1
|
Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a super-resolved journey. Biosci Rep 2023; 43:BSR20230946. [PMID: 37791639 PMCID: PMC10600063 DOI: 10.1042/bsr20230946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023] Open
Abstract
In adipose tissue, insulin stimulates glucose uptake by mediating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In 2010, insulin was revealed to also have a fundamental impact on the spatial distribution of GLUT4 within the plasma membrane, with the existence of two GLUT4 populations at the plasma membrane being defined: (1) as stationary clusters and (2) as diffusible monomers. In this model, in the absence of insulin, plasma membrane-fused GLUT4 are found to behave as clusters. These clusters are thought to arise from exocytic events that retain GLUT4 at their fusion sites; this has been proposed to function as an intermediate hub between GLUT4 exocytosis and re-internalisation. By contrast, insulin stimulation induces the dispersal of GLUT4 clusters into monomers and favours a distinct type of GLUT4-vesicle fusion event, known as fusion-with-release exocytosis. Here, we review how super-resolution microscopy approaches have allowed investigation of the characteristics of plasma membrane-fused GLUT4 and further discuss regulatory step(s) involved in the GLUT4 dispersal machinery, introducing the scaffold protein EFR3 which facilitates localisation of phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) to the cell surface. We consider how dispersal may be linked to the control of transporter activity, consider whether macro-organisation may be a widely used phenomenon to control proteins within the plasma membrane, and speculate on the origin of different forms of GLUT4-vesicle exocytosis.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Shannan Foylan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Peter W Tinning
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Nia J Bryant
- Department of Biology, University of York, Heslington, York, U.K
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
2
|
Knaack DA, Chang J, Thomas MJ, Sorci-Thomas MG, Chen Y, Sahoo D. Scavenger receptor class B type I is required for efficient glucose uptake and metabolic homeostasis in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554190. [PMID: 37662321 PMCID: PMC10473602 DOI: 10.1101/2023.08.21.554190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Obesity is a worldwide epidemic and places individuals at a higher risk for developing comorbidities that include cardiovascular disease and type 2 diabetes. Adipose tissue contains adipocytes that are responsible for lipid metabolism and reducing misdirected lipid storage. Adipocytes facilitate this process through insulin-mediated uptake of glucose and its subsequent metabolism into triglycerides for storage. During obesity, adipocytes become insulin resistant and have a reduced ability to mediate glucose import, thus resulting in whole-body metabolic dysfunction. Scavenger receptor class B type I (SR-BI) has been implicated in glucose uptake in skeletal muscle and adipocytes via its native ligands, apolipoprotein A-1 and high-density lipoproteins. Further, SR-BI translocation to the cell surface in adipocytes is sensitive to insulin stimulation. Using adipocytes differentiated from ear mesenchymal stem cells isolated from wild-type and SR-BI knockout (SR-BI -/- ) mice as our model system, we tested the hypothesis that SR-BI is required for insulin-mediated glucose uptake and regulation of energy balance in adipocytes. We demonstrated that loss of SR-BI in adipocytes resulted in inefficient glucose uptake regardless of cell surface expression levels of glucose transporter 4 compared to WT adipocytes. We also observed reduced glycolytic capacity, increased lipid biosynthesis, and dysregulated expression of lipid metabolism genes in SR-BI -/- adipocytes compared to WT adipocytes. These results partially support our hypothesis and suggest a novel role for SR-BI in glucose uptake and metabolic homeostasis in adipocytes.
Collapse
|
3
|
Park JE, Son J, Seo Y, Han JS. HM-Chromanone Ameliorates Hyperglycemia and Dyslipidemia in Type 2 Diabetic Mice. Nutrients 2022; 14:1951. [PMID: 35565920 PMCID: PMC9101766 DOI: 10.3390/nu14091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The effects of (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HMC) on hyperglycemia and dyslipidemia were investigated in diabetic mice. Mice were separated into three groups: db/db, rosiglitazone and HMC. Blood glucose or glycosylated hemoglobin values in HMC-treated mice were significantly lower compared to db/db mice. Total cholesterol, LDL-cholesterol, and triglyceride values were lower, and HDL-C levels were higher, in the HMC group compared to the diabetic and rosiglitazone groups. HMC markedly increased IRS-1Tyr612, AktSer473 and PI3K levels and plasma membrane GLUT4 levels in skeletal muscle, suggesting improved insulin resistance. HMC also significantly stimulated AMPKThr172 and PPARα in the liver, and ameliorated dyslipidemia by inhibiting SREBP-1c and FAS. Consequently, HMC reduced hyperglycemia by improving the expression of insulin-resistance-related genes and improved dyslipidemia by regulating fatty acid synthase and oxidation-related genes in db/db mice. Therefore, HMC could ameliorate hyperglycemia and dyslipidemia in type 2 diabetic mice.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea;
| | - Jaemin Son
- Division of Marine Bioscience, Ocean Science & Technology School, Korea Maritime and Ocean University, Busan 49112, Korea; (J.S.); (Y.S.)
| | - Youngwan Seo
- Division of Marine Bioscience, Ocean Science & Technology School, Korea Maritime and Ocean University, Busan 49112, Korea; (J.S.); (Y.S.)
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
4
|
Molnár M, Horváth K, Dankó T, Somlyai I, Kovács BZ, Somlyai G. Deuterium-depleted water stimulates GLUT4 translocation in the presence of insulin, which leads to decreased blood glucose concentration. Mol Cell Biochem 2021; 476:4507-4516. [PMID: 34510301 PMCID: PMC8528751 DOI: 10.1007/s11010-021-04231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Deuterium (D) is a stable isotope of hydrogen (H) with a mass number of 2. It is present in natural waters in the form of HDO, at a concentration of 16.8 mmol/L, equivalent to 150 ppm. In a phase II clinical study, deuterium depletion reduced fasting glucose concentration and insulin resistance. In this study, we tested the effect of subnormal D-concentration on glucose metabolism in a streptozotocin (STZ)-induced diabetic rat model. Animals were randomly distributed into nine groups to test the effect of D2O (in a range of 25-150 ppm) on glucose metabolism in diabetic animals with or without insulin treatment. Serum glucose, fructose amine-, HbA1c, insulin and urine glucose levels were monitored, respectively. After the 8-week treatment, membrane-associated GLUT4 fractions from the soleus muscle were estimated by Western blot technique. Our results indicate that, in the presence of insulin, deuterium depletion markedly reduced serum levels of glucose, -fructose amine, and -HbA1c, in a dose-dependent manner. The optimal concentration of deuterium was between 125 and 140 ppm. After a 4-week period of deuterium depletion, the highest membrane-associated GLUT4 content was detected at 125 ppm. These data suggest that deuterium depletion dose-dependently enhances the effect of insulin on GLUT4 translocation and potentiates glucose uptake in diabetic rats, which explains the lower serum glucose, -fructose amine, and -HbA1c concentrations. Based on our experimental data, deuterium-depleted water could be used to treat patients with metabolic syndrome (MS) by increasing insulin sensitivity. These experiments indicate that naturally occurring deuterium has an impact on metabolic regulations.
Collapse
Affiliation(s)
- Miklós Molnár
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Horváth
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Dankó
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ildikó Somlyai
- HYD LLC for Cancer Research and Drug Development, Villányi út 97, 1118 Budapest, Hungary
| | - Beáta Zs. Kovács
- HYD LLC for Cancer Research and Drug Development, Villányi út 97, 1118 Budapest, Hungary
| | - Gábor Somlyai
- HYD LLC for Cancer Research and Drug Development, Villányi út 97, 1118 Budapest, Hungary
| |
Collapse
|
5
|
Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochem J 2021; 478:3809-3826. [PMID: 34751699 DOI: 10.1042/bcj20210145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
While the etiology of type 2 diabetes is multifaceted, the induction of insulin resistance in skeletal muscle is a key phenomenon, and impairments in insulin signaling in this tissue directly contribute to hyperglycemia. Despite the lack of clarity regarding the specific mechanisms whereby insulin signaling is impaired, the key role of a high lipid environment within skeletal muscle has been recognized for decades. Many of the proposed mechanisms leading to the attenuation of insulin signaling - namely the accumulation of reactive lipids and the pathological production of reactive oxygen species (ROS), appear to rely on this high lipid environment. Mitochondrial biology is a central component to these processes, as these organelles are almost exclusively responsible for the oxidation and metabolism of lipids within skeletal muscle and are a primary source of ROS production. Classic studies have suggested that reductions in skeletal muscle mitochondrial content and/or function contribute to lipid-induced insulin resistance; however, in recent years the role of mitochondria in the pathophysiology of insulin resistance has been gradually re-evaluated to consider the biological effects of alterations in mitochondrial content. In this respect, while reductions in mitochondrial content are not required for the induction of insulin resistance, mechanisms that increase mitochondrial content are thought to enhance mitochondrial substrate sensitivity and submaximal adenosine diphosphate (ADP) kinetics. Thus, this review will describe the central role of a high lipid environment in the pathophysiology of insulin resistance, and present both classic and contemporary views of how mitochondrial biology contributes to insulin resistance in skeletal muscle.
Collapse
|
6
|
Abstract
On this 100th anniversary of the discovery of insulin, we recognize the critical role that adipocytes, which are exquisitely responsive to insulin, have played in determining the mechanisms for insulin action at the cellular level. Our understanding of adipose tissue biology has evolved greatly, and it is now clear that adipocytes are far more complicated than simple storage depots for fat. A growing body of evidence documents how adipocytes, in response to insulin, contribute to the control of whole-body nutrient homeostasis. These advances highlight adipocyte plasticity, heterogeneity, and endocrine function, unique features that connect adipocyte metabolism to the regulation of other tissues important for metabolic homeostasis (e.g., liver, muscle, pancreas).
Collapse
Affiliation(s)
- Anna Santoro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
8
|
Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT4 translocation. Biochem J 2021; 478:407-422. [DOI: 10.1042/bcj20200542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Insulin stimulates glucose uptake in muscle cells by rapidly redistributing vesicles containing GLUT4 glucose transporters from intracellular compartments to the plasma membrane (PM). GLUT4 vesicle fusion requires the formation of SNARE complexes between vesicular VAMP and PM syntaxin4 and SNAP23. SNARE accessory proteins usually regulate vesicle fusion processes. Complexins aide in neuro-secretory vesicle-membrane fusion by stabilizing trans-SNARE complexes but their participation in GLUT4 vesicle fusion is unknown. We report that complexin-2 is expressed and homogeneously distributed in L6 rat skeletal muscle cells. Upon insulin stimulation, a cohort of complexin-2 redistributes to the PM. Complexin-2 knockdown markedly inhibited GLUT4 translocation without affecting proximal insulin signalling of Akt/PKB phosphorylation and actin fiber remodelling. Similarly, complexin-2 overexpression decreased maximal GLUT4 translocation suggesting that the concentration of complexin-2 is finely tuned to vesicle fusion. These findings reveal an insulin-dependent regulation of GLUT4 insertion into the PM involving complexin-2.
Collapse
|
9
|
Wang T, Wang J, Hu X, Huang XJ, Chen GX. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem 2020; 11:76-98. [PMID: 33274014 PMCID: PMC7672939 DOI: 10.4331/wjbc.v11.i3.76] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
Collapse
Affiliation(s)
- Tiannan Wang
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Xinge Hu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
10
|
Stremming J, Jansson T, Powell TL, Rozance PJ, Brown LD. Reduced Na + K + -ATPase activity may reduce amino acid uptake in intrauterine growth restricted fetal sheep muscle despite unchanged ex vivo amino acid transporter activity. J Physiol 2020; 598:1625-1639. [PMID: 31909825 DOI: 10.1113/jp278933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Fetuses with intrauterine growth restriction (IUGR) have reduced muscle mass that persists postnatally, which may contribute to their increased risk for adult onset metabolic diseases, such as diabetes and obesity. Amino acid transporter-mediated histidine uptake and system L amino acid transporter activity were similar in sarcolemmal membranes isolated from control and IUGR hindlimb skeletal muscle. Activity of Na+ K+ -ATPase, which is responsible for establishing the sodium gradient necessary for system A and N amino acid transporter function, was significantly reduced in IUGR skeletal muscle sarcolemma compared to control. ATP content was lower in IUGR skeletal muscle. Expression and phosphorylation of proteins in the mechanistic target of rapamycin pathway were similar in control and IUGR skeletal muscle homogenate. Our data suggest that lower Na+ K+ -ATPase activity, which reduces the driving force for active amino acid transport, and lower ATP availability contribute to reduced amino acid uptake and protein synthesis in IUGR fetal skeletal muscle. ABSTRACT Fetuses with intrauterine growth restriction (IUGR) have lower muscle mass that persists postnatally. Using a sheep model of placental insufficiency and IUGR, we have previously demonstrated lower net total uptake of amino acids by the fetal hindlimb and lower skeletal muscle protein synthesis rates. To investigate the mechanisms underlying these changes, we tested the hypothesis that ex vivo amino acid transporter and Na+ K+ -ATPase activity is reduced, and ex vivo ATP levels are lower in hindlimb skeletal muscle of the IUGR fetus. We developed a novel protocol to measure transporter-mediated histidine uptake, system L amino acid transporter activity and Na+ K+ -ATPase activity using sarcolemmal membranes isolated from hindlimb muscle of control (CON, n = 11-12) and IUGR (n = 12) late gestation fetal sheep. We also determined ATP content and the activity of insulin and mechanistic target of rapamycin (mTOR) signalling, which are involved in regulating cellular amino acid uptake and protein synthesis, by measuring the expression and phosphorylation of AKT, 4E-BP1, eIF2α, AMPKα, p70 S6 kinase and rpS6 in muscle homogenates. Transporter-mediated histidine uptake and system L activity were similar in control and IUGR sarcolemma, although ex vivo Na+ K+ -ATPase activity was lower by 64% (P = 0.019) in IUGR sarcolemma. ATP content was lower by 25% (P = 0.007) in IUGR muscle. Insulin, AMPK, and mTOR signalling activity was similar in control and IUGR muscle. We speculate that reduced muscle sarcolemmal Na+ K+ -ATPase activity and lower ATP content diminishes the sodium gradient in vivo, resulting in a reduced driving force for sodium-dependent transporters and subsequently lower muscle amino acid uptake.
Collapse
Affiliation(s)
- Jane Stremming
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura D Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Lin CH, Hsiao LW, Kuo YH, Shih CC. Antidiabetic and Antihyperlipidemic Effects of Sulphurenic Acid, a Triterpenoid Compound from Antrodia camphorata, in Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2019; 20:E4897. [PMID: 31581697 PMCID: PMC6801777 DOI: 10.3390/ijms20194897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/19/2023] Open
Abstract
The present study was designed to evaluate the protective effect of sulphurenic acid (SA), a pure compound from Antrodia camphorata, on diabetes and hyperlipidemia in an animal model study and to clarify the underlying molecular mechanism. Diabetes was induced by daily 55 mg/kg intraperitoneal injections of streptozotocin (STZ) solution over five days. Diabetic mice were randomly divided into six groups and orally gavaged with SA (at three dosages) or glibenclamide (Glib), fenofibrate (Feno) or vehicle for 3 weeks. Our findings showed that STZ-induced diabetic mice had significantly increased fasting blood glucose, glycated hemoglobin (HbA1C), plasma triglyceride (TG), and total cholesterol (TC) levels (p < 0.001, p < 0.001, p < 0.001, and p < 0.05, respectively) but decreased blood insulin, adiponectin, and leptin levels compared to those of the control group (p < 0.001, p < 0.001, and p < 0.001, respectively). Administration of SA to STZ-induced diabetic mice may lower blood glucose but it increased the insulin levels with restoration of the size of the islets of Langerhans cells, implying that SA protected against STZ-induced diabetic states within the pancreas. At the molecular level, SA treatment exerts an increase in skeletal muscle expression levels of membrane glucose transporter 4 (GLUT4) and phospho-Akt to increase the membrane glucose uptake, but the mRNA levels of PEPCK and G6Pase are decreased to inhibit hepatic glucose production, thus leading to its hypoglycemic effect. Moreover, SA may cause hypolipidemic effects not only by enhancing hepatic expression levels of peroxisome proliferator-activated receptor α (PPARα) with increased fatty acid oxidation but also by reducing lipogenic fatty acid synthase (FAS) as well as reducing mRNA levels of sterol regulatory element binding protein (SREBP)1C and SREBP2 to lower blood TG and TC levels. Our findings demonstrated that SA displayed a protective effect against type 1 diabetes and a hyperlipidemic state in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung 42055, Taiwan.
| | - Li-Wei Hsiao
- Division of Endocrinology and Metabolism, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Ching Shih
- Graduate Institute of Biotechnology and Biomedical Engineering, College of Health Science, Central Taiwan University of Science and Technology, No.666 Buzih Road, Beitun District, Taichung 40601, Taiwan.
| |
Collapse
|
12
|
Abstract
A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
13
|
Bone DBJ, Meister J, Knudsen JR, Dattaroy D, Cohen A, Lee R, Lu H, Metzger D, Jensen TE, Wess J. Skeletal Muscle-Specific Activation of G q Signaling Maintains Glucose Homeostasis. Diabetes 2019; 68:1341-1352. [PMID: 30936140 PMCID: PMC6610017 DOI: 10.2337/db18-0796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
Skeletal muscle (SKM) insulin resistance plays a central role in the pathogenesis of type 2 diabetes. Because G-protein-coupled receptors (GPCRs) represent excellent drug targets, we hypothesized that activation of specific functional classes of SKM GPCRs might lead to improved glucose homeostasis in type 2 diabetes. At present, little is known about the in vivo metabolic roles of the various distinct GPCR signaling pathways operative in SKM. In this study, we tested the hypothesis that selective activation of SKM Gq signaling can improve SKM glucose uptake and whole-body glucose homeostasis under physiological and pathophysiological conditions. Studies with transgenic mice expressing a Gq-linked designer GPCR selectively in SKM cells demonstrated that receptor-mediated activation of SKM Gq signaling greatly promoted glucose uptake into SKM and significantly improved glucose homeostasis in obese, glucose-intolerant mice. These beneficial metabolic effects required the activity of SKM AMPK. In contrast, obese mutant mice that lacked both Gαq and Gα11 selectively in SKM showed severe deficits in glucose homeostasis. Moreover, GPCR-mediated activation of Gq signaling also stimulated glucose uptake in primary human SKM cells. Taken together, these findings strongly suggest that agents capable of enhancing SKM Gq signaling may prove useful as novel antidiabetic drugs.
Collapse
Affiliation(s)
- Derek B J Bone
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Diptadip Dattaroy
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Amanda Cohen
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Regina Lee
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
14
|
Knudsen JR, Henriquez-Olguin C, Li Z, Jensen TE. Electroporated GLUT4-7myc-GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns. Exp Physiol 2019; 104:704-714. [PMID: 30710396 DOI: 10.1113/ep087545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Resolving the mechanism(s) leading to glucose transporter 4 (GLUT4) translocation to the muscle surface membrane has great therapeutic potential. However, the measurement of GLUT4 translocation is technically challenging. Here, we asked whether electroporation of GLUT4-7myc-GFP into skeletal muscle could be used as a tool to study GLUT4 translocation in vivo. What is the main finding and its importance? By acutely inducing GLUT4-7myc-GFP expression in skeletal muscle, we verified that in vivo exercise and AICAR stimulation increased the GLUT4 presence in the sarcolemma measured as myc signal. Importantly, the increased myc signal in the sarcolemma was not accompanied by major visual changes in the distribution of the GFP signal. ABSTRACT Insulin and exercise lead to translocation of the glucose transporter 4 (GLUT4) to the surface membrane of skeletal muscle fibres. This process is pivotal for facilitating glucose uptake into skeletal muscle. To study this, a robust assay is needed to measure the translocation of GLUT4 in adult skeletal muscle directly. Here, we aimed to validate a simple GLUT4 translocation assay using a genetically encoded biosensor in mouse skeletal muscle. We transfected GLUT4-7myc-GFP into mouse muscle to study live GLUT4 movement and to evaluate GLUT4 insertion in the muscle surface membrane after in vivo running exercise and pharmacological activation of AMP-activated protein kinase (AMPK). Transfection led to expression of GLUT4-7myc-GFP that was dynamic in live flexor digitorum brevis fibres and which, upon insulin stimulation, exposed the myc epitope extracellularly. Running exercise, in addition to AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleotide, induced ∼125 and ∼100% increase, respectively, in extracellularly exposure of GLUT4 in the surface membrane of tibialis anterior muscle. Interestingly, the clear increase in surface-exposed GLUT4 content induced by insulin, exercise or AMPK activation was not accompanied by any discernible reorganization of the GLUT4-GFP signal. In conclusion, we provide a detailed description of an easy-to-use translocation assay to study GLUT4 accumulation at the surface membrane induced by exercise and exercise-mimicking stimuli. Notably, our analyses revealed that increased GLUT4 surface membrane accumulation was not accompanied by a discernible change in the GLUT4 localization pattern.
Collapse
Affiliation(s)
- Jonas Roland Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhencheng Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Elbenhardt Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Lin CH, Shih ZZ, Kuo YH, Huang GJ, Tu PC, Shih CC. Antidiabetic and antihyperlipidemic effects of the flower extract of Eriobotrya japonica in streptozotocin-induced diabetic mice and the potential bioactive constituents in vitro. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
16
|
Wang Y, Wen L, Zhou S, Zhang Y, Wang XH, He YY, Davie A, Broadbent S. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One 2018; 13:e0203551. [PMID: 30199540 PMCID: PMC6130870 DOI: 10.1371/journal.pone.0203551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/22/2018] [Indexed: 01/03/2023] Open
Abstract
AIMS The aims of this study were to determine the effects of four weeks of intermittent exposure to a moderate hypoxia environment (15% oxygen), and compare with the effects of exercise in normoxia or hypoxia, on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, Akt-dependent GSK3 phosphorylation and Akt activity in skeletal muscle of obese mice with type 2 diabetes. METHODS C57BL/6J mice that developed type 2 diabetes with a high-fat-diet (55% fat) (fasting blood glucose, FBG = 13.9 ± 0.69 (SD) mmol/L) were randomly allocated into diabetic control (DC), rest in hypoxia (DH), exercise in normoxia (DE), and exercise in hypoxia (DHE) groups (n = 7, each), together with a normal-diet (4% fat) control group (NC, FBG = 9.1 ± 1.11 (SD) mmol/L). The exercise groups ran on a treadmill at intensities of 75-90% VO2max. The interventions were applied one hour per day, six days per week for four weeks. Venous blood samples were analysed for FBG, insulin (FBI) and insulin sensitivity (QUICKI) pre and post the intervention period. The quadriceps muscle samples were collected 72 hours post the last intervention session for analysis of GLUT4 translocation, insulin receptor phosphorylation, Akt expression and phosphorylated GSK3 fusion protein by western blot. Akt activity was determined by the ratio of the phosphorylated GSK3 fusion protein to the total Akt protein. RESULTS The FBG of the DH, DE and DHE groups returned to normal level (FBG = 9.4 ± 1.50, 8.86 ± 0.94 and 9.0 ± 1.13 (SD) mmol/L for DH, DE and DHE respectively, P < 0.05), with improved insulin sensitivity compared to DC (P < 0.05), after the four weeks treatment, while the NC and DC showed no significant changes, as analysed by general linear model with repeated measures. All three interventions resulted in a significant increase of GLUT4 translocation to cell membrane compared to the DC group (P < 0.05). The DE and DH showed a similar level of insulin receptor phosphorylation compared with NC that was significantly lower than the DC (P < 0.05) post intervention. The DH and DHE groups showed a significantly higher Akt activity compared to the DE, DC and NC (P < 0.05) post intervention, as analysed by one-way ANOVA. CONCLUSIONS This study produced new evidence that intermittent exposure to mild hypoxia (0.15 FiO2) for four weeks resulted in normalisation of FBG, improvement in whole body insulin sensitivity, and a significant increase of GLUT4 translocation in the skeletal muscle, that were similar to the effects of exercise intervention during the same time period, in mice with diet-induced type 2 diabetes. However, exercise in hypoxia for four weeks did not have additive effects on these responses. The outcomes of the research may contribute to the development of effective, alternative and complementary interventions for management of hyperglycaemia and type 2 diabetes, particularly for individuals with limitations in participation of physical activity.
Collapse
Affiliation(s)
- Yun Wang
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Li Wen
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Yong Zhang
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Xin-Hao Wang
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - You-Yu He
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Allan Davie
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Suzanne Broadbent
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| |
Collapse
|
17
|
You HN, Park MH, Hwang SY, Han JS. Nardostachys jatamansi DC Extract Alleviates Insulin Resistance and Regulates Glucose Metabolism in C57BL/KsJ-db/db Mice Through the AMP-Activated Protein Kinase Signaling Pathway. J Med Food 2018; 21:324-331. [PMID: 29630449 DOI: 10.1089/jmf.2017.4015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study investigated whether Nardostachys jatamansi DC extract (NJE) improved insulin sensitivity and suppressed hepatic glucose production in an animal model of type 2 diabetes. C57BL/KsJ-db/db mice were divided into three dietary groups: regular diet (control), NJE, and rosiglitazone. After 6 weeks of feeding, blood glucose, glycosylated hemoglobin, and plasma insulin levels were significantly lower in NJE than in diabetic control group mice. The oral glucose tolerance test also revealed a positive effect of NJE on increasing insulin sensitivity. The homeostatic index of insulin resistance was significantly lower in NJE than in diabetic control group mice. NJE markedly lowered the plasma lipid concentration compared to diabetic control group mice. In the skeletal muscle, the expression of phosphorylated AMP-activated protein kinase, pAkt substrate of 160 kDa, and plasma membrane glucose transporter type 4 increased more in NJE compared to diabetic control group mice. NJE also decreased the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. These findings demonstrate that NJE alleviates hyperglycemia by improving insulin sensitivity and inhibiting gluconeogenesis in the liver.
Collapse
Affiliation(s)
- Han-Nwi You
- 1 Department of Food Science and Nutrition, Pusan National University , Busan, Korea
| | - Mi Hwa Park
- 2 Department of Food and Nutrition, College of Medical and Life Science, Silla University , Busan, Korea
| | - Sung Yeoun Hwang
- 3 Department of Research and Development, Korea Bio Medical Science Institute , Seoul, Korea
| | - Ji-Sook Han
- 1 Department of Food Science and Nutrition, Pusan National University , Busan, Korea
| |
Collapse
|
18
|
Fang P, Yu M, Min W, Wan D, Han S, Shan Y, Wang R, Shi M, Zhang Z, Bo P. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sci 2018; 196:156-161. [PMID: 29459024 DOI: 10.1016/j.lfs.2018.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
AIMS Although baicalin could attenuate obesity-induced insulin resistance, the detailed mechanism of baicalin on glucose uptake has not been sufficiently explored as yet. The aim of this study was to survey if baicalin might facilitate glucose uptake and to explore its signal mechanisms in L6 myotubes. MATERIALS AND METHODS L6 myotubes were treated with 100, 200, 400 μM baicalin for 6 h, 12 h and 24 h in this study. Then 2-NBDG and insulin signal protein levels in myotubes of L6 cells were examined. KEY FINDINGS We discovered that administration of baicalin enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA and PGC-1α mRNA levels in L6 myotubes. The beneficial metabolic changes elicited by baicalin were abrogated in myotubes of L6 by P38MAPK or AKT inhibitors. SIGNIFICANCE These results suggest that baicalin promoted glucose uptake in myotubes by differential regulation on P38MAPK and AKT activity. In conclusion, these data provide insight that baicalin is a powerful and promising agent for the treament of hyperglycemia via AKT/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Shiyu Han
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Yizhi Shan
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Rui Wang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
19
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Lin CH, Kuo YH, Shih CC. Antidiabetic and hypolipidemic activities of eburicoic acid, a triterpenoid compound from Antrodia camphorata, by regulation of Akt phosphorylation, gluconeogenesis, and PPARα in streptozotocin-induced diabetic mice. RSC Adv 2018; 8:20462-20476. [PMID: 35542324 PMCID: PMC9080793 DOI: 10.1039/c8ra01841c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022] Open
Abstract
The study is designed to examine the potential effects and underlying mechanisms of eburicoic acid (TRR), a compound from Antrodia camphorata, in streptozotocin (STZ)-induced diabetic mice. Diabetic mice were randomly divided into six groups and given TRR orally by gavage (at three dosage rates) or fenofibrate (Feno) (250 mg kg−1 body weight) or metformin (Metf) (300 mg kg−1 body weight) or vehicle for 2 weeks. STZ-induced diabetic mice were found to have increased blood glucose, HbA1C, plasma triglyceride (TG) and total cholesterol (TC) levels, but reduced blood insulin, adiponectin, and leptin levels as compared with the CON group. TRR was found to lower blood glucose and HbA1C, but increase insulin levels. Plasma TG and TC levels were significantly lowered in TRR, Feno, or Metf-treated STZ-induced diabetic mice as compared with the vehicle-treated STZ group, indicating that TRR, Feno, and Metf ameliorated hyperlipidemia. The islet cells of STZ-induced diabetic mice exhibited a marked reduction from their classic round-shape as compared to the CON mice. The TRR-treated STZ mice revealed restoration of the size of Langerhans islet cells with β-cell repair as compared with the vehicle-treated STZ mice, implying that TRR ameliorated STZ-induced diabetic states within the pancreas. STZ-induction was found to decrease the expressions of membrane glucose transporter 4 (GLUT4), and phosphorylation of Akt in skeletal muscles, and administration of TRR reversed all the decreases. Moreover, administration of TRR increased blood insulin levels and enhanced hepatic expression levels of phospho-Akt and phospho-FoxO1 but decreased the mRNA levels of glucose-6-phosphatase (G6 Pase) and phosphoenolpyruvate carboxykinase (PEPCK) to suppress hepatic glucose production, thus leading to TRR's antidiabetic activity. Additionally, TRR caused an increase in the expression levels of fatty acid oxidation gene peroxisome proliferator-activated receptor α (PPARα), but a decrease in lipogenic fatty acid synthase (FAS) and PPARγ expressions in the liver. TRR treatment suppressed hepatic mRNA levels of sterol regulatory element binding protein (SREBP) 1c and SREBP2, leading to decreased plasma triglyceride and total cholesterol levels. These findings indicate that TRR may effectively enhance therapeutic potential in the treatment of type 1 diabetes mellitus and/or hyperlipidemia. The study is designed to examine the potential effects and underlying mechanisms of eburicoic acid (TRR), a compound from Antrodia camphorata, in streptozotocin (STZ)-induced diabetic mice.![]()
Collapse
Affiliation(s)
- Cheng-Hsiu Lin
- Department of Internal Medicine
- Fengyuan Hospital
- Ministry of Health and Welfare
- Taichung City 42055
- Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources
- China Medical University
- Taichung City 40402
- Taiwan
| | - Chun-Ching Shih
- Graduate Institute of Biotechnology and Biomedical Engineering
- College of Health Science
- Central Taiwan University of Science and Technology
- Taichung City 40601
- Taiwan
| |
Collapse
|
21
|
Fang P, Zhang L, Yu M, Sheng Z, Shi M, Zhu Y, Zhang Z, Bo P. Activiated galanin receptor 2 attenuates insulin resistance in skeletal muscle of obese mice. Peptides 2018; 99:92-98. [PMID: 29183756 DOI: 10.1016/j.peptides.2017.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 01/28/2023]
Abstract
The results of our and other's studies showed that activation of galanin receptor 1 could mitigate insulin resistance via promoting glucose transporter 4 (GLUT4) expression and translocation in the skeletal muscle of rats. But no literature are available regarding the effect of galanin receptor 2 (GALR2) on insulin resistance in skeletal muscle of type 2 diabetes. Herein, in this study we intended to survey the effect of GALR2 and its signal mechanisms in the mice with high fat diet-induced obese. The mice were intraperitoneally injected with vehicle, GALR2 agonist M1145 and antagonist M871 respectively once a day for continuous 21 days. The skeletal muscles were processed for determination of glucose uptake, and GLUT4 mRNA and protein expression levels. The PGC-1α, AKT, p38MAPK, AS160, pAKT, pP38MAPK and pAS160 expression levels were quantitatively assessed too. We found that pharmacological activation of GALR2 enhanced energy expenditure, and increased GLUT4 expression and translocation in skeletal muscle of mice during high-fat diet regimens. Activation of GALR2 alleviated insulin resistance through P38MAPK/PGC-1α/GLUT4 and AKT/AS160/GLUT4 pathway in the skeletal muscle of mice. Overall, these results identify that GALR2 is a regulator of insulin resistance and activation of GALR2 represents a promising strategy against obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Zhongqi Sheng
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
22
|
Lorenzo DN, Bennett V. Cell-autonomous adiposity through increased cell surface GLUT4 due to ankyrin-B deficiency. Proc Natl Acad Sci U S A 2017; 114:12743-12748. [PMID: 29133412 PMCID: PMC5715754 DOI: 10.1073/pnas.1708865114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Obesity typically is linked to caloric imbalance as a result of overnutrition. Here we propose a cell-autonomous mechanism for adiposity as a result of persistent cell surface glucose transporter type 4 (GLUT4) in adipocytes resulting from impaired function of ankyrin-B (AnkB) in coupling GLUT4 to clathrin-mediated endocytosis. Adipose tissue-specific AnkB-KO mice develop obesity and progressive pancreatic islet dysfunction with age or high-fat diet (HFD). AnkB-deficient adipocytes exhibit increased lipid accumulation associated with increased glucose uptake and impaired endocytosis of GLUT4. AnkB binds directly to GLUT4 and clathrin and promotes their association in adipocytes. AnkB variants that fail to restore normal lipid accumulation and GLUT4 localization in adipocytes are present in 1.3% of European Americans and 8.4% of African Americans, and are candidates to contribute to obesity susceptibility in humans.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710;
- Department of Biochemistry, Duke University, Durham, NC 27710
| | - Vann Bennett
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710;
- Department of Biochemistry, Duke University, Durham, NC 27710
| |
Collapse
|
23
|
Eburicoic Acid, a Triterpenoid Compound from Antrodia camphorata, Displays Antidiabetic and Antihyperlipidemic Effects in Palmitate-Treated C2C12 Myotubes and in High-Fat Diet-Fed Mice. Int J Mol Sci 2017; 18:ijms18112314. [PMID: 29099085 PMCID: PMC5713283 DOI: 10.3390/ijms18112314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/22/2022] Open
Abstract
This study was designed to investigate the antidiabetic and antihyperlipidemic effects and mechanisms of eburicoic acid (TRR); one component of Antrodia camphorata in vitro and in an animal model for 14 weeks. Expression levels of membrane glucose transporter type 4 (GLUT4); phospho-5′-adenosine monophosphate-activated protein kinase (AMPK)/total AMPK; and phospho-Akt/total Akt in insulin-resistant C2C12 myotube cells were significantly decreased by palmitate; and such decrease was prevented and restored by TRR at different concentrations. A group of control (CON) was on low-fat diet over a period of 14 weeks. Diabetic mice; after high-fat-diet (HFD) induction for 10 weeks; were randomly divided into six groups and were given once a day oral gavage doses of either TRR (at three dosage levels); fenofibrate (Feno) (at 0.25 g/kg body weight); metformin (Metf) (at 0.3 g/kg body weight); or vehicle (distilled water) (HF group) over a period of 4 weeks and still on HFD. Levels of glucose; triglyceride; free fatty acid (FFA); insulin; and leptin in blood were increased in 14-week HFD-fed mice as compared to the CON group; and the increases were prevented by TRR, Feno, or Metf as compared to the HF group. Moreover, HFD-induction displayed a decrease in circulating adiponectin levels, and the decrease was prevented by TRR, Feno, or Metf treatment. The overall effect of TRR is to decrease glucose and triglyceride levels and improved peripheral insulin sensitivity. Eburicoic acid, Feno, and Metf displayed both enhanced expression levels of phospho-AMPK and membrane expression levels of GLUT4 in the skeletal muscle of HFD-fed mice to facilitate glucose uptake with consequent enhanced hepatic expression levels of phospho-AMPK in the liver and phosphorylation of the transcription factor forkhead box protein O1 (FOXO1) but decreased messenger RNA (mRNA) of phosphenolpyruvate carboxykinase (PEPCK) to inhibit hepatic glucose production; resulting in lowered blood glucose levels. Moreover; TRR treatment increased hepatic expression levels of the peroxisome proliferator-activated receptor α (PPARα) to enhance fatty acid oxidation; but displayed a reduction in expressions of hepatic fatty acid synthase (FAS) but an increase in fatty acid oxidation PPARα coincident with a decrease in hepatic mRNA levels of sterol response element binding protein-1c (SREBP-1c); resulting in a decrease in blood triglycerides and amelioration of hepatic ballooning degeneration. Eburicoic acid-treated mice reduced adipose expression levels of lipogenic FAS and peroxisome proliferator-activated receptor γ (PPARγ) and led to decreased adipose lipid accumulation. The present findings demonstrated that TRR exhibits a beneficial therapeutic potential in the treatment of type 2 diabetes and hyperlipidemia.
Collapse
|
24
|
Samad MB, Mohsin MNAB, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, Muna IA, Akhter F, Kabir AU, Hannan JMA. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr db/db type 2 diabetic mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:395. [PMID: 28793909 PMCID: PMC5550996 DOI: 10.1186/s12906-017-1903-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND [6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current study on Leprdb/db diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia. METHODS Leprdb/db type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days. We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by qRT-PCR and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure glycogen synthase 1 level and Glut4 expression and protein levels. RESULTS 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4 transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the increased expression of Rab8 and Rab10 GTPases that are responsible for GLUT4 vesicle fusion to the membrane. CONCLUSIONS Collectively, our study reports that GLP-1 mediates the insulinotropic activity of [6]-Gingerol, and [6]-Gingerol treatment facilitates glucose disposal in skeletal muscles through increased activity of glycogen synthase 1 and enhanced cell surface presentation of GLUT4 transporters.
Collapse
Affiliation(s)
- Mehdi Bin Samad
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE USA
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Bodiul Alam Razu
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | | | - Sinayat Mahzabeen
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- Department of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Naziat Unnoor
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ishrat Aklima Muna
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- Seoul National University, Seoul, South Korea
| | - Farjana Akhter
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ashraf Ul Kabir
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - J. M. A. Hannan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| |
Collapse
|
25
|
Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends Endocrinol Metab 2017; 28:597-611. [PMID: 28602209 DOI: 10.1016/j.tem.2017.05.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Glucose transport is rate limiting for dietary glucose utilization by muscle and fat. The glucose transporter GLUT4 is dynamically sorted and retained intracellularly and redistributes to the plasma membrane (PM) by insulin-regulated vesicular traffic, or 'GLUT4 translocation'. Here we emphasize recent findings in GLUT4 translocation research. The application of total internal reflection fluorescence microscopy (TIRFM) has increased our understanding of insulin-regulated events beneath the PM, such as vesicle tethering and membrane fusion. We describe recent findings on Akt-targeted Rab GTPase-activating proteins (GAPs) (TBC1D1, TBC1D4, TBC1D13) and downstream Rab GTPases (Rab8a, Rab10, Rab13, Rab14, and their effectors) along with the input of Rac1 and actin filaments, molecular motors [myosinVa (MyoVa), myosin1c (Myo1c), myosinIIA (MyoIIA)], and membrane fusion regulators (syntaxin4, munc18c, Doc2b). Collectively these findings reveal novel events in insulin-regulated GLUT4 traffic.
Collapse
Affiliation(s)
| | - Martin Pavarotti
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza 5500, Argentina
| | - Scott Frendo-Cumbo
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
26
|
Fang P, Yu M, Zhang L, Wan D, Shi M, Zhu Y, Bo P, Zhang Z. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol 2017; 448:77-86. [PMID: 28359800 DOI: 10.1016/j.mce.2017.03.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/04/2017] [Accepted: 03/26/2017] [Indexed: 01/24/2023]
Abstract
Obesity may cause several metabolic complications, including insulin resistance and type 2 diabetes mellitus. Despite great advances in medicine, people still keep exploring novel and effective drugs for treatment of obesity and insulin resistance. The aim of this study was to survey if baicalin might ameliorate obesity-induced insulin resistance and to explore its signal mechanisms in skeletal muscles of mice. Diet-induced obese (DIO) mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and C2C12 myotubes were treated with 100, 200, 400 μM baicalin for 12 h in this study. Then insulin resistance indexes and insulin signal protein levels in skeletal muscles were examined. We discovered that administration of baicalin decreased food intake, body weight, HOMA-IR and NT-PGC-1α levels, but enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA, PGC-1α mRNA, PPARγ mRNA, GLUT1 mRNA expression in skeletal muscles of obese mice and myotubes of C2C12 cells, and reversed high fat diet-induced glucose and insulin intolerance, hyperglycemia and insulin resistance in the mice. These results suggest that baicalin is a powerful and promising agent for treatment of obesity and insulin resistance via Akt/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| |
Collapse
|
27
|
Lin CH, Wu JB, Jian JY, Shih CC. (-)-Epicatechin-3-O-β-D-allopyranoside from Davallia formosana prevents diabetes and dyslipidemia in streptozotocin-induced diabetic mice. PLoS One 2017; 12:e0173984. [PMID: 28333970 PMCID: PMC5363832 DOI: 10.1371/journal.pone.0173984] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/01/2017] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to evaluate the effects and molecular mechanism of (-)-epicatechin-3-O-β-D-allopyranoside from Davallia formosana (BB) (also known as Gu-Sui-Bu) on type 1 diabetes mellitus and dyslipidemia in streptozotocin (STZ)-induced diabetic mice. This plant was demonstrated to display antioxidant activities and possess polyphenol contents. Diabetic mice were randomly divided into six groups and were given daily oral gavage doses of either BB (at three dosage levels), metformin (Metf) (at 0.3 g/kg body weight), fenofibrate (Feno) (at 0.25 g/kg body weight) or vehicle (distilled water) and a group of control (CON) mice were gavaged with vehicle over a period of 4 weeks. Treatment with BB led to reduced levels of blood glucose, HbA1C, triglycerides and leptin and to increased levels of insulin and adiponectin compared with the vehicle-treated STZ group. The diabetic islets showed retraction from their classic round-shaped as compared with the control islets. The BB-treated groups (at middle and high dosages) showed improvement in islets size and number of Langerhans islet cells. The membrane levels of skeletal muscular glucose transporter 4 (GLUT4) were significantly higher in BB-treated mice. This resulted in a net glucose lowering effect among BB-treated mice. Moreover, BB enhanced the expression of skeletal muscle phospho-AMPK in treated mice. BB-treated mice increased expression of fatty acid oxidation enzymes, including peroxisome proliferator-activated receptor α (PPARα) and mRNA levels of carnitine palmitoyl transferase Ia (CPT1a). These mice also expressed lower levels of lipogenic genes such as fatty acid synthase (FAS), as well as lower mRNA levels of sterol regulatory element binding protein 1c (SREBP1c) and liver adipocyte fatty acid binding protein 2 (aP2). This resulted in a reduction in plasma triglyceride levels. BB-treated mice also expressed lower levels of PPARγ and FAS protein. This led to reduced adipogenesis, fatty acid synthesis and lipid accumulation within adipose tissue, and consequently, to lower triglyceride levels in liver, blood, and adipose tissue. Moreover, BB treatment not only displayed the activation Akt in liver tissue and skeletal muscle, but also in C2C12 myotube to cause an increase in phosphorylation of Akt in the absence of insulin. These results demonstrated that BB act as an activator of AMPK and /or regulation of insulin pathway (Akt), and the antioxidant activity within the pancreas. Therefore, BB treatment ameliorated the diabetic and dyslipidemic state in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City, Taiwan
| | - Jin-Bin Wu
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung City, Taiwan
| | - Jia-Ying Jian
- Graduate Institute of Biotechnology and Biomedical Engineering, College of Health Science, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - Chun-Ching Shih
- Graduate Institute of Biotechnology and Biomedical Engineering, College of Health Science, Central Taiwan University of Science and Technology, Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Fang P, Yu M, He B, Guo L, Huang X, Kong G, Shi M, Zhu Y, Bo P, Zhang Z. Central injection of GALR1 agonist M617 attenuates diabetic rat skeletal muscle insulin resistance through the Akt/AS160/GLUT4 pathway. Mech Ageing Dev 2017; 162:122-128. [PMID: 27041232 DOI: 10.1016/j.mad.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/17/2016] [Accepted: 03/31/2016] [Indexed: 12/27/2022]
|
29
|
Choi KH, Lee HA, Park MH, Han JS. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57BL/Ksj-db/db Mice. J Med Food 2016; 19:737-45. [PMID: 27441957 DOI: 10.1089/jmf.2016.3665] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The effect of mulberry (Morus alba L.) fruit extract (MFE) on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes was evaluated. C57BL/Ksj-diabetic db/db mice were divided into three groups: diabetic control, rosiglitazone, and MFE groups. Blood glucose, plasma insulin, and intraperitoneal glucose were measured, and an insulin tolerance test was performed after MFE supplementation in db/db mice. In addition, the protein levels of various targets of insulin signaling were measured by western blotting. The blood levels of glucose and HbA1c were significantly lower in the MFE-supplemented group than in the diabetic control group. Moreover, glucose and insulin tolerance tests showed that MFE treatment increased insulin sensitivity. The homeostatic index of insulin resistance significantly decreased in the MFE-supplemented group relative to the diabetic control group. MFE supplementation significantly stimulated the levels of phosphorylated (p)-AMP-activated protein kinase (pAMPK) and p-Akt substrate of 160 kDa (pAS160) and enhanced the level of plasma membrane-glucose transporter 4 (GLUT4) in skeletal muscles. Further, dietary MFE significantly increased pAMPK and decreased the levels of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. MFE may improve hyperglycemia and insulin sensitivity via activation of AMPK and AS160 in skeletal muscles and inhibition of gluconeogenesis in the liver.
Collapse
Affiliation(s)
- Kyung Ha Choi
- 1 Department of Food and Nutrition, College of Medical and Life Science, Silla University , Busan, Korea.,2 Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| | - Hyun Ah Lee
- 2 Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| | - Mi Hwa Park
- 1 Department of Food and Nutrition, College of Medical and Life Science, Silla University , Busan, Korea
| | - Ji-Sook Han
- 2 Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University , Busan, Korea
| |
Collapse
|
30
|
Snook LA, Wright DC, Holloway GP. Postprandial control of fatty acid transport proteins' subcellular location is not dependent on insulin. FEBS Lett 2016; 590:2661-70. [PMID: 27311759 DOI: 10.1002/1873-3468.12260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/28/2016] [Accepted: 06/14/2016] [Indexed: 01/09/2023]
Abstract
Fatty acid transport proteins rapidly translocate to the plasma membrane in response to various stimuli, including insulin, influencing lipid uptake into muscle. However, our understanding of the mechanisms regulating postprandial fatty acid transporter subcellular location remains limited. We demonstrate that the response of fatty acid transporters to insulin stimulation is extremely brief and not temporally matched in the postprandial state. We further show that high-fat diet-induced accumulation of fatty acid transporters on the plasma membrane can occur in the absence of insulin. Altogether, these data suggest that insulin is not the primary signal regulating fatty acid transporter relocation in vivo.
Collapse
Affiliation(s)
- Laelie A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| |
Collapse
|
31
|
Choi SI, Lee HA, Han JS. Gynura procumbens extract improves insulin sensitivity and suppresses hepatic gluconeogenesis in C57BL/KsJ- db/db mice. Nutr Res Pract 2016; 10:507-515. [PMID: 27698958 PMCID: PMC5037068 DOI: 10.4162/nrp.2016.10.5.507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/29/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study was designed to investigate whether Gynura procumbens extract (GPE) can improve insulin sensitivity and suppress hepatic glucose production in an animal model of type 2 diabetes. MATERIALS/METHODS C57BL/Ksj-db/db mice were divided into 3 groups, a regular diet (control), GPE, and rosiglitazone groups (0.005 g/100 g diet) and fed for 6 weeks. RESULTS Mice supplemented with GPE showed significantly lower blood levels of glucose and glycosylated hemoglobin than diabetic control mice. Glucose and insulin tolerance test also showed the positive effect of GPE on increasing insulin sensitivity. The homeostatic index of insulin resistance was significantly lower in mice supplemented with GPE than in the diabetic control mice. In the skeletal muscle, the expression of phosphorylated AMP-activated protein kinase, pAkt substrate of 160 kDa, and PM-glucose transporter type 4 increased in mice supplemented with GPE when compared to that of the diabetic control mice. GPE also decreased the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the liver. CONCLUSIONS These findings demonstrate that GPE might improve insulin sensitivity and inhibit gluconeogenesis in the liver.
Collapse
Affiliation(s)
- Sung-In Choi
- Department of Food Science and Nutrition, Pusan National University, Jangjeon 2-dong, Geumjeong-gu, Busan 46241, Korea
| | - Hyun-Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Jangjeon 2-dong, Geumjeong-gu, Busan 46241, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Jangjeon 2-dong, Geumjeong-gu, Busan 46241, Korea.; Research Institute of Ecology for the Elderly, Pusan National University, Busan 46241, Korea
| |
Collapse
|
32
|
Kuo YH, Lin CH, Shih CC. Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice. Int J Mol Sci 2016; 17:E872. [PMID: 27271603 PMCID: PMC4926406 DOI: 10.3390/ijms17060872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/19/2023] Open
Abstract
This study investigated the potential effects of dehydroeburicoic acid (TT), a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD)-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE) of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of this mushroom) on membrane glucose transporter 4 (GLUT4) and phospho-Akt in C2C12 myoblasts cells. The in vitro study demonstrated that treatment with CruE, AnK and TT increased the membrane levels of glucose transporter 4 (GLUT4) and phospho-Akt at different concentrations. The animal experiments were performed for 12 weeks. Diabetic mice were randomly divided into six groups after 8 weeks of HFD-induction and treated with daily oral gavage doses of TT (at three dose levels), fenofibrate (Feno) (at 0.25 g/kg body weight), metformin (Metf) (at 0.3 g/kg body weight) or vehicle for another 4 weeks while on an HFD diet. HFD-fed mice exhibited increased blood glucose levels. TT treatment dramatically lowered blood glucose levels by 34.2%~43.4%, which was comparable to the antidiabetic agent-Metf (36.5%). TT-treated mice reduced the HFD-induced hyperglycemia, hypertriglyceridemia, hyperinsulinemia, hyperleptinemia, and hypercholesterolemia. Membrane levels of GLUT4 were significantly higher in CruE-treated groups in vitro. Skeletal muscle membrane levels of GLUT4 were significantly higher in TT-treated mice. These groups of mice also displayed lower mRNA levels of glucose-6-phosphatase (G6 Pase), an inhibitor of hepatic glucose production. The combination of these agents produced a net hypoglycemic effect in TT-treated mice. TT treatment enhanced the expressions of hepatic and skeletal muscle AMP-activated protein kinase (AMPK) phosphorylation in mice. TT-treated mice exhibited enhanced expression of hepatic fatty acid oxidation enzymes, including peroxisome proliferator-activated receptor α (PPARα) and increased mRNA levels of carnitine palmitoyl transferase Ia (CPT-1a). These mice also exhibited decreased expression levels of lipogenic fatty acid synthase (FAS) in liver and adipose tissue and reduced mRNA levels of hepatic adipocyte fatty acid binding protein 2 (aP2) and glycerol-3-phosphate acyltransferase (GPAT). These alterations resulted in a reduction in fat stores within the liver and lower triglyceride levels in blood. Our results demonstrate that TT is an excellent therapeutic approach for the treatment of type 2 diabetes and hypertriglyceridemia.
Collapse
Affiliation(s)
- Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung City 40402, Taiwan.
- Department of Biotechnology, Asia University, Taichung City 41354, Taiwan.
| | - Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City 42055, Taiwan.
| | - Chun-Ching Shih
- Graduate Institute of Pharmaceutical Science and Technology, College of Health Science, Central Taiwan University of Science and Technology, No. 666 Buzih Road, Beitun District, Taichung City 40601, Taiwan.
| |
Collapse
|
33
|
Antcin K, a Triterpenoid Compound from Antrodia camphorata, Displays Antidiabetic and Antihyperlipidemic Effects via Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in Muscles. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4867092. [PMID: 27242912 PMCID: PMC4875994 DOI: 10.1155/2016/4867092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to screen firstly the potential effects of antcin K (AnK), the main constituent of the fruiting body of Antrodia camphorata, in vitro and further evaluate the activities and mechanisms in high-fat-diet- (HFD-) induced mice. Following 8-week HFD-induction, mice were treated with AnK, fenofibrate (Feno), metformin (Metf), or vehicle for 4 weeks afterward. In C2C12 myotube cells, the membrane GLUT4 and phospho-Akt expressions were higher in insulin and AnK-treated groups than in the control group. It was observed that AnK-treated mice significantly lowered blood glucose, triglyceride, total cholesterol, and leptin levels in AnK-treated groups. Of interest, AnK at 40 mg/kg/day dosage displayed both antihyperglycemic effect comparable to Metf (300 mg/kg/day) and antihypertriglyceridemic effect comparable to Feno (250 mg/kg/day). The combination of significantly increased skeletal muscular membrane expression levels of glucose transporter 4 (GLUT4) but decreased hepatic glucose-6-phosphatase (G6 Pase) mRNA levels by AnK thus contributed to a decrease in blood glucose levels. Furthermore, AnK enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK) expressions in the muscle and liver. Moreover, AnK treatment exhibited inhibition of hepatic fatty acid synthase (FAS) but enhancement of fatty acid oxidation peroxisome proliferator-activated receptor α (PPARα) expression coincident with reduced sterol response element binding protein-1c (SREBP-1c) mRNA levels in the liver may contribute to decreased plasma triglycerides, hepatic steatosis, and total cholesterol levels. The present findings indicate that AnK displays an advantageous therapeutic potential for the management of type 2 diabetes and hyperlipidemia.
Collapse
|
34
|
Wakisaka M, Nagao T, Yoshinari M. Sodium Glucose Cotransporter 2 (SGLT2) Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells. PLoS One 2016; 11:e0151585. [PMID: 26999015 PMCID: PMC4801351 DOI: 10.1371/journal.pone.0151585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT) in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2. METHODS The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX) inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor. RESULTS Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction. CONCLUSIONS These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells.
Collapse
Affiliation(s)
- Masanori Wakisaka
- Wakisaka Naika (Clinic of Internal Medicine), Fukuoka City, Japan
- * E-mail:
| | | | | |
Collapse
|
35
|
Kuo YH, Lin CH, Shih CC. Antidiabetic and Antihyperlipidemic Properties of a Triterpenoid Compound, Dehydroeburicoic Acid, from Antrodia camphorata in Vitro and in Streptozotocin-Induced Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10140-10151. [PMID: 26503742 DOI: 10.1021/acs.jafc.5b04400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study was to examine the effects of dehydroeburicoic acid (TT) on type 1 diabetes mellitus and dyslipidemia in streptozotocin (STZ)-induced diabetic mice. STZ-induced diabetic mice were randomly divided into six groups and given orally by gavage TT (at three dosages), metformin (Metf), fenfibrate (Feno), or vehicle for 4 weeks. STZ-induced diabetic mice showed elevations in blood glucose levels (P < 0.001). TT treatment markedly decreased blood glucose levels by 42.6-46.5%. Moreover, STZ-induced diabetic mice displayed an increase in circulating triglyceride (TG) and total cholesterol (TC) levels (P < 0.001 and P < 0.01, respectively) but a decrease in blood insulin and adiponectin levels (P < 0.01 and P < 0.05, respectively). These substances are also reversed by TT treatment, indicating TT ameliorated diabetes and dyslipidemia. Membrane skeletal muscular expression levels of glucose transporter 4 (GLUT4) and expression levels of AMPK phosphorylation (phospho-AMPK) in both liver and skeletal muscle were reduced in STZ-induced diabetic mice, which normalized upon TT treatment and correction of hyperglycemia accompanied with a decrease in mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6 Pase), which was related to the inhibition of hepatic glucose production and attenuating diabetic state. In addition, TT also showed hypolipidemic effect by increasing hepatic expression levels of peroxisome proliferator-activated receptor α (PPARα) and mRNA levels of carnitine palmitoyl transferase Ia (CPT-1a) but decreasing expression levels of fatty acid synthase (FAS), which further contributed to a decrease in circulating TG levels. TT-treated mice displayed decreased SREBP2 mRNA levels and reduced blood TC levels. These findings strongly support that TT prevents diabetic and dyslipidemic states in STZ-induced diabetic mice evidenced by regulation of GLUT4, PPARα, FAS, and phosphorylation of AMPK.
Collapse
Affiliation(s)
- Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University , Taichung City 40402, Taiwan
- Department of Biotechnology, Asia University , Taichung City 41354, Taiwan
| | - Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare , Fengyuan District, Taichung City 42055, Taiwan
| | - Chun-Ching Shih
- Graduate Institute of Pharmaceutical Science and Technology, College of Health Science, Central Taiwan University of Science and Technology , 666 Buzih Road, Beitun District, Taichung City 40601, Taiwan
| |
Collapse
|
36
|
Park CJ, Lee HA, Han JS. Jicama (Pachyrhizus erosus) extract increases insulin sensitivity and regulates hepatic glucose in C57BL/Ksj-db/db mice. J Clin Biochem Nutr 2015; 58:56-63. [PMID: 26798198 PMCID: PMC4706093 DOI: 10.3164/jcbn.15-59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/21/2015] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effect of jicama extract on hyperglycemia and insulin sensitivity in an animal model of type 2 diabetes. Male C57BL/Ksj-db/db mice were divided into groups subsequently fed a regular diet (controls), or diet supplemented with jicama extract, and rosiglitazone. After 6 weeks, blood levels of glucose and glycosylated hemoglobin were significantly lower in animals administered the jicama extract than the control group. Additionally, glucose and insulin tolerance tests showed that jicama extract increased insulin sensitivity. The homeostatic index of insulin resistance was lower in the jicama extract-treated group than in the diabetic control group. Administration of jicama extract significantly enhanced the expressions of the phosphorylated AMP-activated protein kinase and Akt substrate of 160 kDa, and plasma membrane glucose transporter type 4 in skeletal muscle. Jicama extract administration also decreased the expressions of glucose 6-phosphatase and phosphoenol pyruvate carboxykinase in the liver. Jicama extract may increases insulin sensitivity and inhibites the gluconeogenesis in the liver.
Collapse
Affiliation(s)
- Chan Joo Park
- Department of Food Science and Nutrition & Research Institute of Ecology for the Elderly, Pusan National University, Busan 609-735, Korea
| | - Hyun-Ah Lee
- Department of Food Science and Nutrition & Research Institute of Ecology for the Elderly, Pusan National University, Busan 609-735, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition & Research Institute of Ecology for the Elderly, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
37
|
Al-Shaqha WM, Khan M, Salam N, Azzi A, Chaudhary AA. Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:379. [PMID: 26490765 PMCID: PMC4618145 DOI: 10.1186/s12906-015-0899-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Catharanthus roseus is an important Ayurvedic medication in traditional medicine. It is potentially used in countries like India, South Africa, China and Malaysia for the healing of diabetes mellitus. Although, the molecular mechanisms behind this effect are yet to be exclusively explored. Due to the great antidiabetic and hyperlipidemic potential of c. roseus, we hypothesized that the insulin mimetic effect of ethanolic extract of c. roseus might add to glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family messenger RNA (mRNA) in liver. METHODS STZ-induced diabetic rats treated by ethanolic extract of c. roseus 100 mg/kg and 200 mg/kg; and one group treated with Metformin (100 mg/kg). After final administration of treatment of 4 weeks, blood samples were collected under fasting conditions, and the body weights (BWs) were measured. Total RNA from liver was extracted with the Qiagen RNEasy Micro kit (GERMANY) as described in the manufacturer's instructions. First-strand complementary DNA (cDNA) was synthesized at 40 °C by priming with oligo-dT12-18 (Invitrogen, USA) and using Super ScriptII reverse transcriptase according to the protocol provided by the manufacturer (Invitrogen, USA). Real-time polymerase chain reaction (PCR) amplifications for GLUT-4 (gene ID: 25139) were conducted using Light-Cycler 480 (Roche, USA) with the SyBr® I nucleic acid stain (Invitrogen, USA) according to the manufacturer's instructions. Polymerase chain reaction products of β-actin primer gene were used as an internal standard. RESULTS The proposed study was framed to look at the antidiabetic efficacy of ethanolic extract of c. roseus and an expression of GLUT-2 and GLUT-4 gene in streptozotocin induced diabetic wistar rats. The doses were administered orally at a rate of 100 and 200 mg/kg and detrain the glucose transport system in liver for 4 weeks. The observed results showed a good positive correlation between intracellular calcium and insulin release levels in isolated islets of Langerhans. The supplementation of ethanolic extract of c. roseus significantly amplified the expression of GLUT gene mRNA by Real Time PCR in liver of diabetic rats. CONCLUSIONS We conclude that the observed antidiabetic effect of c. roseus on STZ induced diabetes was a result of complex mechanisms of GLUT gene mRNA expression. The findings are very encouraging and greatly advocate its candidature for the design of a novel herbal drug to cure deadly diabetes.
Collapse
Affiliation(s)
- Waleed M Al-Shaqha
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA)
| | - Mohsin Khan
- Department of Energy and Environmental sciences, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Nasir Salam
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA)
| | - Arezki Azzi
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA)
| | - Anis Ahmad Chaudhary
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317-7544, Kingdom of Saudi Arabia (KSA).
| |
Collapse
|
38
|
Lorenzo DN, Healy JA, Hostettler J, Davis J, Yang J, Wang C, Hohmeier HE, Zhang M, Bennett V. Ankyrin-B metabolic syndrome combines age-dependent adiposity with pancreatic β cell insufficiency. J Clin Invest 2015; 125:3087-102. [PMID: 26168218 DOI: 10.1172/jci81317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Rare functional variants of ankyrin-B have been implicated in human disease, including hereditary cardiac arrhythmia and type 2 diabetes (T2D). Here, we developed murine models to evaluate the metabolic consequences of these alterations in vivo. Specifically, we generated knockin mice that express either the human ankyrin-B variant R1788W, which is present in 0.3% of North Americans of mixed European descent and is associated with T2D, or L1622I, which is present in 7.5% of African Americans. Young AnkbR1788W/R1788W mice displayed primary pancreatic β cell insufficiency that was characterized by reduced insulin secretion in response to muscarinic agonists, combined with increased peripheral glucose uptake and concomitantly increased plasma membrane localization of glucose transporter 4 (GLUT4) in skeletal muscle and adipocytes. In contrast, older AnkbR1788W/R1788W and AnkbL1622I/L1622I mice developed increased adiposity, a phenotype that was reproduced in cultured adipocytes, and insulin resistance. GLUT4 trafficking was altered in animals expressing mutant forms of ankyrin-B, and we propose that increased cell surface expression of GLUT4 in skeletal muscle and fatty tissue of AnkbR1788W/R1788W mice leads to the observed age-dependent adiposity. Together, our data suggest that ankyrin-B deficiency results in a metabolic syndrome that combines primary pancreatic β cell insufficiency with peripheral insulin resistance and is directly relevant to the nearly one million North Americans bearing the R1788W ankyrin-B variant.
Collapse
|
39
|
Kabir AU, Samad MB, Ahmed A, Jahan MR, Akhter F, Tasnim J, Hasan SMN, Sayfe SS, Hannan JMA. Aqueous fraction of Beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters. PLoS One 2015; 10:e0116546. [PMID: 25647228 PMCID: PMC4315578 DOI: 10.1371/journal.pone.0116546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022] Open
Abstract
Background The study was designed to investigate the probable mechanisms of anti-hyperglycemic activity of B. Vulgaris. Methodology/Principal Findings Aqueous fraction of B. Vulgaris extract was the only active fraction (50mg/kg). Plasma insulin level was found to be the highest at 30 mins after B. Vulgaris administration at a dose of 200mg/kg. B. Vulgaris treated mice were also assayed for plasma Acetylcholine, Glucagon Like Peptide-1 (GLP-1), Gastric Inhibitory Peptide (GIP), Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Peptide (PACAP), Insulin Like Growth Factor-1 (IGF-1), Pancreatic Polypeptides (PP), and Somatostatin, along with the corresponding insulin levels. Plasma Acetylcholine and GLP-1 significantly increased in B. Vulgaris treated animals and were further studied. Pharmacological enhancers, inhibitors, and antagonists of Acetylcholine and GLP-1 were also administered to the test animals, and corresponding insulin levels were measured. These studies confirmed the role of acetylcholine and GLP-1 in enhanced insulin secretion (p<0.05). Principal signaling molecules were quantified in isolated mice islets for the respective pathways to elucidate their activities. Elevated concentrations of Acetylcholine and GLP-1 in B. Vulgaris treated mice were found to be sufficient to activate the respective pathways for insulin secretion (p<0.05). The amount of membrane bound GLUT1 and GLUT4 transporters were quantified and the subsequent glucose uptake and glycogen synthesis were assayed. We showed that levels of membrane bound GLUT4 transporters, glucose-6-phosphate in skeletal myocytes, activity of glycogen synthase, and level of glycogen deposited in the skeletal muscles all increased (p<0.05). Conclusion Findings of the present study clearly prove the role of Acetylcholine and GLP-1 in the Insulin secreting activity of B. Vulgaris. Increased glucose uptake in the skeletal muscles and subsequent glycogen synthesis may also play a part in the anti-hyperglycemic activity of B. Vulgaris.
Collapse
Affiliation(s)
- Ashraf Ul Kabir
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- * E-mail:
| | - Mehdi Bin Samad
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Arif Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohammad Rajib Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Farjana Akhter
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Jinat Tasnim
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - S. M. Nageeb Hasan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Sania Sarker Sayfe
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - J. M. A. Hannan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
40
|
Expression of syntaxin 8 in visceral adipose tissue is increased in obese patients with type 2 diabetes and related to markers of insulin resistance and inflammation. Arch Med Res 2014; 46:47-53. [PMID: 25523146 DOI: 10.1016/j.arcmed.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/09/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Obesity is associated with increased adipose tissue inflammation as well as with the development of type 2 diabetes (T2D). Syntaxin 8 (STX8) is a protein required for the transport of endosomes. In this study we analyzed the relationship of STX8 with the presence of T2D in the context of obesity. METHODS With this purpose, 21 subjects (seven lean [LN], eight obese normoglycemic [OB-NG] and six obese with type 2 diabetes [OB-T2D]) were included in the study. Gene and protein expression levels of STX8 and GLUT4 were analyzed in visceral adipose tissue (VAT). RESULTS mRNA (p = 0.008) and protein (p <0.001) expression levels of STX8 were significantly increased in VAT of OB-T2D patients. Moreover, gene expression levels of SLC2A4 (GLUT4) were downregulated (p = 0.002) in VAT of obese patients. We found that STX8 was positively correlated (p <0.05) with fasting glucose concentrations, plasma glucose 2 h after an OGTT and C-reactive protein. Interestingly, the expression of STX8 was negatively correlated (p <0.05) with the expression of SLC2A4 in VAT. CONCLUSIONS Increased STX8 expression in VAT appears to be associated with the presence of T2D in obese patients through a mechanism that may involve GLUT4.
Collapse
|
41
|
Wu JB, Kuo YH, Lin CH, Ho HY, Shih CC. Tormentic acid, a major component of suspension cells of Eriobotrya japonica, suppresses high-fat diet-induced diabetes and hyperlipidemia by glucose transporter 4 and AMP-activated protein kinase phosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10717-10726. [PMID: 25317836 DOI: 10.1021/jf503334d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study was designed to evaluate the effects and mechanism of tormentic acid (PTA) on diabetes and dyslipidemia in high-fat (HF)-fed mice. Feeding C57BL/6J mice with a HF diet for 12 weeks induced type 2 diabetes and hyperlipidemia. During the last 4 weeks, the mice were given orally PTA (at two dosages) or rosiglitazone (Rosi) or water. In this study, the HF diet increased glucose, triglyceride, insulin, and leptin levels, whereas PTA effectively prevented these phenomena and ameliorated insulin resistance. PTA reduced visceral fat mass and hepatic triacylglycerol contents; moreover, PTA significantly decreased both the area of adipocytes and ballooning degeneration of hepatocytes. PTA caused increased skeletal muscular AMP-activated protein kinase (AMPK) phosphorylation and Akt phosphorylation and glucose transporter 4 (GLUT4) proteins, but reduced the hepatic expressions of phosphenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6 Pase) genes. PTA enhanced skeletal muscular Akt phosphorylation and increased insulin sensitivity. PTA also enhanced phospho-AMPK in the liver. Therefore, it is possible that the activation of AMPK by PTA results in decreasing hepatic glucose production while increasing skeletal muscular GLUT4 contents, thus contributing to attenuating the diabetic state. Moreover, PTA exhibits an antihyperlipidemic effect by down-regulations of the hepatic sterol regulatory element binding protein-1c (SREBP-1c) and apolipoprotein C-III (apo C-III) and an increased peroxisome proliferator activated receptor (PPAR)-α expression, thus resulting in decreases in blood triglycerides. These findings demonstrated that PTA was effective for the treatment of diabetes and hyperlipidemia in HF-fed mice.
Collapse
Affiliation(s)
- Jin-Bin Wu
- Graduate Institute of Pharmaceutical Chemistry and ‡Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University , Taichung City 40402, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Lin CH, Kuo YH, Shih CC. Effects of Bofu-Tsusho-San on diabetes and hyperlipidemia associated with AMP-activated protein kinase and glucose transporter 4 in high-fat-fed mice. Int J Mol Sci 2014; 15:20022-44. [PMID: 25375187 PMCID: PMC4264153 DOI: 10.3390/ijms151120022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/06/2014] [Accepted: 10/23/2014] [Indexed: 11/16/2022] Open
Abstract
This study was undertaken to examine the effect and mechanism of Bofu-tsusho-san formula (BO) on hyperglycemia and hyperlipidemia and in mice fed with a high-fat (HF) diet. The C57BL/6J mice were received control/HF diet for 12 weeks, and oral administration of BO (at three doses) or rosiglitazone (Rosi) or vehicle for the last 4 weeks. Blood, skeletal muscle and tissues were examined by means of measuring glycaemia and dyslipidaemia-associated events. BO treatment effectively prevented HF diet-induced increases in the levels of triglyceride (TG), free fatty acid (FFA) and leptin (p<0.01, p<0.01, p<0.01, respectively). BO treatment exhibited reduced both visceral fat mass and hepatic triacylglycerol content; moreover, BO treatment displayed significantly decreased both the average area of the cut of adipocytes and ballooning of hepatocytes. BO treatment exerted increased the protein contents of glucose transporter 4 (GLUT4) in skeletal muscle, and caused lowered blood glucose levels. BO treatment displayed increased levels of phosphorylated AMP-activated protein kinase (AMPK) in both skeletal muscle and liver tissue. Furthermore, BO reduced the hepatic expression of glucose-6-phosphatase (G6Pase) and phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Therefore, it is possible that the activation of AMPK by BO leads to diminished gluconeogenesis in liver tissue. BO increased hepatic expressions of peroxisome proliferator-activated receptor α (PPARα), whereas down-regulating decreasing expressions of fatty acid synthesis, including sterol regulatory element binding protein 1c (SREBP1c) and fatty acid synthase (FAS), resulting in a decrease in circulating triglycerides. This study originally provides the evidence that amelioration of dyslipidemic and diabetic state by BO in HF-fed mice occurred by regulation of GLUT4, SREBP1c, FAS, PPARα, adiponectin and AMPK phosphorylation.
Collapse
Affiliation(s)
- Cheng-Hsiu Lin
- Department of Internal Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City 42055, Taiwan.
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung City 40402, Taiwan.
| | - Chun-Ching Shih
- Graduate Institute of Pharmaceutical Science and Technology, College of Health Science, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Beitun District, Taichung City 40601, Taiwan.
| |
Collapse
|
43
|
Bradley H, Shaw CS, Worthington PL, Shepherd SO, Cocks M, Wagenmakers AJM. Quantitative immunofluorescence microscopy of subcellular GLUT4 distribution in human skeletal muscle: effects of endurance and sprint interval training. Physiol Rep 2014; 2:2/7/e12085. [PMID: 25052490 PMCID: PMC4187550 DOI: 10.14814/phy2.12085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increases in insulin‐mediated glucose uptake following endurance training (ET) and sprint interval training (SIT) have in part been attributed to concomitant increases in glucose transporter 4 (GLUT4) protein content in skeletal muscle. This study used an immunofluorescence microscopy method to investigate changes in subcellular GLUT4 distribution and content following ET and SIT. Percutaneous muscle biopsy samples were taken from the m. vastus lateralis of 16 sedentary males in the overnight fasted state before and after 6 weeks of ET and SIT. An antibody was fully validated and used to show large (> 1 μm) and smaller (<1 μm) GLUT4‐containing clusters. The large clusters likely represent trans‐Golgi network stores and the smaller clusters endosomal stores and GLUT4 storage vesicles (GSVs). Density of GLUT4 clusters was higher at the fibre periphery especially in perinuclear regions. A less dense punctate distribution was seen in the rest of the muscle fibre. Total GLUT4 fluorescence intensity increased in type I and type II fibres following both ET and SIT. Large GLUT4 clusters increased in number and size in both type I and type II fibres, while the smaller clusters increased in size. The greatest increases in GLUT4 fluorescence intensity occurred within the 1 μm layer immediately adjacent to the PM. The increase in peripheral localisation and protein content of GLUT4 following ET and SIT is likely to contribute to the improvements in glucose homeostasis observed after both training modes. e12085 This paper first describes the development of a novel confocal immunofluorescence microscopy method that allows quantitation of GLUT4 content in the plasma membrane and 1 µm layers below it in a muscle fibre‐type specific manner. Skeletal muscle biopsies obtained from sedentary young men before and after 6 weeks of traditional endurance training (ET) and sprint interval training (SIT) were then analysed to show for the first time increases in large and small GLUT4 clusters with greater increases in the layer within 1 µm of the plasma membrane, which is the layer from which most GLUT4 fusion events emanate. This training‐induced redistribution is likely to contribute to the increase in insulin sensitivity seen following both ET and SIT.
Collapse
Affiliation(s)
- Helen Bradley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Christopher S Shaw
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Vic., Australia
| | - Philip L Worthington
- Computational Biology, Discovery Sciences, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Matthew Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
44
|
Treebak JT, Pehmøller C, Kristensen JM, Kjøbsted R, Birk JB, Schjerling P, Richter EA, Goodyear LJ, Wojtaszewski JFP. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J Physiol 2013; 592:351-75. [PMID: 24247980 DOI: 10.1113/jphysiol.2013.266338] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We investigated the phosphorylation signatures of two Rab-GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers exercised in the fasted or fed state and muscle biopsies were taken before and immediately after exercise. We identified TBC1D1/4 phospho-sites that (1) did not respond to exercise or postprandial increase in insulin (TBC1D4: S666), (2) responded to insulin only (TBC1D4: S318), (3) responded to exercise only (TBC1D1: S237, S660, S700; TBC1D4: S588, S751), and (4) responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin-stimulated leg, Akt phosphorylation of both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2/β2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2/β2/γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK regulated phosphorylation of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between species is problematic.
Collapse
Affiliation(s)
- Jonas T Treebak
- The August Krogh Centre, Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13 DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sylow L, Jensen TE, Kleinert M, Mouatt JR, Maarbjerg SJ, Jeppesen J, Prats C, Chiu TT, Boguslavsky S, Klip A, Schjerling P, Richter EA. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Diabetes 2013; 62:1139-51. [PMID: 23274900 PMCID: PMC3609592 DOI: 10.2337/db12-0491] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P < 0.01). In agreement, the contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P < 0.05) in soleus and EDL muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P < 0.01) in soleus and EDL muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Joshua R. Mouatt
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Jacob Jeppesen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Department of Biomedical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Tim T. Chiu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shlomit Boguslavsky
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A. Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Corresponding author: Erik A. Richter,
| |
Collapse
|
46
|
Lansey MN, Walker NN, Hargett SR, Stevens JR, Keller SR. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis. Am J Physiol Endocrinol Metab 2012; 303:E1273-86. [PMID: 23011063 PMCID: PMC3517634 DOI: 10.1152/ajpendo.00316.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.
Collapse
Affiliation(s)
- Melissa N Lansey
- Dept. of Medicine/Division of Endocrinology, Univ. of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
47
|
Bernard JR, Liao YH, Doerner PG, Ding Z, Hsieh M, Wang W, Nelson JL, Ivy JL. An amino acid mixture is essential to optimize insulin-stimulated glucose uptake and GLUT4 translocation in perfused rodent hindlimb muscle. J Appl Physiol (1985) 2012; 113:97-104. [DOI: 10.1152/japplphysiol.01484.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate whether an amino acid mixture increases glucose uptake across perfused rodent hindlimb muscle in the presence and absence of a submaximal insulin concentration, and if the increase in glucose uptake is related to an increase in GLUT4 plasma membrane density. Sprague-Dawley rats were separated into one of four treatment groups: basal, amino acid mixture, submaximal insulin, or amino acid mixture with submaximal insulin. Glucose uptake was greater for both insulin-stimulated treatments compared with the non-insulin-stimulated treatment groups but amino acids only increased glucose uptake in the presence of insulin. Phosphatidylinositol 3-kinase (PI 3-kinase) activity was greater for both insulin-stimulated treatments with amino acids having no additional impact. Akt substrate of 160 kDa (AS160) phosphorylation, however, was increased by the amino acids in the presence of insulin, but not in the absence of insulin. AMPK was unaffected by insulin or amino acids. Plasma membrane GLUT4 protein concentration was greater in the rats treated with insulin compared with no insulin in the perfusate. In the presence of insulin, amino acids increased GLUT4 density in the plasma membrane but had no effect in the absence of insulin. AS160 phosphorylation and plasma membrane GLUT4 density accounted for 76% of the variability in muscle glucose uptake. Collectively, these findings suggest that the beneficial effects of an amino acid mixture on skeletal muscle glucose uptake, in the presence of a submaximal insulin concentration, are due to an increase in AS160 phosphorylation and plasma membrane-associated GLUT4, but independent of PI 3-kinase and AMPK activation.
Collapse
Affiliation(s)
- Jeffrey R. Bernard
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Yi-Hung Liao
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Phillip G. Doerner
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Zhenping Ding
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Ming Hsieh
- Taipei Sports University, Department of Sports Sciences, Taipei, Taiwan, Republic of China
| | - Wanyi Wang
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | | | - John L. Ivy
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| |
Collapse
|
48
|
Sasaki Y, Sone H, Kamiyama S, Shimizu M, Shirakawa H, Kagawa Y, Komai M, Furukawa Y. Administration of biotin prevents the development of insulin resistance in the skeletal muscles of Otsuka Long-Evans Tokushima Fatty rats. Food Funct 2012; 3:414-9. [PMID: 22218395 DOI: 10.1039/c2fo10175k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model for type 2 diabetes mellitus. In the present study, we investigated whether pharmacologic doses of biotin have the potential to abate insulin resistance in the skeletal muscles of OLETF rats. OLETF rats (34 weeks of age) were divided into 2 groups and given distilled water (OLETF-control group) or distilled water containing 3.3 mg L(-1) of biotin (OLETF-biotin group) for 8 weeks. At the end of experimental period, the OLETF-control rats developed severe hyperglycemia and hyperinsulinemia, whereas the OLETF-biotin rats showed significantly smaller responses to oral glucose tolerance test than the OLETF-control rats. The glucose uptake in the hind limbs of the rats was significantly higher in the OLETF-biotin group than in the OLETF-control group. Biotin administration increased the glucose transporter type 4 (GLUT4) protein content in the total membrane fraction but had little effect on the GLUT4 content in the plasma membrane fraction. These results indicate that administration of a pharmacological dose of biotin prevents the development of insulin resistance in the skeletal muscles of OLETF rats presumably via an increase in GLUT4 protein expression but not via GLUT4 translocation.
Collapse
Affiliation(s)
- Yuka Sasaki
- Laboratory of Nutrition, Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance. Ann Nucl Med 2011; 25:755-61. [DOI: 10.1007/s12149-011-0522-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 07/20/2011] [Indexed: 10/18/2022]
|
50
|
Vranic M. Odyssey between Scylla and Charybdis through storms of carbohydrate metabolism and diabetes: a career retrospective. Am J Physiol Endocrinol Metab 2010; 299:E849-67. [PMID: 20823450 DOI: 10.1152/ajpendo.00344.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This research perspective allows me to summarize some of my work completed over 50 years, and it is organized in seven sections. 1) The treatment of diabetes concentrates on the liver and/or the periphery. We quantified hormonal and metabolic interactions involved in physiology and the pathogenesis of diabetes by developing tracer methods to separate the effects of diabetes on both. We collaborated in the first tracer clinical studies on insulin resistance, hypertriglyceridemia, and the Cori cycle. 2) Diabetes reflects insulin deficiency and glucagon abundance. Extrapancreatic glucagon changed the prevailing dogma and permitted precise exploration of the roles of insulin and glucagon in physiology and diabetes. 3) We established the critical role of glucagon-insulin interaction and the control of glucose metabolism during moderate exercise and of catecholamines during strenuous exercise. Deficiencies of the release and effects of these hormones were quantified in diabetes. We also revealed how acute and chronic hyperglycemia affects the expression of GLUT2 gene and protein in diabetes. 4) We outlined molecular and physiological mechanisms whereby exercise training and repetitive neurogenic stress can prevent diabetes in ZDF rats. 5) We and others established that the indirect effect of insulin plays an important role in the regulation of glucose production in dogs. We confirmed this effect in humans and demonstrated that in type 2 diabetes it is mainly the indirect effect. 6) We indicated that the muscle and the liver protected against glucose changes. 7) We described molecular mechanisms responsible for increased HPA axis in diabetes and for the diminished responses of HPA axis, catecholamines, and glucagon to hypoglycemia. We proposed a new approach to decrease the threat of hypoglycemia.
Collapse
Affiliation(s)
- Mladen Vranic
- Dept. of Physiology, Univ. of Toronto, Toronto, ON. Canada M5S 1A8.
| |
Collapse
|