1
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
2
|
Duda T, Pertzev A, Ravichandran S, Sharma RK. Ca 2+-Sensor Neurocalcin δ and Hormone ANF Modulate ANF-RGC Activity by Diverse Pathways: Role of the Signaling Helix Domain. Front Mol Neurosci 2018; 11:430. [PMID: 30546296 PMCID: PMC6278801 DOI: 10.3389/fnmol.2018.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| | - Sarangan Ravichandran
- Advanced Biomedical Computational Sciences Group, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Leidos Biomedical Research Inc., Fredrick, MD, United States
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, United States
| |
Collapse
|
3
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
4
|
Sharma RK, Duda T. Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions. Front Mol Neurosci 2014; 7:56. [PMID: 25071437 PMCID: PMC4079103 DOI: 10.3389/fnmol.2014.00056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/30/2014] [Indexed: 12/22/2022] Open
Abstract
A sequel to these authors' earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC) from its origin to the year 2010, this article contains 13 sections. The first is historical and covers MGC from the year 1963–1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its biochemical identity. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its expansion. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of phototransduction. Sections ROS-GC, a Ca2+-Modulated Two Component Transduction System to Migration Patterns and Translations of the GCAP Signals Into Production of Cyclic GMP are Different cover its biochemistry and physiology. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Section ROS-GC1 Gene Linked Retinal Dystrophies demonstrates how this knowledge begins to be translated into the diagnosis and providing the molecular definition of retinal dystrophies. Section Controlled By Low and High Levels of [Ca2+]i, ROS-GC1 is a Bimodal Transduction Switch discusses a striking property of ROS-GC where it becomes a “[Ca2+]i bimodal switch” and transcends its signaling role in other neural processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cyclase activator), the S100B protein, is made. It extends the role of the ROS-GC transduction system beyond the phototransduction to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in section Ca2+-Modulated Neurocalcin δ ROS-GC1 Transduction System Exists in the Inner Plexiform Layer (IPL) of the Retinal Neurons, discovery of another CD-GCAP, NCδ, is made and its linkage with signaling of the inner plexiform layer neurons is established. Section ROS-GC Linkage With Other Than Vision-Linked Neurons discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the next, section Evolution of a General Ca2+-Interlocked ROS-GC Signal Transduction Concept in Sensory and Sensory-Linked Neurons, a theoretical concept is proposed where “Ca2+-interlocked ROS-GC signal transduction” machinery becomes a common signaling component of the sensory and sensory-linked neurons. Closure to the review is brought by the conclusion and future directions.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
5
|
Duda T, Pertzev A, Sharma RK. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca(2+). Front Mol Neurosci 2014; 7:17. [PMID: 24672425 PMCID: PMC3955944 DOI: 10.3389/fnmol.2014.00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022] Open
Abstract
Atrial natriuretic factor receptor guanylate cyclase (ANF-RGC), was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, ANF– and B-type natriuretic peptide (BNP). After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation, and anti-proliferation. Very recently another modus operandus for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin d mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.
Collapse
Affiliation(s)
- Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Alexandre Pertzev
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
6
|
Sharma RK, Duda T, Sitaramayya A. Plasma membrane guanylate cyclase is a multimodule transduction system. Amino Acids 2013; 7:117-27. [PMID: 24186045 DOI: 10.1007/bf00814155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/1993] [Accepted: 08/12/1993] [Indexed: 11/24/2022]
Abstract
This minireview highlights the studies which suggest that guanylate cyclase is a single-component transducing system, containing distinct signaling modules in a single membrane-spanning protein. A guanylate cyclase signaling model is proposed which envisions the following sequential events: (1) a signal is initiated by the binding of the hormone to the ligand binding module; (2) the signal is potentiated by ATP at ARM; and (3) the amplified signal is finally transduced at the catalytic site. All of these signaling steps together constitute a switch, which when turned on, generates the second messenger cyclic GMP.
Collapse
Affiliation(s)
- R K Sharma
- The Unit of Regulatory and Molecular Biology, Pennsylvania College of Optometry, 1200 West Godfrey Avenue, 19141, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
7
|
Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor. PLoS One 2013; 8:e70223. [PMID: 23922959 PMCID: PMC3726482 DOI: 10.1371/journal.pone.0070223] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Guanylyl cyclases (GCs) regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs) and a nitric oxide-activated soluble GC (sGC). Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF) from Bacillus anthracis possess nucleotidyl cyclase (NC) activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.
Collapse
|
8
|
Duda T, Yadav P, Sharma RK. Allosteric modification, the primary ATP activation mechanism of atrial natriuretic factor receptor guanylate cyclase. Biochemistry 2011; 50:1213-25. [PMID: 21222471 DOI: 10.1021/bi1018978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ANF-RGC is the prototype receptor membrane guanylate cyclase being both the receptor and the signal transducer of the most hypotensive hormones, ANF and BNP. It is a single transmembrane-spanning protein. After binding these hormones at the extracellular domain it at its intracellular domain signals activation of the C-terminal catalytic module and accelerates the production of its second messenger, cyclic GMP, which controls blood pressure, cardiac vasculature, and fluid secretion. ATP is obligatory for the posttransmembrane dynamic events leading to ANF-RGC activation. It functions through the ATP-regulated module, ARM (KHD) domain, of ANF-RGC. In the current over a decade held model "phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A" [Potter, L. R., and Hunter, T. (1998) Mol. Cell. Biol. 18, 2164-2172]. The presented study challenges this concept. It demonstrates that, instead, ATP allosteric modification of ARM is the primary signaling step of ANF-GC activation. In this two-step new dynamic model, ATP in the first step binds ARM. This triggers in it a chain of transduction events, which cause its allosteric modification. The modification partially activates (about 50%) ANF-RGC and, concomitantly, also prepares the ARM for the second successive step. In this second step, ARM is phosphorylated and ANF-RGC achieves additional (∼50%) full catalytic activation. The study defines a new paradigm of the ANF-RGC signaling mechanism.
Collapse
Affiliation(s)
- Teresa Duda
- Research Division of Biochemistry, The Unit of Regulatory and Molecular Biology, Salus University, 8360 Old York Road, Elkins Park, Pennsylvania 19027, United States.
| | | | | |
Collapse
|
9
|
Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 2010; 130:71-82. [PMID: 21185863 DOI: 10.1016/j.pharmthera.2010.12.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023]
Abstract
Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP.
Collapse
|
10
|
Duda T, Yadav P, Sharma RK. ATP allosteric activation of atrial natriuretic factor receptor guanylate cyclase. FEBS J 2010; 277:2550-3. [PMID: 20553491 DOI: 10.1111/j.1742-4658.2010.07670.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atrial natriuretic factor receptor guanylate cyclase (ANF-RGC) is the receptor and the signal transducer of two natriuretic peptide hormones: atrial natriuretic factor and brain natriuretic peptide. It is a single transmembrane-spanning protein. It binds these hormones at its extracellular domain and activates its intracellular catalytic domain. This results in the accelerated production of cyclic GMP, a second messenger in controlling blood pressure, cardiac vasculature and fluid secretion. ATP is obligatory for the transduction of this hormonal signal. Two models of ATP action have been proposed. In Model 1, it is a direct allosteric transducer. It binds to the defined regulatory domain (ATP-regulated module) juxtaposed to the C-terminal side of the transmembrane domain of ANF-RGC, induces a cascade of temporal and spatial changes and activates the catalytic module residing at the C-terminus of the cyclase. In Model 2, before ATP can exhibit its allosteric effect, ANF-RGC must first be phosphorylated by an as yet unidentified protein kinase. This initial step is obligatory in atrial natriuretic factor signaling of ANF-RGC. Until now, none of these models has been directly validated because it has not been possible to segregate the allosteric and the phosphorylation effects of ATP in ANF-RGC activation. The present study accomplishes this aim through a novel probe, staurosporine. This unequivocally validates Model 1 and settles the over two-decade long debate on the role of ATP in ANF-RGC signaling. In addition, the present study demonstrates that the mechanisms of allosteric modification of ANF-RGC by staurosporine and adenylyl-imidodiphosphate, a nonhydrolyzable analog of ATP, are almost (or totally) identical.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| | | | | |
Collapse
|
11
|
Sharma RK. Membrane guanylate cyclase is a beautiful signal transduction machine: overview. Mol Cell Biochem 2009; 334:3-36. [PMID: 19957201 DOI: 10.1007/s11010-009-0336-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/09/2009] [Indexed: 01/08/2023]
Abstract
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3-30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969-984, 2005); and of the Ca(2+)-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429-473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). This article contains three parts. The first part is "Historical"; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3-30, 2002; Duda et al. in Peptides 26:969-984, 2005). The second part focuses on the "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily". It is divided into two sections. Section "Historical" and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111-144, 2004). Section "Ca(2+)-modulated ROS-GC membrane guanylate cyclase subfamily" covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| |
Collapse
|
12
|
Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism. Mol Cell Biochem 2009; 334:37-51. [DOI: 10.1007/s11010-009-0335-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
|
13
|
Pattanaik P, Fromondi L, Ng KP, He J, van den Akker F. Expression, purification, and characterization of the intra-cellular domain of the ANP receptor. Biochimie 2009; 91:888-93. [PMID: 19393286 DOI: 10.1016/j.biochi.2009.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 04/15/2009] [Indexed: 11/25/2022]
Abstract
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCA(ID) comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn(2+) or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn(2+) requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases.
Collapse
Affiliation(s)
- Priyaranjan Pattanaik
- Department of Biochemistry/RT500, Case Western Reserve University, 10900 Euclid Av., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
14
|
Duda T, Bharill S, Wojtas I, Yadav P, Gryczynski I, Gryczynski Z, Sharma RK. Atrial natriuretic factor receptor guanylate cyclase signaling: new ATP-regulated transduction motif. Mol Cell Biochem 2009; 324:39-53. [PMID: 19137266 DOI: 10.1007/s11010-008-9983-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/28/2008] [Indexed: 11/25/2022]
Abstract
ANF-RGC membrane guanylate cyclase is the receptor for the hypotensive peptide hormones, atrial natriuretic factor (ANF) and type B natriuretic peptide (BNP). It is a single transmembrane spanning protein. Binding the hormone to the extracellular domain activates its intracellular catalytic domain. This results in accelerated production of cyclic GMP, a second messenger in controlling blood pressure, cardiac vasculature, and fluid secretion. ATP is the obligatory transducer of the ANF signal. It works through its ATP regulated module, ARM, which is juxtaposed to the C-terminal side of the transmembrane domain. Upon interaction, ATP induces a cascade of temporal and spatial changes in the ARM, which, finally, result in activation of the catalytic module. Although the exact nature and the details of these changes are not known, some of these have been stereographed in the simulated three-dimensional model of the ARM and validated biochemically. Through comprehensive techniques of steady state, time-resolved tryptophan fluorescence and Forster Resonance Energy Transfer (FRET), site-directed and deletion-mutagenesis, and reconstitution, the present study validates and explains the mechanism of the model-based predicted transduction role of the ARM's structural motif, (669)WTAPELL(675). This motif is critical in the ATP-dependent ANF signaling. Molecular modeling shows that ATP binding exposes the (669)WTAPELL(675) motif, the exposure, in turn, facilitates its interaction and activation of the catalytic module. These principles of the model have been experimentally validated. This knowledge brings us a step closer to our understanding of the mechanism by which the ATP-dependent spatial changes within the ARM cause ANF signaling of ANF-RGC.
Collapse
Affiliation(s)
- Teresa Duda
- Unit of Regulatory & Molecular Biology, Division of Biochemistry and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Jankowska A, Burczyńska B, Duda T, Warchol JB. Rod outer segment membrane guanylate cyclase type 1 (ROS-GC1) calcium-modulated transduction system in the sperm. Fertil Steril 2008; 93:904-12. [PMID: 19111294 DOI: 10.1016/j.fertnstert.2008.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Evaluation of the presence of a Ca(2+)-regulated membrane guanylate cyclase signal transudation system in the spermatozoa. DESIGN Experimental study. SETTING Research university laboratory. PATIENT(S) Human sperm obtained from healthy donors who met the criteria of the World Health Organization for normozoospermia and bovine semen collected from bulls of proven fertility. INTERVENTION(S) Radioimmunoassay and immunohistochemistry of human and bovine spermatozoa. MAIN OUTCOME MEASURE(S) The membrane guanylate cyclase activity and the presence of membrane guanylate cyclase transduction machinery components in the spermatozoa. RESULT(S) The identity of a Ca(2+)-modulated membrane guanylate cyclase transduction machinery in human and bovine spermatozoa has been documented. The machinery is both inhibited and stimulated within nanomolar to semimicromolar range of free Ca(2+). The transduction component of this machinery is the rod outer segment membrane guanylate cyclase type 1 (ROS-GC1). The enzyme coexists with three Ca(2+)-dependent modulators: guanylate cyclase activating protein type 1 (GCAP1), S100B and neurocalcin delta. ROS-GC1 and its modulators are present in the heads and tails of both species' spermatozoa. CONCLUSION(S) The coexpression of ROS-GC1 and its activators in spermatozoa suggests that the Ca(2+)-modulated ROS-GC1 transduction system may be a part of the fertilization machinery.
Collapse
Affiliation(s)
- Anna Jankowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland.
| | | | | | | |
Collapse
|
16
|
Burczynska B, Duda T, Sharma RK. ATP signaling site in the ARM domain of atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2007; 301:93-107. [PMID: 17277921 DOI: 10.1007/s11010-006-9400-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 12/06/2006] [Indexed: 11/25/2022]
Abstract
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single transmembrane spanning modular protein. It binds ANF to its extracellular module and activates its intracellular catalytic module located at its carboxyl end. This results in the accelerated production of cyclic GMP, which acts as a critical second messenger in decreasing blood pressure. Two mechanistic models have been proposed for the ANF signaling of ANF-RGC. One is ATP-dependent and the other ATP-independent. In the former, ATP works through the ARM (ATP-regulated transduction module) of ANF-RGC. This model has recently been challenged [Antos et al. (2005) J Biol Chem 280:26928-26932] in support of the ATP-independent model. The present in-depth study analyzes the major principles of this challenge and concludes that the challenge lacks merit. The study then moves on to dissect the ATP mechanism of ANF signaling of ANF-RGC. It shows that the ATP photoaffinity probe, [gamma(32)P]-8-azido-ATP, reacts with Cys(634) residue in the ATP-binding pocket of ARM, and also signals the ANF-dependent activation of ANF-RGC. The target site of the 8-azido (nitrene) group is between the Cys(634) and Val(635) bond of the ATP-binding pocket. Thus, the study experimentally validates the ARM model-predicted role of Val(635) in the folding pattern of the ATP-binding pocket. And, it also identifies another residue Cys(634) that along with eight already identified residues is a part of the fold around the adenine ring of the ATP pocket. This information establishes the direct role of ATP in ANF signal transduction model of ANF-RGC, and provides a significant advancement on the mechanism by which the ATP-dependent transduction model operates.
Collapse
Affiliation(s)
- Beata Burczynska
- The Unit of Regulatory and Molecular Biology, Division of Biochemistry and Molecular Biology, Pennsylvania College of Optometry, Elkins Park, PA 19027, USA
| | | | | |
Collapse
|
17
|
Alfonzo MJ, de Aguilar EP, de Murillo AG, de Villarroel SS, de Alfonzo RG, Borges A, de Becemberg IL. Characterization of a G protein-coupled guanylyl cyclase-B receptor from bovine tracheal smooth muscle. J Recept Signal Transduct Res 2006; 26:269-97. [PMID: 16818377 DOI: 10.1080/10799890600766446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A G protein-coupled natriuretic peptide-guanylyl cyclase receptor-B (NPR-B) located in plasma membranes from bovine tracheal smooth muscle shows complex kinetics and regulation. NPR-B was activated by natriuretic peptides (CNP-53 > ANP-28) at the ligand extracellular domain, stimulated by Gq-protein activators, such as mastoparan, and inhibited by Gi-sensitive chloride, interacting at the juxtamembrane domain. The kinase homology domain was evaluated by the ATP inhibition of Mn2+-activated NPR-B, which was partially reversed by mastoparan. The catalytic domain was studied by kinetics of Mn2+/Mg2+ and GTP, and the catalytic effect with GTP analogues with modifications of the /gamma phosphates and ribose moieties. Most NPR-B biochemical properties remained after detergent solubilization but the mastoparan activation and chloride inhibition of NPR-B disappeared. Our results indicate that NPR-B is a highly regulated nano-machinery with domains acting at cross-talk points with other signal transducing cascades initiated by G protein-coupled receptors and affected by intracellular ligands such as chloride, Mn2+, Mg2+, ATP, and GTP.
Collapse
Affiliation(s)
- Marcelo J Alfonzo
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina. Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | | | | | | | |
Collapse
|
18
|
Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27:47-72. [PMID: 16291870 DOI: 10.1210/er.2005-0014] [Citation(s) in RCA: 704] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natriuretic peptides are a family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. The mammalian members are atrial natriuretic peptide, B-type natriuretic peptide, C-type natriuretic peptide, and possibly osteocrin/musclin. Three single membrane-spanning natriuretic peptide receptors (NPRs) have been identified. Two, NPR-A/GC-A/NPR1 and NPR-B/GC-B/NPR2, are transmembrane guanylyl cyclases, enzymes that catalyze the synthesis of cGMP. One, NPR-C/NPR3, lacks intrinsic enzymatic activity and controls the local concentrations of natriuretic peptides through constitutive receptor-mediated internalization and degradation. Single allele-inactivating mutations in the promoter of human NPR-A are associated with hypertension and heart failure, whereas homozygous inactivating mutations in human NPR-B cause a form of short-limbed dwarfism known as acromesomelic dysplasia type Maroteaux. The physiological effects of natriuretic peptides are elicited through three classes of cGMP binding proteins: cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. In this comprehensive review, the structure, function, regulation, and biological consequences of natriuretic peptides and their associated signaling proteins are described.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
19
|
Joubert S, Jossart C, McNicoll N, De Léan A. Atrial natriuretic peptide-dependent photolabeling of a regulatory ATP-binding site on the natriuretic peptide receptor-A. FEBS J 2005; 272:5572-83. [PMID: 16262696 DOI: 10.1111/j.1742-4658.2005.04952.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular ligand-binding domain, a transmembrane-spanning domain, a kinase homology domain (KHD) and a guanylyl cyclase domain. Because the presence of ATP or adenylylimidodiphosphate reduces atrial natriuretic peptide (ANP) binding and is required for maximal guanylyl cyclase activity, a direct interaction of ATP with the receptor KHD domain is plausible. Therefore, we investigated whether ATP interacts directly with a binding site on the receptor by analyzing the binding of a photoaffinity analog of ATP to membranes from human embryonic kidney 293 cells expressing the NPR-A receptor lacking the guanylyl cyclase moiety (DeltaGC). We demonstrate that this receptor (NPR-A-DeltaGC) can be directly labeled by 8-azido-3'-biotinyl-ATP and that labeling is highly increased following ANP treatment. The mutant receptor DeltaKC, which does not contain the KHD, is not labeled. Photoaffinity labeling of the NPR-A-DeltaGC is reduced by 50% in the presence of 550 microm ATP, and competition curve fitting studies indicate a Hill slope of 2.2, suggestive of cooperative binding. This approach demonstrates directly that the interaction of ANP with its receptor modulates the binding of ATP to the KHD, probably through a conformational change in the KHD. In turn, this conformational change is essential for maximal activity. In addition, the ATP analog, 8-azido-adenylylimidodiphosphate, inhibits guanylyl cyclase activity but increases ANP binding to the extracellular domain. These results suggest that the KHD regulates ANP binding and guanylyl cyclase activity independently.
Collapse
Affiliation(s)
- Simon Joubert
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
20
|
Duda T, Sharma RK. Two membrane juxtaposed signaling modules in ANF-RGC are interlocked. Biochem Biophys Res Commun 2005; 332:149-56. [PMID: 15896311 DOI: 10.1016/j.bbrc.2005.04.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
Atrial natriuretic factor (ANF) receptor guanylate cyclase ANF-RGC is a single transmembrane spanning modular protein. Juxtaposed to each side of the transmembrane module is a Cys423-Cys432 disulfide ANF signaling module motif and the ATP-regulated transduction module (ARM) motif. The signaling module motif is conserved in nearly all membrane guanylate cyclases and is believed to be critical in the signaling activities of all membrane guanylate cyclases. The present study with the model system of the olfactory membrane guanylate cyclase shows that this concept is not valid. Furthermore, the study shows that in ANF-GC the signaling motif works through the ARM domain. A new signaling model is proposed where in its natural state the disulfide structural motif represses the ARM domain activity, which, in turn, represses the catalytic module activity of ANF-RGC. ANF signaling relieves the disulfide structural motif restraint on the ARM inhibition and stimulates the catalytic module of the cyclase.
Collapse
Affiliation(s)
- Teresa Duda
- Unit of Regulatory and Molecular Biology, Department of Cell Biology, SOM and NJMS, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | |
Collapse
|
21
|
Duda T, Venkataraman V, Ravichandran S, Sharma RK. ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides 2005; 26:969-84. [PMID: 15911066 DOI: 10.1016/j.peptides.2004.08.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
ATP is an obligatory agent for the atrial natriuretic factor (ANF) and the type C natriuretic peptide (CNP) signaling of their respective receptor guanylate cyclases, ANF-RGC and CNP-RGC. Through a common mechanism, it binds to a defined ARM domain of the cyclase, activates the cyclase and transduces the signal into generation of the second messenger cyclic GMP. In this presentation, the authors review the ATP-regulated transduction mechanism and refine the previously simulated three-dimensional ARM model (Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2000;214:7-14; reviewed in: Sharma RK, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001;79: 682-91; Sharma RK. Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 2002;230:3-30). The model depicts the ATP-binding dependent configurational changes in the ARM and supports the concept that in the first step, ATP partially activates the cyclase and primes it for the subsequent transduction steps, resulting in full activation of the cyclase.
Collapse
Affiliation(s)
- Teresa Duda
- The Unit of Regulatory and Molecular Biology, Department of Cell Biology, SOM and NJMS, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | | | | | |
Collapse
|
22
|
Antos LK, Abbey-Hosch SE, Flora DR, Potter LR. ATP-independent activation of natriuretic peptide receptors. J Biol Chem 2005; 280:26928-32. [PMID: 15911610 DOI: 10.1074/jbc.m505648200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Natriuretic peptide receptor A (NPR-A) is an essential cardiovascular regulator that is stimulated by atrial natriuretic peptide and B-type natriuretic peptide, whereas natriuretic peptide receptor B (NPR-B) stimulates long bone growth in a C-type natriuretic peptide-dependent manner. Many reports indicate that ATP is essential for NPR-A and NPR-B activation. Current models suggest that natriuretic peptide binding to receptor extracellular domains causes ATP binding to intracellular kinase homology domains, which derepresses adjacent catalytic domains. Here, we report 100-fold activations of natriuretic peptide receptors in the absence of ATP. The addition of a nonhydrolyzable ATP analog had no effect at early time periods (measured in seconds) but increased cGMP production about 2-fold after longer incubations (measured in minutes), consistent with a stabilization, not activation, mechanism. These data indicate that ATP does not activate natriuretic peptide receptors as has been repeatedly reported. Instead, ATP increases activity primarily by maintaining proper receptor phosphorylation status but also serves a previously unappreciated enzyme stabilizing function.
Collapse
Affiliation(s)
- Laura K Antos
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
23
|
Ruiz-Stewart I, Kazerounian S, Pitari GM, Schulz S, Waldman SA. Soluble guanylate cyclase is allosterically inhibited by direct interaction with 2-substituted adenine nucleotides. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2186-93. [PMID: 11985597 DOI: 10.1046/j.1432-1033.2002.02874.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO), the principal endogenous ligand for soluble guanylate cyclase (sGC), stimulates that enzyme and accumulation of intracellular cGMP, which mediates many of the (patho) physiological effects of NO. Previous studies demonstrated that 2-substituted adenine nucleotides, including 2-methylthioATP (2MeSATP) and 2-chloroATP (2ClATP), allosterically inhibit guanylate cyclase C, the membrane-bound receptor for the Escherichia coli heat-stable enterotoxin in the intestine. The present study examined the effects of 2-substituted adenine nucleotides on crude and purified sGC. 2-Substituted nucleotides inhibited basal and NO-activated crude and purified sGC, when Mg2+ served as the substrate cation cofactor. Similarly, 2-substituted adenine nucleotides inhibited those enzymes when Mn2+, which activates sGC in a ligand-independent fashion, served as the substrate cation cofactor. Inhibition of sGC by 2-substituted nucleotides was associated with a decrease in Vmax, consistent with a noncompetitive mechanism. In contrast to guanylate cyclase C, 2-substituted nucleotides inhibited sGC by a guanine nucleotide-independent mechanism. These studies demonstrate that 2-substituted adenine nucleotides allosterically inhibit basal and ligand-stimulated sGC. They support the suggestion that allosteric inhibition by adenine nucleotides is a general characteristic of the family of guanylate cyclases. This allosteric inhibition is mediated by direct interaction of adenine nucleotides with sGC, likely at the catalytic domain in a region outside the substrate-binding site.
Collapse
Affiliation(s)
- Inez Ruiz-Stewart
- Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
24
|
Akker FVD. Detailed analysis of the atrial natriuretic factor receptor hormone-binding domain crystal structure. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray crystal structure of the dimerized atrial natriuretic factor (ANF) receptor hormone-binding domain has provided a first structural view of this anti-hypertensive receptor. The structure reveals a surprising evolutionary link to the periplasmic-binding protein fold family. Furthermore, the presence of a chloride ion in the membrane distal domain and the presence of a second putative effector pocket suggests that the extracellular domain of this receptor is allosterically regulated. The scope of this article is to extensively review the data published on this receptor and to correlate it with the hormone-binding domain structure. In addition, a more detailed description is provided of the important features of this structure including the different binding sites for the ANF hormone, chloride ion, putative effector pocket, glycosylation sites, and dimer interface.Key words: crystal structure, periplasmic-binding protein fold, guanylyl cyclase, hormone receptor.
Collapse
|
25
|
Sharma RK, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The atrial natriuretic factor (ANF) signal transduction mechanism consists of the transformation of the signal information into the production of cyclic GMP. The binding of ANF to its receptor, which is also a guanylate cyclase, generates the signal. This cyclase has been termed atrial natriuretic factor receptor guanylate cyclase, ANF-RGC. ANF-RGC is a single transmembrane-spanning protein. The ANF receptor domain resides in the extracellular region of the protein, and the catalytic domain is located in the intracellular region at the C-terminus of the protein. Thus, the signal is relayed progressively from the receptor domain to the catalytic domain, where it is converted into the formation of cyclic GMP. The first transduction step is the direct binding of ATP with ANF-RGC. This causes allosteric regulation of the enzyme and primes it for the activation of its catalytic moiety. The partial structural motif of the ATP binding domain in ANF-RGC has been elucidated, and it has been named ATP regulatory module (ARM). In this presentation, we provide a brief review of the ATP-regulated transduction mechanism and the ARM model. The model depicts a configuration of the ATP-binding pocket that has been experimentally validated, and the model shows that the ATP-dependent transduction process is a two- (or more) step event. The first step involves the binding of ATP with its ARM. This partially activates the cyclase and prepares it for the subsequent steps, which are consistent with its being phosphorylated and attaining the fully activated state.Key words: ANF, ANF-receptor guanylate cyclase (ANF-RGC), ATP, ATP-regulatory module (ARM).
Collapse
|
26
|
Jahn H, Kiefer F, Behl C, Wiedemann K. Activation of guanylate cyclase by natriuretic peptides in mouse pituitary AtT20 cells is influenced by phosphorylation of ANP. Neurochem Res 2001; 26:473-8. [PMID: 11513472 DOI: 10.1023/a:1010900626316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The discovery of free and membrane-bound ectokinases raises the question whether phosphorylation is another mechanism to modulate the action of distinct neuropeptides. Atrial-natriuretic-peptide (ANP) which is widespread found in the central nervous system (CNS) and involved in the modulation of stress reactions and emotional states like anxiety contains a recognition-motif for cAMP-dependent protein kinase A. We investigated the effect of phosphorylation of ANP and C-type natriuretic peptide (CNP), a related peptide without phosphorylation site, on their ability to activate their receptors in mouse pituitary AtT20 cells by measuring the formation of cyclic guanosinmonophosphate (cGMP). Phosphorylation with protein kinase A inactivated ANP. Coincubation experiments adding adenosintriphosphate (ATP), ATP-analogues or inhibitors of protein kinases to the medium pointed to the presence of an intrinsic protein kinase A like ectokinase-activity on AtT20 cells. The activity of CNP was unaffected in these experiments. Phosphorylation by ectokinases may be a physiological mechanism to regulate the biological activity of ANP in different tissues, such as pituitary and CNS.
Collapse
Affiliation(s)
- H Jahn
- Clinic of Psychiatry and Psychotherapy, University of Hamburg, Germany.
| | | | | | | |
Collapse
|
27
|
Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-Regulated Module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2001; 217:165-72. [PMID: 11269661 DOI: 10.1023/a:1007236917061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.
Collapse
Affiliation(s)
- T Duda
- Department of Cell Biology, NJMS & SOM, University of Medicine and Dentistry of New Jersey, Stratford 08084, USA
| | | | | | | | | |
Collapse
|
28
|
Spreca A, Simonetti S, Rambotti MG. Atrial natriuretic peptide and guanylin-activated guanylate cyclase isoforms in human sweat glands. THE HISTOCHEMICAL JOURNAL 2000; 32:725-31. [PMID: 11254088 DOI: 10.1023/a:1004149010623] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ultracytochemical localization of membrane-bound guanylate cyclases A and C, stimulated by atrial natriuretic peptide and guanylin respectively, has been studied in human sweat glands. The results showed that the peptides stimulated guanylate cyclases A and C in both eccrine and apocrine glands. In the secretory cells, enzymatic activity was present on the plasma membranes and on intracellular membranes involved in the secretory mechanism. In eccrine glands, the cells of the excretory duct also presented enzymatic activity on the plasma membranes. In both glands, myoepithelial cells, surrounding the secretory cells, exhibited only guanylate cyclase A activity. These localizations of enzymatic activity suggest a role for both atrial natriuretic peptide and guanylin in regulating glandular secretion.
Collapse
Affiliation(s)
- A Spreca
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | |
Collapse
|
29
|
Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-Regulated Module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2000; 214:7-14. [PMID: 11195792 DOI: 10.1023/a:1007144328682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC) is a single chain transmembrane-spanning protein, containing both ANF binding and catalytic activities. ANF binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening transduction step, which is regulated by the binding of ATP to the cyclase. The partial structural motif of the ATP binding domain of the cyclase has been elucidated and has been termed ATP Regulatory Module (ARM). The crystal structures of the tyrosine kinase domains of the human insulin receptor and haematopoietic cell kinase were used to derive a homology-based model of the ARM domain of ANF-RGC. The model identifies the precise configuration of the ATP-binding pocket in the ARM domain, accurately represents its ATP-dependent features, and shows that the ATP-dependent transduction phenomenon is a two-step mechanism. In the first step, ATP binds to its pocket and changes its configuration; in the second step, via an unknown protein kinase, it phosphorylates the cyclase for its full activation.
Collapse
Affiliation(s)
- T Duda
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford 08084, USA
| | | | | | | | | |
Collapse
|
30
|
Nashida T, Imai A, Shimomura H. Regulation of ANP-stimulated guanylate cyclase in the presence of Mn2+ in rat lung membranes. Mol Cell Biochem 2000; 208:27-35. [PMID: 10939625 DOI: 10.1023/a:1007010821772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The catalytic activity of guanylate cyclase (GCase) coupled to atrial natriuretic peptide (ANP) receptor depends on the metal co-factor, Mn2+ or Mg2+. ATP synergistically stimulates the ANP-stimulated GCase in the presence of Mg2+. We have now shown the ATP regulation of the ANP-stimulated GCase in the presence of Mn2+ in rat lung membranes. ANP stimulated the GCase 2.1-fold compared to the control. ATP enhanced both the basal (basal-GCase) and the ANP-stimulated GCase maximally 1.7- and 2.3- fold compared to the control, respectively, at a concentration of 0.1 mM. The stimulation by ATP was smaller in the presence of Mn2+ than in the presence of Mg2+. The addition of inorganic phosphate to the reaction mixture altered the GCase activities in the presence of Mn2+ with or without ANP and/or ATP. In the presence of 10 mM phosphate, ATP dose-dependently stimulated the basal GCase 5-fold compared to the control at a concentration of 1 mM and augmented the ANP-stimulated GCase, which was 4.2-fold compared to the basal-GCase, 5.5-fold compared to the control at a concentration of 0.5 mM. Protein phosphatase inhibitors, okadaic acid (100 nM), H8 (1 microM) and staurosporin (1 microM), did not alter the activity. Orthovanadate (1 mM), an inorganic phosphate analogue, significantly stimulated both the basal-GCase and the ANP-stimulated GCase, which were inhibited by ATP. It was assumed that phosphate and orthovanadate might interact with the GCase to regulate the activity in the opposite manner. This was the first report that inorganic phosphate and orthovanadate affected the ATP-regulation of the ANP-stimulated GCase in the presence of Mn2+.
Collapse
Affiliation(s)
- T Nashida
- Department of Oral Biochemistry, The Nippon Dental University, School of Dentistry at Niigata, Japan
| | | | | |
Collapse
|
31
|
Rambotti MG, Giambanco I, Spreca A. Ultracytochemical detection of guanylate cyclase C activity in alimentary tract and associated glands of the rat. Influence of pH, ATP and the ions Mg2+ and Mn2+. THE HISTOCHEMICAL JOURNAL 2000; 32:231-8. [PMID: 10872888 DOI: 10.1023/a:1004003101495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intestinal guanylate cyclase C is activated by guanylin, an endogenous peptide. This activity seems to be modulated by adenine nucleotides, the ions Mg2+ and Mn2+, and pH. In this study, we report an ultracytochemical method for the localization of guanylate cyclase C activity at the electron microscope level. We studied the enzymatic activity in the presence or absence of guanylin and/or ATP, in the presence of the ions Mg2+ or Mn2+, and at different pH levels. The greatest distribution of enzymatic activity was detected in samples incubated at pH 8 and 7.4 in the presence of guanylin, Mg2+ and ATP. Guanylate cyclase C activity was detected at the surface epithelium of stomach and intestine, and in liver, exocrine pancreas and parotid gland. In the intestine, enzymatic activity was more widely distributed in the duodenum than in the jejunum-ileum and colon. In the small intestine, activity was more evident in the upper portion than in the basal portion of the villus. In samples incubated at pH 8 and 7.4 in the absence of ATP, enzymatic activity was detected only in small intestine, liver and exocrine pancreas. Enzymatic activity was present in duodenum incubated at pH 8 and 7.4 in the presence of Mn2+ and in the presence or absence of ATP. No samples incubated in all these experimental conditions but at pH 5 or samples incubated in the presence of guanylin only or in the absence of guanylin, displayed guanylate cyclase C activity. Our results suggest that a complete ultracytochemical detection of guanylate cyclase C activity requires guanylin as stimulator, and incubation in the presence of Mg2+ and ATP at pH 8 and 7.4.
Collapse
Affiliation(s)
- M G Rambotti
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | |
Collapse
|
32
|
Spreca A, Giambanco I, Rambotti MG. Ultracytochemical study of guanylate cyclases A and B in light- and dark-adapted retinas. THE HISTOCHEMICAL JOURNAL 1999; 31:477-83. [PMID: 10475575 DOI: 10.1023/a:1003712110751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ultracytochemical localization of guanylate cyclases A and B activity has been studied after stimulation with atrial natriuretic peptide and C-type natriuretic peptide in light- and dark-adapted retinas and pigmented epithelium. The results showed that both peptides stimulated guanylate cyclases A and B activity in light-adapted retinas only. Guanylate cyclases A and B activity was detected on plasma membrane of body of photoreceptors, bipolar, horizontal and ganglion cells, on plasma membranes of interneuronal connections at plexiform layers and on the plasma membrane of fibres at the nerve fibres layer. Independently of the light-or dark-adapted state, the pigmented epithelium also presented guanylate cyclases A and B activity on basal and lateral plasma membranes.
Collapse
Affiliation(s)
- A Spreca
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | |
Collapse
|
33
|
Sharma RK, Duda T. Plasma membrane guanylate cyclase. A multimodule transduction system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 407:271-9. [PMID: 9321964 DOI: 10.1007/978-1-4899-1813-0_41] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R K Sharma
- Unit of Regulatory and Molecular Biology, SOM, Stratford, New Jersey 08084, USA
| | | |
Collapse
|
34
|
Petrov V, Lijnen P. Regulation of human erythrocyte Na+/H+ exchange by soluble and particulate guanylate cyclase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C1556-64. [PMID: 8944639 DOI: 10.1152/ajpcell.1996.271.5.c1556] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Guanylate cyclase activity in human erythrocytes is investigated by evaluating the intracellular guanosine 3',5'-cyclic monophosphate (cGMP) content in the presence of various agents that exert specific effects on soluble or particulate guanylate cyclase. The increase in the intraerythrocyte cGMP content by the soluble guanylate cyclase activators nitroprusside and NaNO2 suggests the presence of this enzyme in human erythrocytes. The effects of four different atrial natriuretic peptide (ANP) fragments on the intraerythrocyte cGMP content is also studied. ANP II and ANP III increase the intraerythrocyte cGMP content, whereas ANP I and des-Ser5,des-Ser6-ANP III are ineffective. Thus our data show that human erythrocytes possess particulate guanylate cyclase together with the soluble enzyme. The ANP fragments ANP II and ANP III also activate the erythrocyte Na+/H+ exchange. Nitroprusside, M & B 22948 (an inhibitor of cGMP phosphodiesterase), and the cGMP analogues dibutyryl cGMP and 8-bromoguanosine 3',5'-cyclic monophosphate also increase the erythrocyte Na+/H+ exchange rate. The latter data also suggest that the erythrocyte Na+/H+ exchange is regulated by cGMP.
Collapse
Affiliation(s)
- V Petrov
- Department of Molecular, University of Leuven (Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
35
|
Duda T, Goraczniak R, Sharma RK. Distinct inhibitory ATP-regulated modulatory domain (ARMi) in membrane guanylate cyclases. Biochem J 1996; 319 ( Pt 1):279-83. [PMID: 8870679 PMCID: PMC1217765 DOI: 10.1042/bj3190279] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Depending upon the cofactors Mg2+ or Mn2+, ATP stimulates or inhibits the signal transduction activities of the natriuretic factor receptor guanylate cyclases, ANF-RGC and CNP-RGC: there is stimulation in the presence of Mg2+ and inhibition in the presence of Mn2+. A defined core ATP-regulated modulatory (ARM) sequence motif within the intracellular 'kinase-like' domain of the cyclases is critical for stimulation, but the mechanism of the inhibitory transduction process is not known. In addition, ATP inhibits the basal cyclase activity of a rod outer segment membrane guanylate cyclase (ROS-GC). The mechanism of this inhibitory transduction process is also not known. These issues have been addressed in the present investigation through a program of deletion mutagenesis/expression studies of the cyclases. The study shows that the ATP-mediated inhibitory transduction processes of the natriuretic factor receptor cyclases and of ROS-GC are identical. The ATP-regulated inhibitory domain of all these cyclases resides within the C-terminal segment of the cyclase. This domain is in a different location from the one representing the ATP-stimulatory ARM. The identification of the inhibitory domain in the C-terminal segment of the cyclase indicates that this segment is composed of two separate domains: one representing a catalytic cyclase domain and the other an ATP-regulated inhibitory (ARMi) domain. These findings establish a novel ATP-mediated inhibitory transduction mechanism of the membrane guanylate cyclases which is distinct from that of its counterpart, the stimulatory ATP-mediated hormonal signal transduction mechanism. Thus, they define a new paradigm of guanylate cyclase-linked signal transduction pathways.
Collapse
Affiliation(s)
- T Duda
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford 08084, USA
| | | | | |
Collapse
|
36
|
Laura RP, Dizhoor AM, Hurley JB. The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J Biol Chem 1996; 271:11646-51. [PMID: 8662612 DOI: 10.1074/jbc.271.20.11646] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Retinal guanylyl cyclase-1 (RetGC-1) is a membrane guanylyl cyclase found in photoreceptor outer segments. It consists of an apparent extracellular domain (ECD) linked by a single transmembrane segment to an intracellular domain (ICD). Guanylyl cyclase activating protein-2 (GCAP-2) is a Ca2+-binding protein that activates RetGC-1 in a Ca2+-sensitive manner. To establish whether GCAP-2 stimulates RetGC-1 through the ECD or ICD, we made deletion mutants lacking either the ECD or both the ECD and transmembrane domains (TMD) of RetGC-1. Recombinant wild type RetGC-1 and both deletion mutants were expressed in HEK 293 cells, and their sensitivities to GCAP-2, Ca2+, and ATP were compared. Our data demonstrate that both deletion mutants are regulated similarly to wild type RetGC-1 with indistinguishable EC50 values for Ca2+ and similar K1/2 values for activation by GCAP-2. This shows that GCAP-2 functions through the ICD of RetGC-1 and that removal of the ECD and TMD do not significantly alter regulation by these factors. Our data also show that ATP potentiates stimulation of guanylyl cyclase activity by GCAP-2 and that neither the ECD nor the TMD of RetGC-1 participate in its regulation by ATP.
Collapse
Affiliation(s)
- R P Laura
- Department of Biochemistry, University of Washington, Seattle, 98195-7370, USA
| | | | | |
Collapse
|
37
|
Parkinson SJ, Waldman SA. An intracellular adenine nucleotide binding site inhibits guanyly cyclase C by a guanine nucleotide-dependent mechanism. Biochemistry 1996; 35:3213-21. [PMID: 8605156 DOI: 10.1021/bi9524326] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Guanylyl cyclase C (GCC), the receptor for the Escherichia coli heat-stable enterotoxin (ST), is inhibited by 2-substituted adenine nucleotides in an allosteric fashion. In confluent cultures of Caco-2 intestinal epithelial cells, extracellular 2-methylthioadenosine triphosphate (2MeSATP) had no effect on basal or ST-stimulated cyclic GMP (cGMP) accumulation. However, this nucleotide inhibited cGMP accumulation in digitonin-permeabilized Caco-2 human colon carcinoma cells, demonstrating that allosteric inhibition of GCC by adenine nucleotides is mediated by an intracellular adenine nucleotide binding site rather than purinergic receptors. The role of guanine nucleotides in the regulation of GCC by adenine nucleotides was examined. Increasing GTP concentrations from 5 to 100 microM increased the potency of 2MeSATP inhibition of GCC 20-fold, with a shift in the Ki from 447 to 22 microM, respectively. Also, the hydrolysis-resistant analogue, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), supported 2MeSATP inhibition of GCC with a potency which was 10-fold greater than GTP. In addition, GTP alone, in the absence of adenine nucleotides and at concentrations greater than 1 mM, inhibited GCC through a mechanism convergent with 2MeSATP. Guanine nucleotides supported adenine nucleotide inhibition of GCC at low concentrations and directly inhibited this enzyme at high concentrations when these studies were conducted with receptors expressed in Caco-2 cells, native rat intestine, or cloned rat GCC heterologously expressed in 293 monkey kidney cells. These observations demonstrate that adenine nucleotide inhibition of GCC is mediated through an intracellular mechanism which is guanine nucleotide-dependent.
Collapse
Affiliation(s)
- S J Parkinson
- Department of Medicine, Division of Clinical Pharmacology, Thomas Jefferson University, Phildelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
38
|
Duda T, Sharma RK. ATP modulation of the ligand binding and signal transduction activities of the type C natriuretic peptide receptor guanylate cyclase. Mol Cell Biochem 1995; 152:179-83. [PMID: 8751165 DOI: 10.1007/bf01076081] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The type C natriuretic peptide (CNP)-activated guanylate cyclase (CNP-RGC) is a single-chain transmembrane-spanning protein, containing both CNP binding and catalytic cyclase activities. Upon binding CNP to the extracellular receptor domain, the cytosolic catalytic domain of CNP-RGC is activated, generating the second messenger cyclic GMP. Obligatory in this activation process is an intervening signal transduction step which is regulated by ATP binding to the cyclase. This bridges the events of ligand binding and cyclase activation. A defined sequence motif (Gly499-Xa-Xa-Xa-Gly503), termed ATP regulatory module (ARM), is critical for this step. The present study shows that ATP not only amplifies the signal transduction step, it also concomitantly reduces the ligand binding activity of CNP-RGC. Reduction in the ligand binding activity is a consequence of the transformation of the high affinity receptor-form to the low affinity receptor-form. A single ARM residue Gly499 is critical in the mediation of both ATP effects, signal transduction and ligand binding activity of the receptor. Thus, this residue represents an ATP bimodal switch to turn the CNP signal on and off.
Collapse
Affiliation(s)
- T Duda
- Unit of Regulatory and Molecular Biology, Pennsylvania College of Optometry, Philadelphia 19141, USA
| | | |
Collapse
|
39
|
Sitaramayya A, Duda T, Sharma RK. Regulation of bovine rod outer segment membrane guanylate cyclase by ATP, phosphodiesterase and metal ions. Mol Cell Biochem 1995; 148:139-45. [PMID: 8594418 DOI: 10.1007/bf00928151] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critical role in visual transduction. But regulation of the cyclase by some of these factors--phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn)--is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.
Collapse
Affiliation(s)
- A Sitaramayya
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | | | | |
Collapse
|
40
|
Charoonroje P, Tokumitsu Y, Nomura Y. Developmental changes in ANP-stimulated guanylyl cyclase activity enhanced by ATP in rat lung membrane fractions. Br J Pharmacol 1994; 113:569-75. [PMID: 7834209 PMCID: PMC1510116 DOI: 10.1111/j.1476-5381.1994.tb17027.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. ANP (atrial natriuretic peptides)- or ANP/ATP-stimulated guanylyl cyclase activities were compared in adult (2 month old) and neonatal (5-7 day old) rat lung membrane fractions. 2. The enzyme activities of both membranes depended on the incubation time and ATP concentration: although the activities of both membranes were similar after a short incubation time (4 min), those in adult membranes were lower than those of neonatal membranes after longer incubation times (10 and 30 min) or at lower concentrations of ATP. 3. ANP/ATP gamma S-stimulated guanylyl cyclase activities, which were much higher than ANP/ATP-stimulated activities, were similar in both membranes. 4. ATPase activity of adult membranes was higher than that of neonatal membranes, suggesting that hydrolysis of ATP leads to a decrease of ANP/ATP-guanylyl cyclase activity in adult membranes. Triton X-100 enhanced and diminished ANP/ATP-stimulated guanylyl cyclase activities of adult and neonatal membranes, respectively, and thereby abolished the adult/neonatal difference in the membrane response to ATP. 5. ANP-stimulated activities of both membranes were much more activated by pre-incubation with ATP gamma S than those induced by simultaneous addition of ATP gamma S. The former activities were decreased to levels of the latter by Triton X-100. The latter activities were not affected by Triton X-100. 6. The present results suggested that conformation of lung plasma membranes is related to activation of the ANP receptor/guanylyl cyclase system.
Collapse
Affiliation(s)
- P Charoonroje
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
41
|
Opposing adenine nucleotide-dependent pathways regulate guanylyl cyclase C in rat intestine. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31700-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Deschepper CF, Picard S. Effects of C-type natriuretic peptide on rat astrocytes: regional differences and characterization of receptors. J Neurochem 1994; 62:1974-82. [PMID: 7908948 DOI: 10.1046/j.1471-4159.1994.62051974.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have compared the effects of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) on the accumulation of cyclic GMP (cGMP) in secondary cultures of rat astrocytes. The order of potency of these peptides was CNP > ANP > BNP, which would be compatible with a predominance of guanylate cyclase B (GC-B)- versus guanylate cyclase A (GC-A)-type receptors in these cells. Accordingly, we found by northern blot analysis that the mRNA transcripts of GC-B were much more abundant in astrocytes than the transcripts of GC-A. In addition, astrocytes from diencephalon accumulated two times more cGMP in response to CNP than astrocytes from cortex. Binding experiments with 125I-labeled ANP or [Tyro]-CNP established that these ligands recognized only clearance-type receptors on astrocytes. However, the number of binding sites was approximately 100 times higher in astrocytes from cortex than in astrocytes from diencephalon and thus was inversely correlated to the amplitude of the cGMP response in the same cells. We found no further evidence for differences in the levels of GC-B receptors in astrocytes from the two regions because (a) the abundance of GC-B mRNA was similar and (b) there was no difference in particulate guanylate cyclase activity in astrocytes from each region. In addition, occupancy of clearance receptors with C-ANP4-23 did not affect the accumulation of cGMP in response to CNP; this makes it unlikely that the differences in cGMP responsiveness can be accounted for by binding and sequestration of CNP to the clearance receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C F Deschepper
- Laboratory of Neurobiology and Vasoactive Peptides, University of Montreal, Québec, Canada
| | | |
Collapse
|
43
|
Leitman DC, Waldman SA, Murad F. Regulation of particulate guanylate cyclase by natriuretic peptides and Escherichia coli heat-stable enterotoxin. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 26:67-86. [PMID: 7913619 DOI: 10.1016/s1054-3589(08)60051-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D C Leitman
- Metabolic Research Unit, University of California, School of Medicine, San Francisco 94143
| | | | | |
Collapse
|
44
|
Duda T, Goraczniak RM, Sharma RK. The glycine residue of ATP regulatory module in receptor guanylate cyclases that is essential in natriuretic factor signaling. FEBS Lett 1993; 335:309-14. [PMID: 7903250 DOI: 10.1016/0014-5793(93)80408-m] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atrial natriuretic factor (ANF) and C-type natriuretic peptide (CNP)-activated guanylate cyclases are single-chain transmembrane-spanning proteins, containing both ligand binding and catalytic activities. In both proteins, ligand binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Obligatory in this activation process is an ATP-dependent step. ATP directly binds to a defined ATP-regulatory module (ARM) sequence motif in the cyclases and through ARM bridges the events of ligand binding and signal transduction. These ARM sequence motifs are respectively represented by Gly503-Xa-Gly505-Xa-Xa-Xa-Gly509 and Gly499-Xa-Xa-Xa-Gly503 in the case of ANF receptor guanylate cyclase (ANF-RGC) and CNP receptor guanylate cyclase (CNP-RGC). Through genetic remodeling techniques, we now show that ARM-Gly505 in ANF-RGC and the corresponding ARM-Gly499 in CNP-RGC are critical for ANF and CNP signaling, and other ARM-Gly residues have minimal effect in the respective signaling processes.
Collapse
Affiliation(s)
- T Duda
- Unit of Regulatory and Molecular Biology, Pennsylvania College of Optometry, Philadelphia 19141
| | | | | |
Collapse
|
45
|
Song DL, Chang GD, Ho CL, Chang CH. Structural requirements of mastoparan for activation of membrane-bound guanylate cyclase. Eur J Pharmacol 1993; 247:283-8. [PMID: 7905830 DOI: 10.1016/0922-4106(93)90196-g] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mastoparan activated membrane-bound guanylate cyclase and potentiated the effect of atrial natriuretic factor (ANF) and ATP on guanylate cyclase activity in rat lung membranes. Mastoparan is a cationic, amphiphilic tetradecapeptide with an amidated carboxyl terminus. It takes the alpha-helical conformation upon interacting with the membrane. Several analogs were synthesized to study the role of the positive charges, the carboxyl amino group and the alpha-helical conformation of mastoparan in the activation of guanylate cyclase. The results showed that substitution of the C-terminal amide group of mastoparan with a carboxyl group significantly reduced its potency on the activation of guanylate cyclase. Replacement of three lysine residues of mastoparan with aspartic acid or serine residues completely abolished the stimulatory effect of mastoparan. When the alanine at position 10 of mastoparan was substituted by a proline, the resulting analog had no effect on guanylate cyclase activity. These results demonstrate that the positive charges and the helical structure of mastoparan are critical determinants for the activation of guanylate cyclase.
Collapse
Affiliation(s)
- D L Song
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
46
|
Féthière J, Graihle R, Larose L, Babinski K, Ong H, De Léan A. Distribution and regulation of natriuretic factor-R1C receptor subtypes in mammalian cell lines. Mol Cell Biochem 1993; 124:11-6. [PMID: 8232274 DOI: 10.1007/bf01096376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The differential distribution of natriuretic peptide receptor subtypes and their distinct properties were assessed in mammalian cellular models which were screened for their ability to produce cGMP upon stimulation by different natriuretic peptides. The ANF-R1A receptor subtype was distinguished by its selective activation by atrial natriuretic factor (ANF) while the ANF-R1C was characterized by preferential stimulation by C-type natriuretic peptide (CNP). AT-620 pituitary cells, bovine adrenal chromaffin cells, and NIH-3T3 fibroblasts mainly express the ANF-R1C receptor subtype. Other cell lines such as PC12, RASM and GH3 express significant but varying amounts of both ANF-R1A and ANF-R1C subtypes. A10 and NIH cells which express high density of ANF-R2 receptor subtype, also demonstrate a higher sensitivity to CNP over ANF suggesting that they express significant amounts of ANF-R1C. Studies of the regulation by ATP of guanylyl cyclase activity indicate that both ANF-R1A and ANF-R1C subtypes are modulated in the same manner. In the presence of Mn2+, ATP inhibits the CNP-stimulated guanylyl cyclase activity while in the presence of Mg2+ adenine nucleotides potentiate the stimulation by CNP. In addition, we show that like the ANF-R1A, the ANF-R1C guanylyl cyclase activity can be regulated by phosphorylation since preincubation with TPA or FKL attenuates the subsequent stimulation by CNP in cultured cells. The results presented demonstrate that specific cell types express distinct natriuretic peptide receptor subtypes and also that the newly characterized ANF-R1C subtype is regulated by ATP and serine/threonine kinases in the same way as the ANF-R1A subtype.
Collapse
Affiliation(s)
- J Féthière
- Department of Pharmacology, Faculty of Medicine, University of Montreal, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Hakki S, Crane M, Hugues M, O'Hanley P, Waldman SA. Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:557-66. [PMID: 8096825 DOI: 10.1016/0020-711x(93)90664-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Particulate guanylate cyclase and receptors for E. coli heat-stable enterotoxin were solubilized from the rat intestinal cytoskeletal compartment using Lubrol-PX and KCl. 2. Thirty to forty percent of the ST receptor and guanylate cyclase activities were extracted from the lipid layer with Lubrol-PX alone. 2. Seventy percent of the remaining activities were solubilized from the cytoskeleton with Lubrol-PX and KCl. 3. Guanylate cyclase solubilized from either compartment exhibited similar reaction kinetics. 4. Both high- and low-affinity classes of ST receptors were solubilized from the lipid and cytoskeleton compartments. 5. In the presence of ATP gamma S, ST selectively activated the guanylate cyclase solubilized from the cytoskeleton compared to that solubilized from the lipid bilayer. 6. Crosslinking experiments demonstrated a preferential solubilization of the 130 kDa receptor subunit from the cytoskeleton and the 56 kDa subunit from the lipid bilayer. 7. Development of a procedure to solubilize ST receptors and guanylate cyclase from the intestinal membrane cytoskeleton will permit purification and further detailed studies of the coupling of these activities.
Collapse
Affiliation(s)
- S Hakki
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | | |
Collapse
|
48
|
Chang C, Song D. Melittin potentiates guanylate cyclase activation stimulated by atrial natriuretic factor and ATP. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53481-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Abstract
Atrial natriuretic factor (ANF) and C-type natriuretic peptide (CNP)-activated guanylate cyclases are single-chain transmembrane-spanning proteins, containing both ligand binding and catalytic activities. In both proteins, ligand binding to the extracellular receptor domain activates the cytosolic catalytic domain, generating the second messenger cyclic GMP. Studies with ANF receptor guanylate cyclase (ANF-RGC) have indicated that obligatory in this activation process is an ATP-dependent step. ATP directly binds to the cyclase and bridges the events of ligand binding and signal transduction. A defined ATP-regulated module (ARM) sequence (Gly503-Arg-Gly-Ser-Asn-Tyr-Gly509) in the cyclase is critical in the ATP-mediated event. Through genetic remodeling techniques, we have now identified the core ARM sequence that is essential in both ANF and CNP signaling. This sequence is Gly-Xa-Xa-Xa-Gly, represented by Gly505-Ser-Asn-Tyr-Gly509 in the case of ANF-RGC ARM and by Gly499-Ser-Ser-Tyr-Gly503 in the CNP receptor guanylate cyclase ARM.
Collapse
Affiliation(s)
- T Duda
- Unit of Regulatory and Molecular Biology, Pennsylvania College of Optometry, Philadelphia 19141
| | | | | |
Collapse
|
50
|
Shigematsu Y, Vaughn J, Touchard CL, Frohlich ED, Alam J, Cole FE. Different ATP effects on natriuretic peptide receptor subtypes in LLC-PK1 and NIH-3T3 cells. Life Sci 1993; 53:865-74. [PMID: 8102767 DOI: 10.1016/0024-3205(93)90509-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have observed different ATP interactions in two guanylate cyclase (GC)-coupled natriuretic peptide (NP) receptor subtypes, designated NPR-A and NPR-B. The NPR-A is selectively expressed by LLC-PK1 epithelial cells and the NPR-B by NIH-3T3 fibroblast cells. In LLC-PK1 membranes, ATP-Mg2+ potentiated ANP-stimulated GC activity (ANP-s-GC). In contrast, in NIH-3T3 membranes, ATP-Mg2+ inhibited ANP-s-GC but enhanced CNP-stimulated GC activity (CNP-s GC). ATP in the presence of Mn2+ inhibited LLC-PK1 and NIH-3T3 membrane ANP-s-GC and CNP-s-GC. These are the first data suggesting that the ATP-Mg2+ produces different effects between membrane NPR-A and -B subtypes. We have also demonstrated that GC of NPR-B is sensitive to methylene blue.
Collapse
Affiliation(s)
- Y Shigematsu
- Department of Research Biochemistry, Ochsner Clinic, New Orleans, Lousiana
| | | | | | | | | | | |
Collapse
|