-linked action, for example, inhibition of Ca2+ channels, many other effects occur as a result of activation of intracellular messenger pathways, but at present, little progress has been made on the identification of the messengers. The field of study of the involvement of mGluRs in synaptic plasticity is very large. Evidence for the involvement of mGluRs in one form of LTD induction in the cerebellum and hippocampus is now particularly impressive. However, the role of mGluRs in LTP induction continues to be a source of dispute, and resolution of the question of the exact involvement of mGluRs in the induction of LTP will have to await the production of more selective ligands and of selective gene knockouts.
Collapse
Affiliation(s)
- R Anwyl
- Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
20
|
Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J Neurosci 1998. [PMID: 9698308 DOI: 10.1523/jneurosci.18-16-06138.1998] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the most prominent roles of metabotropic glutamate receptors (mGluRs) in the CNS is to serve as presynaptic receptors that inhibit transmission at glutamatergic synapses. Previous reports suggest that the presynaptic effect of group II mGluRs at corticostriatal synapses can be inhibited by activators of protein kinase C (PKC). We now report that activation of PKC inhibits the ability of group II and group III mGluRs to regulate transmission at three major synapses in the hippocampal formation. Thus, this effect may be a widespread phenomenon that occurs at glutamatergic synapses throughout the CNS. We also report that this response is not limited to PKC-activating phorbol esters but that activation of A3 adenosine receptors induces a PKC-dependent inhibition of group III mGluR function at the Schaffer collateral-CA1 synapse. In addition to inhibiting mGluR modulation of excitatory synaptic transmission, we found that activation of PKC reduces inhibition of forskolin-stimulated cAMP accumulation by group II and group III mGluRs, suggesting that the effect of PKC on mGluR signaling is not specific to their effects on neurotransmitter release. This led us to test the hypothesis that PKC acts upstream from effector proteins regulated by mGluRs and acts at the level of the receptor or GTP-binding protein. Interestingly, we found that PKC inhibited mGluR-induced increases in [35S]-GTPgammaS binding in cortical synaptosomes. These data suggest that PKC-induced inhibition of mGluR signaling may be mediated by the inhibition of coupling of mGluRs to GTP-binding proteins.
Collapse
|
21
|
Kilbride J, Huang LQ, Rowan MJ, Anwyl R. Presynaptic inhibitory action of the group II metabotropic glutamate receptor agonists, LY354740 and DCG-IV. Eur J Pharmacol 1998; 356:149-57. [PMID: 9774244 DOI: 10.1016/s0014-2999(98)00526-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrophysiological studies were carried out on the presynaptic inhibitory action of the group II metabotropic glutamate (mGlu) receptor agonists (+)-2-aminobicyclo[3.1.0]hexane-2-6-dicarboxylic acid (LY354740) and (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) in three paths of the rat hippocampus, the medial and lateral perforant path to the dentate gyrus, and the Schaffer collateral/commissural path to CA1. LY354740 caused a dose-dependent reversible inhibition of the field excitatory postsynaptic potential (EPSP) in the medial and lateral perforant paths, with an EC50 of 115 +/- 16 nM and 230 +/- 58 nM, respectively. Maximal inhibition by LY354740 was much greater in the medial path (about 80%) than in the lateral path (about 50%). No inhibition was observed in CA1. A presynaptic inhibition was confirmed by LY354740 inducing dose-dependent changes in paired-pulse depression/facilitation. DCG-IV had a similar action to LY354740, but with a lower potency.
Collapse
Affiliation(s)
- J Kilbride
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
22
|
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 1998; 10:2129-42. [PMID: 9753099 DOI: 10.1046/j.1460-9568.1998.00221.x] [Citation(s) in RCA: 382] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The idea that astrocytes merely provide structural and trophic support for neurons has been challenged by the demonstration that astrocytes can regulate neuronal calcium levels. However, the physiological consequences of astrocyte-neuron signalling are unknown. Using mixed cultures of rat hippocampal astrocytes and neurons we have determined functional consequences of elevating astrocyte calcium levels on co-cultured neurons. Electrical or mechanical stimulation of astrocytes to increase their calcium level caused a glutamate-dependent slow inward current (SIC) in associated neurons. Microinjection of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into astrocytes to prevent the stimulus-dependent increase in astrocyte calcium level, blocks the appearance of the neuronal SIC. Pharmacological manipulations indicate that this astrocyte-dependent SIC is mediated by extracellular glutamate acting on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Additionally, stimulation of astrocytes reduced the magnitude of action potential-evoked excitatory and inhibitory postsynaptic currents through the activation of metabotropic glutamate receptors. The demonstration that astrocytes modulate neuronal currents and synaptic transmission raises the possibility that astrocytes play a neuromodulatory role by controlling the extracellular level of glutamate.
Collapse
Affiliation(s)
- A Araque
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
23
|
Huang L, Breakwell NA, Rowan MJ, Anwyl R. PCCG-IV inhibits the induction of long-term potentiation in the dentate gyrus in vitro. Eur J Pharmacol 1997; 332:161-5. [PMID: 9286617 DOI: 10.1016/s0014-2999(97)01079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of two ligands with previously established high and selective potency for metabotropic glutamate receptors (mGlu receptors) group II have been investigated on the high frequency stimulation (HFS) induced long-term potentiation of the field excitatory postsynaptic potential (EPSP) in the dentate gyrus of the rat hippocampus in vitro. The ligands investigated were (2S,1'S,2'S,3'R)-2-(2"-carboxy-3'-phenylcyclopropyl)glycine (PCCG-IV) and (R,S)-alpha-methyl-4-tetrazolylphenylglycine (MTPG). PCCG-IV (10 microM) strongly inhibited the induction of long-term potentiation of the field EPSP by high frequency stimulation. MTPG (50 microM) did not inhibit the induction of long-term potentiation, but prevented the inhibition of long-term potentiation induction by PCCG-IV. The inhibition of long-term potentiation induction by PCCG-IV is suggested to be due to an agonistic action on mGlu receptor group II, probably mGlu3 receptor, as the inhibition of long-term potentiation can be reversed by the application of MTPG, a well-known selective and potent antagonist of mGlu receptor group II.
Collapse
Affiliation(s)
- L Huang
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
24
|
Abstract
1. The L-2-amino-4-phosphonobutyric acid (L-AP4) receptor was originally discovered by the ability of L-AP4 to depress synaptic transmission in hippocampal glutamatergic pathways and in the retina. 2. The molecular identity of the L-AP4 receptor is not yet resolved; however, with the molecular cloning of subtypes of metabotropic glutamate receptors (mGluRs), high affinity targets for L-AP4 have been identified. 3. As the information on the pharmacology of the mGluRs and the electrophysiological and biochemical studies on L-AP4 receptor physiology becomes elaborated it seems evident that the L-AP4 receptor is not a single molecular target but may involve multiple receptor subtypes.
Collapse
Affiliation(s)
- C Thomsen
- Novo Nordisk A/S, Health Care Discovery, Måløv, Denmark.
| |
Collapse
|
25
|
de Mendonça A, Ribeiro JA. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus. Br J Pharmacol 1997; 121:1541-8. [PMID: 9283686 PMCID: PMC1564851 DOI: 10.1038/sj.bjp.0701291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12-14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe. p.s.p.) recorded extracellularly from the stratum radiatum in the CAI area. 2. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2-50 nM), on the fe.p.s.p. slope (EC50 = 12.5 (9.2-17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 microM) (EC50 = 27.2 (21.4-34.5) nM, n = 4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 microM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG; 500 microM). DHPG (10 microM) itself had an inhibitory effect of 20.1 +/- 1.9% (n = 4) on the fe.p.s.p. slope. 3. The concentration-response curves for the inhibitory effects of CPA (2-20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-I; 1 microM), or in the presence of the non-selective mGluR agonist (which activates both group I and II mGluR), (IS,3R)-1-aminocyclopentyl-1,3-dicarboxylate (ACPD; 100 microM). L-CCG-I had no consistent effects and ACPD (100 microM) decreased by 19.4 +/- 1.8% (n = 4) the fe.p.s.p. slope. 4. The concentration-response curve for the inhibitory effects of CPA (2-100 nM) on the fe.p.s.p. slope (EC50 = 8.2 (6.9-9.6) nM) was displaced to the right by the group III mGluR selective agonist, L-2-amino-4-phosphonobutyrate (L-AP4; 25 microM) (EC50 = 17.7 (13.1-21.9) nM, n = 4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by L-AP4 (25 microM) was blocked in the presence of the mGluR antagonist (selective for the group III mGluR), (R,S)-alpha-methyl-4-phosphonophenylglycine (MPPG; 200 microM). 5. Both the direct effect of DHPG on synaptic transmission and the attenuation of the inhibitory effect of CPA (10 nM) were prevented in the presence of the protein kinase C selective inhibitors, staurosporine (1 microM) or chelerythrine (5 microM), and thus attributed to activation of protein kinase C. 6. The attenuation by L-AP4 (25 microM) of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope was also prevented by the protein kinase C selective inhibitors, staurosporine (1 microM) or chelerythrine (5 microM), and thus attributed to activation of protein kinase C. But this effect seemed to be distinct from the direct effect of L-AP4 (25 microM) on synaptic transmission, which was not modified by the protein kinase C selective inhibitors. 7. We conclude that agonists of metabotropic glutamate receptors (Groups I and III) are able to attenuate the inhibitory effects of adenosine A1 receptor activation in the hippocampus. This interaction may have pathophysiological relevance in hypoxia, in which there is marked release of both excitatory amino acids and the important endogenous neuroprotective substance, adenosine.
Collapse
Affiliation(s)
- A de Mendonça
- Laboratory of Pharmacology, Gulbenkian Institute of Science, Oeiras, Portugal
| | | |
Collapse
|
26
|
Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by group I mGluR in spinal cord motoneurons. Neuropharmacology 1997; 36:1047-55. [PMID: 9294969 DOI: 10.1016/s0028-3908(97)00103-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Application of the metabotropic glutamate receptor (mGluR) agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) and the Group I selective mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) potentiated NMDA- and AMPA-induced potential changes recorded from ventral roots of the isolated hemisected baby rat spinal cord. Potentiation produced by 1S,3R-ACPD was completely abolished by the Group I selective mGluR antagonists (S)-4-carboxyphenylglycine (4CPG) or (+)-alpha-methyl-4-carboxyphenylglycine (MCPG). In addition, the protein kinase C (PKC) blockers staurosporine or chelerythrine chloride were able to antagonize the 1S,3R-ACPD-induced potentiation of both NMDA and AMPA response, suggesting that the enhancing effect induced by Group I mGluRs is modulated by a PKC-mediated mechanism. The mGluRs-induced potentiation of NMDA and AMPA responses may be important in modulating various forms of synaptic plasticity and nociceptive processes.
Collapse
Affiliation(s)
- A Ugolini
- Pharmacology Dept, GlaxoWellcome Medicines Research Centre, Verona, Italy
| | | | | |
Collapse
|
27
|
Battaglia G, Monn JA, Schoepp DD. In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci Lett 1997; 229:161-4. [PMID: 9237483 DOI: 10.1016/s0304-3940(97)00442-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In vivo microdialysis in freely moving rats was used to investigate the presynaptic mechanisms by which LY354740, a novel, potent, selective, and systemically active agonist for group II metabotropic glutamate receptors (mGluRs), alters glutamate neuronal transmission. Basal levels of glutamate and aspartate in striatal dialysates of LY354740 (10 mg/kg i.p.)-treated animals were not significantly different from the saline-treated control animals. In the saline treated controls, veratridine (100 microM) induced a 6-fold increase in glutamate and 9-fold increase in aspartate. However, following LY354740 administration the veratridine-evoked release of glutamate and aspartate was completely prevented. These data demonstrate that LY354740 blocks the evoked release of endogenous excitatory amino acids, and indicate a role for group II mGluRs in presynaptic modulation of glutamate neuronal transmission in vivo. Ireland Ltd.
Collapse
Affiliation(s)
- G Battaglia
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
28
|
Breakwell NA, Huang L, Rowan MJ, Anwyl R. DCG-IV inhibits synaptic transmission by activation of NMDA receptors in area CA1 of rat hippocampus. Eur J Pharmacol 1997; 322:173-8. [PMID: 9098684 DOI: 10.1016/s0014-2999(97)00015-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the synaptic depressant action of the metabotropic glutamate receptor group II agonist, (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG-IV), in area CA1 of rat hippocampus. A brief bath application of DCG-IV (10 microM) caused a rapidly reversible depression to 0.57 +/- 0.22 (i.e., 43%) of baseline excitatory postsynaptic potential (epsp) slope. This depression could not be attenuated by the metabotropic glutamate receptor antagonists alpha-methyl-L-CCGI/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), (RS)-alpha-methyl-4-tetrazolyphenylglycine (MTPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid alpha-methyl-AP4) (MAP4). However, the DCG-IV-induced depression could be reversed by the NMDA receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid (AP5; 50 microM), and partially reversed by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 5 microM). These results strongly suggest that DCG-IV is an agonist at NMDA receptors and provide further evidence against a role for metabotropic glutamate receptor group II in synaptic transmission in area CA1 of rat hippocampus.
Collapse
Affiliation(s)
- N A Breakwell
- Department of Physiology, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
29
|
Abstract
In the mid to late 1980s, studies were published that provided the first evidence for the existence of glutamate receptors that are not ligand-gated cation channels but are coupled to effector systems through GTP-binding proteins. Since those initial reports, tremendous progress has been made in characterizing these metabotropic glutamate receptors (mGluRs), including cloning and characterization of cDNA that encodes a family of eight mGluR subtypes, several of which have multiple splice variants. Also, tremendous progress has been made in developing new highly selective mGluR agonists and antagonists and toward determining the physiologic roles of the mGluRs in mammalian brain. These findings have exciting implications for drug development and suggest that the mGluRs provide a novel target for development of therepeutic agents that could have a significant impact on neuropharmacology.
Collapse
Affiliation(s)
- P J Conn
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|