1
|
Patil N, Patil K, Jain M, Mohammed A, Yadav A, Dhanda PS, Kole C, Dave K, Kaushik P, Azhar Abdul Razab MK, Hamzah Z, Nawi NM. A systematic study of molecular targets of cannabidiol in Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1339-1360. [PMID: 40034365 PMCID: PMC11863746 DOI: 10.1177/25424823241284464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent, incurable, and chronic neurodegenerative condition characterized by the accumulation of amyloid-β protein (Aβ), disrupting various bodily systems. Despite the lack of a cure, phenolic compounds like cannabidiol (CBD), a non-psychoactive component of cannabis, have emerged as potential therapeutic agents for AD. Objective This systematic review explores the impact of different types of cannabidiol on AD, unveiling their neuroprotective mechanisms. Methods The research used PubMed, Scopus, and Web of Science databases with keywords like "Alzheimer's disease" and "Cannabidiol." Studies were evaluated based on title, abstract, and relevance to treating AD with CBD. No restrictions on research type or publication year. Excluded were hypothesis papers, reviews, books, unavailable articles, etc. Results Microsoft Excel identified 551 articles, with 92 included in the study, but only 22 were thoroughly evaluated. In-vivo and in-silico studies indicate that CBD may disrupt Aβ42, reduce pro-inflammatory molecule release, prevent reactive oxygen species formation, inhibit lipid oxidation, and counteract Aβ-induced increases in intracellular calcium, thereby protecting neurons from apoptosis. Conclusions In summary, the study indicates that CBD and its analogs reduce the production of Aβ42. Overall, these findings support the potential of CBD in alleviating the underlying pathology and symptoms associated with AD, underscoring the crucial need for further rigorous scientific investigation to elucidate the therapeutic applications and mechanisms of CBD in AD.
Collapse
Affiliation(s)
- Nil Patil
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Khushalika Patil
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mukul Jain
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Alpa Yadav
- Department of Botany, Indra Gandhi University, Meerpur, Rewari, India
| | | | | | - Kirtan Dave
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Zulhazman Hamzah
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Norazlina Mat Nawi
- Department of Nuclear Medicine, Radiotherapy & Oncology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Wang L, Yang D, Zhang Y, Jiao Y. GPR12 Inhibits Apoptosis in Epithelial Ovarian Cancer via the Activation of ERK1/2 Signaling. Front Oncol 2022; 12:932689. [PMID: 35903681 PMCID: PMC9316591 DOI: 10.3389/fonc.2022.932689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies in women worldwide. G protein–coupled receptor 12 (GPR12) is a member of G protein–coupled receptors (GPCRs) and plays an important role in the regulation of cell proliferation and survival. However, its role in EOC is underappreciated. In this study, we found that GPR12 is highly expressed in the EOC tissues and can be an ideal biomarker to predict the prognosis of patients with EOC. GPR12 knockdown obviously inhibits the proliferation of EOC cells by inducing cellular apoptosis in vitro and in vivo. Meanwhile, bioinformatic analysis showed that the inhibitory effect of GPR12 knockdown on the cell viability is closely related with Extracellular signal-regulated kinases 1/2 (ERK1/2) pathway, which has been confirmed by the fact that the activity of ERK1/2 pathway has been significantly blocked in the GPR12 knockdown cells. LM22B-10, ERK1/2 pathway activator, could reverse the inhibited proliferation caused by GPR12 knockdown in the EOC cells. Our findings suggest that GPR12 is involved in the EOC process and is a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Medicine, Liaoning Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Da Yang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yisheng Jiao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yisheng Jiao,
| |
Collapse
|
3
|
Characterization of Four Orphan Receptors (GPR3, GPR6, GPR12 and GPR12L) in Chickens and Ducks and Regulation of GPR12 Expression in Ovarian Granulosa Cells by Progesterone. Genes (Basel) 2021; 12:genes12040489. [PMID: 33801713 PMCID: PMC8065388 DOI: 10.3390/genes12040489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The three structurally related orphan G protein-coupled receptors, GRP3, GPR6, and GPR12, are reported to be constitutively active and likely involved in the regulation of many physiological/pathological processes, such as neuronal outgrowth and oocyte meiotic arrest in mammals. However, the information regarding these orphan receptors in nonmammalian vertebrates is extremely limited. Here, we reported the structure, constitutive activity, and tissue expression of these receptors in two representative avian models: chickens and ducks. The cloned duck GPR3 and duck/chicken GPR6 and GPR12 are intron-less and encode receptors that show high amino acid (a.a.) sequence identities (66–88%) with their respective mammalian orthologs. Interestingly, a novel GPR12-like receptor (named GPR12L) sharing 66% a.a. identity to that in vertebrates was reported in the present study. Using dual-luciferase reporter assay and Western blot, we demonstrated that GPR3, GPR6, GPR12, and GPR12L are constitutively active and capable of stimulating the cAMP/PKA signaling pathway without ligand stimulation in birds (and zebrafish), indicating their conserved signaling property across vertebrates. RNA-seq data/qRT-PCR assays revealed that GPR6 and GPR12L expression is mainly restricted to the chicken brain, while GPR12 is highly expressed in chicken ovarian granulosa cells (GCs) and oocytes of 6 mm growing follicles and its expression in cultured GCs is upregulated by progesterone. Taken together, our data reveal the structure, function, and expression of GPR3, GPR6, GPR12, and GPR12L in birds, thus providing the first piece of evidence that GPR12 expression is upregulated by gonadal steroid (i.e., progesterone) in vertebrates.
Collapse
|
4
|
Mizuno H, Kihara Y. Druggable Lipid GPCRs: Past, Present, and Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:223-258. [PMID: 32894513 DOI: 10.1007/978-3-030-50621-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) have seven transmembrane spanning domains and comprise the largest superfamily with ~800 receptors in humans. GPCRs are attractive targets for drug discovery because they transduce intracellular signaling in response to endogenous ligands via heterotrimeric G proteins or arrestins, resulting in a wide variety of physiological and pathophysiological responses. The endogenous ligands for GPCRs are highly chemically diverse and include ions, biogenic amines, nucleotides, peptides, and lipids. In this review, we follow the KonMari method to better understand druggable lipid GPCRs. First, we have a comprehensive tidying up of lipid GPCRs including receptors for prostanoids, leukotrienes, specialized pro-resolving mediators (SPMs), lysophospholipids, sphingosine 1-phosphate (S1P), cannabinoids, platelet-activating factor (PAF), free fatty acids (FFAs), and sterols. This tidying up consolidates 46 lipid GPCRs and declutters several perplexing lipid GPCRs. Then, we further tidy up the lipid GPCR-directed drugs from the literature and databases, which identified 24 clinical drugs targeting 16 unique lipid GPCRs available in the market and 44 drugs under evaluation in more than 100 clinical trials as of 2019. Finally, we introduce drug designs for GPCRs that spark joy, such as positive or negative allosteric modulators (PAM or NAM), biased agonism, functional antagonism like fingolimod, and monoclonal antibodies (MAbs). These strategic drug designs may increase the efficacy and specificity of drugs and reduce side effects. Technological advances will help to discover more endogenous lipid ligands from the vast number of remaining orphan GPCRs and will also lead to the development novel lipid GPCR drugs to treat various diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Allende G, Chávez-Reyes J, Guerrero-Alba R, Vázquez-León P, Marichal-Cancino BA. Advances in Neurobiology and Pharmacology of GPR12. Front Pharmacol 2020; 11:628. [PMID: 32457622 PMCID: PMC7226366 DOI: 10.3389/fphar.2020.00628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
GPR12 is a G protein-coupled orphan receptor genetically related to type 1 and type 2 cannabinoid receptors (CB1 and CB2) which are ancient proteins expressed all over the body. Both cannabinoid receptors, but especially CB1, are involved in neurodevelopment and cognitive processes such as learning, memory, brain reward, coordination, etc. GPR12 shares with CB1 that both are mainly expressed into the brain. Regrettably, very little is known about physiology of GPR12. Concerning its pharmacology, GPR12 seems to be endogenously activated by the lysophospholipids sphingosine-1-phosphate (S1P) and sphingosyl-phosphorylcholine (SPC). Exogenously, GPR12 is a target for the phytocannabinoid cannabidiol (CBD). Functionally, GPR12 seems to be related to neurogenesis and neural inflammation, but its relationship with cognitive functions remains to be characterized. Although GPR12 was initially suggested to be a cannabinoid receptor, it does not meet the five criteria proposed in 2010 by the International Union of Basic and Clinical Pharmacology (IUPHAR). In this review, we analyze all the direct available information in PubMed database about expression, function, and pharmacology of this receptor in central nervous system (CNS) trying to provide a broad overview of its current and prospective neurophysiology. Moreover, in this mini-review we highlight the need to produce more relevant data about the functions of GPR12 in CNS. Hence, this work should motivate further research in this field.
Collapse
Affiliation(s)
- Gonzalo Allende
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| |
Collapse
|
6
|
Laun AS, Shrader SH, Brown KJ, Song ZH. GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacol Sin 2019; 40:300-308. [PMID: 29941868 PMCID: PMC6460361 DOI: 10.1038/s41401-018-0031-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions. Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using β-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12. This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer's disease, Parkinson's disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.
Collapse
Affiliation(s)
- Alyssa S Laun
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Sarah H Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kevin J Brown
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
7
|
Metabolic parameters and emotionality are little affected in G-protein coupled receptor 12 (Gpr12) mutant mice. PLoS One 2012; 7:e42395. [PMID: 22879962 PMCID: PMC3413656 DOI: 10.1371/journal.pone.0042395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background G-protein coupled receptors (GPR) bear the potential to serve as yet unidentified drug targets for psychiatric and metabolic disorders. GPR12 is of major interest given its putative role in metabolic function and its unique brain distribution, which suggests a role in emotionality and affect. We tested Gpr12 deficient mice in a series of metabolic and behavioural tests and subjected them to a well-established high-fat diet feeding protocol. Methodology/Principal Findings Comparing the mutant mice with wild type littermates, no significant differences were seen in body weight, fatness or weight gain induced by a high-fat diet. The Gpr12 mutant mice displayed a modest but significant lowering of energy expenditure and a trend to lower food intake on a chow diet, but no other metabolic parameters, including respiratory rate, were altered. No emotionality-related behaviours (assessed by light-dark box, tail suspension, and open field tests) were affected by the Gpr12 gene mutation. Conclusions/Significance Studying metabolic and emotionality parameters in Gpr12 mutant mice did not reveal a major phenotypic impact of the gene mutation. Compared to previous results showing a metabolic phenotype in Gpr12 mice with a mixed 129 and C57Bl6 background, we suggest that a more pure C57Bl/6 background due to further backcrossing might have reduced the phenotypic penetrance.
Collapse
|
8
|
Kreitzer FR, Stella N. The therapeutic potential of novel cannabinoid receptors. Pharmacol Ther 2009; 122:83-96. [PMID: 19248809 DOI: 10.1016/j.pharmthera.2009.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 12/20/2022]
Abstract
Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.
Collapse
Affiliation(s)
- Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA 98115-7280, USA
| | | |
Collapse
|
9
|
Lin ZJ, Lu XM, Zhu TJ, Fang YC, Gu QQ, Zhu W. GPR12 selections of the metabolites from an endophytic Streptomyces sp. associated with Cistanches deserticola. Arch Pharm Res 2008; 31:1108-14. [PMID: 18806952 DOI: 10.1007/s12272-001-1276-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 07/04/2008] [Accepted: 08/12/2008] [Indexed: 12/01/2022]
Abstract
An endophytic Streptomyces sp. (AC-2) was isolated from the root of Cistanches deserticola Y.C.Ma.. Chemical investigations of the culture broth of AC-2 afforded fifteen compounds including K1115 A (1), tyrosol (2), phenylethylamine derivatives (3, 4), cyclic dipeptides (5-8), nucleosides and their aglycones (9-13), N-acetyltryptamine (14), and pyrrole-2-carboxylic acid (15). Only tyrosol can promote an increase of intracellular cAMP special on GPR12 transfected cells, such as CHO and HEK293, which means it may be a possible ligand for GPR12.
Collapse
Affiliation(s)
- Zhen-Jian Lin
- Key laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Two new 5-hydroxy-2-pyrone derivatives isolated from a marine-derived fungus Aspergillus flavus. J Antibiot (Tokyo) 2008; 61:245-9. [PMID: 18503205 DOI: 10.1038/ja.2008.36] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two new compounds, 4-(hydroxymethyl)-5-hydroxy-2H-pyran-2-one (1) and (5-hydroxy-2-oxo-2H-pyran-4-yl) methyl acetate (2), have been isolated from a marine-derived fungus Aspergillus flavus. Their structures were determined by spectroscopic data. Compound 1 induced the production of cAMP on GPR12 transfected CHO and HEK293 cells in a dose-dependent manner, which indicated 1 might be a possible ligand for GPR12.
Collapse
|
11
|
Bjursell M, Gerdin AK, Jönsson M, Surve VV, Svensson L, Huang XF, Törnell J, Bohlooly-Y M. G protein-coupled receptor 12 deficiency results in dyslipidemia and obesity in mice. Biochem Biophys Res Commun 2006; 348:359-66. [PMID: 16887097 DOI: 10.1016/j.bbrc.2006.07.090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 07/04/2006] [Indexed: 10/24/2022]
Abstract
Obesity has been proposed to be a result of an imbalance in the physiological system that controls and maintains the body energy homeostasis. Several G-protein coupled receptors (GPCRs) are involved in the regulation of energy homeostasis. To investigate the importance of GPCR12, mice deficient of this receptor (GPCR12 KO) were studied regarding metabolism. Expression of GPCR12 was found primarily in the limbic and sensory systems, indicating its possible involvement in motivation, emotion together with various autonomic functions, and sensory information processing. GPCR12 KO mice were found to have higher body weight, body fat mass, lower respiratory exchange ratio (RER), hepatic steatosis, and were dyslipidemic. Neither food intake nor energy in faeces was affected in the GPCR12 KO mice. However, lower energy expenditure was found in the GPCR12 KO mice, which may explain the obesity. In conclusion, GPCR12 is considered important for the energy balance since GPCR12 KO mice develop obesity and have lower energy expenditure. This may be important for future drugs that target this receptor.
Collapse
Affiliation(s)
- Mikael Bjursell
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kostenis E. Novel clusters of receptors for sphingosine-1-phosphate, sphingosylphosphorylcholine, and (lyso)-phosphatidic acid: new receptors for "old" ligands. J Cell Biochem 2005; 92:923-36. [PMID: 15258916 DOI: 10.1002/jcb.20092] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The (lyso)phospholipid mediators sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC), and phosphatidic acid (PA) regulate diverse cellular responses such as proliferation, survival and death, cytoskeletal rearrangements, cell motility, and differentiation among many others. Signaling is complex and many signaling events are mediated through the activation of cell surface seven transmembrane (7TM) G protein coupled receptors. Five high affinity receptors for S1P have been identified so far and named S1P(1, 2,3,4,5) (formerly referred to as endothelial differentiation gene (edg)1, 5, 3, 6, 8). Recently, the orphan receptor GPR63 was identified a low affinity S1P receptor structurally distant from the S1P(1-5) family. The orphan GPR3, 6, 12 cluster, phylogenetically related to the edg and melanocortin receptors appears to be subject to modulation by S1P and SPC although all three receptors are strong constitutive stimulators of the Galphas-adenylyl cyclase (AC) pathway and would not require additional ligand stimulation but rather inverse agonism to control activity. Ovarian cancer G protein coupled receptor 1 (OGR1) and GPR4, two structurally closely related receptors were assigned in functional and binding studies as high affinity molecular targets for SPC. Very recently, however, both OGR1 and GPR4 were described as receptors endowed with the ability to signal cells in response to protons. LPA exerts its biological effects through the activation of G protein coupled LPA(1-3) receptors (formerly referred to as edg2, 4, 7). A fourth high affinity LPA receptor has been identified: P2Y9 (GPR23) structurally related to nucleotide receptors and phylogenetically quite distant from the high affinity LPA(1-3) cluster. This review attempts to give an overview about the existing families of lysophosholipid receptors and the spectrum of lipid agonists they use as high or low affinity ligands to relay extracellular signals into intracellular responses. Recently deorphaned lipid receptors, within and outside the known lipid receptor clusters will receive particular attention.
Collapse
Affiliation(s)
- Evi Kostenis
- 7TM Pharma A/S, 3 Fremtidsvej, 2970 Hoersholm, Denmark.
| |
Collapse
|
13
|
Kostenis E. A glance at G-protein-coupled receptors for lipid mediators: a growing receptor family with remarkably diverse ligands. Pharmacol Ther 2004; 102:243-57. [PMID: 15246248 DOI: 10.1016/j.pharmthera.2004.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A plethora of lipid-like molecules known to act as intracellular second messengers are now recognized to signal cells through plasma membrane 7 transmembrane G-protein-coupled receptors (GPCRs). This has been the result of a decade-long genetic hunt for novel sequences encoding 7 transmembrane receptor proteins and the efforts to pair novel sequences with biologically active substances of (partly) unknown molecular mechanism of action. Identification of novel GPCR ligand pairs represents the first step to shed more light into the mode of action of novel cellular signaling molecules in human health and disease and might represent a fruitful source for the development of new drugs, judged on the successful history of GPCR as drug targets. Since 2000, more than 16 reports became available on lipid mediators--as diverse as lysophospholipids, arachidonic acid metabolites, short-, medium-, and long-chain fatty acids as well as steroid-like molecules--exerting their effects as extracellular mediators via rhodopsin-like family GPCRs. These reports have opened new avenues for research in human lipid receptor physiology and pharmacology. Here, the current knowledge on the recently deorphanized lipid receptors, including their isolation, expression pattern, function, and possible physiological or pathological roles will be reviewed.
Collapse
Affiliation(s)
- Evi Kostenis
- 7TM Pharma A/S, 3 Fremtidsvej, 2970 Hoersholm, Denmark.
| |
Collapse
|
14
|
Uhlenbrock K, Gassenhuber H, Kostenis E. Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 2002; 14:941-53. [PMID: 12220620 DOI: 10.1016/s0898-6568(02)00041-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Five G protein-coupled receptors (GPCRs) for the lysophospholipid sphingosine 1-phosphate (S1P) have been cloned and characterized so far. We report here about the identification of gpr3, gpr6 and gpr12 as additional members of the S1P-GPCR family. When expressed transiently in HEK293 cells, gpr3, gpr6 and gpr12 confer constitutive activation of adenylate cyclase (AC) similar in amplitude to that seen with fully activated G(alpha)(s)-coupled receptors. Culturing the transfected cells in medium with charcoal-stripped serum (devoid of lipids) significantly reduces cyclic adenosine monophosphate (cAMP) levels, suggesting a lipid-like ligand. A library containing 200 bioactive lipids was applied in functional assays recording intracellular Ca(2+) mobilization. S1P and dihydrosphingosine 1-phosphate (DHS1P) were identified as functional activators exhibiting nanomolar EC(50) values. In the presence of the S1P and LPA receptor antagonist suramin, gpr3-, gpr6- and gpr12-mediated intracellular Ca(2+) mobilization via S1P is enhanced. Besides constitutive activation of G(alpha)(s) type of G proteins, all three receptors are capable of constitutively activating inhibitory G(alpha)(i/o) proteins: (i) in the presence of pertussis toxin, gpr3-, gpr6- and gpr12-mediated stimulation of AC is enhanced; and (ii) overexpression of G(alpha)(i) significantly reduces the stimulatory action on intracellular cAMP levels. Agonist (S1P)-mediated internalization can be visualized in intact HEK293 cells using a gpr6 green fluorescent protein (GFP) fusion protein. In summary, our data suggest that gpr3, gpr6 and gpr12 are a family of constitutively active receptors with dual coupling to G(alpha)(s) and G(alpha)(i) type of G proteins. Constitutive activation of AC and mobilization of [Ca(2+)](i) can be modulated by the sphingophospholipids S1P and DHS1P, adding three additional members to the family of S1P receptors.
Collapse
Affiliation(s)
- Kirsten Uhlenbrock
- Aventis Pharma Germany, Disease Group Cardiovascular, Industriepark Höchst, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
15
|
Abstract
The majority of genes encoding G protein-coupled receptors were isolated by methods based on sequence similarities found throughout this family. Experimental techniques have exploited these similarities (including low-stringency hybridization, polymerase chain reaction and electronic database searching) to identify genes encoding many pharmacologically recognized receptors and their subtypes. Homology-based searches have revealed receptors for which the endogenous ligands were unknown and these were named orphan receptors. Many orphan receptors are expressed in the brain, suggesting the existence of unidentified neurotransmitters. Methods used to identify ligands for these orphan receptors resulted in the identification of novel ligands and succeeded in pairing previously identified ligands with their receptors. Similar successful strategies are required to characterize the physiological and pathological importance of the remaining orphan receptors to facilitate the discovery of novel drugs for these systems.
Collapse
MESH Headings
- Animals
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Humans
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Cannabinoid
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/metabolism
- Receptors, Drug/drug effects
- Receptors, Drug/metabolism
- Receptors, Galanin
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide Y/drug effects
- Receptors, Neuropeptide Y/metabolism
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/metabolism
Collapse
Affiliation(s)
- D K Lee
- Department of Pharmacology, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
16
|
[12] Cloning and site-directed mutagenesis studies of gonadotropin-releasing hormone receptor. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Eggerickx D, Denef JF, Labbe O, Hayashi Y, Refetoff S, Vassart G, Parmentier M, Libert F. Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochem J 1995; 309 ( Pt 3):837-43. [PMID: 7639700 PMCID: PMC1135708 DOI: 10.1042/bj3090837] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A human gene encoding an orphan G-protein-coupled receptor named ACCA (adenylate cyclase constitutive activator) was isolated from a genomic library using as a probe a DNA fragment obtained by low-stringency PCR. Human ACCA (hACCA) is a protein of 330 amino acids that exhibits all the structural hallmarks of the main family of G-protein-coupled receptors. Expression of hACCA resulted in a dramatic stimulation of adenylate cyclase, similar in amplitude to that obtained with other Gs-coupled receptors fully activated by their respective ligands. This stimulation was obtained in a large variety of stable cell lines derived from various organs, and originating from different mammalian species. hACCA was found to be the human homologue of a recently reported mouse orphan receptor (GPCR21). The mouse ACCA (mACCA) was therefore recloned by PCR, and expression of mACCA in Cos-7 cells demonstrated that the mouse receptor behaved similarly as a constitutive activator of adenylate cyclase. It is not known presently whether the stimulation of adenylate cyclase is the result of a true constitutive activity of the receptor or, alternatively, is the consequence of a permanent stimulation by a ubiquitous ligand. The tissue distribution of mACCA was determined by RNase protection assay. Abundant transcripts were found in the brain, whereas lower amounts were detected in testis, ovary and eye. Various hypotheses concerning the constitutive activity of ACCA and their potential biological significance are discussed.
Collapse
Affiliation(s)
- D Eggerickx
- Institut de Recherche Interdisciplinaire, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sealfon SC, Millar RP. Functional domains of the gonadotropin-releasing hormone receptor. Cell Mol Neurobiol 1995; 15:25-42. [PMID: 7648608 PMCID: PMC11563151 DOI: 10.1007/bf02069557] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1994] [Accepted: 08/29/1994] [Indexed: 01/26/2023]
Abstract
1. The cloning of the mammalian gonadotropin-releasing hormone receptor sets the stage for rapid progress in understanding the structure of the receptor, its interaction with ligand, and its mechanisms of activation. 2. The receptor is a 327 to 328-amino acid seven-transmembrane domain G protein-coupled receptor. 3. Recent site-direct mutagenesis studies have provided considerable insight into glycosylation of the receptor, the arrangement of the helices, and the ligand binding domains.
Collapse
Affiliation(s)
- S C Sealfon
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
19
|
Cell Surface Receptors and the G Protein-Coupled Receptor Superfamily. G PROTEIN-COUPLED RECEPTORS 1995. [DOI: 10.1007/978-3-662-21930-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
[1] Approaches to receptor cloning. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1043-9471(05)80031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Heiber M, Docherty JM, Shah G, Nguyen T, Cheng R, Heng HH, Marchese A, Tsui LC, Shi X, George SR. Isolation of three novel human genes encoding G protein-coupled receptors. DNA Cell Biol 1995; 14:25-35. [PMID: 7832990 DOI: 10.1089/dna.1995.14.25] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have cloned and mapped the chromosomal location of three novel human genes encoding G protein-coupled receptors that we have named GPR6, GPR5, and GPR4. The entire coding region for each of these genes was contained on single exons. Gene GPR6 encoded a receptor that shared closest identity (71% in the transmembrane regions) with the human orphan receptor GPR3 and was localized to chromosome 6 (q21-q22.1). Northern blot analysis revealed that GPR6 transcripts were abundant in the human putamen and to a lesser extent in the frontal cortex, hippocampus, and hypothalamus. Gene GPR5 encoded a receptor that most closely resembled the orphan receptor RBS11 (48% in the transmembrane regions) and the MIP 1 alpha/RANTES receptor (45% in the transmembrane regions) and was localized to chromosome 3 (p21.3-p21.1). Gene GPR4 shared identity (40% in the transmembrane regions) with the human platelet-activating factor receptor and was localized to chromosome 19 (q13.2-q13.3).
Collapse
Affiliation(s)
- M Heiber
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Song ZH, Young WS, Brownstein MJ, Bonner TI. Molecular cloning of a novel candidate G protein-coupled receptor from rat brain. FEBS Lett 1994; 351:375-9. [PMID: 8082799 DOI: 10.1016/0014-5793(94)00888-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A PCR cloning strategy using primers designed from sequences selectively conserved among a cannabinoid receptor and two orphan receptors, was used to isolate novel G protein-coupled receptors. rCNL3, a 1.75 kb cDNA encoding a 363 amino acid protein, was isolated from a rat cerebral cortex library. Sequence analysis showed that rCNL3 possesses a number of structural characteristics of G protein-coupled receptors and has 61% amino acid identity (from transmembrane region one through the carboxyl-terminus) with two other candidate G protein-coupled receptors. Therefore, these three receptors may comprise a receptor subfamily with identical or closely related endogenous ligands. Northern and in situ hybridization experiments demonstrated that rCNL3 mRNA is expressed in the rat brain, with a prominent distribution in striatum.
Collapse
Affiliation(s)
- Z H Song
- Laboratory of Cell Biology, NIMH, NIH, Bethesda, MD 20892
| | | | | | | |
Collapse
|
23
|
Saeki Y, Ueno S, Mizuno R, Nishimura T, Fujimura H, Nagai Y, Yanagihara T. Molecular cloning of a novel putative G protein-coupled receptor (GPCR21) which is expressed predominantly in mouse central nervous system. FEBS Lett 1993; 336:317-22. [PMID: 8262253 DOI: 10.1016/0014-5793(93)80828-i] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel cDNA clone encoding a putative G protein-coupled receptor (named GPCR21) was isolated from a mouse brain cDNA library along with its homologue, GPCR01 (the mouse counterpart of previously reported rat receptor R334 [(1991) FEBS Lett. 292, 243-248]) by the polymerase chain reaction using degenerate oligonucleotide primers. Northern blotting and reverse transcription-polymerase chain reaction analyses showed predominant expression of these two receptors in the central nervous system. In situ hybridization analysis revealed their prominent expression in the limbic system and further demonstrated the differential distribution of their mRNAs in mouse brain. Although the ligands for these receptors are yet to be identified, the significant sequence homology between these receptors suggests that they constitute a new receptor subfamily and they possibly represent different receptor subtypes for an unknown neurotransmitter.
Collapse
Affiliation(s)
- Y Saeki
- Department of Neurology, Osaka University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Zabavnik J, Arbuthnott G, Eidne KA. Distribution of thyrotrophin-releasing hormone receptor messenger RNA in rat pituitary and brain. Neuroscience 1993; 53:877-87. [PMID: 8387653 DOI: 10.1016/0306-4522(93)90632-p] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution sites of messenger RNA encoding for the thyrotrophin-releasing hormone receptor have been studied in rat pituitary and brain. A specific 35S-labelled riboprobe generated from a rat thyrotrophin-releasing hormone receptor complementary DNA clone was used to perform in situ hybridization experiments on brain and pituitary sections. A positive hybridization signal was found in the anterior lobe of the pituitary gland, the intermediate and posterior lobes were negative. Hybridization was also detected in different areas of the brain. These areas include distinct regions in the olfactory system, septal area, amygdaloid complex, cerebral cortex, hypothalamus, hippocampus, basal ganglia and the motor nuclei of cranial nerves in brainstem. This study has shown for the first time the exact site of thyrotrophin-releasing hormone receptor expression in the central nervous system. These results correlate well with regions thought to possess thyrotrophin-releasing hormone recognition sites.
Collapse
Affiliation(s)
- J Zabavnik
- MRC Reproductive Biology Unit, Centre for Reproductive Biology, Edinburgh, U.K
| | | | | |
Collapse
|
25
|
Eidne KA, Sellar RE, Couper G, Anderson L, Taylor PL. Molecular cloning and characterisation of the rat pituitary gonadotropin-releasing hormone (GnRH) receptor. Mol Cell Endocrinol 1992; 90:R5-9. [PMID: 1338727 DOI: 10.1016/0303-7207(92)90116-n] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have isolated the gonadotropin-releasing hormone receptor (GnRH-R) from a rat anterior pituitary cDNA library, determined its sequence and demonstrated receptor function. The 2.2 kb rat GnRH-R clone encodes a protein of 327 amino acids. A 1.3 kb clone encoding the mouse GnRH-R has previously been described (Tsutsumi et al., 1992). Although both the mouse and rat protein share significant homology with molecules belonging to the family of G protein-coupled receptors, they have certain unusual features, an example being the complete absence of a COOH terminal tail. The 3'-untranslated region reported missing in the mouse is present in the rat cDNA, where an extended 1 kb of 3'-untranslated region extending to the poly-A tail is shown. At the amino acid level, the rat GnRH-R shows considerable homology with that of the mouse. Electrophysiological studies with Xenopus oocytes and transfection of the cDNA into COS-1 cells, have shown that the 2.2 kb cDNA clone encodes a functional receptor.
Collapse
Affiliation(s)
- K A Eidne
- MRC Reproductive Biology Unit, Centre for Reproductive Biology, Edinburgh, UK
| | | | | | | | | |
Collapse
|