1
|
Cherepanov DA, Kurashov V, Gostev FE, Shelaev IV, Zabelin AA, Shen G, Mamedov MD, Aybush A, Shkuropatov AY, Nadtochenko VA, Bryant DA, Golbeck JH, Semenov AY. Femtosecond optical studies of the primary charge separation reactions in far-red photosystem II from Synechococcus sp. PCC 7335. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149044. [PMID: 38588942 DOI: 10.1016/j.bbabio.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory, 1, 119991 Moscow, Russia
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, 16802, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| |
Collapse
|
2
|
Kim Y, Alia A, Kurle-Tucholski P, Wiebeler C, Matysik J. Electronic Structures of Radical-Pair-Forming Cofactors in a Heliobacterial Reaction Center. Molecules 2024; 29:1021. [PMID: 38474533 DOI: 10.3390/molecules29051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing. In this work, the combination of selective isotope labelling of 13C and 15N nuclei and the utilization of photo-CIDNP MAS NMR (photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance) allows for highly enhanced signals from the radical-pair-forming cofactors. The remarkable magnetic-field dependence of the solid-state photo-CIDNP effect allows for observation of positive signals of the electron donor cofactor at 4.7 T, which is interpreted in terms of a dominant contribution of the differential relaxation (DR) mechanism. Conversely, at 9.4 T, the emissive signals mainly originate from the electron acceptor, due to the strong activation of the three-spin mixing (TSM) mechanism. Consequently, we have utilized two-dimensional homonuclear photo-CIDNP MAS NMR at both 4.7 T and 9.4 T. These findings from experimental investigations are corroborated by calculations based on density functional theory (DFT). This allows us to present a comprehensive investigation of the electronic structure of the cofactors involved in electron transfer (ET).
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
3
|
Krysiak S, Gotić M, Madej E, Moreno Maldonado AC, Goya GF, Spiridis N, Burda K. The effect of ultrafine WO 3 nanoparticles on the organization of thylakoids enriched in photosystem II and energy transfer in photosystem II complexes. Microsc Res Tech 2023; 86:1583-1598. [PMID: 37534550 DOI: 10.1002/jemt.24394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
In this work, a new approach to construct self-assembled hybrid systems based on natural PSII-enriched thylakoid membranes (PSII BBY) is demonstrated. Superfine m-WO3 NPs (≈1-2 nm) are introduced into PSII BBY. Transmission electron microscopy (TEM) measurements showed that even the highest concentrations of NPs used did not degrade the PSII BBY membranes. Using atomic force microscopy (AFM), it is shown that the organization of PSII BBY depends strongly on the concentration of NPs applied. This proved that the superfine NPs can easily penetrate the thylakoid membrane and interact with its components. These changes are also related to the modified energy transfer between the external light-harvesting antennas and the PSII reaction center, shown by absorption and fluorescence experiments. The biohybrid system shows stability at pH 6.5, the native operating environment of PSII, so a high rate of O2 evolution is expected. In addition, the light-induced water-splitting process can be further stimulated by the direct interaction of superfine WO3 NPs with the donor and acceptor sides of PSII. The water-splitting activity and stability of this colloidal system are under investigation. RESEARCH HIGHLIGHTS: The phenomenon of the self-organization of a biohybrid system composed of thylakoid membranes enriched in photosystem II and superfine WO3 nanoparticles is studied using AFM and TEM. A strong dependence of the organization of PSII complexes within PSII BBY membranes on the concentration of NPs applied is observed. This observation turns out to be crucial to understand the complexity of the mechanism of the action of WO3 NPs on modifications of energy transfer from external antenna complexes to the PSII reaction center.
Collapse
Affiliation(s)
- S Krysiak
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| | - M Gotić
- Division of Materials Physics, Ruđer Bošković Institute, Zagreb, Croatia
| | - E Madej
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - A C Moreno Maldonado
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - G F Goya
- Condensed Matter Physics Department and Instituto de Nanociencia y Materiales de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - N Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - K Burda
- Faculty of Physics and Applied Computer Science, AGH - University of Krakow, Krakow, Poland
| |
Collapse
|
4
|
Fufina TY, Vasilieva LG. Role of hydrogen-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. Biophys Rev 2023; 15:921-937. [PMID: 37974998 PMCID: PMC10643783 DOI: 10.1007/s12551-023-01109-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 11/19/2023] Open
Abstract
For the last decades, significant progress has been made in studying the biological functions of H-bond networks in membrane proteins, proton transporters, receptors, and photosynthetic reaction centers. Increasing availability of the X-ray crystal and cryo-electron microscopy structures of photosynthetic complexes resolved with high atomic resolution provides a platform for their comparative analysis. It allows identifying structural factors that are ensuring the high quantum yield of the photochemical reactions and are responsible for the stability of the membrane complexes. The H-bond networks are known to be responsible for proton transport associated with electron transfer from the primary to the secondary quinone as well as in the processes of water oxidation in photosystem II. Participation of such networks in reactions proceeding on the periplasmic side of bacterial photosynthetic reaction centers is less studied. This review summarizes the current understanding of the role of H-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. It is discussed that the networks may be involved in providing close association with mobile electron carriers, in light-induced proton transport, in regulation of the redox properties of bacteriochlorophyll cofactors, and in stabilization of the membrane protein structure at the interface of membrane and soluble phases.
Collapse
Affiliation(s)
- T. Yu. Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| | - L. G. Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| |
Collapse
|
5
|
Mandal M, Saito K, Ishikita H. Release of a Proton and Formation of a Low-Barrier Hydrogen Bond between Tyrosine D and D2-His189 in Photosystem II. ACS PHYSICAL CHEMISTRY AU 2022; 2:423-429. [PMID: 36855688 PMCID: PMC9955220 DOI: 10.1021/acsphyschemau.2c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), the second-lowest oxidation state (S1) of the oxygen-evolving Mn4CaO5 cluster is the most stable, as the radical form of the redox-active D2-Tyr160 is considered to be a candidate that accepts an electron from the lowest oxidation state (S0) in the dark. Using quantum mechanical/molecular mechanical calculations, we investigated the redox potential (E m) of TyrD and its H-bond partner, D2-His189. The potential energy profile indicates that the release of a proton from the TyrD...D2-His189 pair leads to the formation of a low-barrier H-bond. The E m depends on the H+ position along the low-barrier H-bond, e.g., 680 mV when the H+ is at the D2-His189 moiety and 800 mV when the H+ is at the TyrD moiety, which can explain why TyrD mediates both the S0 to S1 oxidation and the S2 to S1 reduction.
Collapse
Affiliation(s)
- Manoj Mandal
- Department
of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| | - Keisuke Saito
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan,. Tel: +81-3-5452-5056. Fax: +81-3-5452-5083
| |
Collapse
|
6
|
Acquirement of water-splitting ability and alteration of the charge-separation mechanism in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2020; 117:16373-16382. [PMID: 32601233 PMCID: PMC7368266 DOI: 10.1073/pnas.2000895117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In photosynthetic reaction centers from purple bacteria (PbRC) and the water-oxidizing enzyme, photosystem II (PSII), charge separation occurs along one of the two symmetrical electron-transfer branches. Here we report the microscopic origin of the unidirectional charge separation, fully considering electron-hole interaction, electronic coupling of the pigments, and electrostatic interaction with the polarizable entire protein environments. The electronic coupling between the pair of bacteriochlorophylls is large in PbRC, forming a delocalized excited state with the lowest excitation energy (i.e., the special pair). The charge-separated state in the active branch is stabilized by uncharged polar residues in the transmembrane region and charged residues on the cytochrome c 2 binding surface. In contrast, the accessory chlorophyll in the D1 protein (ChlD1) has the lowest excitation energy in PSII. The charge-separated state involves ChlD1 •+ and is stabilized predominantly by charged residues near the Mn4CaO5 cluster and the proceeding proton-transfer pathway. It seems likely that the acquirement of water-splitting ability makes ChlD1 the initial electron donor in PSII.
Collapse
|
7
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
8
|
Mandal M, Kawashima K, Saito K, Ishikita H. Redox Potential of the Oxygen-Evolving Complex in the Electron Transfer Cascade of Photosystem II. J Phys Chem Lett 2020; 11:249-255. [PMID: 31729876 DOI: 10.1021/acs.jpclett.9b02831] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In photosystem II (PSII), water oxidation occurs in the Mn4CaO5 cluster with the release of electrons via the redox-active tyrosine (TyrZ) to the reaction-center chlorophylls (PD1/PD2). Using a quantum mechanical/molecular mechanical approach, we report the redox potentials (Em) of these cofactors in the PSII protein environment. The Em values suggest that the Mn4CaO5 cluster, TyrZ, and PD1/PD2 form a downhill electron transfer pathway. Em for the first oxidation step, Em(S0/S1), is uniquely low (730 mV) and is ∼100 mV lower than that for the second oxidation step, Em(S1/S2) (830 mV) only when the O4 site of the Mn4CaO5 cluster is protonated in S0. The O4-water chain, which directly forms a low-barrier H-bond with the Mn4CaO5 cluster and mediates proton-coupled electron transfer in the S0 to S1 transition, explains why the second lowest oxidation state, S1, is the most stable and S0 is converted to S1 even in the dark.
Collapse
Affiliation(s)
- Manoj Mandal
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8904 , Japan
| | - Keisuke Kawashima
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8654 , Japan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8904 , Japan
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8654 , Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8904 , Japan
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8654 , Japan
| |
Collapse
|
9
|
Saito K, Mandal M, Ishikita H. Redox potentials along the redox-active low-barrier H-bonds in electron transfer pathways. Phys Chem Chem Phys 2020; 22:25467-25473. [DOI: 10.1039/d0cp04265j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Local proton transfer along redox-active low-barrier H-bonds can alter the driving force or electronic coupling for electron transfer, as the redox potential values depend on the H+ position in low-barrier H-bonds.
Collapse
Affiliation(s)
- Keisuke Saito
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Tokyo 153-8904
- Japan
- Department of Applied Chemistry
| | - Manoj Mandal
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Tokyo 153-8904
- Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology
- The University of Tokyo
- Tokyo 153-8904
- Japan
- Department of Applied Chemistry
| |
Collapse
|
10
|
Kawashima K, Ishikita H. Energetic insights into two electron transfer pathways in light-driven energy-converting enzymes. Chem Sci 2018; 9:4083-4092. [PMID: 29780537 PMCID: PMC5944228 DOI: 10.1039/c8sc00424b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/28/2018] [Indexed: 11/21/2022] Open
Abstract
We report Em values of (bacterio-)chlorophylls for one-electron reduction in both electron-transfer branches of PbRC, PSI, and PSII.
We report redox potentials (Em) for one-electron reduction for all chlorophylls in the two electron-transfer branches of water-oxidizing enzyme photosystem II (PSII), photosystem I (PSI), and purple bacterial photosynthetic reaction centers (PbRC). In PSI, Em values for the accessory chlorophylls were similar in both electron-transfer branches. In PbRC, the corresponding Em value was 170 mV less negative in the active L-branch (BL) than in the inactive M-branch (BM), favoring BL˙– formation. This contrasted with the corresponding chlorophylls, ChlD1 and ChlD2, in PSII, where Em(ChlD1) was 120 mV more negative than Em(ChlD2), implying that to rationalize electron transfer in the D1-branch, ChlD1 would need to serve as the primary electron donor. Residues that contributed to Em(ChlD1) < Em(ChlD2) simultaneously played a key role in (i) releasing protons from the substrate water molecules and (ii) contributing to the larger cationic population on the chlorophyll closest to the Mn4CaO5 cluster (PD1), favoring electron transfer from water molecules. These features seem to be the nature of PSII, which needs to possess the proton-exit pathway to use a protonated electron source—water molecules.
Collapse
Affiliation(s)
- Keisuke Kawashima
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8654 , Japan .
| | - Hiroshi Ishikita
- Department of Applied Chemistry , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8654 , Japan . .,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan . ; Tel: +81-3-5452-5056
| |
Collapse
|
11
|
Zhang Y, Magdaong N, Frank HA, Rusling JF. Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex. PHOTOSYNTHESIS RESEARCH 2014; 120:153-167. [PMID: 23625504 DOI: 10.1007/s11120-013-9831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (Em = -0.47 V, all vs. NHE, at pH 6), quinones (-0.12 V), and the manganese (Mn) cluster (Em = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The -0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the -0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269-3060, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
14
|
Saito K, Shen JR, Ishikita H. Cationic state distribution over the chlorophyll d-containing P(D1)/P(D2) pair in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1191-5. [PMID: 22192718 DOI: 10.1016/j.bbabio.2011.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 11/25/2022]
Abstract
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the P(D1)/P(D2) Chl pair in PSII from A. marina, the P(D1)(•+)/P(D2)(•+) charge ratio was investigated using the PSII crystal structure analyzed at 1.9-Å resolution, while considering all possibilities for the Chld-containing P(D1)/P(D2) pair, i.e., Chld/Chld, Chla/Chld, and Chld/Chla pairs. Chld/Chld and Chla/Chld pairs resulted in a large P(D1)(•+) population relative to P(D2)(•+), as identified in Chla/Chla homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a P(D1)(•+)/P(D2)(•+) ratio of approximately 50/50, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the Chld/Chla pair serves as P(D1)/P(D2) in A. marina PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Keisuke Saito
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
15
|
Saito K, Ishida T, Sugiura M, Kawakami K, Umena Y, Kamiya N, Shen JR, Ishikita H. Distribution of the Cationic State over the Chlorophyll Pair of the Photosystem II Reaction Center. J Am Chem Soc 2011; 133:14379-88. [DOI: 10.1021/ja203947k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Keisuke Saito
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toyokazu Ishida
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Keisuke Kawakami
- Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Yasufumi Umena
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Jian-Ren Shen
- Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Ishikita
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
16
|
Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:218-31. [PMID: 21641332 DOI: 10.1016/j.bbabio.2011.05.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/07/2011] [Accepted: 05/18/2011] [Indexed: 01/05/2023]
Abstract
Photosystem II (PSII) is a multisubunit protein complex in cyanobacteria, algae and plants that use light energy for oxidation of water and reduction of plastoquinone. The conversion of excitation energy absorbed by chlorophylls into the energy of separated charges and subsequent water-plastoquinone oxidoreductase activity are inadvertently coupled with the formation of reactive oxygen species (ROS). Singlet oxygen is generated by the excitation energy transfer from triplet chlorophyll formed by the intersystem crossing from singlet chlorophyll and the charge recombination of separated charges in the PSII antenna complex and reaction center of PSII, respectively. Apart to the energy transfer, the electron transport associated with the reduction of plastoquinone and the oxidation of water is linked to the formation of superoxide anion radical, hydrogen peroxide and hydroxyl radical. To protect PSII pigments, proteins and lipids against the oxidative damage, PSII evolved a highly efficient antioxidant defense system comprising either a non-enzymatic (prenyllipids such as carotenoids and prenylquinols) or an enzymatic (superoxide dismutase and catalase) scavengers. It is pointed out here that both the formation and the scavenging of ROS are controlled by the energy level and the redox potential of the excitation energy transfer and the electron transport carries, respectively. The review is focused on the mechanistic aspects of ROS production and scavenging by PSII. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
17
|
Tomo T, Allakhverdiev SI, Mimuro M. Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:333-40. [PMID: 21530298 DOI: 10.1016/j.jphotobiol.2011.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
This mini review presents current topics of discussion about photosystem (PS) I and PS II of photosynthesis in the Acaryochloris marina. A. marina is a photosynthetic cyanobacterium in which chlorophyll (Chl) d is the major antenna pigment (>95%). However, Chl a is always present in a few percent. Chl d absorbs light with a wavelength up to 30 nm red-shifted from Chl a. Therefore, the chlorophyll species of the special pair in PS II has been a matter of debate because if Chl d was the special pair component, the overall energetics must be different in A. marina. The history of this field indicates that a purified sample is necessary for the reliable identification and characterization of the special pair. In view of the spectroscopic data and the redox potential of pheophytin, we discuss the nature of special pair constituents and the localization of the enigmatic Chl a.
Collapse
Affiliation(s)
- Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Sciences, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | |
Collapse
|
18
|
Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M. Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci U S A 2010; 107:3924-9. [PMID: 20142495 PMCID: PMC2840487 DOI: 10.1073/pnas.0913460107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water oxidation by photosystem (PS) II in oxygenic photosynthetic organisms is a major source of energy on the earth, leading to the production of a stable reductant. Mechanisms generating a high oxidation potential for water oxidation have been a major focus of photosynthesis research. This potential has not been estimated directly but has been measured by the redox potential of the primary electron acceptor, pheophytin (Phe) a. However, the reported values for Phe a are still controversial. Here, we measured the redox potential of Phe a under physiological conditions (pH 7.0; 25 degrees C) in two cyanobacteria with different special pair chlorophylls (Chls): Synechocystis sp. PCC 6803, whose special pair for PS II consists of Chl a, and Acaryochloris marina MBIC 11017, whose special pair for PS II consists of Chl d. We obtained redox potentials of -536 +/- 8 mV for Synechocystis sp. PCC 6803 and -478 +/- 24 mV for A. marina on PS II complexes in the presence of 1.0 M betaine. The difference in the redox potential of Phe a between the two species closely corresponded with the difference in the light energy absorbed by Chl a versus Chl d. We estimated the potentials of the special pair of PS II to be 1.20 V and 1.18 V for Synechocystis sp. PCC 6803 (P680) and A. marina (P713), respectively. This clearly indicates conservation in the properties of water-oxidation systems in oxygenic photosynthetic organisms, irrespective of the special-pair chlorophylls.
Collapse
Affiliation(s)
- Suleyman I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuya Tomo
- Faculty of Science, Tokyo University of Sciences, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; and
| | - Yuichiro Shimada
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hayato Kindo
- Faculty of Science, Tokyo University of Sciences, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; and
| | - Ryo Nagao
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Vyacheslav V. Klimov
- Institute of Basic Biological Problems, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Shibuya Y, Takahashi R, Okubo T, Suzuki H, Sugiura M, Noguchi T. Hydrogen Bond Interactions of the Pheophytin Electron Acceptor and Its Radical Anion in Photosystem II As Revealed by Fourier Transform Infrared Difference Spectroscopy. Biochemistry 2009; 49:493-501. [DOI: 10.1021/bi9018829] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuichi Shibuya
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryouta Takahashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Tatsunori Okubo
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroyuki Suzuki
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takumi Noguchi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
20
|
Kato Y, Sugiura M, Oda A, Watanabe T. Spectroelectrochemical determination of the redox potential of pheophytin a, the primary electron acceptor in photosystem II. Proc Natl Acad Sci U S A 2009; 106:17365-70. [PMID: 19805064 PMCID: PMC2765088 DOI: 10.1073/pnas.0905388106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 02/07/2023] Open
Abstract
Thin-layer cell spectroelectrochemistry, featuring rigorous potential control and rapid redox equilibration within the cell, was used to measure the redox potential E(m)(Phe a/Phe a(-)) of pheophytin (Phe) a, the primary electron acceptor in an oxygen-evolving photosystem (PS) II core complex from a thermophilic cyanobacterium Thermosynechococcus elongatus. Interferences from dissolved O(2) and water reductions were minimized by airtight sealing of the sample cell added with dithionite and mercury plating on the gold minigrid working electrode surface, respectively. The result obtained at a physiological pH of 6.5 was E(m)(Phe a/Phe a(-)) = -505 + or - 6 mV vs. SHE, which is by approximately 100 mV more positive than the values measured approximately 30 years ago at nonphysiological pH and widely accepted thereafter in the field of photosynthesis research. Using the P680* - Phe a free energy difference, as estimated from kinetic analyses by previous authors, the present result would locate the E(m)(P680/P680(+)) value, which is one of the key parameters but still resists direct measurements, at approximately +1,210 mV. In view of these pieces of information, a renewed diagram is proposed for the energetics in PS II.
Collapse
Affiliation(s)
- Yuki Kato
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; and
| | - Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akinori Oda
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; and
| | - Tadashi Watanabe
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; and
| |
Collapse
|
21
|
Thapper A, Mamedov F, Mokvist F, Hammarström L, Styring S. Defining the far-red limit of photosystem II in spinach. THE PLANT CELL 2009; 21:2391-401. [PMID: 19700631 PMCID: PMC2751953 DOI: 10.1105/tpc.108.064154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 07/08/2009] [Accepted: 08/04/2009] [Indexed: 05/24/2023]
Abstract
The far-red limit of photosystem II (PSII) photochemistry was studied in PSII-enriched membranes and PSII core preparations from spinach (Spinacia oleracea) after application of laser flashes between 730 and 820 nm. Light up to 800 nm was found to drive PSII activity in both acceptor side reduction and oxidation of the water-oxidizing CaMn(4) cluster. Far-red illumination induced enhancement of, and slowed down decay kinetics of, variable fluorescence. Both effects reflect reduction of the acceptor side of PSII. The effects on the donor side of PSII were monitored using electron paramagnetic resonance spectroscopy. Signals from the S(2)-, S(3)-, and S(0)-states could be detected after one, two, and three far-red flashes, respectively, indicating that PSII underwent conventional S-state transitions. Full PSII turnover was demonstrated by far-red flash-induced oxygen release, with oxygen appearing on the third flash. In addition, both the pheophytin anion and the Tyr Z radical were formed by far-red flashes. The efficiency of this far-red photochemistry in PSII decreases with increasing wavelength. The upper limit for detectable photochemistry in PSII on a single flash was determined to be 780 nm. In photoaccumulation experiments, photochemistry was detectable up to 800 nm. Implications for the energetics and energy levels of the charge separated states in PSII are discussed in light of the presented results.
Collapse
Affiliation(s)
- Anders Thapper
- Department of Photochemistry, Angström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
22
|
Björn LO, Papageorgiou GC, Blankenship RE. A viewpoint: why chlorophyll a? PHOTOSYNTHESIS RESEARCH 2009; 99:85-98. [PMID: 19125349 DOI: 10.1007/s11120-008-9395-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/09/2008] [Indexed: 05/21/2023]
Abstract
Chlorophyll a (Chl a) serves a dual role in oxygenic photosynthesis: in light harvesting as well as in converting energy of absorbed photons to chemical energy. No other Chl is as omnipresent in oxygenic photosynthesis as is Chl a, and this is particularly true if we include Chl a(2), (=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a type of Chl a. One exception to this near universal pattern is Chl d, which is found in some cyanobacteria that live in filtered light that is enriched in wavelengths >700 nm. They trap the long wavelength electronic excitation, and convert it into chemical energy. In this Viewpoint, we have traced the possible reasons for the near ubiquity of Chl a for its use in the primary photochemistry of Photosystem II (PS II) that leads to water oxidation and of Photosystem I (PS I) that leads to ferredoxin reduction. Chl a appears to be unique and irreplaceable, particularly if global scale oxygenic photosynthesis is considered. Its uniqueness is determined by its physicochemical properties, but there is more. Other contributing factors include specially tailored protein environments, and functional compatibility with neighboring electron transporting cofactors. Thus, the same molecule, Chl a in vivo, is capable of generating a radical cation at +1 V or higher (in PS II), a radical anion at -1 V or lower (in PS I), or of being completely redox silent (in antenna holochromes).
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
23
|
Shelaev IV, Gostev FE, Nadtochenko VA, Shkuropatov AY, Zabelin AA, Mamedov MD, Semenov AY, Sarkisov OM, Shuvalov VA. Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: II. Femto- and picosecond charge separation in PSII D1/D2/Cyt b559 complex. PHOTOSYNTHESIS RESEARCH 2008; 98:95-103. [PMID: 18855113 DOI: 10.1007/s11120-008-9371-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 09/15/2008] [Indexed: 05/26/2023]
Abstract
In Part I of the article, a review of recent data on electron-transfer reactions in photosystem II (PSII) and bacterial reaction center (RC) has been presented. In Part II, transient absorption difference spectroscopy with 20-fs resolution was applied to study the primary charge separation in PSII RC (DI/DII/Cyt b 559 complex) excited at 700 nm at 278 K. It was shown that the initial electron-transfer reaction occurs within 0.9 ps with the formation of the charge-separated state P680(+)Chl(D1)(-), which relaxed within 14 ps as indicated by reversible bleaching of 670-nm band that was tentatively assigned to the Chl(D1) absorption. The subsequent electron transfer from Chl(D1)(-) within 14 ps was accompanied by a development of the radical anion band of Pheo(D1) at 445 nm, attributable to the formation of the secondary radical pair P680(+)Pheo(D1)(-). The key point of this model is that the most blue Q(y) transition of Chl(D1) in RC is allowing an effective stabilization of separated charges. Although an alternative mechanism of charge separation with Chl(D1)* as a primary electron donor and Pheo(D1) as a primary acceptor can not be ruled out, it is less consistent with the kinetics and spectra of absorbance changes induced in the PSII RC preparation by femtosecond excitation at 700 nm.
Collapse
Affiliation(s)
- I V Shelaev
- NN Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Khatypov RA, Khmelnitskiy AY, Leonova MM, Vasilieva LG, Shuvalov VA. Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: I. A review. PHOTOSYNTHESIS RESEARCH 2008; 98:81-93. [PMID: 18853274 DOI: 10.1007/s11120-008-9370-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 09/15/2008] [Indexed: 05/26/2023]
Abstract
The purpose of the review is to show that the tetrameric (bacterio)chlorophyll ((B)Chl) structures in reaction centers of photosystem II (PSII) of green plants and in bacterial reaction centers (BRCs) are similar and play a key role in the primary charge separation. The Stark effect measurements on PSII reaction centers have revealed an increased dipole moment for the transition at approximately 730 nm (Frese et al., Biochemistry 42:9205-9213, 2003). It was found (Heber and Shuvalov, Photosynth Res 84:84-91, 2005) that two fluorescent bands at 685 and 720 nm are observed in different organisms. These two forms are registered in the action spectrum of Q(A) photoreduction. Similar results were obtained in core complexes of PSII at low temperature (Hughes et al., Biochim Biophys Acta 1757: 841-851, 2006). In all cases the far-red absorption and emission can be interpreted as indication of the state with charge transfer character in which the chlorophyll monomer plays a role of an electron donor. The role of bacteriochlorophyll monomers (B(A) and B(B)) in BRCs can be revealed by different mutations of axial ligand for Mg central atoms. RCs with substitution of histidine L153 by tyrosine or leucine and of histidine M182 by leucine (double mutant) are not stable in isolated state. They were studied in antennaless membrane by different kinds of spectroscopy including one with femtosecond time resolution. It was found that the single mutation (L153HY) was accompanied by disappearance of B(A) molecule absorption near 802 nm and by 14-fold decrease of photochemical activity measured with ms time resolution. The lifetime of P(870)* increased up to approximately 200 ps in agreement with very low rate of the electron transfer to A-branch. In the double mutant L153HY + M182HL, the B(A) appears to be lost and B(B) is replaced by bacteriopheophytin Phi(B) with the absence of any absorption near 800 nm. Femtosecond measurements have revealed the electron transfer to B-branch with a time constant of approximately 2 ps. These results are discussed in terms of obligatory role of B(A) and Phi(B) molecules located near P for efficient electron transfer from P*.
Collapse
Affiliation(s)
- Ravil A Khatypov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
25
|
Shuvalov VA, Dolgova TA. Quantum yield of charge separation and fluorescence in photosystem II of green plants. DOKL BIOCHEM BIOPHYS 2007; 416:268-70. [PMID: 18064829 DOI: 10.1134/s1607672907050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- V A Shuvalov
- Institute of Basic Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | | |
Collapse
|
26
|
Ishikita H, Biesiadka J, Loll B, Saenger W, Knapp EW. Cationic state of accessory chlorophyll and electron transfer through pheophytin to plastoquinone in photosystem II. Angew Chem Int Ed Engl 2007; 45:1964-5. [PMID: 16485309 DOI: 10.1002/anie.200503804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hiroshi Ishikita
- Institut für Chemie und Biochemie, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
27
|
Alcantara K, Munge B, Pendon Z, Frank HA, Rusling JF. Thin Film Voltammetry of Spinach Photosystem II. Proton-Gated Electron Transfer Involving the Mn4 Cluster. J Am Chem Soc 2006; 128:14930-7. [PMID: 17105304 DOI: 10.1021/ja0645537] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thin film voltammetry was used to obtain direct, reversible, electron-transfer peaks between electrodes and the spinach photosystem II (PS II) reaction center in lipid films for the first time. Three well-defined pairs of reduction-oxidation peaks were found using cyclic and square wave voltammetry at 4 degrees C at pH 7.5, reflecting direct, reversible electron transfer involving cofactors of PS II. These peaks were assigned to the oxygen-evolving complex (OEC) tetramanganese cluster (Em = 0.2 V vs NHE), quinones (Em = -0.29 V), and pheophytin (Em = -0.72 V). PS II that was depleted of the OEC did not give the peak at 0.2 V. Observed Em values, especially for the OEC, may be influenced by protein-lipid interactions and electrode double-layer effects. Voltammetry at pH 6 and at pH 7.5 with a time window of >100 ms revealed that the manganese cluster oxidation is gated by slow deprotonation of a reduced form. Additional rapid protonation/deprotonation steps are also involved in the electrochemical reduction-oxidation pathways.
Collapse
Affiliation(s)
- Khrisna Alcantara
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA
| | | | | | | | | |
Collapse
|
28
|
Ishikita H, Biesiadka J, Loll B, Saenger W, Knapp EW. Cationic State of Accessory Chlorophyll and Electron Transfer through Pheophytin to Plastoquinone in Photosystem II. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Abstract
With available high resolution structures of PSII and a collection of reported redox midpoint potentials for most of the cofactors, it is possible to compare the expected electron tunneling rates with experimental rates to determine which electron transfer reactions are likely to reflect simply engineered electron tunneling, and which are more sophisticated and associated with large product rearrangements or the making and breaking of bonds. Reliable reorganization energies are largely lacking in this photosystem compared to PSI and purple bacteria and contribute about an order of magnitude uncertainty in tunneling rate estimates. Nevertheless it seems clear that as in purple bacterial reaction centers and PSI, with the notable exception of the oxygen evolving center, the majority of electron transfers within PSII are electron-tunneling limited at room temperature. Tunneling simulations also suggest that the short circuit between pheophytin and the adjacent chlorophyll cation may be fast enough to challenge triplet decay as the principle means of charge recombination from Q(A)(-) at room temperature.
Collapse
Affiliation(s)
- Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| | | | | |
Collapse
|
30
|
Cuni A, Xiong L, Sayre R, Rappaport F, Lavergne J. Modification of the pheophytin midpoint potential in photosystem II: Modulation of the quantum yield of charge separation and of charge recombination pathways. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407511k] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Junge W, Haumann M, Ahlbrink R, Mulkidjanian A, Clausen J. Electrostatics and proton transfer in photosynthetic water oxidation. Philos Trans R Soc Lond B Biol Sci 2002; 357:1407-17; discussion 1417-20. [PMID: 12437879 PMCID: PMC1693046 DOI: 10.1098/rstb.2002.1137] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photosystem II (PSII) oxidizes two water molecules to yield dioxygen plus four protons. Dioxygen is released during the last out of four sequential oxidation steps of the catalytic centre (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), S(3) --> S(4) --> S(0)). The release of the chemically produced protons is blurred by transient, highly variable and electrostatically triggered proton transfer at the periphery (Bohr effect). The extent of the latter transiently amounts to more than one H(+)/e(-) under certain conditions and this is understood in terms of electrostatics. By kinetic analyses of electron-proton transfer and electrochromism, we discriminated between Bohr-effect and chemically produced protons and arrived at a distribution of the latter over the oxidation steps of 1 : 0 : 1 : 2. During the oxidation of tyr-161 on subunit D1 (Y(Z)), its phenolic proton is not normally released into the bulk. Instead, it is shared with and confined in a hydrogen-bonded cluster. This notion is difficult to reconcile with proposed mechanisms where Y(Z) acts as a hydrogen acceptor for bound water. Only in manganese (Mn) depleted PSII is the proton released into the bulk and this changes the rate of electron transfer between Y(Z) and the primary donor of PSII P(+)(680) from electron to proton controlled. D1-His190, the proposed centre of the hydrogen-bonded cluster around Y(Z), is probably further remote from Y(Z) than previously thought, because substitution of D1-Glu189, its direct neighbour, by Gln, Arg or Lys is without effect on the electron transfer from Y(Z) to P(+)(680) (in nanoseconds) and from the Mn cluster to Y(ox)(Z).
Collapse
Affiliation(s)
- Wolfgang Junge
- Abteilung Biophysik, Universität Osnabrück, D-49069 Osnabrück, Germany.
| | | | | | | | | |
Collapse
|
32
|
Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J. Kinetics and pathways of charge recombination in photosystem II. Biochemistry 2002; 41:8518-27. [PMID: 12081503 DOI: 10.1021/bi025725p] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of charge recombination of the S(2)Q(A)(-) state in photosystem II was investigated by modifying the free energy gap between the quinone acceptor Q(A) and the primary pheophytin acceptor Ph. This was done either by changing the midpoint potential of Ph (using mutants of the cyanobacterium Synechocystis with a modified hydrogen bond to this cofactor), or that of Q(A) (using different inhibitors of the Q(B) pocket). The results show that the recombination rate is dependent on the free energy gap between Ph and Q(A), which confirms that the indirect recombination pathway involving formation of Ph(-) has a significant contribution. In the mutant with the largest free energy gap, direct electron transfer from Q(A)(-) to P(+) predominates. The temperature dependence of the recombination rate was investigated, showing a lower activation enthalpy in this mutant compared with the WT. The data allow the determination of the rate of the direct route and of its relative weight in the various strains. The set of currently accepted values for the midpoint potentials of the Q(A)/Q(A)(-), Ph/Ph(-), and P(+)/P* couples is not consistent with the relatively rapid rate of the indirect recombination pathway found here, nor with the 3% yield of delayed fluorescence as previously estimated by de Grooth and van Gorkom (1981, Biochim. Biophys. Acta 635, 445-456). It is argued that a likely explanation is that the midpoint potentials of the two latter couples are more positive than believed due to electrostatic interactions. If such is the case, the estimation of the midpoint potential of the P(+)/P and S(2)/S(1) couples must also be revised upward, with values of 1260 and 1020 mV, respectively.
Collapse
Affiliation(s)
- Fabrice Rappaport
- CNRS UPR 1261, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
33
|
den Blanken H, Hoff A, Jongenelis A, Diner B. High-resolution triplet-minus-singlet absorbance difference spectrum of photosystem II particles. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)81108-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Atkinson Y, Evans M. Electron acceptors of photosystem 2 in the cyanobacterium Phormidium laminosum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Ermakova-Gerdes S, Vermaas W. Mobility of the primary electron-accepting plastoquinone QA of photosystem II in a Synechocystis sp. PCC 6803 strain carrying mutations in the D2 protein. Biochemistry 1998; 37:11569-78. [PMID: 9708993 DOI: 10.1021/bi9806596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Upon introduction of random mutations in a region of the psbDI gene that encodes the D2 protein in the cyanobacterium Synechocystis sp. PCC 6803, an obligate photoheterotrophic mutant was isolated that contained three mutations: V247M, A249T, and M329I. This mutant evolved oxygen in the absence of added electron acceptors, but oxygen evolution was inhibited by micromolar concentrations of several artificial quinones. Complementation analysis showed that the V247M and/or A249T mutations were responsible for this phenotype. Using fluorescence induction and decay measurements, the site of inhibition by the quinones was found to be at the level of the primary electron-accepting quinone in photosystem II, QA. Duroquinone inhibited by blocking reduction of QA, and in the presence of other quinones such as 2,5-dichloro-p-benzoquinone, 2, 5-dimethyl-p-benzoquinone, and p-benzoquinone, QA could be reduced but could not efficiently transfer an electron to QB. To distinguish the effects of the V247M and A249T mutations, single mutants were created. V247M was photoautotrophic and had an essentially normal phenotype. The A249T mutant, although photoautotrophic, was affected by artificial quinones, but less than the mutant carrying both the V247M and A249T changes. The results indicate a decreased plastoquinone affinity at the QA site in the strains carrying a A249T mutation, such that after dark-adaptation a significant percentage of the QA sites is empty or is occupied by an artificial quinone. In light, the percentage of photosystem II centers with plastoquinone bound at the QA site appears to increase, which may be due in part to an increased affinity of the semiquinone versus that of the quinone at the QA site.
Collapse
Affiliation(s)
- S Ermakova-Gerdes
- Department of Plant Biology, Arizona State University, Tempe, Arizona 85287-1601, USA
| | | |
Collapse
|
36
|
Bosch MK, Proskuryakov II, Gast P, Hoff AJ. Time-Resolved EPR Study of the Primary Donor Triplet in D1-D2-cyt b559 Complexes of Photosystem II: Temperature Dependence of Spin−Lattice Relaxation. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp951334r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin K. Bosch
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Ivan I. Proskuryakov
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Peter Gast
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Arnold J. Hoff
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Institute of Soil Science and Photosynthesis, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| |
Collapse
|
37
|
Light energy conversion with chlorophyll a and pheophytin a monolayers at the optically transparent SnO2 electrode: artificial photosynthesis. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0302-4598(95)05021-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Johnson GN, Rutherford A, Krieger A. A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00003-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Angerhofer A, Friso G, Giacometti G, Carbonera D, Giacometti G. Optically detected magnetic resonance study on the origin of the pheophytin triplet state in D1D2-cytochrome b-559 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Light energy conversion with pheophytina monolayer at the SnO2 optically transparent electrode. J SOLUTION CHEM 1994. [DOI: 10.1007/bf00973548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Budil DE, Thurnauer MC. The chlorophyll triplet state as a probe of structure and function in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1057:1-41. [PMID: 1849002 DOI: 10.1016/s0005-2728(05)80081-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- D E Budil
- Baker Laboratory of Chemistry, Cornell University, Ithaca, NY 14850
| | | |
Collapse
|
42
|
Strong light photoinhibition of electrontransport in Photosystem II. Impairment of the function of the first quinone acceptor, QA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90031-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
The influence of the quinone-iron electron acceptor complex on the reaction centre photochemistry of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80073-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Renger G, Kayed A. Fluorescence decline as a function of redox potential and actinic light intensity in spinach thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90195-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Mathis P, Rutherford A. Chapter 4 The primary reactions of photosystems I and II of algae and higher plants. NEW COMPREHENSIVE BIOCHEMISTRY 1987. [DOI: 10.1016/s0167-7306(08)60135-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Fragata M, Popovic R, Camm EL, Leblanc RM. Pheophytin-mediated energy storage of photosystem II particles detected by photoacoustic spectroscopy. PHOTOSYNTHESIS RESEARCH 1987; 14:71-80. [PMID: 24430568 DOI: 10.1007/bf00019593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/1987] [Accepted: 05/27/1987] [Indexed: 06/03/2023]
Abstract
The photoacoustic (PA) characteristics (energy storage and heat dissipation) of photosystem II (PSII) core-enriched particles from barley were studied (i) in conditions where there was electron flow, i.e., in the presence of a combination of the electron acceptor K3 Fe (CN)6, referred to as FeCN, and the electron donor diphenylcarbazide (DPC), and (ii) in conditions where electron flow was suppressed, i.e., in the absence of FeCN and DPC. The experimental data show that a decrease of heat dissipation with a minimum at ∼ 540 nm can be interpreted as energy storage resulting from the presence of pheophytin (Pheo) in the PSII particles. On account of the capability of the PA method to measure the energy absorbed by the chromophores which is converted to heat, it is suggested that the PA detection of Pheo present in the PSII complex will permit to clarify the function of processes involving non-radiative relaxation of excited states in P680-Pheo-QA interactions.
Collapse
Affiliation(s)
- M Fragata
- Centre de recherche en photobiophysique, Université du Québec à Trois-Rivières, G9A 5H7, Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
47
|
|
48
|
Van Gorkom HJ, Meiburg RF, De Vos LJ. Thermodynamics of the charge recombination in photosystem II. PHOTOSYNTHESIS RESEARCH 1986; 9:55-62. [PMID: 24442284 DOI: 10.1007/bf00029731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/1985] [Indexed: 06/03/2023]
Abstract
The temperature dependence of the electric field-induced chlorophyll luminescence in photosystem II was studied in Tris-washed, osmotically swollen spinach chloroplasts (blebs). The system II reaction centers were brought in the state Z(+)P(+)-QA (-)QB (-) by preillumination and the charge recombination to the state Z(+)PQAQB (-) was measured at various temperatures and electrical field strengths. It was found that the activation enthalpy of this back reaction was 0.16 eV in the absence of an electrical field and diminished with increasing field strength. It is argued that this energy is the enthalpy difference between the states IQA (-) and I(-)QA and accounts for about half of the free energy difference between these states. The redox state of QB does not influence this free energy difference within 150 μs after the photoreduction of QA. The consequences for the interpretation of thermodynamic properties of QA are discussed.
Collapse
Affiliation(s)
- H J Van Gorkom
- Department of Biophysics, Huygens Laboratory of the State University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | | | | |
Collapse
|
49
|
|
50
|
Orientation of EPR signals arising from components in Photosystem II membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90122-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|