1
|
Evangelista FF, de Laet Sant'Ana P, Ferreira WC, Ferreira TA, Dos Santos ML, de Souza AH, de Andrade FAL, da Silva DA, de Barros LD, Colli CM, Nogueira-Melo GA, Costa IN, Falavigna-Guilherme AL. The Brazilian Toxoplasma gondii strain BRI caused greater inflammation and impairment in anxiogenic behavior in mice, which was reverted by rosuvastatin treatment. Parasitol Res 2023; 123:64. [PMID: 38117414 DOI: 10.1007/s00436-023-08038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
This study aimed to investigate the effect of rosuvastatin treatment on anxiety-related behavior and short- and long-term memory impairment in mice infected with acute RH and BRI strains of Toxoplasma gondii. Balb/C mice were infected intraperitoneally and after 2 h, oral treatment with rosuvastatin (40 mg/kg/day) was initiated for 4 days. Behaviors related to anxiety and locomotion were evaluated in the open field (OF), and short- and long-term memory through the novel object recognition test (NOR). At the end of the experiments, peritoneal fluid, brain, liver, and lung were collected for T. gondii DNA quantification and histopathological analysis. Infection with BRI strain reduced the dwell time and central locomotion in the OF (p < 0.05), indicating anxiogenic type behavior, while treatment with rosuvastatin reversed this response (p < 0.05). RH strain infection did not alter any behavior in the OF (p > 0.05) and both strains impaired short- and long-term memory (NOR test), but with no significant treatment effect (p > 0.05). The BRI strain was shown to be more damaging in relation to anxiogenic type behavior when compared to the RH strain (p < 0.05), whereas rosuvastatin reduced this damaging effect in BRI. The treatment reduced the parasite load in the peritoneal lavage, liver, and lung of animals infected with both acute strains; however, it significantly (p < 0.05) attenuated the inflammatory process only in BRI-infected and treated animals, showing that non-archetypal genotypes are more damaging in rodents. This suggests that rosuvastatin may be a drug with great therapeutic potential against T. gondii mainly to reduce damage from virulent strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luiz Daniel de Barros
- Department of Preventive Veterinary Medicine, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | | | | | | |
Collapse
|
2
|
Toxoplasma Shelph, a Phosphatase Located in the Parasite Endoplasmic Reticulum, Is Required for Parasite Virulence. mSphere 2022; 7:e0035022. [PMID: 36326242 PMCID: PMC9769683 DOI: 10.1128/msphere.00350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a single-celled parasitic eukaryote that evolved to successfully propagate in any nucleated cell. As with any other eukaryote, its life cycle is regulated by signaling pathways controlled by kinases and phosphatases. T. gondii encodes an atypical bacterial-like phosphatase absent from mammalian genomes, named Shelph, after its first identification in the psychrophilic bacterium Schewanella sp. Here, we demonstrate that Toxoplasma Shelph is an active phosphatase localized in the parasite endoplasmic reticulum. The phenotyping of a shelph knockout (KO) line showed a minor impairment in invasion on human fibroblasts, while the other steps of the parasite lytic cycle were not affected. In contrast with Plasmodium ortholog Shelph1, this invasion deficiency was not correlated with any default in the biogenesis of secretory organelles. However, Shelph-KO parasites displayed a much-pronounced defect in virulence in vivo. These phenotypes could be rescued by genetic complementation, thus supporting an important function for Shelph in the context of a natural infection. IMPORTANCE Toxoplasma gondii belongs to the Apicomplexa phylum, which comprises more than 5,000 species, among which is Plasmodium falciparum, the notorious agent of human malaria. Intriguingly, the Apicomplexa genomes encode at least one phosphatase closely related to the bacterial Schewanella phosphatase, or Shelph. To better understand the importance of these atypical bacterial enzymes in eukaryotic parasites, we undertook the functional characterization of T. gondii Shelph. Our results uncovered its subcellular localization and its enzymatic activity, revealed its subtle involvement during the tachyzoite invasion step of the lytic cycle, and more importantly, highlighted a critical requirement of this phosphatase for parasite propagation in mice. Overall, this study revealed an unexpected role for T. gondii Shelph in the maintenance of parasite virulence in vivo.
Collapse
|
3
|
Steinberg HE, Bowman NM, Diestra A, Ferradas C, Russo P, Clark DE, Zhu D, Magni R, Malaga E, Diaz M, Pinedo-Cancino V, Ramal Asayag C, Calderón M, Carruthers VB, Liotta LA, Gilman RH, Luchini A. Detection of toxoplasmic encephalitis in HIV positive patients in urine with hydrogel nanoparticles. PLoS Negl Trop Dis 2021; 15:e0009199. [PMID: 33651824 PMCID: PMC7954332 DOI: 10.1371/journal.pntd.0009199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/12/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diagnosis of toxoplasmic encephalitis (TE) is challenging under the best clinical circumstances. The poor clinical sensitivity of quantitative polymerase chain reaction (qPCR) for Toxoplasma in blood and CSF and the limited availability of molecular diagnostics and imaging technology leaves clinicians in resource-limited settings with few options other than empiric treatment. METHOLOGY/PRINCIPLE FINDINGS Here we describe proof of concept for a novel urine diagnostics for TE using Poly-N-Isopropylacrylamide nanoparticles dyed with Reactive Blue-221 to concentrate antigens, substantially increasing the limit of detection. After nanoparticle-concentration, a standard western blotting technique with a monoclonal antibody was used for antigen detection. Limit of detection was 7.8pg/ml and 31.3pg/ml of T. gondii antigens GRA1 and SAG1, respectively. To characterize this diagnostic approach, 164 hospitalized HIV-infected patients with neurological symptoms compatible with TE were tested for 1) T. gondii serology (121/147, positive samples/total samples tested), 2) qPCR in cerebrospinal fluid (11/41), 3) qPCR in blood (10/112), and 4) urinary GRA1 (30/164) and SAG1 (12/164). GRA1 appears to be superior to SAG1 for detection of TE antigens in urine. Fifty-one HIV-infected, T. gondii seropositive but asymptomatic persons all tested negative by nanoparticle western blot and blood qPCR, suggesting the test has good specificity for TE for both GRA1 and SAG1. In a subgroup of 44 patients, urine samples were assayed with mass spectrometry parallel-reaction-monitoring (PRM) for the presence of T. gondii antigens. PRM identified antigens in 8 samples, 6 of which were concordant with the urine diagnostic. CONCLUSION/SIGNIFICANCES Our results demonstrate nanoparticle technology's potential for a noninvasive diagnostic test for TE. Moving forward, GRA1 is a promising target for antigen based diagnostics for TE.
Collapse
Affiliation(s)
- Hannah E. Steinberg
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Natalie M. Bowman
- Division of Infectious Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Andrea Diestra
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cusi Ferradas
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Virginia, United States of America
| | - Daniel E. Clark
- Vanderbilt University Medical Center, Division of Cardiovascular Medicine, Nashville, Tennessee, United States of America
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Virginia, United States of America
| | - Edith Malaga
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Monica Diaz
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Viviana Pinedo-Cancino
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonía, Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
| | - Cesar Ramal Asayag
- Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
- Department of Infectious Diseases, Hospital Regional de Loreto, Iquitos, Peru
| | - Maritza Calderón
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Virginia, United States of America
| | - Robert H. Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Virginia, United States of America
| | | |
Collapse
|
4
|
The effect of edelfosine on GRA1 and MIC3 expressions in acute toxoplasmosis. Parasitol Res 2020; 119:1371-1380. [PMID: 31970471 DOI: 10.1007/s00436-020-06601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
Phosphoinositide-dependent phospholipase-C (PI-PLC) triggers the calcium signaling pathway which plays an important role in dense granule and microneme secretion and pathogenesis of Toxoplasma gondii (T. gondii). There are limited data about the effects of phospholipid analogues against T. gondii. The current study assessed the effect of edelfosine, as a phospholipid analogue, on GRA1 and MIC3 expressions using in vitro and in vivo models of acute toxoplasmosis. Infected Vero cells were treated by edelfosine in two subgroups: 24 h following the cell infection and treatment at the same time of cell infection. Animal study was performed on forty mice in four groups including non-infected, infected untreated, infected edelfosine-treated, and infected pyrimethamine-treated. Gene and protein expression analyses were done using quantitative real-time PCR and western blot, respectively. Edelfosine significantly reduced the GRA1 (P < 0.01) and MIC3 (P < 0.01) mRNA and protein expressions in 24 h following the cell infection and at the same time of cell infection groups. In vivo study showed that the edelfosine significantly reduced the GRA1 expression in eye, and MIC3 expression in brain and liver. Moreover, the edelfosine-treated infected mice had significant higher survival rate compared with uninfected mice. The reducing effect of edelfosine on GRA1 and MIC3 mRNA and protein levels 24 h following the cell infection was more than treatment at the same time of cell infection group. Moreover, the effect of edelfosine on GRA1 and MIC3 expression in animal tissues was variable. These data showed that the edelfosine may decrease the T. gondii excretory/secretory antigens through inhibition of PI-PLC.
Collapse
|
5
|
Rosenberg A, Luth MR, Winzeler EA, Behnke M, Sibley LD. Evolution of resistance in vitro reveals mechanisms of artemisinin activity in Toxoplasma gondii. Proc Natl Acad Sci U S A 2019; 116:26881-26891. [PMID: 31806760 PMCID: PMC6936365 DOI: 10.1073/pnas.1914732116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Artemisinins are effective against a variety of parasites and provide the first line of treatment for malaria. Laboratory studies have identified several mechanisms for artemisinin resistance in Plasmodium falciparum, including mutations in Kelch13 that are associated with delayed clearance in some clinical isolates, although other mechanisms are likely involved. To explore other potential mechanisms of resistance in parasites, we took advantage of the genetic tractability of Toxoplasma gondii, a related parasite that shows moderate sensitivity to artemisinin. Resistant populations of T. gondii were selected by culture in increasing concentrations and whole-genome sequencing identified several nonconservative point mutations that emerged in the population and were fixed over time. Genome editing using CRISPR/Cas9 was used to introduce point mutations conferring amino acid changes in a serine protease homologous to DegP and a serine/threonine protein kinase of unknown function. Single and double mutations conferred a competitive advantage over wild-type parasites in the presence of drug, despite not changing EC50 values. Additionally, the evolved resistant lines showed dramatic amplification of the mitochondria genome, including genes encoding cytochrome b and cytochrome c oxidase I. Prior studies in yeast and mammalian tumor cells implicate the mitochondrion as a target of artemisinins, and treatment of wild-type parasites with high concentrations of drug decreased mitochondrial membrane potential, a phenotype that was stably altered in the resistant parasites. These findings extend the repertoire of mutations associated with artemisinin resistance and suggest that the mitochondrion may be an important target of inhibition of resistance in T. gondii.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Michael Behnke
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
6
|
Panas MW, Ferrel A, Naor A, Tenborg E, Lorenzi HA, Boothroyd JC. Translocation of Dense Granule Effectors across the Parasitophorous Vacuole Membrane in Toxoplasma-Infected Cells Requires the Activity of ROP17, a Rhoptry Protein Kinase. mSphere 2019; 4:e00276-19. [PMID: 31366709 PMCID: PMC6669336 DOI: 10.1128/msphere.00276-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii tachyzoites co-opt host cell functions through introduction of a large set of rhoptry- and dense granule-derived effector proteins. These effectors reach the host cytosol through different means: direct injection for rhoptry effectors and translocation across the parasitophorous vacuolar membrane (PVM) for dense granule (GRA) effectors. The machinery that translocates these GRA effectors has recently been partially elucidated, revealing three components, MYR1, MYR2, and MYR3. To determine whether other proteins might be involved, we returned to a library of mutants defective in GRA translocation and selected one with a partial defect, suggesting it might be in a gene encoding a new component of the machinery. Surprisingly, whole-genome sequencing revealed a missense mutation in a gene encoding a known rhoptry protein, a serine/threonine protein kinase known as ROP17. ROP17 resides on the host cytosol side of the PVM in infected cells and has previously been known for its activity in phosphorylating and thereby inactivating host immunity-related GTPases. Here, we show that null or catalytically dead mutants of ROP17 are defective in GRA translocation across the PVM but that translocation can be rescued "in trans" by ROP17 delivered by other tachyzoites infecting the same host cell. This strongly argues that ROP17's role in regulating GRA translocation is carried out on the host cytosolic side of the PVM, not within the parasites or lumen of the parasitophorous vacuole. This represents an entirely new way in which the different secretory compartments of Toxoplasma tachyzoites collaborate to modulate the host-parasite interaction.IMPORTANCE When Toxoplasma infects a cell, it establishes a protective parasitophorous vacuole surrounding it. While this vacuole provides protection, it also serves as a barrier to the export of parasite effector proteins that impact and take control of the host cell. Our discovery here that the parasite rhoptry protein ROP17 is necessary for export of these effector proteins provides a distinct, novel function for ROP17 apart from its known role in protecting the vacuole. This will enable future research into ways in which we can prevent the export of effector proteins, thereby preventing Toxoplasma from productively infecting its animal and human hosts.
Collapse
Affiliation(s)
- Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Adit Naor
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Elizabeth Tenborg
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- University of California at Davis, School of Veterinary Medicine, Davis, California, USA
| | - Hernan A Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, Rak C, Cantillana V, Dubremetz JF, Cesbron-Delauw MF, Taylor GA, Mercier C, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. mBio 2019; 10:e00589-19. [PMID: 31266861 PMCID: PMC6606796 DOI: 10.1128/mbio.00589-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Valeria Bellini
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Graciane Pètre
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Camille Rak
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Viviana Cantillana
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean-François Dubremetz
- Université Montpellier 2, Montpellier, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, Montpellier, France
| | - Marie-France Cesbron-Delauw
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Gregory A Taylor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, North Carolina, USA
| | - Corinne Mercier
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
8
|
Florimond C, Cordonnier C, Taujale R, van der Wel H, Kannan N, West CM, Blader IJ. A Toxoplasma Prolyl Hydroxylase Mediates Oxygen Stress Responses by Regulating Translation Elongation. mBio 2019; 10:e00234-19. [PMID: 30914506 PMCID: PMC6437050 DOI: 10.1128/mbio.00234-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023] Open
Abstract
As the protozoan parasite Toxoplasma gondii disseminates through its host, it responds to environmental changes by altering its gene expression, metabolism, and other processes. Oxygen is one variable environmental factor, and properly adapting to changes in oxygen levels is critical to prevent the accumulation of reactive oxygen species and other cytotoxic factors. Thus, oxygen-sensing proteins are important, and among these, 2-oxoglutarate-dependent prolyl hydroxylases are highly conserved throughout evolution. Toxoplasma expresses two such enzymes, TgPHYa, which regulates the SCF-ubiquitin ligase complex, and TgPHYb. To characterize TgPHYb, we created a Toxoplasma strain that conditionally expresses TgPHYb and report that TgPHYb is required for optimal parasite growth under normal growth conditions. However, exposing TgPHYb-depleted parasites to extracellular stress leads to severe decreases in parasite invasion, which is likely due to decreased abundance of parasite adhesins. Adhesin protein abundance is reduced in TgPHYb-depleted parasites as a result of inactivation of the protein synthesis elongation factor eEF2 that is accompanied by decreased rates of translational elongation. In contrast to most other oxygen-sensing proteins that mediate cellular responses to low O2, TgPHYb is specifically required for parasite growth and protein synthesis at high, but not low, O2 tensions as well as resistance to reactive oxygen species. In vivo, reduced TgPHYb expression leads to lower parasite burdens in oxygen-rich tissues. Taken together, these data identify TgPHYb as a sensor of high O2 levels, in contrast to TgPHYa, which supports the parasite at low O2IMPORTANCE Because oxygen plays a key role in the growth of many organisms, cells must know how much oxygen is available. O2-sensing proteins are therefore critical cellular factors, and prolyl hydroxylases are the best-studied type of O2-sensing proteins. In general, prolyl hydroxylases trigger cellular responses to decreased oxygen availability. But, how does a cell react to high levels of oxygen? Using the protozoan parasite Toxoplasma gondii, we discovered a prolyl hydroxylase that allows the parasite to grow at elevated oxygen levels and does so by regulating protein synthesis. Loss of this enzyme also reduces parasite burden in oxygen-rich tissues, indicating that sensing both high and low levels of oxygen impacts the growth and physiology of Toxoplasma.
Collapse
Affiliation(s)
- Celia Florimond
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Charlotte Cordonnier
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
9
|
Characterization of strain-specific phenotypes associated with knockout of dense granule protein 9 in Toxoplasma gondii. Mol Biochem Parasitol 2019; 229:53-61. [PMID: 30849416 DOI: 10.1016/j.molbiopara.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of mammals and cause toxoplasmosis. Dense granule proteins play major structural functions within the parasitophorous vacuole (PV) and the cyst wall of T. gondii. Moreover, their particular location within the PV allows them to be involved in various interactions between parasites and the host cells. Dense granule protein 9 (GRA9) gene has been identified in T. gondii, although its role in the lytic cycle remains unclear. In the current study, the function of GRA9 in type I and type II Toxoplasma parasites was characterized. T. gondii GRA9 sequence and its expression were analyzed and derivatives of T. gondii RH and PLK strains with a null mutation in GRA9 were generated using CRISPR/Cas9 system. The phenotypes of GRA9 in wild types, knockout and complemented strains were analyzed in vitro and in vivo using Vero cells and BALB/c mice, respectively. Alignment of the amino acid sequence indicated that RH strain GRA9 contained one amino acid substitution when compared with PLK strain. Western blot analysis revealed that PLK strain had a higher expression level of GRA9 than RH strain. The phenotype analysis revealed that knockout of GRA9 in PLK parasites inhibited the plaque formation and egress from PV. Both the plaque formation and egress ability of PLKΔGRA9 strain were restored by complementation with a synonymous allele of PLK strain GRA9. Mouse experiments demonstrated that loss of GRA9 in PLK strain significantly reduced the pathogenicity of T. gondii. However, there was no phenotypic diferences between RH and RHΔGRA9 strains except the defect in host cell invasion. Overall, T. gondii GRA9 knockout only influenced the growth and virulence of PLK strain. These results indicate that GRA9 may be involved in parasite egress and virulence in mice in a strain-specific manner.
Collapse
|
10
|
Brown KM, Sibley LD. Essential cGMP Signaling in Toxoplasma Is Initiated by a Hybrid P-Type ATPase-Guanylate Cyclase. Cell Host Microbe 2018; 24:804-816.e6. [PMID: 30449726 DOI: 10.1016/j.chom.2018.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/30/2018] [Accepted: 10/01/2018] [Indexed: 11/28/2022]
Abstract
Apicomplexan parasites rely on cyclic nucleotide-dependent kinases for host cell infection, yet the mechanisms that control their activation remain unknown. Here we show that an apically localized guanylate cyclase (GC) controls microneme secretion and lytic growth in the model apicomplexan Toxoplasma gondii. Cell-permeable cGMP reversed the block in microneme secretion seen in a knockdown of TgGC, linking its function to production of cGMP. TgGC possesses an N-terminal P-type ATPase domain fused to a C-terminal heterodimeric guanylate cyclase domain, an architecture found only in Apicomplexa and related protists. Complementation with a panel of mutants revealed a critical requirement for the P-type ATPase domain for maximum GC function. We further demonstrate that knockdown of TgGC in vivo protects mice from lethal infection by blocking parasite expansion and dissemination. Collectively, this work demonstrates that cGMP-mediated signaling in Toxoplasma relies on a multi-domain architecture, which may serve a conserved role in related parasites.
Collapse
Affiliation(s)
- Kevin M Brown
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Yamamoto YI, Mineo JR, Meneghisse CS, Guimarães ACS, Kawarabayashi M. Detection in human sera of IgG, IgM and IgA to excreted/secreted antigens fromToxoplasma gondiiby use of dot-ELISA and immunoblot assay. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
In Vivo Biotinylation of the Toxoplasma Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis. mBio 2016; 7:mBio.00808-16. [PMID: 27486190 PMCID: PMC4981711 DOI: 10.1128/mbio.00808-16] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δgra38 and Δgra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo. Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis. Most intracellular pathogens reside inside a membrane-bound vacuole within their host cell that is extensively modified by the pathogen to optimize intracellular growth and avoid host defenses. In Toxoplasma, this vacuole is modified by a host of secretory GRA proteins, many of which remain unidentified. Here we demonstrate that in vivo biotinylation of proximal and interacting proteins using the promiscuous biotin ligase BirA* is a powerful approach to rapidly identify vacuolar GRA proteins. We further demonstrate that one factor identified by this approach, GRA39, plays an important role in the ability of the parasite to replicate within its host cell and cause disease.
Collapse
|
13
|
Phenotypes Associated with Knockouts of Eight Dense Granule Gene Loci (GRA2-9) in Virulent Toxoplasma gondii. PLoS One 2016; 11:e0159306. [PMID: 27458822 PMCID: PMC4961421 DOI: 10.1371/journal.pone.0159306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection.
Collapse
|
14
|
A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells. mBio 2015; 6:e01157-15. [PMID: 26350966 PMCID: PMC4600106 DOI: 10.1128/mbio.01157-15] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A core set of autophagy proteins is required for gamma interferon (IFN-γ)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-γ-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-γ-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-γ-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth. Autophagy is a process of cellular remodeling that allows the cell to recycle senescent organelles and recapture nutrients. During innate immune responses in the mouse, autophagy is recruited to help target intracellular pathogens and thus eliminate them. However, the antimicrobial mediators that depend on autophagy in the mouse are not conserved in humans, raising the issue of how human cells control intracellular pathogens. Our study defines a new pathway for the control of the ubiquitous intracellular parasite T. gondii in human cells activated by IFN-γ. Recruitment of autophagy adaptors resulted in engulfment of the parasite in multiple membranes and growth impairment. Although susceptible type 2 and 3 stains of T. gondii were captured by this autophagy-dependent pathway, type 1 strains were able to avoid entrapment.
Collapse
|
15
|
Toxoplasma gondii: biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6. Biochem Biophys Res Commun 2015; 459:107-12. [PMID: 25712518 DOI: 10.1016/j.bbrc.2015.02.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 11/23/2022]
Abstract
The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6-8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8-15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed.
Collapse
|
16
|
Mercier C, Cesbron-Delauw MF. Toxoplasma secretory granules: one population or more? Trends Parasitol 2015; 31:60-71. [PMID: 25599584 DOI: 10.1016/j.pt.2014.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 01/20/2023]
Abstract
In Toxoplasma gondii, dense granules are known as the storage secretory organelles of the so-called GRA proteins (for dense granule proteins), which are destined to the parasitophorous vacuole (PV) and the PV-derived cyst wall. Recently, newly annotated GRA proteins targeted to the host cell nucleus have enlarged this view. Here we provide an update on the latest developments on the Toxoplasma secreted proteins, which to date have been mainly studied at both the tachyzoite and bradyzoite stages, and we point out that recent discoveries could open the issue of a possible, yet uncharacterized, distinct secretory pathway in Toxoplasma.
Collapse
Affiliation(s)
- Corinne Mercier
- Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), CNRS UMR 5163 - Université Joseph Fourier, Grenoble, France.
| | - Marie-France Cesbron-Delauw
- Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), CNRS UMR 5163 - Université Joseph Fourier, Grenoble, France.
| |
Collapse
|
17
|
Discovery of compounds blocking the proliferation of Toxoplasma gondii and Plasmodium falciparum in a chemical space based on piperidinyl-benzimidazolone analogs. Antimicrob Agents Chemother 2014; 58:2586-97. [PMID: 24550329 DOI: 10.1128/aac.01445-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum. In T. gondii, motility and apical complex integrity appeared to be unaffected, whereas cell division was inhibited at compound 1 concentrations in the micromolar range. In P. falciparum, the proliferation of erythrocytic stages was inhibited, without any delayed death phenotype. We then explored a library of 250 analogs in two steps. We selected 114 compounds with a 50% inhibitory concentration (IC50) cutoff of 2 μM for at least one species and determined in vitro selectivity indexes (SI) based on toxicity against K-562 human cells. We identified compounds with high gains in the IC50 (in the 100 nM range) and SI (up to 1,000 to 2,000) values. Isobole analyses of two of the most active compounds against P. falciparum indicated that their interactions with artemisinin were additive. Here, we propose the use of structure-activity relationship (SAR) models, which will be useful for designing probes to identify the target compound(s) and optimizations for monotherapy or combined-therapy strategies.
Collapse
|
18
|
Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W. The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol 2013; 16:95-114. [PMID: 24011186 DOI: 10.1111/cmi.12186] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Apicomplexan parasites express various calcium-dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock-down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7-depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium-dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier I et II, Montpellier, France
| | | | | | | | | | | |
Collapse
|
19
|
Selleck EM, Fentress SJ, Beatty WL, Degrandi D, Pfeffer K, Virgin HW, MacMicking JD, Sibley LD. Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against Toxoplasma gondii. PLoS Pathog 2013; 9:e1003320. [PMID: 23633952 PMCID: PMC3635975 DOI: 10.1371/journal.ppat.1003320] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 03/06/2013] [Indexed: 12/21/2022] Open
Abstract
IFN-γ activates cells to restrict intracellular pathogens by upregulating cellular effectors including the p65 family of guanylate-binding proteins (GBPs). Here we test the role of Gbp1 in the IFN-γ-dependent control of T. gondii in the mouse model. Virulent strains of T. gondii avoided recruitment of Gbp1 to the parasitophorous vacuole in a strain-dependent manner that was mediated by the parasite virulence factors ROP18, an active serine/threonine kinase, and the pseudokinase ROP5. Increased recruitment of Gbp1 to Δrop18 or Δrop5 parasites was associated with clearance in IFN-γ-activated macrophages in vitro, a process dependent on the autophagy protein Atg5. The increased susceptibility of Δrop18 mutants in IFN-γ-activated macrophages was reverted in Gbp1−/− cells, and decreased virulence of this mutant was compensated in Gbp1−/− mice, which were also more susceptible to challenge with type II strain parasites of intermediate virulence. These findings demonstrate that Gbp1 plays an important role in the IFN-γ-dependent, cell-autonomous control of toxoplasmosis and predict a broader role for this protein in host defense. Emerging evidence suggests that the p65 family of guanylate-binding proteins (GBPs), which is upregulated by interferon gamma, play an important role in host defense against intracellular pathogens. We demonstrate that the ability of virulent strains of Toxoplasma gondii to avoid recruitment of mouse Gbp1 is mediated by two parasite virulence factors; the serine threonine kinase ROP18 and the pseudokinase ROP5, which controls its activity. GBP proteins required the autophagy protein Atg5 for proper cellular trafficking, recruitment to parasite-containing vacuoles, and pathogen control, strengthening the link between innate immunity and autophagy. The attenuation of mutants lacking ROP18, which show increased susceptibility to clearance by macrophages and decreased virulence in mice, was reverted by deletion of Gbp1, indicating this host factor is needed for resistance to T. gondii. Collectively, these findings demonstrate a key molecular interaction between host defenses mediated by GBPs and parasite virulence factors that thwart innate immunity. As GBPs are phylogenetically conserved among vertebrates, including humans, they likely play a broader role in host resistance.
Collapse
Affiliation(s)
- Elizabeth M. Selleck
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sarah J. Fentress
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Dusseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Dusseldorf, Germany
| | - Herbert W. Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John D. MacMicking
- Department of Microbial Pathogenesis, Boyer Centre for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
20
|
Behnke MS, Fentress SJ, Mashayekhi M, Li LX, Taylor GA, Sibley LD. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. PLoS Pathog 2012; 8:e1002992. [PMID: 23144612 PMCID: PMC3493473 DOI: 10.1371/journal.ppat.1002992] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022] Open
Abstract
Secretory polymorphic serine/threonine kinases control pathogenesis of Toxoplasma gondii in the mouse. Genetic studies show that the pseudokinase ROP5 is essential for acute virulence, but do not reveal its mechanism of action. Here we demonstrate that ROP5 controls virulence by blocking IFN-γ mediated clearance in activated macrophages. ROP5 was required for the catalytic activity of the active S/T kinase ROP18, which phosphorylates host immunity related GTPases (IRGs) and protects the parasite from clearance. ROP5 directly regulated activity of ROP18 in vitro, and both proteins were necessary to avoid IRG recruitment and clearance in macrophages. Clearance of both the Δrop5 and Δrop18 mutants was reversed in macrophages lacking Irgm3, which is required for IRG function, and the virulence defect was fully restored in Irgm3−/− mice. Our findings establish that the pseudokinase ROP5 controls the activity of ROP18, thereby blocking IRG mediated clearance in macrophages. Additionally, ROP5 has other functions that are also Irgm3 and IFN-γ dependent, indicting it plays a general role in governing virulence factors that block immunity. The ability of microorganisms to cause disease in their hosts is often mediated by proteins that are secreted by the pathogen into the host cell as a means of disarming host signaling. Previous studies with the protozoan parasite Toxoplasma gondii have revealed that secretion of parasite protein kinases into the host cell mediates virulence in mouse, a natural host for transmission. Curiously, some of these virulence factors are active protein kinases, while other related pseudokinases lack enzymatic activity; hence, it was unclear how they functioned in promoting virulence. In the present work we demonstrate that ROP5, an inactive member of this protein kinase family, regulates the active protein kinase ROP18, which normally prevents clearance of the parasite in interferon-activated macrophages. Allosteric regulation of enzymes is a common theme in biology, but this is the first example of such a mechanism regulating a pathogen virulence factor. The potential advantage of such a layered process is that it might allow greater temporal or spatial control and perhaps protect the parasite from disabling strategies by the host.
Collapse
Affiliation(s)
- Michael S. Behnke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sarah J. Fentress
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mona Mashayekhi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lucy X. Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gregory A. Taylor
- Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, North Carolina, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Azzouz N, Kamena F, Laurino P, Kikkeri R, Mercier C, Cesbron-Delauw MF, Dubremetz JF, De Cola L, Seeberger PH. Toxoplasma gondii secretory proteins bind to sulfated heparin structures. Glycobiology 2012; 23:106-20. [DOI: 10.1093/glycob/cws134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Fentress SJ, Steinfeldt T, Howard JC, Sibley LD. The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of Toxoplasma gondii. Cell Microbiol 2012; 14:1921-33. [PMID: 22906355 DOI: 10.1111/cmi.12022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/03/2012] [Accepted: 08/16/2012] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii uses specialized secretory organelles called rhoptries to deliver virulence determinants into the host cell during parasite invasion. One such determinant called rhoptry protein 18 (ROP18) is a polymorphic serine/threonine kinase that phosphorylates host targets to modulate acute virulence. Following secretion into the host cell, ROP18 traffics to the parasitophorous vacuole membrane (PVM) where it is tethered to the cytosolic face of this host-pathogen interface. However, the functional consequences of PVM association are not known. In this report, we show that ROP18 mutants altered in an arginine-rich domain upstream of the kinase domain fail to associate to the PVM following secretion from rhoptries. During infection, host cells upregulate immunity-related GTPases that localize to and destroy the PVM surrounding the parasites. ROP18 disarms this host innate immune pathway by phosphorylating IRGs in a critical GTPase domain and preventing loading on the PVM. Vacuole-targeting mutants of ROP18 failed to phosphorylate Irga6 and were unable to divert IRGs from the PVM, despite retaining intrinsic kinase activity. As a consequence, these mutants were avirulent in a mouse model of acute toxoplasmosis. Thus, the association of ROP18 with the PVM, mediated by its N-terminal arginine-rich domain, is critical to its function as a virulence determinant.
Collapse
Affiliation(s)
- Sarah J Fentress
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | |
Collapse
|
23
|
Contribution of the residual body in the spatial organization of Toxoplasma gondii tachyzoites within the parasitophorous vacuole. J Biomed Biotechnol 2011; 2011:473983. [PMID: 22190852 PMCID: PMC3228691 DOI: 10.1155/2011/473983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii proliferates and organizes within a parasitophorous vacuole in rosettes around a residual body and is surrounded by a membranous nanotubular network whose function remains unclear. Here, we characterized structure and function of the residual body in intracellular tachyzoites of the RH strain. Our data showed the residual body as a body limited by a membrane formed during proliferation of tachyzoites probably through the secretion of components and a pinching event of the membrane at the posterior end. It contributes in the intravacuolar parasite organization by the membrane connection between the tachyzoites posterior end and the residual body membrane to give place to the rosette conformation. Radial distribution of parasites in rosettes favors an efficient exteriorization. Absence of the network and presence of atypical residual bodies in a ΔGRA2-HXGPRT knock-out mutant affected the intravacuolar organization of tachyzoites and their exteriorization.
Collapse
|
24
|
Fentress SJ, Behnke MS, Dunay IR, Mashayekhi M, Rommereim LM, Fox BA, Bzik DJ, Taylor GA, Turk BE, Lichti CF, Townsend RR, Qiu W, Hui R, Beatty WL, Sibley LD. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 2011; 8:484-95. [PMID: 21147463 DOI: 10.1016/j.chom.2010.11.005] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/22/2010] [Accepted: 11/18/2010] [Indexed: 12/13/2022]
Abstract
Macrophages are specialized to detect and destroy intracellular microbes and yet a number of pathogens have evolved to exploit this hostile niche. Here we demonstrate that the obligate intracellular parasite Toxoplasma gondii disarms macrophage innate clearance mechanisms by secreting a serine threonine kinase called ROP18, which binds to and phosphorylates immunity-related GTPases (IRGs). Substrate profiling of ROP18 revealed a preference for a conserved motif within switch region I of the GTPase domain, a modification predicted to disrupt IRG function. Consistent with this, expression of ROP18 was both necessary and sufficient to block recruitment of Irgb6, which was in turn required for parasite destruction. ROP18 phosphorylation of IRGs prevented clearance within inflammatory monocytes and IFN-γ-activated macrophages, conferring parasite survival in vivo and promoting virulence. IRGs are implicated in clearance of a variety of intracellular pathogens, suggesting that other virulence factors may similarly thwart this innate cellular defense mechanism.
Collapse
Affiliation(s)
- Sarah J Fentress
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Post-translational membrane sorting of the Toxoplasma gondii GRA6 protein into the parasite-containing vacuole is driven by its N-terminal domain. Int J Parasitol 2010; 40:1325-34. [PMID: 20420842 DOI: 10.1016/j.ijpara.2010.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/24/2010] [Accepted: 03/30/2010] [Indexed: 11/20/2022]
Abstract
How eukaryotic pathogens export and sort membrane-bound proteins destined for host-cell compartments is still poorly understood. The dense granules of the intracellular protozoan Toxoplasma gondii constitute an unusual secretory pathway that allows soluble export of the GRA proteins which become membrane-associated within the parasite replicative vacuole. This process relies on both the segregation of the proteins routed to the dense granules from those destined to the parasite plasma membrane and on the sorting of the secreted GRA proteins to their proper final membranous system. Here, we provide evidence that the soluble trafficking of GRA6 to the dense granules relies on the N-terminal domain of the protein, which is sufficient to prevent GRA6 targeting to the parasite plasma membrane. We also show that the GRA6 N-terminal domain, possibly by interacting with negatively charged lipids, is fundamental for proper GRA6 association with the vacuolar membranous network of nanotubes. These results support our emerging model: sorting of transmembrane GRA proteins to the host cell vacuole is mainly driven by the dual role of their N-terminal hydrophilic domain and is compartmentally regulated.
Collapse
|
26
|
Gendrin C, Mercier C, Braun L, Musset K, Dubremetz JF, Cesbron-Delauw MF. Toxoplasma gondiiUses Unusual Sorting Mechanisms to Deliver Transmembrane Proteins into the Host-Cell Vacuole. Traffic 2008; 9:1665-80. [DOI: 10.1111/j.1600-0854.2008.00793.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Michelin A, Bittame A, Bordat Y, Travier L, Mercier C, Dubremetz JF, Lebrun M. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network. Int J Parasitol 2008; 39:299-306. [PMID: 18840447 DOI: 10.1016/j.ijpara.2008.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.
Collapse
Affiliation(s)
- Adeline Michelin
- Dynamique des Interactions membranaires Normales et Pathologiques, UMR CNRS, Université de Montpellier, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Toxoplasma gondii: Evaluation of an intranasal vaccine using recombinant proteins against brain cyst formation in BALB/c mice. Exp Parasitol 2008; 118:386-92. [DOI: 10.1016/j.exppara.2007.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 09/05/2007] [Accepted: 10/02/2007] [Indexed: 11/19/2022]
|
29
|
Botté C, Saïdani N, Mondragon R, Mondragón M, Isaac G, Mui E, McLeod R, Dubremetz JF, Vial H, Welti R, Cesbron-Delauw MF, Mercier C, Maréchal E. Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. J Lipid Res 2008; 49:746-62. [PMID: 18182683 DOI: 10.1194/jlr.m700476-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a unicellular parasite characterized by unique extracellular and intracellular membrane compartments. The lipid composition of subcellular membranes has not been determined, limiting our understanding of lipid homeostasis, control, and trafficking, a series of processes involved in pathogenesis. In addition to a mitochondrion, Toxoplasma contains a plastid called the apicoplast. The occurrence of a plastid raised the question of the presence of chloroplast galactolipids. Using three independent rabbit and rat antibodies against digalactosyldiacylglycerol (DGDG) from plant chloroplasts, we detected a class of Toxoplasma lipids harboring a digalactolipid-like epitope (DGLE). Immunolabeling characterization supports the notion that the DGLE polar head is similar to that of DGDG. Mass spectrometry analyses indicated that dihexosyl lipids having various hydrophobic moieties (ceramide, diacylglycerol, and acylalkylglycerol) might react with anti-DGDG, but we cannot exclude the possibility that more complex dihexosyl-terminated lipids might also be immunolabeled. DGLE localization was analyzed by immunofluorescence and immunoelectron microscopy and confirmed by subcellular fractionation. No immunolabeling of the apicoplast could be observed. DGLE was scattered in pellicle membrane domains in extracellular tachyzoites and was relocalized to the anterior tip of the cell upon invasion in an actin-dependent manner, providing insights on a possible role in pathogenetic processes. DGLE was detected in other Apicomplexa (i.e., Neospora, Plasmodium, Babesia, and Cryptosporidium).
Collapse
Affiliation(s)
- Cyrille Botté
- Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique-Commissariat à l'Energie, Institut de Recherches en Technologies et Sciences pour le Vivant, 38058 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Travier L, Mondragon R, Dubremetz JF, Musset K, Mondragon M, Gonzalez S, Cesbron-Delauw MF, Mercier C. Functional domains of the Toxoplasma GRA2 protein in the formation of the membranous nanotubular network of the parasitophorous vacuole. Int J Parasitol 2007; 38:757-73. [PMID: 18061598 DOI: 10.1016/j.ijpara.2007.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/14/2007] [Accepted: 10/19/2007] [Indexed: 02/07/2023]
Abstract
Amphipathic alpha-helices have been proposed as the general means used by soluble proteins to induce membrane tubulation. Previous studies had shown that the GRA2 dense granule protein of Toxoplasma gondii would be a crucial protein for the formation of the intravacuolar membranous nanotubular network (MNN) and that one of the functions of the MNN is to organise the parasites within the parasitophorous vacuole. GRA2 is a small protein (185 amino acids), predicted to contain three amphipathic alpha-helices (alpha1: 70-92; alpha2: 95-110 and alpha3: 119-139) when using the standard programs of secondary structure prediction. To investigate the respective contribution of each alpha-helix in the GRA2 functions, we used DeltaGRA2-HXGPRT knock-out complementation: eight truncated forms of GRA2 were expressed in the deleted recipient and the phenotypes of these mutants were analysed. This study showed that: (i) alpha3, when associated with the N-terminal region (NT) and the C-terminal region (CT), is sufficient to target the protein to the parasite posterior end and to induce formation of membranous vesicles within the vacuole. However, when associated only with CT, alpha3 is not sufficient to provide the hydrophobicity required for membrane association; (ii) the alpha1alpha2 region is alone not sufficient to induce membrane tubulation within the PV; and (iii) only one mutant, NT-alpha1alpha2alpha3, restores most of the biochemical and functional properties of GRA2, including traffic to the dense granules, secretion into the vacuole, association with vacuolar membranes, induction of the MNN formation and organisation of the parasites within the vacuole.
Collapse
Affiliation(s)
- Laetitia Travier
- Laboratoire Adaptation et Pathogénie des Micro-organismes, Université Joseph Fourier GRENOBLE 1, Centre National de la Recherche Scientifique UMR 5163, BP 170, Campus Santé, Domaine de la Merci, Grenoble cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Braun L, Travier L, Kieffer S, Musset K, Garin J, Mercier C, Cesbron-Delauw MF. Purification of Toxoplasma dense granule proteins reveals that they are in complexes throughout the secretory pathway. Mol Biochem Parasitol 2007; 157:13-21. [PMID: 17959262 DOI: 10.1016/j.molbiopara.2007.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022]
Abstract
Dense granules are Apicomplexa specific secretory organelles. In Toxoplasma gondii, the dense granules proteins, named GRA proteins, are massively secreted into the parasitophorous vacuole (PV) shortly after invasion. Despite the presence of hydrophobic membrane segments, they are stored as both soluble and aggregated forms within the dense granules and are secreted as soluble forms into the vacuolar space where they further stably associate with PV membranes. In this study, we explored the unusual biochemical behavior of GRA proteins during their trafficking. Conventional chromatography indicated that the GRA proteins form high globular weight complexes within the parasite. To confirm these results, DeltaGRA knocked-out parasites were stably complemented with their respective HA-FLAG tagged GRA2 or GRA5. Purification of the tagged proteins by affinity chromatography showed that within the parasite and the PV soluble fraction, both the soluble GRA2-HA-FLAG and GRA5-HA-FLAG associate with several GRA proteins, the major ones being GRA3, GRA6 and GRA7. Following their insertion into the PV membranes, GRA2-HA-FLAG associated with GRA5 and GRA7 while GRA5-HA-FLAG associated with GRA7 only. Taken together, these data suggest that the GRA proteins form oligomeric complexes that may explain their solubility within the dense granules and the vacuolar matrix by sequestering their hydrophobic domains within the interior of the complex. Insertion into the PV membranes correlates with the decrease of the GRA partners number.
Collapse
Affiliation(s)
- Laurence Braun
- UMR 5163/CNRS-Université Joseph Fourier, Domaine de la Merci, 38700 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Golkar M, Shokrgozar MA, Rafati S, Musset K, Assmar M, Sadaie R, Cesbron-Delauw MF, Mercier C. Evaluation of protective effect of recombinant dense granule antigens GRA2 and GRA6 formulated in monophosphoryl lipid A (MPL) adjuvant against Toxoplasma chronic infection in mice. Vaccine 2007; 25:4301-11. [PMID: 17418457 DOI: 10.1016/j.vaccine.2007.02.057] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Revised: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
To investigate the vaccine potential of both the Toxoplasma GRA2 and GRA6 antigens, the full length recombinant proteins were produced in Escherichia coli, formulated in MPL adjuvant, and used alone and in combination ("mix"), to immunize CBA/J mice. Although high ratios of specific IgG2a/IgG1 were measured against both proteins, only spleen cells from GRA2-immunized mice and mix-immunized mice produced high amounts of both IFN-gamma and IL-2 upon induction with Toxoplasma gondii Excretory-Secretory Antigens. Intra peritoneal challenge with Toxoplasma cysts resulted in significant reduction of brain cysts in GRA2- and in mix-vaccinated mice only. This study shows the protective efficacy of recombinant GRA2 against chronic infection by T. gondii and confirms the utility of MPL adjuvant in enabling a vaccine candidate to induce a protective Th1 immune response.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- Brain/parasitology
- Cytokines/immunology
- Disease Models, Animal
- Escherichia coli/genetics
- Humans
- Lipid A/analogs & derivatives
- Lipid A/immunology
- Mice
- Mice, Inbred CBA
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/isolation & purification
- Protozoan Vaccines/immunology
- Th1 Cells/immunology
- Toxoplasma/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/prevention & control
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/isolation & purification
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Majid Golkar
- CNRS UMR 5163 - Université Joseph Fourier, UFR de Biologie, Institut Jean Roget, Campus Santé, Domaine de la Merci. BP 170, 38042 Grenoble cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ahn HJ, Kim S, Kim HE, Nam HW. Interactions between secreted GRA proteins and host cell proteins across the paratitophorous vacuolar membrane in the parasitism of Toxoplasma gondii. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 44:303-12. [PMID: 17170572 PMCID: PMC2559129 DOI: 10.3347/kjp.2006.44.4.303] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interactions between GRA proteins of dense granules in Toxoplasma gondii and host cell proteins were analyzed by yeast two-hybrid technique. The cMyc-GRA fusion proteins expressed from pGBKT7 plasmid in Y187 yeast were bound to host cell proteins from pGADT7-Rec-HeLa cDNA library transformed to AH109 yeast by mating method. By the selection procedures, a total of 939 colonies of the SD/-AHLT culture, 348 colonies of the X-alpha-gal positive and PCR, 157 colonies of the X-beta-gal assay were chosen for sequencing the cDNA and finally 90 colonies containing ORF were selected to analyze the interactions. GRA proteins interacted with a variety of host cell proteins such as enzymes, structural and functional proteins of organellar proteins of broad spectrum. Several specific bindings of each GRA protein to host proteins were discussed presumptively the role of GRA proteins after secreting into the parasitophorous vacuoles (PV) and the PV membrane in the parasitism of this parasite.
Collapse
Affiliation(s)
- Hye-Jin Ahn
- Department of Parasitology and the Catholic Institute of Parasitic Diseases, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | |
Collapse
|
34
|
Harper JM, Huynh MH, Coppens I, Parussini F, Moreno S, Carruthers VB. A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Mol Biol Cell 2006; 17:4551-63. [PMID: 16914527 PMCID: PMC1635346 DOI: 10.1091/mbc.e06-01-0064] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Propeptides regulate protein function and trafficking in many eukaryotic systems and have emerged as important features of regulated secretory proteins in parasites of the phylum Apicomplexa. Regulated protein secretion from micronemes and host cell invasion are inextricably linked and essential processes for the apicomplexan parasite Toxoplasma gondii. TgM2AP is a propeptide-containing microneme protein found in a heterohexameric complex with the microneme protein TgMIC2, a protein that has a demonstrated fundamental role in gliding motility and invasion. TgM2AP function is also central to these processes, because disruption of TgM2AP (m2apKO) results in secretory retention of TgMIC2, leading to reduced TgMIC2 secretion from the micronemes and impaired invasion. Because the TgM2AP propeptide is predicted to be processed in an intracellular site near where TgMIC2 is retained in m2apKO parasites, we hypothesized that the propeptide and its proteolytic removal influence trafficking and secretion of the complex. We found that proTgM2AP traffics through endosomal compartments and that deletion of the propeptide leads to defective trafficking of the complex within or near this site, resulting in aberrant processing and decreased secretion of TgMIC2, impaired invasion, and reduced virulence in vivo, mirroring the phenotypes observed in m2apKO parasites. In contrast, mutation of several cleavage site residues resulted in normal localization, but it affected the stability and secretion of the complex from the micronemes. Therefore, the propeptide and its cleavage site influence distinct aspects of TgMIC2-M2AP function, with both impacting the outcome of infection.
Collapse
Affiliation(s)
- Jill M. Harper
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - My-Hang Huynh
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Isabelle Coppens
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Fabiola Parussini
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| | - Silvia Moreno
- Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
| | - Vern B. Carruthers
- *W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; and
| |
Collapse
|
35
|
Prigione I, Chiesa S, Taverna P, Ceccarelli R, Frulio R, Morandi F, Bocca P, Cesbron-Delauw MF, Pistoia V. T cell mediated immune responses to Toxoplasma gondii in pregnant women with primary toxoplasmosis. Microbes Infect 2006; 8:552-60. [PMID: 16324868 DOI: 10.1016/j.micinf.2005.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/27/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate T cell immunity to Toxoplasma gondii (Tg) in pregnant women with primary toxoplasmosis. This issue has never been addressed before in humans and available information derives from murine models. Peripheral blood mononuclear cells (PBMC) from pregnant women with primary Tg infection were stimulated with Tg tachyzoites, excretory-secretory antigens (ESA) or recombinant surface antigen-1 (rSAG-1), and tested for proliferation, immunophenotype, cytokine production and antigen specific cytotoxic activity. Pregnant women with primary toxoplasmosis displayed a significant decrease of the CD4/CD8 T cell ratio and a significant increase of circulating T cell receptor (TCR) gammadelta+ cells as compared to their uninfected counterparts. T cells from Tg infected pregnant women proliferated to Tg tachyzoites, ESA or rSAG-1. Most tachyzoite and ESA specific T cell blasts were CD4+, whereas SAG-1 specific blasts were CD4+ and CD8+. ESA and tachyzoite specific T cell blasts displayed a Th1 or Th0 cytokine profile with overexpression of IFN-gamma. This pattern was unchanged upon in vitro exposure of T cells to progesterone, tested at a concentration close to that reached in vivo at the maternal-fetal interface. Finally, tachyzoite or ESA specific T cell blasts lysed, through a granule exocytosis dependent mechanism, autologous lymphoblastoid cell lines presenting Tg antigens. In conclusion, pregnant women with primary toxoplasmosis mounted in vitro Tg-specific Th1/Th0 responses whose impact on neonatal infection warrants further investigation.
Collapse
Affiliation(s)
- Ignazia Prigione
- Laboratory of Oncology, Department of Experimental and Laboratory Medicine, G. Gaslini Scientific Institute, Largo G. Gaslini 5, 16148 Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mercier C, Adjogble KDZ, Däubener W, Delauw MFC. Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? Int J Parasitol 2006; 35:829-49. [PMID: 15978597 DOI: 10.1016/j.ijpara.2005.03.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/07/2005] [Accepted: 03/18/2005] [Indexed: 02/06/2023]
Abstract
Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data accumulated over recent years on alternative strategies chosen by these parasites to develop within a parasitophorous vacuole and explores the role of dense granules in this process. One of the characteristics of the Plasmodium erythrocyte stages is to export numerous parasite proteins into both the host cell cytoplasm and/or plasma membrane via the vacuole used as a step trafficking compartment. Whether this feature can be correlated to few storage granules and a restricted number of dense granule proteins, is not yet clear. By contrast, the Toxoplasma developing vacuole is decorated by abundantly expressed dense granule proteins and is characterised by a network of membranous nanotubes. Although the exact function of most of these proteins remains currently unknown, recent data suggest that some of these dense granule proteins could be involved in building the intravacuolar membranous network. Conserved expression of the Toxoplasma dense granule proteins throughout most of the parasite stages suggests that they could also be key elements of the cyst formation.
Collapse
Affiliation(s)
- Corinne Mercier
- Institut Jean Roget, Université Joseph Fourier, CNRS UMR 5163, Place du Commandant Nal., 38700 La Tronche, France.
| | | | | | | |
Collapse
|
37
|
Zizka Z. Formation of a parasitophorous vacuole in a nonadequate experimental host: electron microscopical and X-ray microanalytical study. Folia Microbiol (Praha) 2005; 50:5-12. [PMID: 15954527 DOI: 10.1007/bf02931287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
An unusual mechanism of formation of a parasitophorous vacuole as a result of interaction between an invasive stage of a parasite (merozoites of a protozoon, Mattesia dispora) and defense response of an insect host, Galleria mellonella is reported. The entire ontogenesis of parasitophorous vacuole can be divided into five morphologically clearly discernible stages. They differed, e.g., in the contents and distribution of elements at subcellular level, as determined by direct in situ elemental analysis of single organelles (electron microprobe X-ray analysis). The method was used in conjunction with electron microscopy to investigate the relationship between the host and the parasite.
Collapse
Affiliation(s)
- Z Zizka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia.
| |
Collapse
|
38
|
Magno RC, Lemgruber L, Vommaro RC, De Souza W, Attias M. Intravacuolar network may act as a mechanical support for Toxoplasma gondii inside the parasitophorous vacuole. Microsc Res Tech 2005; 67:45-52. [PMID: 16025490 DOI: 10.1002/jemt.20182] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The intravacuolar network inside the parasitophorous vacuole of Toxoplasma gondii consists of an intricate system of membrane-limited tubules of uncertain role in parasite development. We propose that it is an important structural support to the maintenance of the parasites in the characteristic rosette arrangement of parasites inside the vacuole, rather than being associated with the nutrient acquisition from the host cell, as previously suggested. We based our assumptions on observations made by field emission scanning electron microscopy of an epithelial cell line (LLCMK2) infected at various time intervals. Scraping the surface of infected monolayers with Scotch tape exposed the inner organization of the parasitophorous vacuole. Ultrathin sections and freeze-fracture replicas of analogous samples were correlated with field emission observations and added new data on tubular membranes and general organization of the parasitophorous vacuole.
Collapse
Affiliation(s)
- Rodrigo Cardoso Magno
- Laboratório de Ultraestrutura Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
39
|
Abstract
During invasion by Toxoplasma gondii, host cell transmembrane proteins are excluded from the forming parasitophorous vacuole membrane (PVM) by the tight apposition of host and parasite cellular membranes. Previous studies suggested that the basis for the selective partitioning of membrane constituents may be a preference for membrane microdomains, and this hypothesis was herein tested. The partitioning of a diverse group of molecular reporters for raft and nonraft membrane subdomains was monitored during parasite invasion by time-lapse video or confocal microscopy. Unexpectedly, both raft and nonraft lipid probes, as well as both raft and nonraft cytosolic leaflet proteins, flowed unhindered past the host-parasite junction into the PVM. Moreover, neither a raft-associated type 1 transmembrane protein nor its raft-dissociated counterpart accessed the PVM, while a multispanning membrane raft protein readily did so. Considered together with previous data, these studies demonstrate that selective partitioning at the host-parasite interface is a highly complex process, in which raft association favors, but is neither necessary nor sufficient for, inclusion into the T. gondii PVM.
Collapse
Affiliation(s)
- Audra J Charron
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
40
|
Harper JM, Zhou XW, Pszenny V, Kafsack BFC, Carruthers VB. The novel coccidian micronemal protein MIC11 undergoes proteolytic maturation by sequential cleavage to remove an internal propeptide. Int J Parasitol 2004; 34:1047-58. [PMID: 15313131 DOI: 10.1016/j.ijpara.2004.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 05/17/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
Host cell invasion is a key step in the life cycle of the intracellular parasite Toxoplasma gondii, the causative agent of toxoplasmosis. Attachment and invasion by this parasite is dependent on secretion of proteins from the micronemes, cigar-shaped organelles found in the apical end of the parasite. Although many of these proteins contain adhesive motifs suggestive of a role in parasite attachment, a growing subset of microneme proteins (MICs) do not possess adhesive sequences implying that they have alternative roles. We have identified a novel 16 kDa microneme protein, TgMIC11, that is conserved among several coccidian parasites. As it traffics through the secretory system, TgMIC11 is modified by two successive proteolytic events to remove an internal propeptide, resulting in the mature protein that consists of an alpha-chain and beta-chain tethered by a single disulfide bond. Dual staining immunofluorescence confirmed that TgMIC11 localises to the apical micronemes and, like other micronemal proteins, it is also secreted in a calcium dependent manner. This is the first microneme protein characterised to date in the phylum Apicomplexa that possesses this unique structure and undergoes maturation by removal of an internal propeptide.
Collapse
Affiliation(s)
- Jill M Harper
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
41
|
Adjogble KDZ, Mercier C, Dubremetz JF, Hucke C, Mackenzie CR, Cesbron-Delauw MF, Däubener W. GRA9, a new Toxoplasma gondii dense granule protein associated with the intravacuolar network of tubular membranes. Int J Parasitol 2004; 34:1255-64. [PMID: 15491588 DOI: 10.1016/j.ijpara.2004.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 07/23/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
Important components of the parasitophorous vacuole in which the intracellular protozoan parasite Toxoplasma gondii develops, comprise proteins secreted from apicomplexan specific secretory organelles named the dense granules. Here, we confirm by immunofluorescence and by cryo-electron microscopy that the recently isolated B10 protein (318 amino acids, 41kDa) is a new dense granule protein that should now be referred to as GRA9. Within the vacuolar compartment, GRA9, like GRA2, GRA4 and GRA6, associates with the network of tubular membranes connected to the parasitophorous vacuole delimiting membrane. Like the other GRA proteins, GRA9 is secreted into the vacuole from the anterior end of the parasite. However, unlike GRA2 or GRA6, GRA9 does not transit by the posterior invaginated pocket of the parasite where the network first assembles. Within the dense granules, GRA9 exists in both a soluble and an insoluble state. Like the other GRA proteins, GRA9 is secreted as a soluble form only and like most of the GRA proteins, two forms of GRA9 of the similar molecular weight are detected within the vacuolar space: a soluble form and a membrane associated form. The dual properties of GRA9 are not only ascribed by the presence of amphipathic and hydrophobic alpha-helices but also by the fact that the protein is mainly hydrophilic.
Collapse
Affiliation(s)
- Koku D Z Adjogble
- Institute for Medical Microbiology and Virology, Universitätstr. 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Njagi ON, Entzeroth R, Nyaga PN, Musoke AJ. Monoclonal antibodies identify two neutralization-sensitive epitopes in Besnoitia besnoiti endocytes. Parasitol Res 2004; 94:247-53. [PMID: 15349773 DOI: 10.1007/s00436-004-1210-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 08/04/2004] [Indexed: 11/28/2022]
Abstract
Four monoclonal antibodies were produced against endozoite membrane and cytoplasmic antigens of B. besnoiti. In immunofluorescence antibody tests, three of the clones, designated 2M3C5, 2M1G8 and 2M9G3 recognized antigens restricted to the anterior pole of the endozoites. The fourth clone, 2M9C4, recognized a membrane-associated component in a "beaded" pattern, cytoplasmic granules and extracellular background. The staining characteristics differed from the solid diffuse staining of polyclonal serum. On Western blots of detergent-soluble extracts fractionated under non-reducing conditions in 10% SDS-PAGE gels, mAbs 2M3C5, 2M1G8 and 2M9G3 recognized a common antigen at >200 kDa. Recognition with mAb 2M3C5 was consistently different in intensity and extent. Monoclonal antibody 2M9C4 recognized a single antigen at 75 kDa. The antibodies significantly reduced infectivity of Besnoitia endozoites into cultured cells, demonstrating the potential role of the antigens in the invasion process and raising the possibility of development of a vaccine and diagnostic tests for the disease.
Collapse
Affiliation(s)
- O N Njagi
- Central Veterinary Research Laboratories, P.O. Kabete, 00625 Kangemi, Nairobi, Kenya.
| | | | | | | |
Collapse
|
43
|
Ferguson DJP. Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host. Int J Parasitol 2004; 34:347-60. [PMID: 15003495 DOI: 10.1016/j.ijpara.2003.11.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 11/12/2003] [Accepted: 11/17/2003] [Indexed: 11/18/2022]
Abstract
Toxoplasma gondii has a complex life cycle involving definite (cat) and intermediate (all warm blooded animals) hosts. This gives rise to four infectious forms each of which has a distinctive biological role. Two (tachyzoite and merozoite) are involved in propagation within a host and two (bradyzoite and sporozoite) are involved in transmission to new hosts. The various forms can be identified by their structure, host parasite relationship and distinctive developmental processes. In the present in vivo study, the various stages have been evaluated by electron microscopy and immunocytochemistry using a panel of molecular markers relating to surface and cytoplasmic molecules, metabolic iso-enzymes and secreted proteins that can differentiate between tachyzoite, bradyzoite and coccidian development. Tachyzoites were characterised as being positive for surface antigen 1, enolase isoenzyme 2, lactic dehydrogenase isoenzyme 1 and negative for bradyzoite antigen 1. In contrast, bradyzoites were negative for SAG1 but positive for BAG1, ENO1 and LDH2. When stage conversion was followed in brain lesion at 10 and 15 days post-infection, tachyzoites were predominant but a number of single intermediate organisms displaying tachyzoite and certain bradyzoite markers were observed. At later time points, small groups of organisms displaying only bradyzoite markers were also present. A number (9) of dense granule proteins (GRA1-8, NTPase) have also been identified in both tachyzoites and bradyzoites but there were differences in their location during parasite development. All the dense granule proteins extensively label the parasitophorous vacuole during tachyzoite development. In contrast the tissue cyst wall displays variable staining for the dense granule proteins, which also expresses an additional unique cyst wall protein. The molecular differences could be identified at the single cell stage consistent with conversion occurring at the time of entry into a new cell. These molecular differences were reflected in the structural differences in the parasitophorous vacuoles observed by electron microscopy. Stage conversion to enteric (coccidian) development was limited to the enterocytes of the cat small intestine. Although no specific markers were available, this form of development can be identified by the absence of specific tachyzoite (SAG1) and bradyzoite (BAG1) markers although the isoenzymes ENO2 and LHD1 were expressed. There was also a significant difference in the expression of the dense granule proteins. The coccidian stages and merozoites only expressed two (GRA7 and NTPase) of the nine dense granule proteins and this was reflected in significant differences in the structure of the parasitophorous vacuole. The coccidian stages also undergo conversion from asexual to sexual development. The mechanism controlling this process is unknown but does not involve any change in the host cell type or parasitophorous vacuole and may be pre-programmed, since the number of asexual cycles was self-limiting. In conclusion, it was possible using a combination of molecular markers to identify tachyzoite, bradyzoite and coccidian development in tissue sections.
Collapse
Affiliation(s)
- D J P Ferguson
- Nuffield Department of Pathology, Oxford University, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
44
|
Mercier C, Dubremetz JF, Rauscher B, Lecordier L, Sibley LD, Cesbron-Delauw MF. Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins. Mol Biol Cell 2002; 13:2397-409. [PMID: 12134078 PMCID: PMC117322 DOI: 10.1091/mbc.e02-01-0021] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii develops within a nonfusogenic vacuole containing a network of elongated nanotubules that form connections with the vacuolar membrane. Parasite secretory proteins discharged from dense granules (known as GRA proteins) decorate this intravacuolar network after invasion. Herein, we show using specific gene knockout mutants, that the unique nanotubule conformation of the network is induced by the parasite secretory protein GRA2 and further stabilized by GRA6. The vacuolar compartment generated by GRA2 knockout parasites was dramatically disorganized, and the normally tubular network was replaced by small aggregated material. The defect observed in Deltagra2 parasites was evident from the initial stages of network formation when a prominent cluster of multilamellar vesicles forms at a posterior invagination of the parasite. The secretory protein GRA6 failed to localize properly to this posterior organizing center in Deltagra2 cells, indicating that this early conformation is essential to proper assembly of the network. Construction of a Deltagra6 mutant also led to an altered mature network characterized by small vesicles instead of elongated nanotubules; however, the initial formation of the posterior organizing center was normal. Complementation of the Deltagra2 knockout with mutated forms of GRA2 showed that the integrity of both amphipathic alpha-helices of the protein is required for correct formation of the network. The induction of nanotubues by the parasite protein GRA2 may be a conserved feature of amphipathic alpha-helical regions, which have also been implicated in the organization of Golgi nanotubules and endocytic vesicles in mammalian cells.
Collapse
Affiliation(s)
- Corinne Mercier
- Centre National de la Recherche Scientifique FRE 2383, Bâtiment CERMO, Université Joseph Fourier, Grenoble, France 38041
| | | | | | | | | | | |
Collapse
|
45
|
Sonda S, Ting LM, Novak S, Kim K, Maher JJ, Farese RV, Ernst JD. Cholesterol esterification by host and parasite is essential for optimal proliferation of Toxoplasma gondii. J Biol Chem 2001; 276:34434-40. [PMID: 11457847 DOI: 10.1074/jbc.m105025200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon host cell invasion the apicomplexan parasite Toxoplasma gondii resides in a specialized compartment termed the parasitophorous vacuole that is derived from the host cell membrane but modified by the parasite. Despite the segregation of the parasitophorous vacuole from the host endocytic network, the intravacuolar parasite has been shown to acquire cholesterol from the host cell. In order to characterize further the role of sterol metabolism in T. gondii biology, we focused our studies on the activity of acyl-CoA:cholesterol acyltransferase (ACAT), a key enzyme for maintaining the intracellular homeostasis of cholesterol through the formation of cholesterol esters. In this study, we demonstrate that ACAT and cholesterol esters play a crucial role in the optimal replication of T. gondii. Moreover, we identified ACAT activity in T. gondii that can be modulated by pharmacological ACAT inhibitors with a consequent detrimental effect on parasite replication.
Collapse
Affiliation(s)
- S Sonda
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, California 94143-0868, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Mercier C, Rauscher B, Lecordier L, Deslée D, Dubremetz JF, Cesbron-Delauw MF. Lack of expression of the dense granule protein GRA5 does not affect the development of Toxoplasma tachyzoites. Mol Biochem Parasitol 2001; 116:247-51. [PMID: 11522359 DOI: 10.1016/s0166-6851(01)00324-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- C Mercier
- PEGM CNRS FRE 2383, Bâtiment CERMO, Université Joseph Fourier, 38041 cedex 09, Grenoble, France
| | | | | | | | | | | |
Collapse
|
47
|
Lee BY, Ahn MH, Kim HC, Min DY. Toxoplasma gondii: ultrastructural localization of specific antigens and inhibition of intracellular multiplication by monoclonal antibodies. THE KOREAN JOURNAL OF PARASITOLOGY 2001; 39:67-75. [PMID: 11301592 PMCID: PMC2721067 DOI: 10.3347/kjp.2001.39.1.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This experiment was focused on the characterization of anti-Toxoplasma monoclonal antibodies (mAbs) and the effect of mAbs on the parasite invasion of mouse peritoneal macrophages. Twenty eight mAbs including M110, M556, R7A6 and M621 were characterized by Ab titer, immunoglobulin isotyping and western blot pattern. Antibody titer (optical density) of 4 mAbs, M110, M556, R7A6 and M621, were 0.53, 0.67, 0.45 and 0.39 (normal mouse serum; 0.19) with the same IgG1 isotypes shown by Enzyme-linked immunosorbent assay (ELISA). Western blot analysis showed that M110, M556, R7A6 and M621 reacted with the 33 kDa (p30), 31 kDa (p28), 43 kDa and 36 kDa protein. Immunogold labelling of mAbs M110, M556, R7A6 and M621 reacted with the surface membrane, dense granules and parasitophorous vacuolar membrane (PVM), rhoptries and cytoplasm of tachyzoite, respectively. For in vitro assay, preincubation of tachyzoites with four mAbs, M110, M556, R7A6 and M621 resulted in the decrease of the number of infected macrophages (p < 0.05) and the suppression of parasite multiplication at 18 h post-infection. Four monoclonal antibodies including M110 (SAG1) were found to have an important role in the inhibition of macrophage invasion and T. gondii multiplication in vitro, and these mAbs may be suitable for vaccine candidates, diagnostic kit and for chemotherapy.
Collapse
Affiliation(s)
- B Y Lee
- Department of Parasitology, Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, 133-791, Korea
| | | | | | | |
Collapse
|
48
|
Prigione I, Facchetti P, Lecordier L, Deslée D, Chiesa S, Cesbron-Delauw MF, Pistoia V. T cell clones raised from chronically infected healthy humans by stimulation with Toxoplasma gondii excretory-secretory antigens cross-react with live tachyzoites: characterization of the fine antigenic specificity of the clones and implications for vaccine development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3741-8. [PMID: 10725733 DOI: 10.4049/jimmunol.164.7.3741] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Excreted-secreted Ags (ESA) of Toxoplasma gondii (Tg) play an important role in the stimulation of the host immune system in both acute and chronic infections. To identify the parasite Ag(s) involved in the maintenance of T cell-mediated long term immunity, 40 ESA-specific T cell clones were derived from three chronically infected healthy subjects. All the clones were CD4+ and recognized both ESA and live tachyzoites in a HLA-DR-restricted manner. Conversely, CD4+ tachyzoite-specific T cell clones from the same subjects proliferated in response to ESA, pointing to shared immunodominant Ags between ESA and Tg tachyzoites. By T cell blot analysis using SDS-PAGE-fractionated parasite extracts, the following patterns of reactivity were detected. Of 25 clones, 6 recognized Tg fractions in the 24- to 28-kDa range and proliferated to purified GRA2, 5 reacted with Tg fractions in the 30- to 33-kDa range; and 4 of them proved to be specific for rSAg1. Although surface Ag (SAg1) is not a member of ESA, small amounts of this protein were present in ESA preparation by Western blot. Of 25 clones, 8 responded to Tg fractions in the 50- to 60-kDa range but not to the 55-kDa recombinant rhoptries-2 parasite Ag, and 6 did not react with any Tg fraction but proliferated in response to either ESA or total parasite extracts. In conclusion, CD4+ T cells specific for either ESA (GRA2) or SAg1 may be involved in the maintenance of long term immunity to Tg in healthy chronically infected individuals.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/isolation & purification
- Cell Communication/immunology
- Chemical Fractionation
- Chronic Disease
- Clone Cells/immunology
- Clone Cells/metabolism
- Clone Cells/parasitology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Interferon-gamma/biosynthesis
- Interleukin-4/biosynthesis
- Lymphocyte Activation/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/isolation & purification
- Protozoan Proteins/metabolism
- Protozoan Vaccines/chemical synthesis
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/parasitology
- Toxoplasma/growth & development
- Toxoplasma/immunology
- Toxoplasmosis/immunology
- Toxoplasmosis/parasitology
- Vaccines, Attenuated/chemical synthesis
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- I Prigione
- Laboratorio di Oncologia, Istituto G. Gaslini, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Labruyere E, Lingnau M, Mercier C, Sibley LD. Differential membrane targeting of the secretory proteins GRA4 and GRA6 within the parasitophorous vacuole formed by Toxoplasma gondii. Mol Biochem Parasitol 1999; 102:311-24. [PMID: 10498186 DOI: 10.1016/s0166-6851(99)00092-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Following secretion into the parasitophorous vacuole, dense granule proteins, referred to as GRA proteins, are targeted to different locations including a complex of tubular membranes that are connected with the vacuolar membrane. To further define the formation of this intravacuolar network, we have investigated the secretion, trafficking and membrane association of GRA4 and GRA6 within the parasitophorous vacuole. In extracellular parasites, GRA4 and GRA6 were found exclusively in dense secretory granules where they were packaged primarily as soluble proteins. Following release into the vacuole, GRA6 was rapidly translocated to the posterior end of the parasite where, like previously reported for GRA2, it bound to a cluster of multi-lamellar vesicles that give rise to the network. In contrast, GRA4 was distributed throughout the lumen of the vacuole and only later became associated with the mature network that is found dispersed throughout the vacuole. Cell fractionation and treatment with denaturing agents established that the association of GRA4 with the network membranes was mediated by strong protein-protein interactions. In contrast, GRA6 was predominantly influenced by hydrophobic interactions, and a phosphorylated form of this protein present within the vacuole showed increased association with the network membranes. Cross-linking studies established that GRA4 and GRA6 specifically interact with GRA2 to form a multimeric complex that is stably associated with the intravacuolar network. Formation of this protein complex, which is based on both protein-protein and hydrophobic interactions, may participate in nutrient or protein transport within the vacuole.
Collapse
Affiliation(s)
- E Labruyere
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
50
|
Coppens I, Andries M, Liu JL, Cesbron-Delauw MF. Intracellular trafficking of dense granule proteins in Toxoplasma gondii and experimental evidences for a regulated exocytosis. Eur J Cell Biol 1999; 78:463-72. [PMID: 10472799 DOI: 10.1016/s0171-9335(99)80073-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dense granules of the intracellular protozoan Toxoplasma gondii are secretory vesicles that play a major role in the structural modifications of the parasitophorous vacuole (PV) in which the parasite develops. The biogenesis of dense granules as well as the regulatory mechanisms controlling their specific exocytosis are still poorly understood. In this paper, we analyzed the secretory pathway of dense granule proteins (GRA proteins) in extracellular T. gondii through the effects of brefeldin A (BFA). Ultrastructural studies of BFA-treated parasites showed disassembly of the Golgi apparatus and accumulation of GRA proteins in a dilated vacuolar system connected to the nuclear envelope. BFA reversibly blocked the intracellular transport of the newly synthesized GRA proteins in a dose-dependent manner (blockade of 95% at 1 microg/ml of BFA). By contrast, discharge of GRA proteins from preformed dense granules was unaffected by BFA over a course of 60 min incubation. GRA protein secretion was dependent on incubation temperature as it only occurred above 26 degrees C and it could be stimulated by external factors. This stimulus might be provided by factor(s) present in the serum of the extracellular medium, as incubation of parasites in serum-free medium resulted in a dramatic decrease in protein secretion. Exocytosis can be restored in a dose-dependent fashion by serum addition (maximal stimulatory activity in the 30-200 kDa range) and was optimal at an extracellular pH of 6.5. Altogether, these results demonstrate that GRA proteins are exported through the Golgi apparatus via the classical secretory pathway and can be experimentally discharged from storage dense granules as regulated secretory proteins in response to specific stimulation, arguing in favor of a regulated component for dense granule exocytosis in T. gondii.
Collapse
Affiliation(s)
- I Coppens
- Laboratoire des Mécanismes moléculaires de la Pathogenèse des Sporozoaires, Institut Pasteur & Institut de Biologie de Lille, France
| | | | | | | |
Collapse
|