1
|
Maldonado-Hernández R, Quesada O, Colón-Sáez JO, Lasalde-Dominicci JA. Sequential purification and characterization of Torpedo californica nAChR-DC supplemented with CHS for high-resolution crystallization studies. Anal Biochem 2020; 610:113887. [PMID: 32763308 DOI: 10.1016/j.ab.2020.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Over the past 10 years we have been developing a multi-attribute analytical platform that allows for the preparation of milligram amounts of functional, high-pure, and stable Torpedo (muscle-type) nAChR detergent complexes for crystallization purpose. In the present work, we have been able to significantly improve and optimize the purity and yield of nicotinic acetylcholine receptors in detergent complexes (nAChR-DC) without compromising stability and functionality. We implemented new methods in the process, such as analysis and rapid production of samples for future crystallization preparations. Native nAChR was extracted from the electric organ of Torpedo californica using the lipid-like detergent LysoFos Choline 16 (LFC-16), followed by three consecutive steps of chromatography purification. We evaluated the effect of cholesteryl hemisuccinate (CHS) supplementation during the affinity purification steps of nAChR-LFC-16 in terms of receptor secondary structure, stability and functionality. CHS produced significant changes in the degree of β-secondary structure, these changes compromise the diffusion of the nAChR-LFC-16 in lipid cubic phase. The behavior was reversed by Methyl-β-Cyclodextrin treatment. Also, CHS decreased acetylcholine evoked currents of Xenopus leavis oocyte injected with nAChR-LFC-16 in a concentration-dependent manner. Methyl-β-Cyclodextrin treatment do not reverse functionality, however column delipidation produced a functional protein similar to nAChR-LFC-16 without CHS treatment.
Collapse
Affiliation(s)
- Rafael Maldonado-Hernández
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - José O Colón-Sáez
- Pharmaceutical Sciences, University of Puerto Rico Medical Science Campus, Puerto Rico
| | - José A Lasalde-Dominicci
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Puerto Rico.
| |
Collapse
|
2
|
Yager P, Chang EL, Williams RW, Dalziel AW. The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy. Biophys J 2010; 45:26-8. [PMID: 19431551 DOI: 10.1016/s0006-3495(84)84095-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
3
|
Barrantes FJ. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. ACTA ACUST UNITED AC 2004; 47:71-95. [PMID: 15572164 DOI: 10.1016/j.brainresrev.2004.06.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2004] [Indexed: 11/22/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the archetype molecule in the superfamily of ligand-gated ion channels (LGIC). Members of this superfamily mediate fast intercellular communication in response to endogenous neurotransmitters. This review is focused on the structural and functional crosstalk between the AChR and lipids in the membrane microenvironment, and the modulation exerted by the latter on ligand binding and ion translocation. Experimental approaches using Laurdan extrinsic fluorescence and Förster-type resonance energy transfer (FRET) that led to the characterization of the polarity and molecular dynamics of the liquid-ordered phase AChR-vicinal lipids and the bulk membrane lipids, and the asymmetry of the AChR-rich membrane are reviewed first. The topological relationship between protein and lipid moieties and the changes in physical properties induced by exogenous lipids are discussed next. This background information lays the basis for understanding the occurrence of lipid sites in the AChR transmembrane region, and the selectivity of the protein-lipid interactions. Changes in FRET efficiency induced by fatty acids, phospholipid and cholesterol (Chol), led to the identification of discrete sites for these lipids on the AChR protein, and electron-spin resonance (ESR) spectroscopy has recently facilitated determination of the stoichiometry and selectivity for the AChR of the shell lipid. The influence of lipids on AChR function is discussed next. Combined single-channel and site-directed mutagenesis data fostered the recognition of lipid-sensitive residues in the transmembrane region, dissecting their contribution to ligand binding and channel gating, opening and closing. Experimental evidence supports the notion that the interface between the protein moiety and the adjacent lipid shell is the locus of a variety of pharmacologically relevant processes, including the action of steroids and other lipids.
Collapse
Affiliation(s)
- F J Barrantes
- UNESCO Chair of Biophysics and Molecular Neurobiology.
| |
Collapse
|
4
|
Breitinger U, Breitinger HG, Bauer F, Fahmy K, Glockenhammer D, Becker CM. Conserved High Affinity Ligand Binding and Membrane Association in the Native and Refolded Extracellular Domain of the Human Glycine Receptor α1-Subunit. J Biol Chem 2004; 279:1627-36. [PMID: 14593111 DOI: 10.1074/jbc.m303811200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strychnine-sensitive glycine receptor (GlyR) is a ligand-gated chloride channel composed of ligand binding alpha- and gephyrin anchoring beta-subunits. To identify the secondary and quaternary structures of extramembraneous receptor domains, the N-terminal extracellular domain (alpha1-(1-219)) and the large intracellular TM3-4 loop (alpha1-(309-392)) of the human GlyR alpha1-subunit were individually expressed in HEK293 cells and in Escherichia coli. The extracellular domain obtained from E. coli expression was purified in its denatured form and refolding conditions were established. Circular dichroism and Fourier-transform-infrared spectroscopy suggested approximately 25% alpha-helix and approximately 48% beta-sheet for the extracellular domain, while no alpha-helices were detectable for the TM3-4 loop. Size exclusion chromatography and sucrose density centrifugation indicated that isolated glycine receptor domains assembled into multimers of distinct molecular weight. For the extracellular domain from E. coli, we found an apparent molecular weight compatible with a 15mer by gel filtration. The N-terminal domain from HEK293 cells, analyzed by sucrose gradient centrifugation, showed a bimodal distribution, suggesting oligomerization of approximately 5 and 15 subunits. Likewise, for the intracellular domain from E. coli, a single molecular mass peak of approximately 49 kDa indicated oligomerization in a defined native structure. As shown by [(3)H]strychnine binding, expression in HEK293 cells and refolding of the isolated extracellular domain reconstituted high affinity antagonist binding. Cell fractionation, alkaline extraction experiments, and immunocytochemistry showed a tight plasma membrane association of the isolated GlyR N-terminal protein. These findings indicate that distinct functional characteristics of the full-length GlyR are retained in the isolated N-terminal domain.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Le Novère N, Corringer PJ, Changeux JP. Improved secondary structure predictions for a nicotinic receptor subunit: incorporation of solvent accessibility and experimental data into a two-dimensional representation. Biophys J 1999; 76:2329-45. [PMID: 10233052 PMCID: PMC1300207 DOI: 10.1016/s0006-3495(99)77390-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract A refined prediction of the nicotinic acetylcholine receptor (nAChR) subunits' secondary structure was computed with third-generation algorithms. The four selected programs, PHD, Predator, DSC, and NNSSP, based on different prediction approaches, were applied to each sequence of an alignment of nAChR and 5-HT3 receptor subunits, as well as a larger alignment with related subunit sequences from glycine and GABA receptors. A consensus prediction was computed for the nAChR subunits through a "winner takes all" method. By integrating the probabilities obtained with PHD, DSC, and NNSSP, this prediction was filtered in order to eliminate the singletons and to more precisely establish the structure limits (only 4% of the residues were modified). The final consensus secondary structure includes nine alpha-helices (24.2% of the residues, with an average length of 13.9 residues) and 17 beta-strands (22.5% of the residues, with an average length of 6.6 residues). The large extracellular domain is predicted to be mainly composed of beta-strands, with only two helices at the amino-terminal end. The transmembrane segments are predicted to be in a mixed alpha/beta topology (with a predominance of alpha-helices), with no known equivalent in the current protein database. The cytoplasmic domain is predicted to consist of two well-conserved amphipathic helices joined together by an unfolded stretch of variable length and sequence. In general, the segments predicted to occur in a periodic structure correspond to the more conserved regions, as defined by an analysis of sequence conservation per position performed on 152 superfamily members. The solvent accessibility of each residue was predicted from the multiple alignments with PHDacc. Each segment with more than three exposed residues was assumed to be external to the core protein. Overall, these data constitute an envelope of structural constraints. In a subsequent step, experimental data relative to the extracellular portion of the complete receptor were incorporated into the model. This led to a proposed two-dimensional representation of the secondary structure in which the peptide chain of the extracellular domain winds alternatively between the two interfaces of the subunit. Although this representation is not a tertiary structure and does not lead to predictions of specific beta-beta interaction, it should provide a basic framework for further mutagenesis investigations and for fold recognition (threading) searches.
Collapse
Affiliation(s)
- N Le Novère
- Centre National de la Recherche Scientifique URA D1284 Neurobiologie Moléculaire, Institut Pasteur, 75015 Paris, France.
| | | | | |
Collapse
|
6
|
Schrattenholz A, Pfeiffer S, Pejovic V, Rudolph R, Godovac-Zimmermann J, Maelicke A. Expression and renaturation of the N-terminal extracellular domain of torpedo nicotinic acetylcholine receptor alpha-subunit. J Biol Chem 1998; 273:32393-9. [PMID: 9829968 DOI: 10.1074/jbc.273.49.32393] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal extracellular region (amino acids 1-209) of the alpha-subunit of the nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata electric tissue was expressed as inclusion bodies in Escherichia coli using the pET 3a vector. Employing a novel protocol of unfolding and refolding, in the absence of detergent, a water-soluble globular protein of 25 kDa was obtained displaying approximately 15% alpha-helical and 45% beta-structure. The fragment bound alpha-[3H]bungarotoxin in 1:1 stoichiometry with a KD value of 0.5 nM as determined from kinetic measurements (4 nM from equilibrium binding). The kinetics of association of toxin and fragment were of second order, with a similar rate constant (8.2 x 10(5) M-1 s-1) as observed previously for the membrane-bound heteropentameric nAChR. Binding of small ligands was demonstrated by competition with alpha-[3H]bungarotoxin yielding the following KI values: acetylcholine, 69 microM; nicotine, 0.42 microM; anatoxin-a, 3 miroM; tubocurarine, 400 microM; and methyllycaconitine, 0.12 microM. The results demonstrate that the N-terminal extracellular region of the nAChR alpha-subunit forms a self-assembling domain that functionally expresses major elements of the ligand binding sites of the receptor.
Collapse
Affiliation(s)
- A Schrattenholz
- Laboratory of Molecular Neurobiology, Institute of Physiological Chemistry and Pathobiochemistry, 6 Duesbergweg, Johannes-Gutenberg University Medical School, 55099 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Juretić D, Lučić B, Zucić D, Trinajstić N. Protein transmembrane structure: recognition and prediction by using hydrophobicity scales through preference functions. THEORETICAL AND COMPUTATIONAL CHEMISTRY 1998. [DOI: 10.1016/s1380-7323(98)80015-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Hucho F, Tsetlin VI, Machold J. The emerging three-dimensional structure of a receptor. The nicotinic acetylcholine receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:539-57. [PMID: 8774696 DOI: 10.1111/j.1432-1033.1996.0539u.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nicotinic acetylcholine receptor is the neurotransmitter receptor with the most-characterized protein structure. The amino acid sequences of its five subunits have been elucidated by cDNA cloning and sequencing. Its shape and dimensions (approximately 12.5 nm x 8 nm) were deduced from electron-microscopy studies. Its subunits are arranged around a five-fold axis of pseudosymmetry in the order (clockwise) alpha H gamma alpha L delta beta. Its two agonist/competitive-antagonist-binding sites have been localized by photolabelling studies to a deep gorge between the subunits near the membrane surface. Its ion channel is formed by five membrane-spanning (M2) helices that are contributed by the five subunits. This finding has been generalized as the Helix M2 model for the superfamily of ligand-gated ion channels. The binding site for regulatory non-competitive antagonists has been localized by photolabelling and site-directed-mutagenesis studies within this ion channel. Therefore a three-dimensional image of the nicotinic acetylcholine receptor is emerging, the most prominent feature of which is an active site that combines the agonist/ competitive-antagonist-binding sites, the regulatory site and the ion channel within a relatively narrow space close to and within the bilayer membrane.
Collapse
Affiliation(s)
- F Hucho
- Freic Universität Berlin, Institut für Biochemie, Germany
| | | | | |
Collapse
|
9
|
Donnelly-Roberts DL, Lentz TL. Sodium dodecyl sulfate- and carbamylcholine-induced changes in circular dichroism spectra of acetylcholine receptor synthetic peptides. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 19:55-61. [PMID: 8361345 DOI: 10.1016/0169-328x(93)90148-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of sodium dodecyl sulfate (SDS) on the conformation of acetylcholine receptor alpha-subunit synthetic peptides was investigated by circular dichroism. In the presence of SDS (0.01-0.02%), the affinity of a 173-204 32 residue peptide and a 172-227 56 residue peptide for the competitive antagonist alpha-bungarotoxin increases about 10-fold to the nanomolar range. Circular dichroism spectroscopy of these peptides revealed significant changes in the secondary structure of the peptides in the presence of SDS at concentrations below the critical micelle concentration. It is concluded that SDS induces a conformation of the peptides that is conductive to high affinity binding. Carbamylcholine, an acetylcholine analog, produced small but significant changes in the spectrum of the 173-204 peptide. This change could be the result of agonist-induced conformational changes in this region of the acetylcholine receptor alpha-subunit or to changes in the asymmetric environments of aromatic chromophores in the binding site. These studies demonstrate that synthetic peptides alone are capable of retaining significant functional activity and contain significant secondary structure.
Collapse
Affiliation(s)
- D L Donnelly-Roberts
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | | |
Collapse
|
10
|
Naumann D, Schultz C, Görne-Tschelnokow U, Hucho F. Secondary structure and temperature behavior of the acetylcholine receptor by Fourier transform infrared spectroscopy. Biochemistry 1993; 32:3162-8. [PMID: 8457576 DOI: 10.1021/bi00063a031] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fourier transform infrared spectroscopy (FT-IR) was used to test the secondary structure of purified acetylcholine receptor membranes from Torpedo californica. The secondary structure was estimated using the spectral features observed in the structure sensitive region of amide I and amide I' (between 1600 and 1700 cm-1), taking advantage of Fourier self-deconvolution and second-derivative techniques along with least-squares band fitting procedures. At least six different amide I' band components could be resolved in D2O and were tentatively assigned to beta-structures (1680 and 1636 cm-1), alpha-helices (1657 cm-1), aperiodic structures and/or distorted helices (1646-1648 cm-1), and turns (1690 and 1668 cm-1), respectively. The beta-band around 1637 cm-1, in particular, turned out to be complex since it reproducibly exhibited weak features near 1630 and 1627 cm-1, thereby suggesting the presence of different chain interacting beta-structures. The band near 1657 cm-1 was assigned to alpha-helices which transverse the membrane bilayers, while 1646-1648-cm-1 component was tentatively attributed to aperiodic structures and alpha-helices localized within the "globular head" of the receptor protein protruding from the membrane surface into the surrounding water. Least-squares band fitting procedures were applied in order to estimate relative amounts of secondary structures. The results suggest 36-43%, 32-33%, 14-24%, and 18-19% for beta-, alpha-helical, turn, and "rest" structures, respectively. Additionally, the temperature- and time-dependent variations of the secondary structure was tested by evaluating the changes of amide I and amide II band components of receptor membranes dispersed in H2O and D2O.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Naumann
- Robert Koch-Institut des Bundesgesundheitsamtes, Berlin, FRG
| | | | | | | |
Collapse
|
11
|
Fernandez-Ballester G, Castresana J, Arrondo JL, Ferragut JA, Gonzalez-Ros JM. Protein stability and interaction of the nicotinic acetylcholine receptor with cholinergic ligands studied by Fourier-transform infrared spectroscopy. Biochem J 1992; 288 ( Pt 2):421-6. [PMID: 1463446 PMCID: PMC1132027 DOI: 10.1042/bj2880421] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Based on the conformational dependence of the amide-I i.r. band, this paper explores the use of Fourier-transform i.r. spectroscopy methods to probe structural features of proteins present in native membranes from Torpedo highly enriched in acetylcholine receptor (AcChR). The interference of water absorbance on the amide-I spectral region has been eliminated through isotopic exchange by freeze-drying the membranes in the presence of trehalose to avoid protein denaturation induced by drying, followed by resuspension in deuterated water. AcChR-rich membrane samples prepared in such a way maintained an ability to undergo affinity-state transitions and to promote cation translocation in response to cholinergic agonists, which are functional characteristics of native untreated samples. The temperature-dependence of the i.r. spectrum indicates a massive loss of ordered protein structure, occurring at temperatures similar to those reported for thermal denaturation of the AcChR by differential scanning calorimetry and by thermal inactivation of alpha-bungarotoxin-binding sites on the AcChR [Artigues, Villar, Ferragut & Gonzalez-Ros (1987) Arch. Biochem. Biophys. 258, 33-41], thus suggesting that the observed i.r. spectral changes correspond to alterations in the structure of the AcChR protein. Furthermore, the presence of detergents as well as cholinergic agonists and antagonists produces spectral changes that are also consistent with the alterations in AcChR protein structure expected from previous calorimetric studies. In contrast with the information obtained by calorimetry, i.r. spectroscopy allows the contribution of secondary structural changes to be distinguished from the overall change in protein structure. Thus prolonged exposure to cholinergic agonists, which drives the AcChR protein into the desensitized state, produces only negligible alterations in the amide-I band shape, but increases substantially the thermal stability of the protein. This suggests that rearrangements in the tertiary or quaternary structure of the protein are more likely to occur than extensive changes in secondary structure as a consequence of AcChR desensitization.
Collapse
|
12
|
Barrantes FJ. Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Mol Neurobiol 1992; 6:463-82. [PMID: 1285935 DOI: 10.1007/bf02757947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nicotinic acetylcholine receptor (AChR) is a transmembrane protein belonging to the superfamily of rapid, ligand-operated channels. Theoretical models based on thermodynamic criteria assign portions of the polypeptide chains to the lipid bilayer region. From an experimental point of view, however, the relationship between the two moieties remains largely unexplored. Current studies from our laboratory are aimed at defining the structural, dynamic, and functional relationship between membrane lipids and AChR. We are particularly interested in establishing the characteristics of and differences between the lipids in each leaflet of the bilayer and the belt or "annular" lipids immediately surrounding AChR and the bulk bilayer lipids. We are also interested in determining the possible implications of lipid modifications on AChR channel properties. Toward these ends, fluorescence and other spectroscopic techniques, together with biochemical analyses and patch-clamp studies, are currently being undertaken. Correlations can be established between structural aspects of phospholipid packing in the immediate perimeter of AChR and other properties of these annular lipids revealed by dynamic spectroscopic and molecular modeling techniques. Lipid compositional analyses of the clonal muscle cell line BC3H-1 and chemical modification studies have been carried out by incubation of intact cells in culture and of membrane patches excised therefrom with liposomes of different lipid composition. These studies have been combined with electrophysiological measurements using the patch-clamp technique, with the aim of determining the possible effects of lipids on the channel properties of muscle-type AChR. A variety of experimental conditions, involving polar head and fatty acyl chain substitution of phospholipids and cholesterol incorporation, are being assayed in the BC3H-1 cells.
Collapse
Affiliation(s)
- F J Barrantes
- Instituto de Investigaciones Bioquimicas, Consejo de Investigaciones Cientificas y Tecnicas, Bahia Blanca, Argentina
| |
Collapse
|
13
|
Bertazzon A, Conti-Tronconi BM, Raftery MA. Scanning tunneling microscopy imaging of Torpedo acetylcholine receptor. Proc Natl Acad Sci U S A 1992; 89:9632-6. [PMID: 1409675 PMCID: PMC50186 DOI: 10.1073/pnas.89.20.9632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The synaptic surface of the acetylcholine receptor in membranes from Torpedo californica electric organ has been imaged by scanning tunneling microscopy. The molecule appears pentameric, with one major and four minor protrusions rising above the surface, and these protrusions encompass a large central cavity. The outer diameter of the molecule is 69 +/- 10 A, while the diameter of the cavity, measured at the widest complete contour line delimiting the opening, is 26 +/- 7 A. The images and dimensions obtained are consistent with the structure determined from hybrid density maps obtained by x-ray diffraction and electron microscopy. Thus, scanning tunneling microscopy can be used to obtain overall dimensions and low-resolution structural features of the surface of a membrane-embedded protein.
Collapse
Affiliation(s)
- A Bertazzon
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
14
|
Wu CS, Sun XH, Yang JT. Conformation of acetylcholine receptor in the presence of agonists and antagonists. JOURNAL OF PROTEIN CHEMISTRY 1990; 9:119-26. [PMID: 2340071 DOI: 10.1007/bf01024993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The conformations of acetylcholine receptor from Torpedo californica in the absence and presence of agonists, antagonists, and local anesthetics were studied by circular dichroism (CD). Without ligands, the receptor had about 40% helix, 20% beta-sheets, and 10% beta-turns as analyzed from its far-UV CD spectrum. Its near-UV CD spectrum resembled that of acetylcholinesterase from the same source. None of the ligands studied altered the far-UV spectrum of the receptor. However, in the near-UV region, carbamylcholine and acetylcholine shifted the Phe and Tyr bands of AChR to less negative, whereas hexamethonium changed the Tyr bands to more negative, indicating that the site of binding of agonists and antagonists and their effect on the conformation of the receptor may be different. Decamethonium, procaine, and lidocaine had no effect on both the far- and near-UV CD spectra of acetylcholine receptor.
Collapse
Affiliation(s)
- C S Wu
- Cardiovascular Research Institute, University of California, San Francisco 94143-0524
| | | | | |
Collapse
|
15
|
Barrantes FJ. The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes. Crit Rev Biochem Mol Biol 1989; 24:437-78. [PMID: 2676352 DOI: 10.3109/10409238909086961] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Detailed knowledge of the membrane framework surrounding the nicotinic acetylcholine receptor (AChR) is key to an understanding of its structure, dynamics, and function. Recent theoretical models discuss the structural relationship between the AChR and the lipid bilayer. Independent experimental data on the composition, metabolism, and dynamics of the AChR lipid environment are analyzed in the first part of the review. The composition of the lipids in which the transmembrane AChR chains are inserted bears considerable resemblance among species, perhaps providing this evolutionarily conserved protein with an adequate milieu for its optimal functioning. The effects of lipids on the latter are discussed in the second part of the review. The third part focuses on the information gained on the dynamics of AChR and lipids in the membrane, a section that also covers the physical properties and interactions between the protein, its immediate annulus, and the bulk lipid bilayer.
Collapse
Affiliation(s)
- F J Barrantes
- Institute of Biochemistry, CONICET, Universidad Nac. del Sur, Bahia Blanca, Argentina
| |
Collapse
|
16
|
Connolly JG. Structure-function relationships in nicotinic acetylcholine receptors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 93:221-31. [PMID: 2472915 DOI: 10.1016/0300-9629(89)90210-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. A combination of molecular, biochemical, electrophysiological and immunological approaches has begun to resolve some of the questions about structure-function relationships of nicotinic acetylcholine receptors (AchRs). 2. Current structural studies suggest that models of the subunits which propose four transmembrane domains are correct. 3. It is also probable that the carboxy termini of the subunits are extracellular, while the putative amphpathic helix is intracellular. 4. Electrophysiological and ligand-binding experiments suggest that the M2 region forms the wall of the ion channel. 5. We have isolated clones from PC12 and rat brain cDNA libraries which we have shown, by functional expression, code for members of a gene family of nicotinic acetylcholine receptor subunits. 6. In situ hybridization studies have shown that the neuronal receptor subunit mRNAs are expressed in the mammalian central nervous system. 7. The muscle and neuronal nicotinic AchR subtypes we have expressed show differences in their pharmacological properties. 8. The isolation and identification of clones which code for receptors and voltage-activated ion channels will help in the understanding of a variety of disease states and assist in the design of drugs which are specific for unique molecular targets.
Collapse
Affiliation(s)
- J G Connolly
- Molecular Neurobiology Laboratory, Salk Institute, San Diego, CA 92138
| |
Collapse
|
17
|
Villar MT, Artigues A, Ferragut JA, Gonzalez-Ros JM. Phospholipase A2 hydrolysis of membrane phospholipids causes structural alteration of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 938:35-43. [PMID: 3337815 DOI: 10.1016/0005-2736(88)90119-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thermal perturbation techniques have been used to probe structural alteration of the nicotinic acetylcholine receptor as a function of perturbations of its native membrane environment. Differential scanning calorimetry and a technique involving heat inactivation of the alpha-bungarotoxin-binding sites on the receptor protein reveal that there is a profound destabilization of the acetylcholine receptor structure when receptor-containing membranes are exposed to phospholipase A2. The characteristic calorimetric transition assigned to irreversible denaturation of the receptor protein and the heat inactivation profile of alpha-bungarotoxin-binding sites are shifted to lower temperatures by approx. 7 and 5 C degrees, respectively, upon exposure to phospholipase A2 at a phospholipase/neurotoxin binding site molar ratio of about 1:100. The effects of phospholipase A2 on receptor structure can be (i) reversed by using bovine serum albumin as a scavenger of phospholipase hydrolysis products of membrane phospholipids, and (ii) stimulated by incorporation into the membranes of free, polyunsaturated fatty acids. In particular, linolenic acid (18:3(n-3] causes detectable destabilization of the alpha-bungarotoxin binding sites on the receptor at free fatty acid/receptor molar ratios as low as 10:1. Furthermore, alteration of receptor structure by added phospholipase occurs very rapidly, which is consistent with the observation of rapid in situ phospholipase A2 hydrolysis of membrane phospholipids, particularly highly unsaturated phosphatidylethanolamine and phosphatidylserine. Based on previously published data on the inhibition of acetylcholine receptor cation-gating activity caused by the presence of either phospholipase A2 or free fatty acids (Andreasen T.J. and McNamee M.G. (1980) Biochemistry 19, 4719), we interpret our data as indicative of a correlation between structural and functional alterations of the membrane-bound acetylcholine receptor induced by phospholipase A2 hydrolysis products.
Collapse
Affiliation(s)
- M T Villar
- Department of Biology (School of Sciences), University of the Balearic Islands, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
18
|
Artigues A, Villar MT, Ferragut JA, Gonzalez-Ros JM. Thermal perturbation studies of membrane-bound acetylcholine receptor from Torpedo: effects of cholinergic ligands and membrane perturbants. Arch Biochem Biophys 1987; 258:33-41. [PMID: 3662540 DOI: 10.1016/0003-9861(87)90319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thermal perturbation techniques have been used to probe structural features of the nicotinic acetylcholine receptor (AcChR). The information obtained from differential scanning calorimetry (DSC) of AcChR membranes (M.C. Farach and M. Martinez-Carrion (1983) J. Biol. Chem. 258, 4176) in the absence and in the presence of cholinergic ligands and local anesthetics, is comparable to that obtained from a simpler technique of heat inactivation of the alpha-bungarotoxin (alpha-Bgt) binding sites on the AcChR protein in similar samples. When AcChR membranes are heated at approximately 1 degree C/min, heat inactivation of toxin binding sites has a characteristic T50 value (temperature at which 50% of the initial capacity to bind alpha-Bgt remains) of approximately 60 degrees C. When heated at a constant temperature during increasing periods of time, the rate at which heat inactivation occurs is also characteristic of the temperature chosen for the experiment. The above thermal parameters are also sensitive to perturbation of the AcChR membrane matrix by the presence of subsolubilizing concentrations of detergents. Moreover, elimination of detergents by dialysis allows us to evaluate the reversibility or irreversibility of AcChR thermal destabilization induced by detergents or other membrane perturbants. Under the experimental conditions used, structural destabilization induced by octylglucoside or cholate can be fully reversed by detergent dialysis, while that exerted by deoxycholate cannot. "Thermal gel" analysis of the aggregation of AcChR subunits induced by heat (G. Soler, J. R. Mattingly, and M. Martinez-Carrion (1984) Biochemistry 23, 4630) has also been used to assess the effects of detergent presence on the AcChR protein. When deoxycholate is used as the perturbing agent, there is a particularly effective sulfhydryl-mediated aggregation of the gamma-delta subunit group, which appears to correlate with the irreversible destabilization of alpha-Bgt binding sites induced by that detergent.
Collapse
Affiliation(s)
- A Artigues
- Department of Biology, School of Sciences, University of the Balearic Islands, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
19
|
Luyten WH. A model for the acetylcholine binding site of the nicotinic acetylcholine receptor. J Neurosci Res 1986; 16:51-73. [PMID: 3528512 DOI: 10.1002/jnr.490160107] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A detailed model for the acetylcholine binding site on the nicotinic acetylcholine receptor is proposed. It is derived from assumptions based on existing biochemical, structural, and pharmacological data, combined with molecular modeling and principles of protein evolution and architecture. Acetylcholine is proposed to fit into a pocket on one face of an antiparallel beta-pleated sheet formed by residues 128-142 on the alpha-subunit. This sheet is flexible yet stable, in part because of a double cystine bridge at its end. Asp138, Thr133, and Gln140 provide a ring of negative charges around the quaternary ammonium group of acetylcholine, Ile131 and alkane segments of the other residues in the binding site provide hydrophobic interactions, and Gln140 provides a hydrogen bond for acetylcholine's carbonyl group; Glu129 would form part of the second anionic subsite for the bis-quaternary ammonium compounds and curares. The model is compatible with the available evidence pertaining to the binding site and with structure-activity relationship studies. It is precise and detailed, thereby making clear predictions, which are directly testable by affinity labeling and site-directed mutagenesis. It should prove useful in the design of such experiments.
Collapse
|
20
|
Dumont ME, Trewhella J, Engelman DM, Richards FM. Stability of transmembrane regions in bacteriorhodopsin studied by progressive proteolysis. J Membr Biol 1985; 88:233-47. [PMID: 3913776 DOI: 10.1007/bf01871088] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteinase K digestions of bacteriorhodopsin were carried out with the aim of characterizing the membrane-embedded regions of the protein. Products of digestions for two, eight or 24 hours were separated by high-pressure liquid chromotography. A computerized search procedure was used to compare the amino acid analyses of peptide-containing peaks with segments of the bacteriorhodopsin sequence. Molecular weight distributions of the products were determined by sodium dodecylsulfate-urea polyacrylamide gel electrophoresis. The structural integrity of the protein after digestion was monitored through the visible absorption spectrum, by X-ray diffraction of partially dried membranes, and by following release of biosynthetically-incorporated 3H leucine from the digested membranes. During mild proteolysis, bacteriorhodopsin was cleaved near the amino and carboxyl termini and at two internal regions previously identified as being accessible to the aqueous medium. Longer digestion resulted in cleavage at new sites. Under conditions where no fragments of bacteriorhodopsin larger than 9000 mol wt were observed, a significant proportion of the digested membranes retained diffraction patterns similar to those of native purple membranes. The harshest digestion conditions led to complete loss of the X-ray diffraction patterns and optical absorption and to release of half the hydrophobic segments of the protein from the membrane in the form of small soluble peptides. Upon cleavage of aqueous loop regions of the protein, isolated transmembrane segments may experience motion in a direction perpendicular to the plane of the membrane, allowing them access to protease.
Collapse
|
21
|
Tobkes N, Wallace BA, Bayley H. Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry 1985; 24:1915-20. [PMID: 4016091 DOI: 10.1021/bi00329a017] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The alpha-toxin of Staphylococcus aureus is secreted as a water-soluble, monomeric polypeptide (Mr 33 182) that can assemble into an oligomeric membrane channel. By chemical cross-linking, we have confirmed that the major form of the channel is a hexamer. The circular dichroism spectrum of this hexamer in detergent revealed that it contains a high proportion of beta-sheet that we deduce must lie within the lipid bilayer when the protein is associated with membranes. The circular dichroism spectrum of the monomeric toxin in the presence or absence of detergent was closely similar to the spectrum of the hexamer, suggesting that the secondary structure of the polypeptide is little changed on assembly. Results of experiments involving limited proteolysis of the monomer and hexamer are consistent with the idea that assembly involves the movement of two rigid domains about a hinge located near the midpoint of the polypeptide chain. The hydrophilic monomer is thereby converted to an amphipathic rod that becomes a subunit of the hexamer.
Collapse
|
22
|
|
23
|
Finer-Moore J, Stroud RM. Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Natl Acad Sci U S A 1984; 81:155-9. [PMID: 6320162 PMCID: PMC344629 DOI: 10.1073/pnas.81.1.155] [Citation(s) in RCA: 411] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fourier analysis of the hydrophobicities of the acetylcholine receptor subunit sequences reveals regions of amphipathic secondary structure. Prediction of a consensus secondary structure based on this analysis and on an empirical prediction method leads to a testable hypothesis about how the ion channel is formed and might function. Knowledge of the three-dimensional structure of acetylcholine receptors is consistent with features of the model proposed and provides some constraints.
Collapse
|
24
|
Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA, Fairclough RH. Structure and function of an acetylcholine receptor. Biophys J 1982; 37:371-83. [PMID: 7055628 PMCID: PMC1329155 DOI: 10.1016/s0006-3495(82)84685-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Structural analysis of an acetylcholine receptor from Torpedo californica leads to a three-dimensional model in which a "monomeric" receptor is shown to contain subunits arranged around a central ionophoretic channel, which in turn traverses the entire 110 A length of the molecule. The receptor extends approximately 15 A on the cytoplasmic side, 55 A on the synaptic side of the membrane. The alpha-bungarotoxin/agonist binding site is found to be approximately 55 A from the entrance to the central gated ion channel. A hypothesis for the mechanism of AcChR is presented which takes into account the structural and kinetic data, which is testable, and which serves as a focus for future studies on the agonist-induced structure change in AcChR.
Collapse
|
25
|
Guy HR. Structural models of the nicotinic acetylcholine receptor and its toxin-binding sites. Cell Mol Neurobiol 1981; 1:231-58. [PMID: 7346169 DOI: 10.1007/bf00710680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Models of the protein structure of agonist-, competitive antagonist-, and snake neurotoxin-binding sites were designed using the sequence of the first 54 residues of the acetylcholine receptor (AChR) alpha subunit from Torpedo californica. These models are based on the premise that the N-terminal portions of the subunits form the outermost extracellular surface of the AChR and that agonists bind to this portion. The models were developed by predicting the secondary structure of the alpha-subunit N-terminal segment from its sequence, then using these predictions to fold the segment into tertiary structures that should bind snake neurotoxins, agonists, and antagonists. Possible gating mechanisms and quaternary structures are suggested by the proposed tertiary structures of the subunits. Experiments are suggested to test aspects of the models.
Collapse
|
26
|
Kistler J, Stroud RM. Crystalline arrays of membrane-bound acetylcholine receptor. Proc Natl Acad Sci U S A 1981; 78:3678-82. [PMID: 6943572 PMCID: PMC319634 DOI: 10.1073/pnas.78.6.3678] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Electron micrographs of tubular structures with a crystalline arrangement of membrane-bound acetylcholine receptor oligomers have been analyzed by digital image reconstruction. The receptor molecules are oriented synaptic side out, and in projection they appear to be asymmetric and have a defined orientation. All four subunits are contained in the oligomers as demonstrated by immunoelectron microscopy; these structures therefore appear to be suitable for subunit localization in the oligomer.
Collapse
|
27
|
The purification and molecular characterisation of a putative nicotinic-muscarinic acetylcholine receptor from housefly heads. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/0020-1790(81)90070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Preuner J, Rüther T. Influence of decamethonium and suxamethonium on the conformation of tryptophan side chain chromophores of membrane bound extrajunctional acetylcholine receptors. Biochem Pharmacol 1980; 29:397-403. [PMID: 7362653 DOI: 10.1016/0006-2952(80)90519-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Deutsch JW, Raftery MA. Polypeptide composition of acetylcholine receptor purified from teleost and elasmobranch electroplax membranes. Arch Biochem Biophys 1979; 197:503-15. [PMID: 507826 DOI: 10.1016/0003-9861(79)90274-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Brady RN, Moore WM. Studies of acetylcholine receptor protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1978; 96:161-203. [PMID: 636925 DOI: 10.1007/978-1-4757-0722-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Kirschenbaum DM. Molar absorptivity and A 1% 1cm values for proteins at selected wavelengths of the ultraviolet and visible regions. XIII. Anal Biochem 1977; 81:220-46. [PMID: 332005 DOI: 10.1016/0003-2697(77)90615-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Briley MS, Changeux JP. Isolation and purification of the nicotinic acetylcholine receptor and its functional reconstitution into a membrane environment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1977; 20:31-63. [PMID: 338528 DOI: 10.1016/s0074-7742(08)60650-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Moore WM, Brady RN. Studies of nicotinic acetylcholine receptor protein from rat brain. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 444:252-60. [PMID: 985624 DOI: 10.1016/0304-4165(76)90242-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specific binding of 125I-labeled alpha-bungarotoxin to a 34800 X g pellet of a whole rat brain homogenate has been obtained at levels of 2 pmol toxin per g of whole brain with a Kd of 8-10(-9) M. Binding is reduced 90% by 10(-5) M (+)-tubocurarine chloride and 10(-4) M nicotine, whereas concentrations of 10(-4) M choline chloride, atropine sulfate and eserine sulfate have essentially no effect on toxin binding. These results compare closely with those obtained from binding studies with 125I-labeled alpha-bungarotoxin and soluble acetylcholine receptor protein preparations from Torpedo nobiliana; suggesting that this mammalian receptor protein is nicotinic in character. Extraction of the 34800 X g pellet with 1% Emulphogene yields a soluble fraction with specifically binds 125I-labeled alpha-bungarotoxin with a Kd of 5-10(-9) M. Nicotine and alpha-bungarotoxin at concentrations of 10(-5) M abolish toxin-receptor complex formation and carbachol and (+)-tubocurarine chloride reduce complex formation 35-40% at similar concentrations. Eserine sulfate, atropine sulfate, decamethonium, and pilocarpine had no effect on complex formation at concentrations of 10(-5) M.
Collapse
|
34
|
Affiliation(s)
- C M Fewtrell
- Department of Pharmacology, University College London
| |
Collapse
|
35
|
|
36
|
Shamoo AE, Eldefrawi ME. Carbamylcholine and acetylcholine-sensitive, cation-selective ionophore as part of the purified acetylcholine receptor. J Membr Biol 1975; 25:47-63. [PMID: 1214288 DOI: 10.1007/bf01868567] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Black lipid membranes were formed with oxidized cholesterol in the presence of either the acetylcholine receptor, purified from the electric organ of the electric ray Torpedo californica or its tryptic digest. In both cases, conductance of cations increased and was dependent on the concentration of the receptor protein. Conductance of Ca++ was dependent on the concentration, but addition of carbamylcholine gave no reproducible of consistent effects. Only in the case of the tryptic digest of the acetylcholine receptor did carbamylcholine and acetylcholine consistently induce monovalent cation selective conductance (PNa,K: PCl=4.4). The induced monovalent cationic conductance due to carbamylcholine (10 muM) varied from 10- to over 100-fold. Curare (10muM) prevented the action of carbamylcholine. Na-dodecyl sulfate gel electrophoresis of the acetylcholine receptor, before and after tryptic digestion, indicated that this mild enzyme treatment hydrolyzed the receptor molecule subunits. Nevertheless, the receptor molecule retained its full binding of [acetyl(-3)H]acetylcholine; and analytical gel electrophoresis indicated that it remained intact possibly through hydrogen, hydrophobic and disulfice bonding.
Collapse
|
37
|
|
38
|
Eldefrawi ME, Eldefrawi AT, Wilson DB. Tryptophan and cystein residues of the acetylcholine receptors of Torpedo species. Relationship to binding of cholinergic ligands. Biochemistry 1975; 14:4304-10. [PMID: 1182102 DOI: 10.1021/bi00690a026] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several methods were used to analyze for tryptophan in the acetylcholine (ACh) receptors purified from the electric organs of the electric rays, Torpedo californica and Torpedo marmorata. The best value of tryptophan was 2.4 mol %. When excited at 290 nm, both receptors fluoresced with a maximum at 336, but there was no change in the fluorescence emission spectra upon binding of carbamylcholine, d-tubocurarine, ACh, or decamethonium. The free SH content of the Torpedo receptors varied in different preparations, and was highest in that purified from fresh T. californica using deaerated solutions and dialysis under nitrogen, and lowest in that prepared from the aged lyophilized membranes of T. marmorata. The maximum free SH content was 20 nmol/mg of protein or 0.22 mol %, equal to at most 18% of the total cysteic acid residues. Reaction of either 33% or of all the SH residues with p-chloromercuribenzoate reduced maximum ACh binding to the pure receptor prepared from fresh T. californica by only 23%.
Collapse
|
39
|
Sugiyama H, Changeux JP. Interconversion between different states of affinity for acetylcholine of the cholinergic receptor protein from Torpedo marmorata. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 55:505-15. [PMID: 1175609 DOI: 10.1111/j.1432-1033.1975.tb02188.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In receptor-rich membrane fragments from Torpedo, acetylcholine binds, in the presence of 70 muM Tetram, to a homogeneous population of high-affinity sites with Kd = (3.4 +/- 0.8) x 10(08) M. Dissolution of these membrane fragments by sodium cholate causes a decrease of affinity associated with the appearance of medium-affinity (Kd approximately 10(-7) M) and low-affinity (Kd greater than or equal to 10(-6) M) sites. Dissolution by neutral detergents Triton X-100 or Emulphogene preserves the high affinity of the acetylcholine binding sites. In all the soluble states of the receptor protein, Ca2+ ions and local anaesthetics no longer enhance the affinity for acetylcholine. Elimination of sodium cholate by dilution leads to the reassociation of the receptor protein, the recovery of high-affinity sites and the control by Ca2+ ions and local anaesthetics. Purification by affinity chromatography of the receptor protein in Triton X-100 is accompanied by a conversion of a majority of the acetylcholine sites into their state of low affinity. High-affinity sites can no longer be recovered by detergent dilution from these low-affinity ones.
Collapse
|
40
|
Barrantes FJ. The nicotinic cholinergic receptor : different compositions evidenced by statistical analysis. Biochem Biophys Res Commun 1975; 62:407-14. [PMID: 1111530 DOI: 10.1016/s0006-291x(75)80153-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Smythies JR, Benington F, Morin RD. On the molecular structure of receptors for co-carcinogens and some anti-cancer drugs. Psychoneuroendocrinology 1975; 1:123-30. [PMID: 1234651 DOI: 10.1016/0306-4530(75)90004-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|