1
|
Alves e Silva TL, Canepa GE, Sweeney B, Hessab Alvarenga P, Zhao M, Vega-Rodríguez J, Molina-Cruz A, Barillas-Mury C. The heat shock protein Hsc70-3 mediates an anti-apoptotic response critical for Plasmodium evasion of Anopheles gambiae immunity. Microbiol Spectr 2023; 11:e0094023. [PMID: 37982627 PMCID: PMC10715144 DOI: 10.1128/spectrum.00940-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Malaria transmission by Anopheles gambiae mosquitoes is very effective, in part because the parasite expresses a surface protein called Pfs47 that allows it to evade the mosquito immune system. Here we investigate how this protein changes the response of mosquito midgut epithelial cells to invasion by the parasite. Pfs47 is known to interact with P47Rec, a mosquito midgut receptor. We found that Pf47Rec inhibits caspase-mediated apoptosis by interacting with the Hsc70-3. This disrupts nitration of midgut epithelial cells invaded by the parasite and the release of hemocyte-derived microvesicles, which are critical for effective activation of the mosquito complement system that eliminates the parasite.
Collapse
Affiliation(s)
- Thiago Luiz Alves e Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Gaspar E. Canepa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Brendan Sweeney
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Patricia Hessab Alvarenga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ming Zhao
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
2
|
Kaur H, Garber L, Murphy JW, Vinetz JM. Structure-function analysis of cysteine residues in the plasmodium falciparum chitinase, PfCHT1. Protein Sci 2022; 31:e4289. [PMID: 35481637 PMCID: PMC8994504 DOI: 10.1002/pro.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
The Plasmodium ookinete uses chitinase activity to penetrate the acellular, chitin-containing peritrophic matrix to invade the mosquito vector. Plasmodium ookinetes from different parasite clades secrete two structurally distinct forms of chitinase, one, a short form lacking a C-terminal putative chitin-binding domain (CBD), the other, a long form with both proenzyme and C-terminal putative chitin-binding domains. Here, we structurally and functionally characterize the three cysteines in the short chitinase of the human-infecting malaria parasite, P. falciparum testing the hypothesis that one unpaired cysteine would not contribute to chitinase-specific enzymatic activity which would identify this residue as potentially involved in intermolecular disulfide bonding and heteromultimeric invasion complex formation as previously described. To test this hypothesis, we produced and characterized recombinant wild-type and cysteine-mutation PfCHT1 proteins in E. coli and used biophysical and enzymatic approaches to examine their enzymatic activities and chitin-binding affinities. The cysteine-203 PfCHT1 mutation had no effect on chitinolytic and chitin-binding functions. The cysteine-220 and cysteine-230 mutants were enzymatically inactive and did not bind to chitin. The artificial intelligence-based protein prediction algorithm, AlphaFold, correctly identified the involvement of cys-220 and cys-230 in the intramolecular disulfide linkages key to maintaining properly folded chitinase structural integrity. AlphaFold predicted that cys-203 cysteine is surface exposed and thus involved in intermolecular protein-protein interaction. Production of the cys-to-ser 203 PfCHT1 mutant facilitated recombinant protein production. Future cellular and biochemical studies are needed to further understand details of Plasmodium ookinete mosquito midgut invasion.
Collapse
Affiliation(s)
- Hargobinder Kaur
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Laine Garber
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - James W. Murphy
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
3
|
Yu S, Wang J, Luo X, Zheng H, Wang L, Yang X, Wang Y. Transmission-Blocking Strategies Against Malaria Parasites During Their Mosquito Stages. Front Cell Infect Microbiol 2022; 12:820650. [PMID: 35252033 PMCID: PMC8889032 DOI: 10.3389/fcimb.2022.820650] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is still the most widespread parasitic disease and causes the most infections globally. Owing to improvements in sanitary conditions and various intervention measures, including the use of antimalarial drugs, the malaria epidemic in many regions of the world has improved significantly in the past 10 years. However, people living in certain underdeveloped areas are still under threat. Even in some well-controlled areas, the decline in malaria infection rates has stagnated or the rates have rebounded because of the emergence and spread of drug-resistant malaria parasites. Thus, new malaria control methods must be developed. As the spread of the Plasmodium parasite is dependent on the part of its life cycle that occurs in mosquitoes, to eliminate the possibility of malaria infections, transmission-blocking strategies against the mosquito stage should be the first choice. In fact, after the gametocyte enters the mosquito body, it undergoes a series of transformation processes over a short period, thus providing numerous potential blocking targets. Many research groups have carried out studies based on targeting the blocking of transmission during the mosquito phase and have achieved excellent results. Meanwhile, the direct killing of mosquitoes could also significantly reduce the probability of malaria infections. Microorganisms that display complex interactions with Plasmodium, such as Wolbachia and gut flora, have shown observable transmission-blocking potential. These could be used as a biological control strategy and play an important part in blocking the transmission of malaria.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhan Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- *Correspondence: Ying Wang,
| |
Collapse
|
4
|
Evolutionary insights into the microneme-secreted, chitinase-containing high molecular weight protein complexes involved in Plasmodium invasion of the mosquito midgut. Infect Immun 2021; 90:e0031421. [PMID: 34606368 DOI: 10.1128/iai.00314-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While general mechanisms by which Plasmodium ookinetes invade the mosquito midgut have been studied, details remain to be understood regarding the interface of the ookinete, specifically its barriers to invasion, such as the proteolytic milieu, the chitin-containing, protein cross-linked peritrophic matrix, and the midgut epithelium. Here we review knowledge of Plasmodium chitinases and the mechanisms by which they mediate the ookinete crossing the peritrophic matrix. The integration of new genomic insights into previous findings advances our understanding of Plasmodium evolution. Recently obtained Plasmodium spp. genomic data enable identification of the conserved residues in the experimentally demonstrated hetero-multimeric, high molecular weight complex comprised of a short chitinase covalently linked to binding partners, von Willebrand factor A domain-related protein (WARP) and secreted ookinete adhesive protein (SOAP). Artificial intelligence-based high-resolution structural modeling using the DeepMind AlphaFold algorithm yielded highly informative 3D structures and insights into how short chitinases, WARP, and SOAP may interact at the atomic level to form the ookinete-secreted peritrophic matrix invasion complex. Elucidating the significance of the divergence of ookinete-secreted micronemal proteins among Plasmodium species could lead to a better understanding of ookinete invasion machinery and the co-evolution of Plasmodium-mosquito interactions.
Collapse
|
5
|
Viswanath VK, Gore ST, Valiyaparambil A, Mukherjee S, Lakshminarasimhan A. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria. Protein Sci 2021; 30:1493-1501. [PMID: 33934433 DOI: 10.1002/pro.4095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
Abstract
Malaria is a life-threatening disease caused by one of the five species of Plasmodium, among which Plasmodium falciparum cause the deadliest form of the disease. Plasmodium species are dependent on a vertebrate host and a blood-sucking insect vector to complete their life cycle. Plasmodium chitinases belonging to the GH18 family are secreted inside the mosquito midgut, during the ookinete stage of the parasite. Chitinases mediate the penetration of parasite through the peritrophic membrane, facilitating access to the gut epithelial layer. In this review, we describe Plasmodium chitinases with special emphasis on chitinases from P. falciparum and P. vivax, the representative examples of the short and long forms of this protein. In addition to the chitinase domain, chitinases belonging to the long form contain a pro-domain and chitin-binding domain. Amino acid sequence alignment of long and short form chitinase domains reveals multiple positions containing variant residues. A subset of these positions was found to be conserved or invariant within long or short forms, indicating the role of these positions in attributing form-specific activity. The reported differences in affinities to allosamidin for P. vivax and P. falciparum were predicted to be due to different residues at two amino acid positions, resulting in altered interactions with the inhibitor. Understanding the role of these amino acids in Plasmodium chitinases will help us elucidate the mechanism of catalysis and the mode of inhibition, which will be the key for identification of potent inhibitors or antibodies demonstrating transmission-blocking activity.
Collapse
Affiliation(s)
- Vysakh K Viswanath
- Tata Institute for Genetics and Society, Center at inStem, Bengaluru, India
| | - Suraj T Gore
- Aurigene Discovery Technologies Ltd, Bengaluru, India
| | | | | | | |
Collapse
|
6
|
Alves E Silva TL, Radtke A, Balaban A, Pascini TV, Pala ZR, Roth A, Alvarenga PH, Jeong YJ, Olivas J, Ghosh AK, Bui H, Pybus BS, Sinnis P, Jacobs-Lorena M, Vega-Rodríguez J. The fibrinolytic system enables the onset of Plasmodium infection in the mosquito vector and the mammalian host. SCIENCE ADVANCES 2021; 7:7/6/eabe3362. [PMID: 33547079 PMCID: PMC7864569 DOI: 10.1126/sciadv.abe3362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.
Collapse
Affiliation(s)
- Thiago Luiz Alves E Silva
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andrea Radtke
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Amanda Balaban
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tales Vicari Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Patricia H Alvarenga
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Anil K Ghosh
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hanhvy Bui
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brandon S Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Joel Vega-Rodríguez
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Patra KP, Kaur H, Kolli SK, Wozniak JM, Prieto JH, Yates JR, Gonzalez DJ, Janse CJ, Vinetz JM. A Hetero-Multimeric Chitinase-Containing Plasmodium falciparum and Plasmodium gallinaceum Ookinete-Secreted Protein Complex Involved in Mosquito Midgut Invasion. Front Cell Infect Microbiol 2021; 10:615343. [PMID: 33489941 PMCID: PMC7821095 DOI: 10.3389/fcimb.2020.615343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria parasites are transmitted by Anopheles mosquitoes. During its life cycle in the mosquito vector the Plasmodium ookinete escapes the proteolytic milieu of the post-blood meal midgut by traversing the midgut wall. This process requires penetration of the chitin-containing peritrophic matrix lining the midgut epithelium, which depends in part on ookinete-secreted chitinases. Plasmodium falciparum ookinetes have one chitinase (PfCHT1), whereas ookinetes of the avian-infecting parasite, P. gallinaceum, have two, a long and a short form, PgCHT1 and PgCHT2, respectively. Published data indicates that PgCHT2 forms a high molecular weight (HMW) reduction-sensitive complex; and one binding partner is the ookinete-produced von Willebrand A-domain-containing protein, WARP. Size exclusion chromatography data reported here show that P. gallinaceum PgCHT2 and its ortholog, P. falciparum PfCHT1 are covalently-linked components of a HMW chitinase-containing complex (> 1,300 kDa). Mass spectrometry of ookinete-secreted proteins isolated using a new chitin bead pull-down method identified chitinase-associated proteins in P. falciparum and P. gallinaceum ookinete-conditioned culture media. Mass spectrometry of this complex showed the presence of several micronemal proteins including von Willebrand factor A domain-related protein (WARP), ookinete surface enolase, and secreted ookinete adhesive protein (SOAP). To test the hypothesis that ookinete-produced PfCHT1 can form a high molecular homo-multimer or, alternatively, interacts with P. berghei ookinete-produced proteins to produce an HMW hetero-multimer, we created chimeric P. berghei parasites expressing PfCHT1 to replace PbCHT1, enabling the production of large numbers of PfCHT1-expressing ookinetes. We show that chimeric P. berghei ookinetes express monomeric PfCHT1, but a HMW complex containing PfCHT1 is not present. A better understanding of the chitinase-containing HMW complex may enhance development of next-generation vaccines or drugs that target malaria transmission stages.
Collapse
Affiliation(s)
- Kailash P Patra
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Hargobinder Kaur
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jacob M Wozniak
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Judith Helena Prieto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.,Department of Chemistry, Western Connecticut State University, Danbury, CT, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Abstract
Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses.
Collapse
Affiliation(s)
- Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
9
|
Li F, Bounkeua V, Pettersen K, Vinetz JM. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X. Malar J 2016; 15:111. [PMID: 26911483 PMCID: PMC4765185 DOI: 10.1186/s12936-016-1161-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 02/10/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Plasmodium invasion of the mosquito midgut is a population bottleneck in the parasite lifecycle. Interference with molecular mechanisms by which the ookinete invades the mosquito midgut is one potential approach to developing malaria transmission-blocking strategies. Plasmodium aspartic proteases are one such class of potential targets: plasmepsin IV (known to be present in the asexual stage food vacuole) was previously shown to be involved in Plasmodium gallinaceum infection of the mosquito midgut, and plasmepsins VII and plasmepsin X (not known to be present in the asexual stage food vacuole) are upregulated in Plasmodium falciparum mosquito stages. These (and other) parasite-derived enzymes that play essential roles during ookinete midgut invasion are prime candidates for transmission-blocking vaccines. METHODS Reverse transcriptase PCR (RT-PCR) was used to determine timing of P. falciparum plasmepsin VII (PfPM VII) and plasmepsin X (PfPM X) mRNA transcripts in parasite mosquito midgut stages. Protein expression was confirmed by western immunoblot and immunofluorescence assays (IFA) using anti-peptide monoclonal antibodies (mAbs) against immunogenic regions of PfPM VII and PfPM X. These antibodies were also used in standard membrane feeding assays (SMFA) to determine whether inhibition of these proteases would affect parasite transmission to mosquitoes. The Mann-Whitney U test was used to analyse mosquito transmission assay results. RESULTS RT-PCR, western immunoblot and immunofluorescence assay confirmed expression of PfPM VII and PfPM X in mosquito stages. Whereas PfPM VII was expressed in zygotes and ookinetes, PfPM X was expressed in gametes, zygotes, and ookinetes. Antibodies against PfPM VII and PfPM X decreased P. falciparum invasion of the mosquito midgut when used at high concentrations, indicating that these proteases play a role in Plasmodium mosquito midgut invasion. Failure to generate genetic knockouts of these genes limited determination of the precise role of these proteases in parasite transmission but suggests that they are essential during the intraerythrocytic life cycle. CONCLUSIONS PfPM VII and PfPM X are present in the mosquito-infective stages of P. falciparum. Standard membrane feeding assays demonstrate that antibodies against these proteins reduce the infectivity of P. falciparum for mosquitoes, suggesting their viability as transmission-blocking vaccine candidates. Further study of the role of these plasmepsins in P. falciparum biology is warranted.
Collapse
Affiliation(s)
- Fengwu Li
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
| | - Viengngeun Bounkeua
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
| | - Kenneth Pettersen
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
| |
Collapse
|
10
|
Han B, Zhou K, Li Z, Sun B, Ni Q, Meng X, Pan G, Li C, Long M, Li T, Zhou C, Li W, Zhou Z. Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb). J Eukaryot Microbiol 2015; 63:37-45. [PMID: 26108336 DOI: 10.1111/jeu.12246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/31/2015] [Accepted: 06/13/2015] [Indexed: 11/28/2022]
Abstract
Chitinases (EC 3.2.1.14), as one kind of glycosyl hydrolase, hydrolyze the β-(1,4) linkages of chitin. According to the sequence similarity, chitinases can be divided into glycoside hydrolase family 18 and family 19. Here, a chitinase from Nosema bombycis (NbchiA) was cloned and purified by metal affinity chromatography and molecular exclusion chromatography. Sequence analysis indicated that NbchiA belongs to glycoside hydrolase family 19 class IV chitinase. The optimal pH and temperature of NbchiA are 7.0 and 40 °C, respectively. This purified chitinase showed high activity toward soluble substrates such as ethylene glycol chitin and soluble chitosan. The degradation of chitin oligosaccharides (GlcNAc)(2-5) detected by high-performance liquid chromatography showed that NbchiA hydrolyzed mainly the second glycosidic linkage from the reducing end of (GlcNAc)(3-5). On the basis of structure-based multiple-sequence alignment, Glu51 and Glu60 are believed to be the key catalytic residues. The site-directed mutation analysis revealed that the enzymatic activity was decreased upon mutation of Glu60, whereas mutation of Glu51 totally abolished the enzymatic activity. This is the first report of a GH19 chitinase in fungi and in Microsporidia.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Kang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhihong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Bin Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Qi Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weifang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
11
|
Cázares-Raga FE, Chávez-Munguía B, González-Calixto C, Ochoa-Franco AP, Gawinowicz MA, Rodríguez MH, Hernández-Hernández FC. Morphological and proteomic characterization of midgut of the malaria vector Anopheles albimanus at early time after a blood feeding. J Proteomics 2014; 111:100-12. [PMID: 25132141 DOI: 10.1016/j.jprot.2014.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/16/2014] [Accepted: 07/29/2014] [Indexed: 01/27/2023]
Abstract
The midgut of anopheline mosquito is the entry of Plasmodium, the causative agent of malaria.When the mosquito feeds on parasite infected host, Plasmodium parasites reach the midgut and must confront digestive enzymes, the innate immune response and go across the peritrophic matrix (PM), a thick extracellular sheath secreted by the mosquito midgut epithelial cells. Then, to continue its development, the parasite must reach the salivary glands to achieve transmission to a vertebrate host. We report here the morphological and biochemical descriptions of the midgut changes after a blood meal in Anopheles albimanus. Before blood feeding, midgut epithelial cells contained numerous electrondense vesicles distributed in the central to apical side. These vesicles were secreted to the luminal side of the midgut after a blood meal. At early times after blood ingest, the PM is formed near microvilli as a granulous amorphous material and after it consolidates forming a highly organized fibrillar structure, constituted by layers of electrondense and electronlucent regions. Proteomic comparative analysis of sugar and blood fed midguts showed several molecules that modify their abundance after blood intake; these include innate immunity, cytoskeletal, stress response, signaling, and digestive, detoxifying and metabolism enzymes. Biological significance In the midgut of mosquitoes during bloodfeeding, many simultaneous processes occur, including digestion, innate immune activities, cytoskeleton modifications, construction of a peritrophic matrix and hormone production, between others. Mechanical forces are very intense during bloodfeeding and epithelial and muscular cells must resist the stress, modifying the actin cytoskeleton and coordinating intracellular responses by signaling. Microorganisms present in midgut contents reproduce and interact with epithelial cells triggering innate immune response. When infectious agents are present in the blood meal they must traverse the peritrophic matrix, an envelope formed from secretion products of epithelial cells, and evade the immune system in order to reach the epithelium and continue their journey towards salivary glands, in preparation for the transmission to the new hosts. During all these processes, proteins of mosquitoes are modified in order to deal with mechanical and biological challenges, and the aim of this work is to study these changes.
Collapse
Affiliation(s)
- F E Cázares-Raga
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - B Chávez-Munguía
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - C González-Calixto
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - A P Ochoa-Franco
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico
| | - M A Gawinowicz
- Herbert Irving Comprehensive Cancer Center, Columbia University, NY, USA
| | - M H Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - F C Hernández-Hernández
- Depto. de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, D.F., Mexico.
| |
Collapse
|
12
|
Garcia-Longoria L, Hellgren O, Bensch S. Molecular identification of the chitinase genes in Plasmodium relictum. Malar J 2014; 13:239. [PMID: 24943514 PMCID: PMC4072489 DOI: 10.1186/1475-2875-13-239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria parasites need to synthesize chitinase in order to go through the peritrophic membrane, which is created around the mosquito midgut, to complete its life cycle. In mammalian malaria species, the chitinase gene comprises either a large or a short copy. In the avian malaria parasites Plasmodium gallinaceum both copies are present, suggesting that a gene duplication in the ancestor to these extant species preceded the loss of either the long or the short copy in Plasmodium parasites of mammals. Plasmodium gallinaceum is not the most widespread and harmful parasite of birds. This study is the first to search for and identify the chitinase gene in one of the most prevalent avian malaria parasites, Plasmodium relictum. METHODS Both copies of P. gallinaceum chitinase were used as reference sequences for primer design. Different sequences of Plasmodium spp. were used to build the phylogenetic tree of chitinase gene. RESULTS The gene encoding for chitinase was identified in isolates of two mitochondrial lineages of P. relictum (SGS1 and GRW4). The chitinase found in these two lineages consists both of the long (PrCHT1) and the short (PrCHT2) copy. The genetic differences found in the long copy of the chitinase gene between SGS1 and GRW4 were higher than the difference observed for the cytochrome b gene. CONCLUSION The identification of both copies in P. relictum sheds light on the phylogenetic relationship of the chitinase gene in the genus Plasmodium. Due to its high variability, the chitinase gene could be used to study the genetic population structure in isolates from different host species and geographic regions.
Collapse
Affiliation(s)
- Luz Garcia-Longoria
- Departamento de Biología Animal, Universidad de Extremadura, E-06071 Badajoz, Spain.
| | | | | |
Collapse
|
13
|
An investigation into the protein composition of the teneral Glossina morsitans morsitans peritrophic matrix. PLoS Negl Trop Dis 2014; 8:e2691. [PMID: 24763256 PMCID: PMC3998921 DOI: 10.1371/journal.pntd.0002691] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022] Open
Abstract
Background Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), which is an acellular gut lining surrounding the blood meal. Crossing of this multi-layered structure occurs at least twice during parasite migration and development, but the mechanism of how trypanosomes do so is not understood. In order to better comprehend the molecular events surrounding trypanosome penetration of the tsetse PM, a mass spectrometry-based approach was applied to investigate the PM protein composition using Glossina morsitans morsitans as a model organism. Methods PMs from male teneral (young, unfed) flies were dissected, solubilised in urea/SDS buffer and the proteins precipitated with cold acetone/TCA. The PM proteins were either subjected to an in-solution tryptic digestion or fractionated on 1D SDS-PAGE, and the resulting bands digested using trypsin. The tryptic fragments from both preparations were purified and analysed by LC-MS/MS. Results Overall, nearly 300 proteins were identified from both analyses, several of those containing signature Chitin Binding Domains (CBD), including novel peritrophins and peritrophin-like glycoproteins, which are essential in maintaining PM architecture and may act as trypanosome adhesins. Furthermore, 27 proteins from the tsetse secondary endosymbiont, Sodalis glossinidius, were also identified, suggesting this bacterium is probably in close association with the tsetse PM. Conclusion To our knowledge this is the first report on the protein composition of teneral G. m. morsitans, an important vector of African trypanosomes. Further functional analyses of these proteins will lead to a better understanding of the tsetse physiology and may help identify potential molecular targets to block trypanosome development within the tsetse. African trypanosomes are transmitted by the haematophagous tsetse vector. For transmission to occur, bloodmeal ingested trypanosomes must overcome numerous barriers imposed by the fly. The first obstacle is the crossing of peritrophic matrix (PM), a cell-free structure that protects the midgut epithelial cells from coming under attack by the hosts' digestive enzymes, aids in water retention and helps prevent harmful pathogens from establishing a systemic infection. Trypanosomes cross the tsetse PM at least twice in their development but how they do so remains to be elucidated. Despite being a recognised barrier to trypanosome infections, there is limited knowledge of the molecular components of the tsetse PM. In this study we identified nearly 300 PM proteins using two mass spectrometry approaches. Several of the identified components were peritrophins, which are a key group of glycoproteins essential for PM integrity. In addition, we detected proteins from Sodalis glossinidius, a commensal bacterium linked to increased susceptibility to trypanosome infection in tsetse. Our study provides the first comprehensive identification of proteins from the tsetse PM, which provides a starting point for research into potential targets for vector control.
Collapse
|
14
|
Rider MA, Zou J, Vanlandingham D, Nuckols JT, Higgs S, Zhang Q, Lacey M, Kim J, Wang G, Hong YS. Quantitative proteomic analysis of the Anopheles gambiae (Diptera: Culicidae) midgut infected with o'nyong-nyong virus. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:1077-1088. [PMID: 24180113 DOI: 10.1603/me12155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alphaviruses are arthropod-borne pathogens that infect a range of hosts. In humans and other mammals, alphavirus infection can cause severe disease. In mosquito hosts, however, there are generally few symptoms. Little is known about the cellular responses of mosquitoes that allow them to cope with infection. In this investigation, a six-plex tandem mass tagging proteomic approach was used to study protein accumulation changes in the midgut of Anopheles gambiae (Giles) (Diptera: Culicidae) mosquitoes infected with o'nyong-nyong virus (Togaviridae, Alphavirus). Five hundred thirty-six nonredundant proteins were identified. Twenty-two were found in significantly different quantities in infected midguts compared with controls. Of interest, analysis revealed molecular pathways possibly targeted by virus proteins, such as those involving TAF4 and DNA polymerase phi proteins. Also identified was an FK506-binding protein. FK506-binding protein orthologs have been described as conserved host resistance factors, which suppress dengue and West Nile virus infection in human HeLa cells. This investigation constitutes the first study of the midgut-specific proteome of An. gambiae in relation to alphavirus infection. Our findings offer insight into mosquito immunity, including factors that possibly contribute to the different pathological outcomes observed in vertebrate and insect hosts.
Collapse
Affiliation(s)
- Mark A Rider
- Department of Tropical Medicine, Tulane University, 1430 Tulane Ave, SL-17, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Patra KP, Vinetz JM. New ultrastructural analysis of the invasive apparatus of the Plasmodium ookinete. Am J Trop Med Hyg 2012; 87:412-7. [PMID: 22802443 DOI: 10.4269/ajtmh.2012.11-0609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasion of the mosquito midgut by the Plasmodium ookinete determines the success of transmission of malaria parasites from humans to mosquitoes and therefore, is a potential target for molecular intervention. Here, we show higher-resolution ultrastructural details of developing and mature P. gallinaceum ookinetes than previously available. Improved fixation and processing methods yielded substantially improved transmission electron micrographs of ookinetes, particularly with regard to visualization of subcellular secretory and other organelles. These new images provide new insights into the synthesis and function of vital invasive machinery focused on the following features: apical membrane protrusions presumptively used for attachment and protein secretion, dark spherical bodies at the apical end of the mature ookinete, and the presence of a dense array of micronemes apposed to microtubules at the apical end of the ookinete involved in constitutive secretion. This work advances understanding of the molecular and cellular details of the Plasmodium ookinete and provides the basis of future, more detailed mechanistic experimentation on the biology of the Plasmodium ookinete.
Collapse
Affiliation(s)
- Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0741, USA.
| | | |
Collapse
|
16
|
Aliota MT, Chen CC, Dagoro H, Fuchs JF, Christensen BM. Filarial worms reduce Plasmodium infectivity in mosquitoes. PLoS Negl Trop Dis 2011; 5:e963. [PMID: 21347449 PMCID: PMC3035669 DOI: 10.1371/journal.pntd.0000963] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG). Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness). METHODOLOGY/PRINCIPAL FINDINGS Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis) but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria parasite infections. CONCLUSIONS/SIGNIFICANCE These results could have an impact on vector infection and transmission dynamics in areas where Anopheles transmit both parasites, i.e., the elimination of filarial worms in a co-endemic locale could enhance malaria transmission.
Collapse
Affiliation(s)
- Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cheng-Chen Chen
- Department of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Henry Dagoro
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Jeremy F. Fuchs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce M. Christensen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mueller AK, Kohlhepp F, Hammerschmidt C, Michel K. Invasion of mosquito salivary glands by malaria parasites: prerequisites and defense strategies. Int J Parasitol 2010; 40:1229-35. [PMID: 20621627 DOI: 10.1016/j.ijpara.2010.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Parasitology Unit, Department of Infectious Diseases, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
18
|
Patra KP, Johnson JR, Cantin GT, Yates JR, Vinetz JM. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum. Proteomics 2008; 8:2492-9. [PMID: 18563747 DOI: 10.1002/pmic.200700727] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Delineation of the complement of proteins comprising the zygote and ookinete, the early developmental stages of Plasmodium within the mosquito midgut, is fundamental to understand initial molecular parasite-vector interactions. The published proteome of Plasmodium falciparum does not include analysis of the zygote/ookinete stages, nor does that of P. berghei include the zygote stage or secreted proteins. P. gallinaceum zygote, ookinete, and ookinete-secreted/released protein samples were prepared and subjected to Multidimensional protein identification technology (MudPIT). Peptides of P. gallinaceum zygote, ookinete, and ookinete-secreted proteins were identified by MS/MS, mapped to ORFs (> 50 amino acids) in the extent P. gallinaceum whole genome sequence, and then matched to homologous ORFs in P. falciparum. A total of 966 P. falciparum ORFs encoding orthologous proteins were identified; just over 40% of these predicted proteins were found to be hypothetical. A majority of putative proteins with predicted secretory signal peptides or transmembrane domains were hypothetical proteins. This analysis provides a more comprehensive view of the hitherto unknown proteome of the early mosquito midgut stages of P. falciparum. The results underpin more robust study of Plasmodium-mosquito midgut interactions, fundamental to the development of novel strategies of blocking malaria transmission.
Collapse
Affiliation(s)
- Kailash P Patra
- Department of Medicine, George Palade Laboratories, University of California San Diego, CA 92093, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review highlights progress made in the development of vaccines aimed at the stages of malaria parasites found in mosquitoes that block the transmission of malaria within a community. RECENT FINDINGS Substantial progress has been made on the production and characterization of the leading candidates P25 and P28 from Plasmodium falciparum and P. vivax. Immunogenicity data have been obtained for P25 in humans that showed significant transmission blocking activity and further advances in formulation should boost this activity. The completion of the malaria genome and ongoing proteomics identified further candidate antigens now entering development. SUMMARY Recent advances increase confidence that a mosquito stage transmission blocking malaria vaccine will be feasible.
Collapse
Affiliation(s)
- Allan Saul
- Laboratory of Malaria and Vector Biology, NIAID, NIH, Rockville, Maryland 20852, USA.
| |
Collapse
|
20
|
Sodja A, Fujioka H, Lemos FJA, Donnelly-Doman M, Jacobs-Lorena M. Induction of actin gene expression in the mosquito midgut by blood ingestion correlates with striking changes of cell shape. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:833-9. [PMID: 17537455 PMCID: PMC2756156 DOI: 10.1016/j.jinsphys.2007.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 05/15/2023]
Abstract
Ingestion of a blood meal by the female mosquito Anopheles gambiae (L., Diptera: Culicidae), results in a dramatic distention of the midgut epithelium. Here, we report that these events correlate with a transient increase of actin mRNA and protein abundance. The newly synthesized actin may provide a pool of actin protein needed to remodel epithelial cell cytoarchitecture. We also document changes in midgut epithelial cell morphology. Upon blood ingestion, the columnar cells flatten accompanied by the loss of microvilli on the lumenal side and the unfolding of the labyrinth on the basal side. These changes correlate with the large increase of epithelial surface area needed to accommodate the blood meal. Actin gene expression, actin synthesis and cell morphology all return to the pre-feeding state by 24 h after blood intake.
Collapse
Affiliation(s)
- Ann Sodja
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
21
|
Saxena AK, Wu Y, Garboczi DN. Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines. EUKARYOTIC CELL 2007; 6:1260-5. [PMID: 17557884 PMCID: PMC1951121 DOI: 10.1128/ec.00060-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ajay K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | |
Collapse
|
22
|
Gonzalez-Ceron L, Rodriguez MH, Chavez-Munguia B, Santillan F, Nettel JA, Hernandez-Avila JE. Plasmodium vivax: Impaired escape of Vk210 phenotype ookinetes from the midgut blood bolus of Anopheles pseudopunctipennis. Exp Parasitol 2007; 115:59-67. [PMID: 16875689 DOI: 10.1016/j.exppara.2006.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/04/2006] [Accepted: 06/08/2006] [Indexed: 11/21/2022]
Abstract
The site in the midguts of Anopheles pseudopunctipennis where the development of Plasmodium vivax circumsporozoite protein Vk210 phenotype is blocked was investigated, and compared to its development in An. albimanus. Ookinete development was similar in time and numbers within the blood meal bolus of both mosquito species. But, compared to An. pseudopunctipennis, a higher proportion of An. albimanus were infected (P=0.0001) with higher ookinete (P=0.0001) and oocyst numbers (P=0.0001) on their internal and external midgut surfaces, respectively. Ookinetes were located in the peritrophic matrix (PM), but neither inside epithelial cells nor on the haemocoelic midgut surface by transmission electron microscopy in 24h p.i.-An. pseudopunctipennis mosquito samples. In contrast, no parasites were detected in the PM of An. albimanus at this time point. These results suggest that P. vivax Vk210 ookinetes cannot escape from and are destroyed within the midgut lumen of An. pseudopunctipennis.
Collapse
|
23
|
Vaughan JA. Population dynamics of Plasmodium sporogony. Trends Parasitol 2006; 23:63-70. [PMID: 17188574 DOI: 10.1016/j.pt.2006.12.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/02/2006] [Accepted: 12/11/2006] [Indexed: 11/20/2022]
Abstract
Malaria transmission relies on the sporogonic development of Plasmodium parasites within insect vectors. Sporogony is a complex process that involves several morphologically distinct life-stages and can be described in terms of population dynamics: changes in the abundance and distribution of successive life-stages throughout development. Recent publications on the population dynamics of sporogony are reviewed, with special attention to the differences and similarities among the parasite-vector systems examined thus far. Understanding the population dynamics of malaria parasites within their natural vectors will lead to a better understanding of how malaria parasites survive and are maintained within mosquitoes.
Collapse
Affiliation(s)
- Jefferson A Vaughan
- Department of Biology, University of North Dakota, Grand Forks, ND 58201-9019, USA.
| |
Collapse
|
24
|
Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA. Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Malar J 2006; 5:68. [PMID: 16887043 PMCID: PMC1557861 DOI: 10.1186/1475-2875-5-68] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 08/03/2006] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The population dynamics of Plasmodium sporogony within mosquitoes consists of an early phase where parasite abundance decreases during the transition from gametocyte to oocyst, an intermediate phase where parasite abundance remains static as oocysts, and a later phase where parasite abundance increases during the release of progeny sporozoites from oocysts. Sporogonic development is complete when sporozoites invade the mosquito salivary glands. The dynamics and efficiency of this developmental sequence were determined in laboratory strains of Anopheles dirus, Anopheles minimus and Anopheles sawadwongporni mosquitoes for Plasmodium vivax parasites circulating naturally in western Thailand. METHODS Mosquitoes were fed blood from 20 symptomatic Thai adults via membrane feeders. Absolute densities were estimated for macrogametocytes, round stages (= female gametes/zygotes), ookinetes, oocysts, haemolymph sporozoites and salivary gland sporozoites. From these census data, five aspects of population dynamics were analysed; 1) changes in life-stage prevalence during early sporogony, 2) kinetics of life-stage formation, 3) efficiency of life-stage transitions, 4) density relationships between successive life-stages, and 5) parasite aggregation patterns. RESULTS There was no difference among the three mosquito species tested in total losses incurred by P. vivax populations during early sporogony. Averaged across all infections, parasite populations incurred a 68-fold loss in abundance, with losses of ca. 19-fold, 2-fold and 2-fold at the first (= gametogenesis/fertilization), second (= round stage transformation), and third (= ookinete migration) life-stage transitions, respectively. However, total losses varied widely among infections, ranging from 6-fold to over 2,000-fold loss. Losses during gametogenesis/fertilization accounted for most of this variability, indicating that gametocytes originating from some volunteers were more fertile than those from other volunteers. Although reasons for such variability were not determined, gametocyte fertility was not correlated with blood haematocrit, asexual parasitaemia, gametocyte density or gametocyte sex ratio. Round stages and ookinetes were present in mosquito midguts for up to 48 hours and development was asynchronous. Parasite losses during fertilization and round stage differentiation were more influenced by factors intrinsic to the parasite and/or factors in the blood, whereas ookinete losses were more strongly influenced by mosquito factors. Oocysts released sporozoites on days 12 to 14, but even by day 22 many oocysts were still present on the midgut. The per capita production was estimated to be approximately 500 sporozoites per oocyst and approximately 75% of the sporozoites released into the haemocoel successfully invaded the salivary glands. CONCLUSION The major developmental bottleneck in early sporogony occurred during the transition from macrogametocyte to round stage. Sporozoite invasion into the salivary glands was very efficient. Information on the natural population dynamics of sporogony within malaria-endemic areas may benefit intervention strategies that target early sporogony (e.g., transmission blocking vaccines, transgenic mosquitoes).
Collapse
Affiliation(s)
- Gabriela E Zollner
- Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | - Narong Ponsa
- Department of Entomology, USAMC-AFRIMS, Bangkok, Thailand
| | - Gabriel W Garman
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Shreekanta Poudel
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Jeffrey A Bell
- Department of Entomology, USAMC-AFRIMS, Bangkok, Thailand
| | | | - Russell E Coleman
- Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | - Jefferson A Vaughan
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| |
Collapse
|
25
|
Abstract
The Plasmodium ookinete is the developmental stage of the malaria parasite that invades the mosquito midgut. The ookinete faces two physical barriers in the midgut which it must traverse to become an oocyst: the chitin- and protein-containing peritrophic matrix; and the midgut epithelial cell. This chapter will consider basic aspects of ookinete biology, molecules known to be involved in midgut invasion, and cellular processes of the ookinete that facilitate parasite invasion. Detailed knowledge of these mechanisms may be exploitable in the future towards developing novel strategies of blocking malaria transmission.
Collapse
Affiliation(s)
- J M Vinetz
- Division of Infectious Diseases, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA.
| |
Collapse
|
26
|
Li F, Patra KP, Vinetz JM. An anti-Chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. J Infect Dis 2005; 192:878-87. [PMID: 16088838 PMCID: PMC2265778 DOI: 10.1086/432552] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 04/12/2005] [Indexed: 11/04/2022] Open
Abstract
Indirect evidence has suggested the existence of a second chitinase gene, PgCHT2, in the avian malaria parasite Plasmodium gallinaceum. We have now identified PgCHT2 as the orthologue of the P. falciparum chitinase gene PfCHT1, a malaria transmission-blocking target. Computational phylogenetic evidence and biochemical and cell biological functional data support the hypothesis that an avian-related Plasmodium species was the ancestor of both P. falciparum and P. reichenowi, and this single lineage gave rise to another lineage of malaria parasites, including P. vivax, P. knowlesi, P. berghei, P. yoelii, and P. chabaudi. A recombinant PfCHT1/PgCHT2-neutralizing single-chain antibody significantly reduced P. falciparum and P. gallinaceum parasite transmission to mosquitoes. This single-chain antibody is the first anti-P. falciparum effector molecule to be validated for making a malaria transmission-refractory transgenic Anopheles species mosquito. P. gallinaceum is a relevant animal model that facilitates a mechanistic understanding of P. falciparum invasion of the mosquito midgut.
Collapse
Affiliation(s)
- Fengwu Li
- Division of Infectious Diseases, Department of Medicine, University of California-San Diego School of Medicine, La Jolla, California 92093-0640, USA
| | | | | |
Collapse
|
27
|
Warburg A, Miller LH. Critical stages in the development of Plasmodium in mosquitoes. ACTA ACUST UNITED AC 2005; 7:179-81. [PMID: 15463488 DOI: 10.1016/0169-4758(91)90127-a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One tool for the control of malaria that may become available to future generations of public health workers is the introduction of genes into the Anopheline vector populations that will render the mosquitoes refractory to Plasmodium. Insights from basic research that could transform this idea into a technical reality are presently lacking. In this review, Alon Warburg and Louis Miller focus on one crucial area of research: the identification of potentially vulnerable points in the developmental cycle of Plasmodium in mosquitoes.
Collapse
Affiliation(s)
- A Warburg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Baton LA, Ranford-Cartwright LC. Do malaria ookinete surface proteins P25 and P28 mediate parasite entry into mosquito midgut epithelial cells? Malar J 2005; 4:15. [PMID: 15733320 PMCID: PMC555762 DOI: 10.1186/1475-2875-4-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Accepted: 02/25/2005] [Indexed: 11/30/2022] Open
Abstract
Background P25 and P28 are related ookinete surface proteins highly conserved throughout the Plasmodium genus that are under consideration as candidates for inclusion in transmission-blocking vaccines. Previous research using transgenic rodent malaria parasites lacking P25 and P28 has demonstrated that these proteins have multiple partially redundant functions during parasite infection of the mosquito vector, including an undefined role in ookinete traversal of the mosquito midgut epithelium, and it has been suggested that, unlike wild-type parasites, Dko P25/P28 parasites migrate across the midgut epithelium via an intercellular, rather than intracellular, route. Presentation of the hypothesis This paper presents an alternative interpretation for the previous observations of Dko P25/P28 parasites, based upon a recently published model of the route of ookinete invasion across the midgut epithelium. This model claims ookinete invasion is intracellular, with entry occurring through the lateral apical plasma membrane of midgut epithelial cells, and is associated with significant invagination of the midgut epithelium localised at the site of parasite penetration. Following this model, it is hypothesized that: (1) a sub-population of Dko P25/P28 ookinetes invaginate, but do not penetrate, the apical surface of the midgut epithelium and thus remain within the midgut lumen; and (2) another sub-population of Dko P25/P28 parasites successfully enters and migrates across the midgut epithelium via an intracellular route similar to wild-type parasites and subsequently develops into oocysts. Testing the hypothesis These hypotheses are tested by showing how they can account for previously published observations and incorporate them into a coherent and consistent explanatory framework. Based upon these hypotheses, several quantitative predictions are made, which can be experimentally tested, about the relationship between the densities of invading Dko P25/P28 ookinetes in different regions of the midgut epithelium and the number of oocyst stage parasites to which these mutant ookinetes give rise. Implications of the hypothesis The recently published model of ookinete invasion implies that Dko P25/P28 parasites are greatly, although not completely, impaired in their ability to enter the midgut epithelium. Therefore, P25 and/or P28 have a novel, previously unrecognized, function in mediating ookinete entry into midgut epithelial cells, suggesting that one mode of action of transmission-blocking antibodies to these ookinete surface proteins is to inhibit this function.
Collapse
Affiliation(s)
- Luke A Baton
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lisa C Ranford-Cartwright
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
29
|
Devenport M, Fujioka H, Donnelly-Doman M, Shen Z, Jacobs-Lorena M. Storage and secretion of Ag-Aper14, a novel peritrophic matrix protein, and Ag-Muc1 from the mosquito Anopheles gambiae. Cell Tissue Res 2005; 320:175-85. [PMID: 15726420 DOI: 10.1007/s00441-004-1067-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
The gene Ag-Aper14 encodes a novel peritrophic matrix (or peritrophic membrane; PM) protein in the mosquito Anopheles gambiae. The Ag-Aper14 protein is merely 89 amino acids long and has a single putative chitin-binding domain. Prior to blood feeding, the Ag-Aper14 protein is stored in secretory vesicles next to the epithelial cell lumenal surface. Immunoelectron microscopy has revealed that Ag-Aper14 co-localizes to the same secretory vesicles as another PM protein, Ag-Aper1, indicating a common mode of regulated secretion. Conversely, Ag-Muc1, an epithelial cell-surface protein, does not co-localize to these secretory vesicles and is detected only on the cell surface. After blood feeding, Ag-Aper14 is secreted and incorporated into the PM that surrounds the ingested blood.
Collapse
Affiliation(s)
- M Devenport
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
30
|
Gouagna LC, Bonnet S, Gounoue R, Verhave JP, Eling W, Sauerwein R, Boudin C. Stage-specific effects of host plasma factors on the early sporogony of autologous Plasmodium falciparum isolates within Anopheles gambiae. Trop Med Int Health 2004; 9:937-48. [PMID: 15361106 DOI: 10.1111/j.1365-3156.2004.01300.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Quantitatively assessing the impact of naturally occurring transmission-blocking (TB) immunity on malaria parasite sporogonic development may provide a useful interpretation of the underlying mechanisms. Here, we compare the effects of plasma derived from 23 naturally infected gametocyte carriers (OWN) with plasma from donors without previous malaria exposure (AB) on the early sporogonic development of Plasmodium falciparum in Anopheles gambiae. Reduced parasite development efficiency was associated with mosquitoes taking a blood meal mixed with the gametocyte carriers' own plasma, whereas replacing autologous plasma with non-immune resulted in the highest level of parasite survival. Seven days after an infective blood meal, 39.1% of the gametocyte carriers' plasma tested showed TB activity as only a few macrogametocytes ingested along with immune plasma ended up as ookinetes but subsequent development was blocked in the presence of immune plasma. In other experiments (60.9%), the effective number of parasites declined dramatically from one developmental stage to the next, and resulted in an infection rate that was two-fold lower in OWN than in AB infection group. These findings are in agreement with those in other reports and go further by quantitatively examining at which transition stages TB immunity exerts its action. The transitions from macrogametocytes to gamete/zygote and from gamete/zygote to ookinete were identified as main targets. However, the net contribution of host plasma factors to these interstage parasite reductions was low (5-20%), suggesting that irrespective of the host plasma factors, mosquito factors might also lower the survival level of parasites during the early sporogonic development.
Collapse
Affiliation(s)
- L C Gouagna
- Unité de Paludologie, Organisation de Coordination pour la Lutte contre les Endèmies en Afrique Centrale, Yaoundé, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
31
|
Devenport M, Fujioka H, Jacobs-Lorena M. Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2004; 13:349-358. [PMID: 15271206 DOI: 10.1111/j.0962-1075.2004.00488.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The gene Ag-Aper1 encodes a peritrophic matrix (PM) protein from the mosquito Anopheles gambiae. Ag-Aper1 gene expression and protein localization in the mosquito midgut were studied during the course of a blood meal. Ag-Aper1 mRNA abundance does not change appreciably during the course of blood ingestion and digestion. Prior to a blood meal, the protein is stored in secretory vesicles of midgut epithelial cells. Moreover, Ag-Aper1 colocalizes to the same secretory vesicles as trypsin, indicating that these proteins use a common secretory pathway. Blood feeding triggers the secretion of vesicle contents into the midgut lumen, after which Ag-Aper1 is incorporated into the PM. Newly synthesized Ag-Aper1 protein was again detected within the midgut epithelial cells at 60 h after blood ingestion.
Collapse
Affiliation(s)
- M Devenport
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|
32
|
Siden-Kiamos I, Louis C. Interactions between malaria parasites and their mosquito hosts in the midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:679-685. [PMID: 15242709 DOI: 10.1016/j.ibmb.2004.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
This review examines what is presently known of the molecular interactions between Plasmodium and Anopheles that take place in the latter's midgut upon ingestion of the parasites with an infectious blood meal. In order to become 'established' in the gut and to transform into a sporozoite-producing oocyst, the malaria parasite needs to undergo different developmental steps that are often characterized by the use of selected resources provided by the mosquito vector. Moreover, some of these resources may be used by the parasite in order to overcome the insect host's defence mechanisms. The molecular partners of this interplay are now in the process of being defined and analyzed for both Plasmodium and mosquito and, thus, understood; these will be presented here in some detail.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, 71110 Heraklion, Greece
| | | |
Collapse
|
33
|
Morlais I, Mori A, Schneider JR, Severson DW. A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti. Mol Genet Genomics 2003; 269:753-64. [PMID: 14513362 DOI: 10.1007/s00438-003-0882-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 06/06/2003] [Indexed: 10/26/2022]
Abstract
The malaria parasite, Plasmodium, has evolved an intricate life cycle that includes stages specific to a mosquito vector and to the vertebrate host. The mosquito midgut represents the first barrier Plasmodium parasites encounter following their ingestion with a blood meal from an infected vertebrate. Elucidation of the molecular interaction between the parasite and the mosquito could help identify novel approaches to preventing parasite development and subsequent transmission to vertebrates. We have used an integrated Bulked Segregant Analysis-Differential Display (BSA-DD) approach to target genes expressed that are in the midgut and located within two genome regions involved in determining susceptibility to P. gallinaceum in the mosquito Aedes aegypti. A total of twenty-two genes were identified and characterized, including five genes with no homologues in public sequence databases. Eight of these genes were mapped genetically to intervals on chromosome 2 that contain two quantitative trait loci (QTLs) that determine susceptibility to infection by P. gallinaceum. Expression analysis revealed several expression patterns, and ten genes were specifically or preferentially expressed in the midgut of adult females. Real-time PCR quantification of expression with respect to the time of blood meal ingestion and infection status in mosquito strains permissive and refractory for malaria revealed a differential expression pattern for seven genes. These represent candidate genes that may influence the ability of the mosquito vector to support the development of Plasmodium parasites. Here we describe their isolation and discuss their putative roles in parasite-mosquito interactions and their use as potential targets in strategies designed to block transmission of malaria.
Collapse
Affiliation(s)
- I Morlais
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
34
|
Bhatnagar RK, Arora N, Sachidanand S, Shahabuddin M, Keister D, Chauhan VS. Synthetic propeptide inhibits mosquito midgut chitinase and blocks sporogonic development of malaria parasite. Biochem Biophys Res Commun 2003; 304:783-7. [PMID: 12727225 DOI: 10.1016/s0006-291x(03)00682-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Incessant transmission of the parasite by mosquitoes makes most attempts to control malaria fail. Blocking of parasite transmission by mosquitoes therefore is a rational strategy to combat the disease. Upon ingestion of blood meal mosquitoes secrete chitinase into the midgut. This mosquito chitinase is a zymogen which is activated by the removal of a propeptide from the N-terminal. Since the midgut peritrophic matrix acts as a physical barrier, the activated chitinase is likely to contribute to the further development of the malaria parasite in the mosquito. Earlier it has been shown that inhibiting chitinase activity in the mosquito midgut blocked sporogonic development of the malaria parasite. Since synthetic propeptides of several zymogens have been found to be potent inhibitors of their respective enzymes, we tested propeptide of mosquito midgut chitinase as an inhibitor and found that the propeptide almost completely inhibited the recombinant or purified native Anopheles gambiae chitinase. We also examined the effect of the inhibitory peptide on malaria parasite development. The result showed that the synthetic propeptide blocked the development of human malaria parasite Plasmodium falciparum in the African malaria vector An. gambiae and avian malaria parasite Plasmodium gallinaceum in Aedes aegypti mosquitoes. This study implies that the expression of inhibitory mosquito midgut chitinase propeptide in response to blood meal may alter the mosquito's vectorial capacity. This may lead to developing novel strategies for controlling the spread of malaria.
Collapse
Affiliation(s)
- Raj K Bhatnagar
- International Center for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, P.O. Box 10504, New Delhi 1100 67, India.
| | | | | | | | | | | |
Collapse
|
35
|
Moorthy SAV, Ramasamy R, Ramasamy MS. Antigenic relationships between adult and larval Anopheles tessellatus midgut glycoproteins and the midguts of other vector mosquitoes. MEDICAL AND VETERINARY ENTOMOLOGY 2003; 17:26-32. [PMID: 12680921 DOI: 10.1046/j.1365-2915.2003.00400.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glycoproteins expressed on the surface of midgut (MG) epithelium and the peritrophic matrix (PM) of vector mosquitoes (Diptera: Culicidae) are candidate molecules for interacting with pathogens. Antisera produced against Anopheles tessellatus Theobald female MG lectin-binding proteins (concanavalin A and wheat germ agglutinin) were used in Western blots to investigate MG/PM antigenic relationships between adult and larval An. tessellatus and with the MG glycoproteins of other vector mosquitoes: Anopheles culicifacies Giles, An. subpictus Grassi, An. varuna Iyengar, Aedes aegypti (L.) and Culex quinquefasciatus Say. Within An. tessellatus, strong antigenic cross-reactions were observed between adult and larval MG proteins, and between adult MG and PM proteins. Anopheles tessellatus adult MG antisera reacted with MG antigens from adult females of the other five mosquito species, with interspecific contrasts of relative molecular mass (Mr) of nearly all reacting antigens, except the strong 36 kDa band shared by An. tessellatus and Cx. quinquefasciatus. Cross-reactivity within female An. tessellatus may be due to the MG containing precursors to the PM glycoproteins and/or some common fully processed proteins, or perhaps carbohydrate epitopes that are shared between related or unrelated MG and PM glycoproteins. Cross-reactions between adult MG proteins from different mosquito species, mostly with differential Mr, reflect the presence of homologous proteins that may be relevant to specific vector competence.
Collapse
Affiliation(s)
- S A V Moorthy
- Entomology Laboratory, Division of Life Sciences, Institute of Fundamental Studies, Kandy, Sri Lanka.
| | | | | |
Collapse
|
36
|
Langer RC, Li F, Popov V, Kurosky A, Vinetz JM. Monoclonal antibody against the Plasmodium falciparum chitinase, PfCHT1, recognizes a malaria transmission-blocking epitope in Plasmodium gallinaceum ookinetes unrelated to the chitinase PgCHT1. Infect Immun 2002; 70:1581-90. [PMID: 11854247 PMCID: PMC127816 DOI: 10.1128/iai.70.3.1581-1590.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To initiate invasion of the mosquito midgut, Plasmodium ookinetes secrete chitinases that are necessary to cross the chitin-containing peritrophic matrix en route to invading the epithelial cell surface. To investigate chitinases as potential immunological targets of blocking malaria parasite transmission to mosquitoes, a monoclonal antibody (MAb) was identified that neutralized the enzymatic activity of the sole chitinase of Plasmodium falciparum, PfCHT1, identified to date. This MAb, designated 1C3, previously shown to react with an apical structure of P. falciparum ookinetes, also reacts with a discrete apical structure of P. gallinaceum ookinetes. In membrane feeding assays, MAb 1C3 markedly inhibited P. gallinaceum oocyst development in mosquito midguts. MAb 1C3 affinity isolated an approximately 210-kDa antigen which, under reducing conditions, became a 35-kDa antigen. This isolated 35-kDa protein cross-reacted with an antiserum raised against a synthetic peptide derived from the P. gallinaceum chitinase active site, PgCHT1, even though MAb 1C3 did not recognize native or recombinant PgCHT1 on Western blot. Therefore, this affinity-purified 35-kDa antigen appears similar to a previously identified protein, PgCHT2, a putative second chitinase of P. gallinaceum. Epitope mapping indicated MAb 1C3 recognized a region of PfCHT1 that diverges from a homologous amino acid sequence conserved within sequenced chitinases of P. berghei, P. yoelii, and P. gallinaceum (PgCHT1). A synthetic peptide derived from the mapped 1C3 epitope may be useful as a component of a subunit transmission-blocking vaccine.
Collapse
Affiliation(s)
- Rebecca C Langer
- World Health Organization Collaborating Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
37
|
Zieler H, Keister DB, Dvorak JA, Ribeiro JM. A snake venom phospholipase A2 blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. J Exp Biol 2001; 204:4157-67. [PMID: 11809789 DOI: 10.1242/jeb.204.23.4157] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Oocyst formation is a critical stage in the development of the malaria parasite in the mosquito. We have discovered that the phospholipase A2 (PLA2) from the venom of the eastern diamondback rattlesnake (Crotalus adamanteus) inhibits oocyst formation when added to infected chicken blood and fed to mosquitoes. A similar transmission-blocking activity was demonstrated for PLA2s from the venom of other snakes and from the honeybee. This effect is seen both with the avian malaria parasite Plasmodium gallinaceum and with the human parasite Plasmodium falciparum developing in their respective mosquito hosts. The inhibition occurs even in the presence of an irreversible inhibitor of the active site of PLA2, indicating that the hydrolytic activity of the enzyme is not required for the antiparasitic effect. Inhibition is also seen when the enzyme is fed to mosquitoes together with ookinetes, suggesting that the inhibition occurs after ookinete maturation. PLA2 has no direct effect on the parasite. However, pretreatment of midguts with PLA2 (catalytically active or inactive) dramatically lowers the level of ookinete/midgut association in vitro. It appears, therefore, that PLA2 is acting by associating with the midgut surface and preventing ookinete attachment to this surface. Thus, PLA2 is an excellent candidate for expression in transgenic mosquitoes as a means of inhibiting the transmission of malaria.
Collapse
Affiliation(s)
- H Zieler
- Medical Entomology Section, Malaria Vaccines Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA.
| | | | | | | |
Collapse
|
38
|
Tomas AM, Margos G, Dimopoulos G, van Lin LH, de Koning-Ward TF, Sinha R, Lupetti P, Beetsma AL, Rodriguez MC, Karras M, Hager A, Mendoza J, Butcher GA, Kafatos F, Janse CJ, Waters AP, Sinden RE. P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J 2001; 20:3975-83. [PMID: 11483501 PMCID: PMC149139 DOI: 10.1093/emboj/20.15.3975] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ookinete surface proteins (P25 and P28) are proven antimalarial transmission-blocking vaccine targets, yet their biological functions are unknown. By using single (Sko) and double gene knock-out (Dko) Plasmodium berghei parasites, we show that P25 and P28 share multiple functions during ookinete/oocyst development. In the midgut of mosquitoes, the formation of ookinetes lacking both proteins (Dko parasites) is significantly inhibited due to decreased protection against lethal factors, including protease attack. In addition, Dko ookinetes have a much reduced capacity to traverse the midgut epithelium and to transform into the oocyst stage. P25 and P28 are partially redundant in these functions, since the efficiency of ookinete/oocyst development is only mildly compromised in parasites lacking either P25 or P28 (Sko parasites) compared with that of Dko parasites. The fact that Sko parasites are efficiently transmitted by the mosquito is a compelling reason for including both target antigens in transmission-blocking vaccines.
Collapse
Affiliation(s)
| | - Gabriele Margos
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - George Dimopoulos
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | | | | | - Ria Sinha
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Pietro Lupetti
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Annette L. Beetsma
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Maria C. Rodriguez
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Marianna Karras
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Ariadne Hager
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Jacqui Mendoza
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Geoffrey A. Butcher
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | - Fotis Kafatos
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| | | | | | - Robert E. Sinden
- Leiden University Medical Centre, Laboratory of Parasitology, PO Box 9605, 2300 RC Leiden, The Netherlands,
Imperial College of Science, Technology and Medicine, Biology Department, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany and Unit of Electron Microscopy and Cryotechniques, Dipartimento Biologia Evolutiva, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy Corresponding author e-mail:
| |
Collapse
|
39
|
Langer RC, Vinetz JM. Plasmodium ookinete-secreted chitinase and parasite penetration of the mosquito peritrophic matrix. Trends Parasitol 2001; 17:269-72. [PMID: 11378031 DOI: 10.1016/s1471-4922(01)01918-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Malaria transmission-blocking strategies aimed at disrupting parasite-mosquito interactions have the potential to make important contributions to global malaria control. It has been suggested that Plasmodium-secreted chitinase plays a crucial role in allowing the ookinete to initiate its invasion of the mosquito midgut, which suggests that this enzyme is a candidate target for blocking malaria transmission. In this review, the authors discuss Plasmodium chitinases from the molecular, biochemical and cell biology viewpoints. Future directions of study could involve developing strategies for interrupting the function of Plasmodium chitinases within the mosquito midgut, including transmission-blocking drugs or vaccines, or the development of chitinase-inhibitor-producing transgenic mosquitoes.
Collapse
Affiliation(s)
- R C Langer
- WHO Collaborating Center for Tropical Diseases, University of Texas Medical Branch, Keiller 2.138, 301 University Blvd, Galveston, TX 77555-0609, USA
| | | |
Collapse
|
40
|
Gonzalez-Ceron L, Rodriguez MH, Santillan F, Chavez B, Nettel JA, Hernandez-Avila JE, Kain KC. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites. Exp Parasitol 2001; 98:152-61. [PMID: 11527438 DOI: 10.1006/expr.2001.4626] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anopheles albimanus and An. pseudopunctipennis differ in their susceptibilities to Plasmodium vivax circumsporozoite phenotypes. An. pseudopunctipennis is susceptible to phenotype VK247 but almost refractory to VK210. In contrast, An. albimanus is almost refractory to VK247 but susceptible to VK210. To investigate the site in the mosquito and the parasite stage at which resistance mechanisms affect VK247 development in An. albimanus, parasite development was followed in a series of experiments in which both mosquitoes species were simultaneously infected with blood from patients. Parasite phenotype was determined in mature oocysts and salivary gland sporozoites by use of immunofluorescence and Western blot assays and/or gene identification. Ookinete maturation and their densities within the bloodmeal bolus were similar in both mosquito species. Ookinete densities on the internal midgut surface of An. albimanus were 4.7 times higher than those in An. pseudopunctipennis; however, the densities of developing oocysts on the external midgut surface were 6.12 times higher in the latter species. Electron microscopy observation of ookinetes in An. albimanus midgut epithelium indicated severe parasite damage. These results indicate that P. vivax VK247 parasites are destroyed at different parasite stages during migration in An. albimanus midguts. A portion, accumulated on the internal midgut surface, is probably destroyed by the mosquito's digestive enzymes and another portion is most likely destroyed by mosquito defense molecules within the midgut epithelium. A third group, reaching the external midgut surface, initiates oocyst development, but over 90% of them interrupt their development and die. The identification of mechanisms that participate in parasite destruction could provide new elements to construct transgenic mosquitoes resistant to malaria parasites.
Collapse
Affiliation(s)
- L Gonzalez-Ceron
- Centro de Investigación de Paludismo, Instituto Nacional de Salud Pública, 4 Norte and 19 Poniente, 30700 Tapachula, Chiapas, Mexico
| | | | | | | | | | | | | |
Collapse
|
41
|
Morlais I, Severson DW. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. Genetics 2001; 158:1125-36. [PMID: 11454761 PMCID: PMC1461701 DOI: 10.1093/genetics/158.3.1125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions.
Collapse
Affiliation(s)
- I Morlais
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
42
|
Tsai YL, Hayward RE, Langer RC, Fidock DA, Vinetz JM. Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut. Infect Immun 2001; 69:4048-54. [PMID: 11349075 PMCID: PMC98468 DOI: 10.1128/iai.69.6.4048-4054.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To initiate invasion of the mosquito midgut, Plasmodium ookinetes secrete chitinolytic activity to penetrate the peritrophic matrix surrounding the blood meal. While ookinetes of the avian malaria parasite Plasmodium gallinaceum appear to secrete products of two chitinase genes, to date only one chitinase gene, PfCHT1, has been identified in the nearly completed Plasmodium falciparum strain 3D7 genome database. To test the hypothesis that the single identified chitinase of P. falciparum is necessary for ookinete invasion, the PfCHT1 gene was disrupted 39 bp upstream of the stop codon. PfCHT1-disrupted parasites had normal gametocytogenesis, exflagellation, and ookinete formation but were markedly impaired in their ability to form oocysts in Anopheles freeborni midguts. Confocal microscopy demonstrated that the truncated PfCHT1 protein was present in mutant ookinetes but that the concentration of mutant PfCHT1 within the apical end of the ookinetes was substantially reduced. These data suggest that full-length PfCHT1 is essential for intracellular trafficking and secretion and that the PfCHT1 gene product is necessary for ookinetes to invade the mosquito midgut.
Collapse
Affiliation(s)
- Y L Tsai
- WHO Collaborating Center for Tropical Diseases, Department of Pathology, University of Texas Medical Branch, Galveston 77555-0609, USA
| | | | | | | | | |
Collapse
|
43
|
Shahabuddin M, Costero A. Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:231-240. [PMID: 11167092 DOI: 10.1016/s0965-1748(00)00142-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mosquitoes transmit malaria, but only a few species permit the complete development and transmission of the parasite. Also, only a fraction of the ingested parasites develop in the vector. The attrition occurs in different compartments during the parasite's complex developmental scheme in the insect. A number of factors, both physical and biochemical, that affect the development have been proposed or demonstrated. Each of these factors is located within a specific space in the insect. We have divided this space into six compartments, which are distinct in their biochemical and biophysical nature: Endoperitrophic space, Peritrophic matrix, Ectopretrophic space, Midgut epithelium, Haemocoel and Salivary gland. Because factors that influence a particular stage of parasite development share the same microenvironment within these compartments, they must be considered collectively to exploit them for designing effective transmission blocking strategies. In this article we discuss these factors according to their spatial location in the mosquito.
Collapse
Affiliation(s)
- M Shahabuddin
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA.
| | | |
Collapse
|
44
|
Stowers AW, Keister DB, Muratova O, Kaslow DC. A region of Plasmodium falciparum antigen Pfs25 that is the target of highly potent transmission-blocking antibodies. Infect Immun 2000; 68:5530-8. [PMID: 10992450 PMCID: PMC101502 DOI: 10.1128/iai.68.10.5530-5538.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Each of the four epidermal growth factor (EGF)-like domains of the Plasmodium falciparum sexual-stage antigen Pfs25 has been individually expressed as a yeast-secreted recombinant protein (yEGF1 through yEGF4). All four are recognized by the immune sera of animals and humans vaccinated with TBV25H (the corresponding yeast-secreted full-length recombinant form of Pfs25), with antibody titers to yEGF1 and yEGF2 weakly correlating with the ability of the sera to block the transmission of parasites to the mosquito host. All four proteins are poorly immunogenic in mice vaccinated with aluminum hydroxide-absorbed formulations. However, all four successfully primed the mice to mount an effective secondary antibody response after a single boost with TBV25H. Sera from mice vaccinated with yEGF2-TBV25H completely block the development of oocysts in mosquito midguts in membrane-feeding assays. Further, of the four proteins, only the depletion of antibodies to yEGF2 from the sera of rabbits vaccinated with TBV25H consistently abolished the ability of those sera to block oocyst development. Thus, antibodies to the second EGF-like domain of Pfs25 appear to mediate a very potent blocking activity, even at low titers. Vaccination strategies that target antibody response towards this domain may improve the efficacy of future transmission-blocking vaccines.
Collapse
Affiliation(s)
- A W Stowers
- Malaria Vaccine Development Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0425, USA.
| | | | | | | |
Collapse
|
45
|
Shahabuddin M, Vinetz JM. Chitinases of human parasites and their implications as antiparasitic targets. EXS 2000; 87:223-34. [PMID: 10906963 DOI: 10.1007/978-3-0348-8757-1_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pathogens causing a number of human and animal diseases use chitin and chitinases in their life cycles. Most of these diseases are caused by protozoan or metazoan pathogenic parasites. Some of these parasites contain chitin coats that protect them from the harsh conditions in the animal body or the environment. Some pathogens use chitinase to invade or exploit the chitin-containing structures of their host to establish successful infection or to be transmitted from one vertebrate to another via insect vectors. Recent studies indicate that each of these organisms has evolved to use chitin and chitinases differently and in a developmental stage-specific manner. Genes of many of these pathogenic parasites have been isolated, and the predicted amino acid sequences show a great deal of diversity. In this chapter we will discuss the roles chitin and chitinases play in several animal diseases, the strategies used to clone the chitinase genes from various parasites and the usefulness of chitinases as preventive or therapeutic agents.
Collapse
Affiliation(s)
- M Shahabuddin
- Medical Entomology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | |
Collapse
|
46
|
Vinetz JM, Valenzuela JG, Specht CA, Aravind L, Langer RC, Ribeiro JM, Kaslow DC. Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. J Biol Chem 2000; 275:10331-41. [PMID: 10744721 DOI: 10.1074/jbc.275.14.10331] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium ookinete produces chitinolytic activity that allows the parasite to penetrate the chitin-containing peritrophic matrix surrounding the blood meal in the mosquito midgut. Since the peritrophic matrix is a physical barrier that the parasite must cross to invade the mosquito, and the presence of allosamidin, a chitinase inhibitor, in a blood meal prevents the parasite from invading the midgut epithelium, chitinases (3.2.1.14) are potential targets of malaria parasite transmission-blocking interventions. We have purified a chitinase of the avian malaria parasite Plasmodium gallinaceum and cloned the gene, PgCHT1, encoding it. PgCHT1 encodes catalytic and substrate-binding sites characteristic of family 18 glycohydrolases. Expressed in Escherichia coli strain AD494 (DE3), recombinant PgCHT1 was found to hydrolyze polymeric chitin, native chitin oligosaccharides, and 4-methylumbelliferone derivatives of chitin oligosaccharides. Allosamidin inhibited recombinant PgCHT1 with an IC(50) of 7 microM and differentially inhibited two chromatographically separable P. gallinaceum ookinete-produced chitinase activities with IC(50) values of 7 and 12 microM, respectively. These two chitinase activities also had different pH activity profiles. These data suggest that the P. gallinaceum ookinete uses products of more than one chitinase gene to initiate mosquito midgut invasion.
Collapse
Affiliation(s)
- J M Vinetz
- World Health Organization Collaborating Center for Tropical Diseases, Department of Pathology, the University of Texas Medical Branch, Galveston, Texas 77615, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Vinetz JM, Dave SK, Specht CA, Brameld KA, Xu B, Hayward R, Fidock DA. The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proc Natl Acad Sci U S A 1999; 96:14061-6. [PMID: 10570198 PMCID: PMC24190 DOI: 10.1073/pnas.96.24.14061] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within hours after the ingestion of a blood meal, the mosquito midgut epithelium synthesizes a chitinous sac, the peritrophic matrix. Plasmodium ookinetes traverse the peritrophic matrix while escaping the mosquito midgut. Chitinases (EC 3.2.1.14) are critical for parasite invasion of the midgut: the presence of the chitinase inhibitor, allosamidin, in an infectious blood meal prevents oocyst development. A chitinase gene, PgCHT1, recently has been identified in the avian malaria parasite P. gallinaceum. We used the sequence of PgCHT1 to identify a P. falciparum chitinase gene, PfCHT1, in the P. falciparum genome database. PfCHT1 differs from PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains. PfCHT1 was expressed as an active recombinant enzyme in Escherichia coli. PfCHT1 shares with PgCHT1 a substrate preference unique to Plasmodium chitinases: the enzymes cleave tri- and tetramers of GlcNAc from penta- and hexameric oligomers and are unable to cleave smaller native chitin oligosaccharides. The pH activity profile of PfCHT1 and its IC(50) (40 nM) to allosamidin are distinct from endochitinase activities secreted by P. gallinaceum ookinetes. Homology modeling predicts that PgCHT1 has a novel pocket in the catalytic active site that PfCHT1 lacks, which may explain the differential sensitivity of PfCHT1 and PgCHT1 to allosamidin. PfCHT1 may be the ortholog of a second, as yet unidentified, chitinase gene of P. gallinaceum. These results may allow us to develop novel strategies of blocking human malaria transmission based on interfering with P. falciparum chitinase.
Collapse
Affiliation(s)
- J M Vinetz
- WHO Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Cociancich SO, Park SS, Fidock DA, Shahabuddin M. Vesicular ATPase-overexpressing cells determine the distribution of malaria parasite oocysts on the midguts of mosquitoes. J Biol Chem 1999; 274:12650-5. [PMID: 10212245 DOI: 10.1074/jbc.274.18.12650] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Plasmodium-infected mosquitoes, oocysts are preferentially located at the posterior half of the posterior midgut. Because mosquitoes rest vertically after feeding, the effect of gravity on the ingested blood has been proposed as the cause of such a biased distribution. In this paper, we examined the oocyst distribution on the midguts of mosquitoes that were continuously rotated to nullify the effect of gravity and found that the typical pattern of oocyst distribution did not change. Invasion of the midgut epithelium by ookinetes was similarly found to be biased toward the posterior part of the posterior midgut. We examined whether the distribution of oocysts depends on the distribution of vesicular ATPase (V-ATPase)-overexpressing cells that Plasmodium ookinetes preferentially use to cross the midgut epithelium. An antiserum raised against recombinant Aedes aegypti V-ATPase B subunit indicated that the majority of V-ATPase-overexpressing cells in Ae. aegypti and Anopheles gambiae are localized at the posterior part of the posterior midgut. We propose that the typical distribution of oocysts on the mosquito midgut is attributable to the presence and the spatial distribution of the V-ATPase-overexpressing cells in the midgut epithelium.
Collapse
Affiliation(s)
- S O Cociancich
- Medical Entomology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | | | |
Collapse
|
49
|
Vernick KD, Fujioka H, Aikawa M. Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector. Exp Parasitol 1999; 91:362-6. [PMID: 10092481 DOI: 10.1006/expr.1998.4388] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria ookinetes invade midgut epithelial cells of the mosquito vector from the bloodmeal in the lumen of the mosquito midgut, but the cellular interactions of ookinetes with the mosquito vector remain poorly described. We describe here a novel morphology of Plasmodium gallinaceum ookinetes in which the central portion of the ookinete is an elongated narrow tube or stalk joining the anterior and posterior portions of the parasite. We propose that the previously undescribed stalkform ookinete may be an adaptation to facilitate parasite locomotion through the cytoplasm of mosquito midgut epithelial cells.
Collapse
Affiliation(s)
- K D Vernick
- Department of Medical and Molecular Parasitology, New York University School of Medicine, 341 East 25th Street, New York, New York, 10010, USA.
| | | | | |
Collapse
|
50
|
Zieler H, Nawrocki JP, Shahabuddin M. Plasmodium gallinaceum ookinetes adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. J Exp Biol 1999; 202:485-95. [PMID: 9929452 DOI: 10.1242/jeb.202.5.485] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the course of its development in the mosquito and transmission to a new vertebrate host, the malaria parasite must interact with the mosquito midgut and invade the gut epithelium. To investigate how the parasite recognizes the midgut before invasion, we have developed an in vitro adhesion assay based on combining fluorescently labelled ookinetes with isolated midgut epithelia from blood-fed mosquitoes. Using this assay, we found that Plasmodium gallinaceum ookinetes readily adhered to midguts of Aedes aegypti, mimicking the natural recognition of the epithelium by the parasite. This interaction is specific: the ookinetes preferentially adhered to the lumen (microvillar) side of the gut epithelium and did not bind to other mosquito tissues. Conversely, the binding was not due to a non-specific adhesive property of the midguts, because a variety of other cell types, including untransformed P. gallinaceum zygotes or macrogametes, did not show similar binding to the midguts. High concentrations of glycosylated (fetuin, orosomucoid, ovalbumin) or non-glycosylated (bovine serum albumin) proteins, added as non-specific competitors, failed to compete with the ookinetes in binding assays. We also found that the adhesion of ookinetes to the midgut surface is necessary for sporogonic development of the parasite in the mosquito. Antibodies and other reagents that blocked adhesion in vitro also reduced oocyst formation when these reagents were combined with mature ookinetes and fed to mosquitoes. Chemical modification of the midguts with sodium periodate at pH 5.5 destroyed adhesion, indicating that the ookinete binds to a carbohydrate ligand on the surface of the midgut. The ligand is sensitive to periodate concentrations of less than 1 mmol l-1, suggesting that it may contain sialic-acid-like sugars. Furthermore, free N-acetylneuraminic acid competed with the ookinetes in binding aasays, while other monosaccharides had no effect. However, in agreement with the current belief that adult insects do not contain sialic acids, we were unable to detect any sialic acids in mosquito midguts using the most sensitive HPLC-based fluorometric assay currently available. We postulate that a specific carbohydrate group is used by the ookinete to recognize the midgut epithelium and to attach to its surface. This is the first receptor-ligand interaction demonstrated for the ookinete stage of a malaria parasite. Further characterization of the midgut ligand and its parasite counterpart may lead to novel strategies of blocking oocyst development in the mosquito.
Collapse
Affiliation(s)
- H Zieler
- Medical Entomology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | |
Collapse
|