1
|
Mirastschijski U, Lupše B, Maedler K, Sarma B, Radtke A, Belge G, Dorsch M, Wedekind D, McCawley LJ, Boehm G, Zier U, Yamamoto K, Kelm S, Ågren MS. Matrix Metalloproteinase-3 is Key Effector of TNF-α-Induced Collagen Degradation in Skin. Int J Mol Sci 2019; 20:ijms20205234. [PMID: 31652545 PMCID: PMC6829232 DOI: 10.3390/ijms20205234] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory processes in the skin augment collagen degradation due to the up-regulation of matrix metalloproteinases (MMPs). The aim of the present project was to study the specific impact of MMP-3 on collagen loss in skin and its interplay with the collagenase MMP-13 under inflammatory conditions mimicked by the addition of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Skin explants from MMP-3 knock-out (KO) mice or from transgenic (TG) mice overexpressing MMP-3 in the skin and their respective wild-type counterparts (WT and WTT) were incubated ex vivo for eight days. The rate of collagen degradation, measured by released hydroxyproline, was reduced (p < 0.001) in KO skin explants compared to WT control skin but did not differ (p = 0.47) between TG and WTT skin. Treatment with the MMP inhibitor GM6001 reduced hydroxyproline media levels from WT, WTT and TG but not from KO skin explants. TNF-α increased collagen degradation in the WT group (p = 0.0001) only. More of the active form of MMP-13 was observed in the three MMP-3 expressing groups (co-incubation with receptor-associated protein stabilized MMP-13 subforms and enhanced detection in the media). In summary, the innate level of MMP-3 seems responsible for the accelerated loss of cutaneous collagen under inflammatory conditions, possibly via MMP-13 in mice.
Collapse
Affiliation(s)
- Ursula Mirastschijski
- Center for Biomolecular Interactions Bremen, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Blaž Lupše
- Center for Biomolecular Interactions Bremen, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Kathrin Maedler
- Center for Biomolecular Interactions Bremen, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Bhavishya Sarma
- Center for Biomolecular Interactions Bremen, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Arlo Radtke
- Faculty of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Gazanfer Belge
- Faculty of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Martina Dorsch
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany.
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany.
| | - Lisa J McCawley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-6840, USA.
| | - Gabriele Boehm
- Department of General, Visceral and Oncologic Surgery, Klinikum Bremen-Mitte, 28177 Bremen, Germany.
| | - Ulrich Zier
- Center for Biomolecular Interactions Bremen, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Kazuhiro Yamamoto
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| | - Sørge Kelm
- Center for Biomolecular Interactions Bremen, Department of Biology and Biochemistry, University of Bremen, 28359 Bremen, Germany.
| | - Magnus S Ågren
- Digestive Disease Center and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark.
| |
Collapse
|
2
|
Hwang J, Huang Y, Burwell TJ, Peterson NC, Connor J, Weiss SJ, Yu SM, Li Y. In Situ Imaging of Tissue Remodeling with Collagen Hybridizing Peptides. ACS NANO 2017; 11:9825-9835. [PMID: 28877431 PMCID: PMC5656977 DOI: 10.1021/acsnano.7b03150] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/06/2017] [Indexed: 05/20/2023]
Abstract
Collagen, the major structural component of nearly all mammalian tissues, undergoes extensive proteolytic remodeling during developmental states and a variety of life-threatening diseases such as cancer, myocardial infarction, and fibrosis. While degraded collagen could be an important marker of tissue damage, it is difficult to detect and target using conventional tools. Here, we show that a designed peptide (collagen hybridizing peptide: CHP), which specifically hybridizes to the degraded, unfolded collagen chains, can be used to image degraded collagen and inform tissue remodeling activity in various tissues: labeled with 5-carboxyfluorescein and biotin, CHPs enabled direct localization and quantification of collagen degradation in isolated tissues within pathologic states ranging from osteoarthritis and myocardial infarction to glomerulonephritis and pulmonary fibrosis, as well as in normal tissues during developmental programs associated with embryonic bone formation and skin aging. The results indicate the general correlation between the level of collagen remodeling and the amount of denatured collagen in tissue and show that the CHP probes can be used across species and collagen types, providing a versatile tool for not only pathology and developmental biology research but also histology-based disease diagnosis, staging, and therapeutic screening. This study lays the foundation for further testing CHP as a targeting moiety for theranostic delivery in various animal models.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department
of Bioengineering and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- 3Helix
Inc, Salt Lake City, Utah 84117, United
States
| | - Yufeng Huang
- Division
of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | | | | | - Jane Connor
- MedImmune
LLC, Gaithersburg, Maryland 20878, United
States
| | - Stephen J. Weiss
- Division
of Molecular Medicine & Genetics, Department of Internal Medicine,
and the Life Sciences Institute, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - S. Michael Yu
- Department
of Bioengineering and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- 3Helix
Inc, Salt Lake City, Utah 84117, United
States
| | - Yang Li
- Department
of Bioengineering and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- 3Helix
Inc, Salt Lake City, Utah 84117, United
States
- Phone: 801.587.0215. E-mail:
| |
Collapse
|
3
|
Ghassemi Nejad S, Kobezda T, Tar I, Szekanecz Z. Development of temporomandibular joint arthritis: The use of animal models. Joint Bone Spine 2017; 84:145-151. [DOI: 10.1016/j.jbspin.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022]
|
4
|
Sanchavanakit N, Saengtong W, Manokawinchoke J, Pavasant P. TNF-α stimulates MMP-3 production via PGE2 signalling through the NF-kB and p38 MAPK pathway in a murine cementoblast cell line. Arch Oral Biol 2015; 60:1066-74. [PMID: 25956994 DOI: 10.1016/j.archoralbio.2015.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cementoblasts are considered to play an important role in the homeostasis of periodontal tissues under both physiologic and pathologic conditions. Matrix metalloproteinases (MMPs) is the key family of enzymes participating in extracellular matrix remodelling. In the present study, the effects and regulatory mechanisms of tumour necrosis factor (TNF)-α on the expression of MMPs and their inhibitors (tissue inhibitor of metalloproteinases; TIMPs) were investigated. MATERIALS AND METHODS OCCM-30, an immortalised murine cementoblast cell line, was stimulated with TNF-α at 1 and 10ng/ml for 24h. The expression of Mmp-2, Mmp-3, Mmp-13, Mmp-14, Timp-1, and Timp-2 as well as PGE2 was determined. Inhibitors of MAPKs, PI3K/Akt, NF-kB and Cox-2 were employed to reveal possible TNF-α induced regulatory signalling pathway(s). The mRNA and protein expression were analysed by (semi)quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. RESULTS TNF-α dose-dependently stimulated MMP-3 expression by cementoblasts. This was found for mRNA as well as protein expression. No significant differences were found in the mRNA expression of Mmp-2, Mmp-13, Mmp-14, Timp-1, and Timp-2 upon TNF-α stimulation. The level of PGE2, however, was significantly increased along with MMP-3. Treatment with a selective Cox-2 inhibitor resulted in partial suppression of TNF-α-induced Mmp-3 mRNA expression. Addition of PGE2 enhanced Mmp-3 mRNA in a dose dependent manner, suggesting an inductive effect of TNF-α partly via PGE2. The up-regulation of Mmp-3 by TNF-α was completely suppressed by a combination of NF-kB and p38 MAPK inhibitors, while partial suppression was found with each inhibitor. The effect of PGE2 on Mmp-3 expression was abolished by treating cells with an NF-kB inhibitor; a p38 MAPK inhibitor had only a small effect. CONCLUSIONS The present study indicates that cementoblasts respond to TNF-α by increasing MMP-3 production partially via PGE2 and signalling through the NF-kB and p38 MAPK pathway. MMP-3 may participate in periodontal tissue degradation/remodelling.
Collapse
Affiliation(s)
- Neeracha Sanchavanakit
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Weerayut Saengtong
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Jeeranan Manokawinchoke
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Collagenolytic matrix metalloproteinases in chronic obstructive lung disease and cancer. Cancers (Basel) 2015; 7:329-41. [PMID: 25664615 PMCID: PMC4381261 DOI: 10.3390/cancers7010329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/22/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.
Collapse
|
6
|
Foley CJ, Kuliopulos A. Mouse matrix metalloprotease-1a (Mmp1a) gives new insight into MMP function. J Cell Physiol 2014; 229:1875-80. [PMID: 24737602 DOI: 10.1002/jcp.24650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/18/2023]
Abstract
Matrix metalloprotease-1 (MMP1) has been implicated in many human disease processes, however the lack of a well characterized murine homologue has significantly limited the study of MMP1 and the development of MMP-targeted therapeutics. The discovery of murine Mmp1a in 2001, the functional mouse homologue of MMP1, offers a valuable tool for modeling MMP1-mediated processes in mice. Variation in physiologic expression levels of Mmp1a in mice as compared to MMP1 in humans highlights the importance of understanding the similarities and differences between the homologues. Recent studies have demonstrated tumor growth-, invasion-, and angiogenesis-promoting functions of Mmp1a in lung cancer models, consistent with the analogous functions observed for human MMP1. Biochemical investigations have shown that point mutations in the pro-domain of mouse Mmp1a weaken docking between the pro- and catalytic domains, generating an unstable zymogen primed for activation. The difficulty to effectively maintain Mmp1a in the zymogen form may account for the tight control of Mmp1a expression and reduced expression in normal tissue as compared to inflammatory states or cancer. This discovery raises important questions about the activation mechanisms and regulation of the MMP family in general.
Collapse
Affiliation(s)
- Caitlin J Foley
- Molecular Oncology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts; Program in Genetics, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
7
|
Hayashi K, Sasamura H, Ishiguro K, Sakamaki Y, Azegami T, Itoh H. Regression of glomerulosclerosis in response to transient treatment with angiotensin II blockers is attenuated by blockade of matrix metalloproteinase-2. Kidney Int 2010; 78:69-78. [DOI: 10.1038/ki.2010.81] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Yang CM, Hsieh HL, Yao CC, Hsiao LD, Tseng CP, Wu CB. Protein kinase C-delta transactivates platelet-derived growth factor receptor-alpha in mechanical strain-induced collagenase 3 (matrix metalloproteinase-13) expression by osteoblast-like cells. J Biol Chem 2009; 284:26040-50. [PMID: 19633290 DOI: 10.1074/jbc.m109.040154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13, or collagenase 3) has been shown to degrade intact collagen and to participate in situations where rapid and effective remodeling of collagenous ECM is required. Mechanical strain induction of MMP-13 is an example of how osteoblasts respond to high mechanical forces and participate in the bone-remodeling mechanism. Using MC3T3-E1 osteoblast-like cells, we dissected the signaling molecules involved in MMP-13 induction by mechanical strain. Reverse transcription-PCR and zymogram analysis showed that platelet-derived growth factor receptor (PDGFR) inhibitor, AG1296, inhibited the mechanical strain-induced MMP-13 gene and activity. However, the induction was not affected by anti-PDGF-AA serum. Immunoblot analysis revealed time-dependent phosphorylation of PDGFR-alpha up to 2.7-fold increases within 3 min under strain. Transfection with shPDGFR-alpha (at 4 and 8 microg/ml) abolished PDGFR-alpha and reduced MMP-13 expression. Moreover, time-dependent recruitments of phosphoinositide 3-kinase (PI3K) by PDGFR-alpha were detected by immunoprecipitation with anti-PDGFR-alpha serum followed by immunoblot with anti-PI3K serum. AG1296 inhibited PDGFR-alpha/PI3K aggregation and Akt phosphorylation. Interestingly, protein kinase C-delta (PKC-delta) inhibitor, rottlerin, inhibited not only PDGFR-alpha/PI3K aggregation but PDGFR-alpha phosphorylation. The sequential activations were further confirmed by mutants DeltaPKC-delta, DeltaAkt, and DeltaERK1. Consistently, the primary mouse osteoblast cells used the same identified signaling molecules to express MMP-13 under mechanical strain. These results demonstrate that, in osteoblast-like cells, the MMP-13 induction by mechanical strain requires the transactivation of PDGFR-alpha by PKC-delta and the cross-talk between PDGFR-alpha/PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Varga F, Rumpler M, Spitzer S, Karlic H, Klaushofer K. Osteocalcin attenuates T3- and increases vitamin D3-induced expression of MMP-13 in mouse osteoblasts. Endocr J 2009; 56:441-50. [PMID: 19225217 DOI: 10.1507/endocrj.k08e-192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Osteocalcin (OCN), the most abundant non-collagenous protein of the bone matrix, whose function is not fully understood, was recently suggested to act as endocrine factor regulating energy metabolism. Besides OCN, osteoblasts also express MMP-13, a matrix metallo-proteinase important for bone development and remodeling. Although differentially, both genes are regulated by 1,25-dihydroxy vitamin D3 (1,25D3) and T3, important hormones for bone metabolism. In mouse osteoblasts with a distinct differentiation status, T3 increases the expression of both proteins. By contrast, 1,25D3 stimulates the expression of MMP-13 but inhibits the expression of OCN in these cells. In humans, however, 1,25D3 upregulates both genes while T3 inhibits the OCN expression. Using northern blot hybridization we studied gene expression in the mouse osteoblastic cell line MC3T3-E1. We show that MMP-13 expression was strongly increased by T3 when the stimulation of OCN was low and, inversely, that the MMP-13 increase was low when T3 strongly stimulated the OCN expression. These findings suggest an interrelationship between OCN and MMP-13 expression. In fact, we observed that externally added OCN attenuated the T3 induced MMP-13 expression dose dependently and, furthermore, increased the 1,25D3 stimulated MMP-13 expression. Using a protein kinase A inhibitor we were able to show that this inhibitor mimics the effect of OCN suggesting a PKA dependent pathway to be involved in this regulatory process. We therefore hypothesize that OCN is a modulator of the hormonally regulated MMP-13 expression.
Collapse
Affiliation(s)
- Franz Varga
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling. 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | |
Collapse
|
10
|
Sasaki K, Takagi M, Konttinen YT, Sasaki A, Tamaki Y, Ogino T, Santavirta S, Salo J. Upregulation of matrix metalloproteinase (MMP)-1 and its activator MMP-3 of human osteoblast by uniaxial cyclic stimulation. J Biomed Mater Res B Appl Biomater 2007; 80:491-8. [PMID: 16862557 DOI: 10.1002/jbm.b.30622] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proper mechanical loading is essential for bone remodeling and maintenance of human skeletal system. Matrix metalloproteinases (MMPs) are secreted by mesenchymal stromal lining cells and osteoblasts to prepare the initiation sites for osteoclastic bone resorption at the beginning of the remodeling cycle. However, only a few studies have addressed the effect of mechanical stress on MMPs and their endogenous tissue inhibitors of matrix metalloproteinases (TIMPs) in osteoblasts. In this study, the response of human osteoblasts to uniaxial cyclic stretching was investigated to clarify this more in detail. Stretching affected the orientation of the osteoblasts, and quantitative reverse transcription-polymerase chain reaction revealed coordinated upregulation of MMP-1 and its activator MMP-3 mRNA by cyclic 5% stretching at 3 h (p < 0.01). Upregulation of cyclooxygenase-2 mRNA was also found in response to cyclic 1 and 5% stretchings at 1, 3, and 6 h (p < 0.01). No changes were found in MMP-2, TIMP-1, and -2. The mRNA expression of MMP-9 was low and MMP-13 was not detected. This study suggests that MMP-1 and -3, enhanced by uniaxial cyclic mechanical stimulation of osteoblasts, are candidate key enzymes in the processing of collagen on bone surface, which might be necessary to allow osteoclastic recruitment leading to bone resorption. The strain might also play a role in cleaning of demineralized bone surface during the reversal phase, before bone formation starts.
Collapse
Affiliation(s)
- Kan Sasaki
- Department of Orthopaedic Surgery, Yamagata University School of Medicine, Yamagata, 990-9585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mori N, Majima T, Iwasaki N, Kon S, Miyakawa K, Kimura C, Tanaka K, Denhardt DT, Rittling S, Minami A, Uede T. The role of osteopontin in tendon tissue remodeling after denervation-induced mechanical stress deprivation. Matrix Biol 2007; 26:42-53. [PMID: 17055235 DOI: 10.1016/j.matbio.2006.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/28/2006] [Accepted: 09/06/2006] [Indexed: 01/13/2023]
Abstract
It has been shown that musculoskeletal tissues undergo dynamic tissue remodeling by a process that is quite sensitive to the mechanical environment. However, the detailed molecular mechanism underlying this process remains unclear. We demonstrate here that after denervation-induced mechanical stress deprivation, tendons undergo dynamic tissue remodeling as evidenced by a significant reduction of the collagen fibril diameter. Importantly, the transient up-regulation of osteopontin (OPN) expression was characteristic during the early phase of tendon tissue remodeling. Following this dynamic change of OPN expression, matrix metalloproteinase (MMP)-13 expression was induced, which presumably accounts for the morphological changes of tendon by degrading tendon collagen fibrils. The modulation of MMP-13 expression by OPN was specific, since the expression of MMP-2, which is also known to be involved in tissue remodeling, did not alter in the tendons under the absence or presence of OPN. We also demonstrate that the modulation of MMP-13 expression by OPN is due to the signaling through cell surface receptors for OPN. Thus, we conclude that OPN plays a crucial role in conveying the effect of denervation-induced mechanical stress deprivation to the tendon fibroblasts to degrade the extracellular matrices by regulating MMP-13 expression in tendon fibroblasts.
Collapse
Affiliation(s)
- Noriaki Mori
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Davis GE, Saunders WB. Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc 2006; 11:44-56. [PMID: 17069010 DOI: 10.1038/sj.jidsymp.5650008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review, we discuss the identification of distinct matrix metalloproteinases (MMPs) and their inhibitors that differentially control the processes of capillary tube formation (morphogenesis) versus capillary tube regression in three-dimensional (3D) collagen matrices. This work directly relates to both granulation tissue formation and regression during wound repair. The membrane metalloproteinase, MT1-MMP (MMP-14), is required for endothelial cell (EC) tube formation using in vitro assays that mimic vasculogenesis or angiogenic sprouting in 3D collagen matrices. These events are markedly blocked by small interfering RNA (siRNA) suppression of MT1-MMP in ECs or by addition of tissue inhibitor of metalloproteinases (TIMPs)-2,-3, and -4 but not TIMP-1. In contrast, MMP-1 and MMP-10 are strongly induced during EC tube formation to regulate the process of tube regression (following activation by serine proteases) rather than formation. TIMP-1, which selectively inhibits soluble MMPs, blocks tube regression by inhibiting MMP-1 and MMP-10 while having no influence on EC tube formation. siRNA suppression of MMP-1 and MMP-10 markedly blocks tube regression without affecting tube formation. Furthermore, we discuss that pericyte-induced stabilization of EC tube networks in our model system appears to occur through EC-derived TIMP-2 and pericyte-derived TIMP-3 to block both the capillary tube formation and regression pathways.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA.
| | | |
Collapse
|
13
|
Lapière CM. Tadpole collagenase, the single parent of such a large family. Biochimie 2005; 87:243-7. [PMID: 15781311 DOI: 10.1016/j.biochi.2004.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 09/07/2004] [Indexed: 11/28/2022]
Abstract
This editorial review comments the development of the field of the matrix metalloproteinases that was initiated by the demonstration of the tadpole collagenase in 1962.
Collapse
Affiliation(s)
- Ch M Lapière
- Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium.
| |
Collapse
|
14
|
Kovacs CS, Woodland ML, Fudge NJ, Friel JK. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am J Physiol Endocrinol Metab 2005; 289:E133-44. [PMID: 15741244 DOI: 10.1152/ajpendo.00354.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We utilized a vitamin D receptor (VDR) gene knockout model to study the effects of maternal and fetal absence of VDR on maternal fertility, fetal-placental calcium transfer, and fetal mineral homoeostasis. Vdr null mice were profoundly hypocalcemic, conceived infrequently, and had significantly fewer viable fetuses in utero that were also of lower body weight. Supplementation of a calcium-enriched diet increased the rate of conception in Vdr nulls but did not normalize the number or weight of viable fetuses. Among offspring of heterozygous (Vdr(+/-)) mothers (wild type, Vdr(+/-), and Vdr null fetuses), there was no alteration in serum Ca, P, or Mg, parathyroid hormone, placental (45)Ca transfer, Ca and Mg content of the fetal skeleton, and morphology and gene expression in the fetal growth plates. Vdr null fetuses did have threefold increased 1,25-dihydroxyvitamin D levels accompanied by increased 1alpha-hydroxylase mRNA in kidney but not placenta; a small increase was also noted in placental expression of parathyroid hormone-related protein (PTHrP). Among offspring of Vdr null mothers, Vdr(+/-) and Vdr null fetuses had normal ionized calcium levels and a skeletal ash weight that was appropriate to the lower body weight. Thus our findings indicate that VDR is not required by fetal mice to regulate placental calcium transfer, circulating mineral levels, and skeletal mineralization. Absence of maternal VDR has global effects on fetal growth that were partly dependent on maternal calcium intake, but absence of maternal VDR did not specifically affect fetal mineral homeostasis.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Dr., St. John's, Newfoundland and Labrador, Canada.
| | | | | | | |
Collapse
|
15
|
Jiang Y, Kang YJ. Metallothionein gene therapy for chemical-induced liver fibrosis in mice. Mol Ther 2005; 10:1130-9. [PMID: 15564144 DOI: 10.1016/j.ymthe.2004.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 08/19/2004] [Indexed: 01/30/2023] Open
Abstract
Liver fibrogenesis resulting from a diversity of pathological changes involves a disturbance in mineral, in particular zinc, homeostasis. The present study was undertaken to determine whether gene therapy with metallothionein (MT), a small protein critically involved in the regulation of zinc homeostasis, can improve the recovery of liver fibrosis in a mouse model. Wild-type (WT) mice treated with carbon tetrachloride in corn oil twice a week at 1 ml/kg for 4 weeks developed a reversible liver fibrosis upon removal of the chemical, correlating with a high level of hepatic MT; but those treated for 8 weeks developed an irreversible liver fibrosis along with low levels of hepatic MT. The same carbon tetrachloride treatment for 4 weeks resulted in an irreversible liver fibrosis in MT-knockout (MT-KO) mice. Adenoviral delivery of the human MT-II gene (approved symbol MT2A) through intravenous injection reversed the fibrosis along with increased hepatocyte regeneration within 3 days in both WT and MT-KO mice with irreversible fibrosis. The MT elevation was associated with increased activities of collagenases in the liver. This study indicates that MT makes a critical contribution to the reversal of chemical-induced hepatic fibrosis and has therapeutic potential for patients with certain liver fibrosis.
Collapse
Affiliation(s)
- Youchun Jiang
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|
16
|
McDonald KR, Fudge NJ, Woodrow JP, Friel JK, Hoff AO, Gagel RF, Kovacs CS. Ablation of calcitonin/calcitonin gene-related peptide-alpha impairs fetal magnesium but not calcium homeostasis. Am J Physiol Endocrinol Metab 2004; 287:E218-26. [PMID: 15039145 DOI: 10.1152/ajpendo.00023.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used the calcitonin/calcitonin gene-related peptide (CGRP)-alpha gene knockout model (Ct/Cgrp null) to determine whether calcitonin and CGRPalpha are required for normal fetal mineral homeostasis and placental calcium transfer. Heterozygous (Ct/Cgrp(+/-)) and Ct/Cgrp null females were mated to Ct/Cgrp(+/-) males. One or two days before term, blood was collected from mothers and fetuses and analyzed for ionized Ca, Mg, P, parathyroid hormone (PTH), and calcitonin. Amniotic fluid was collected for Ca, Mg, and P. To quantify skeletal mineral content, fetuses were reduced to ash, dissolved in nitric acid, and analyzed by atomic absorption spectroscopy for total Ca and Mg. Placental transfer of (45)Ca at 5 min was assessed. Ct/Cgrp null mothers had significantly fewer viable fetuses in utero compared with Ct/Cgrp(+/-) and wild-type mothers. Fetal serum Ca, P, and PTH did not differ by genotype, but serum Mg was significantly reduced in null fetuses. Placental transfer of (45)Ca at 5 min was normal. The calcium content of the fetal skeleton was normal; however, total Mg content was reduced in Ct/Cgrp null skeletons obtained from Ct/Cgrp null mothers. In summary, maternal absence of calcitonin and CGRPalpha reduced the number of viable fetuses. Fetal absence of calcitonin and CGRPalpha selectively reduced serum and skeletal magnesium content but did not alter ionized calcium, placental calcium transfer, and skeletal calcium content. These findings indicate that calcitonin and CGRPalpha are not needed for normal fetal calcium metabolism but may regulate aspects of fetal Mg metabolism.
Collapse
Affiliation(s)
- Kirsten R McDonald
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Arnaud A, Fontana L, Sáez-Lara MJ, Gil A, López-Pedrosa JM. Exogenous nucleosides modulate the expression of rat liver extracellular matrix genes in single cultures of primary hepatocytes and a liver stellate cell line and in their co-culture. Clin Nutr 2004; 23:43-51. [PMID: 14757392 DOI: 10.1016/s0261-5614(03)00087-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS We have previously reported the antifibrotic effect of dietary nucleotides in cirrhotic rats. In this work, we used primary rat hepatocytes, a liver stellate cell line (CFSC-2G) and co-cultures of both cell types to investigate the effects of exogenous nucleosides on the gene expression of various extracellular matrix components and on markers of liver function, and to ascertain whether the effects found in vivo are due to CFSC-2G, hepatocytes, or are the consequence of cell-cell interactions. RESULTS Nucleosides enhanced fibronectin, laminin, and alpha1(I) procollagen levels in CFSC-2G and hepatocytes, as well as collagen synthesis and secretion in CFSC-2G. In contrast, nucleosides lowered fibronectin, laminin and alpha1(I) procollagen levels, and decreased collagen synthesis in co-cultures. Matrix metalloproteinase-13 content and collagen secretion increased in co-cultures incubated with nucleosides. Albumin increased in hepatocytes and co-cultures incubated in the presence of nucleosides. CONCLUSIONS Nucleosides modulate the production of extracellular matrix in single cultures of hepatocytes and of CFSC-2G, and in co-cultures. This effect seems to be regulated at the translational level. The opposite behavior of single cultures and co-cultures is probably due to the fact that the latter model reproduces many of the physical and functional relationships observed in vivo between hepatocytes and stellate cells.
Collapse
Affiliation(s)
- A Arnaud
- R&D Department, Abbott Laboratories, Granada, USA
| | | | | | | | | |
Collapse
|
18
|
Zeliadt NA, Warmka JK, Winston SE, Kahler R, Westendorf JJ, Mauro LJ, Wattenberg EV. Tumor promoter-induced MMP-13 gene expression in a model of initiated epidermis. Biochem Biophys Res Commun 2004; 317:570-7. [PMID: 15063796 DOI: 10.1016/j.bbrc.2004.03.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Indexed: 12/18/2022]
Abstract
In mouse epidermis in vivo, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) increases gene expression of matrix metalloproteinase-13 (MMP-13), an enzyme implicated in carcinogenesis. Here we used a keratinocyte cell line (308) derived from initiated mouse skin to investigate TPA-induced MMP-13 gene expression. Use of a pharmacological inhibitor (U0126) demonstrated that extracellular signal regulated kinase (ERK) plays a major role in TPA-induced MMP-13 gene expression. The 5'-flanking sequences of the MMP-13 gene contain binding sites for activator protein-1 (AP-1) and Runx. Both transcription factor families can be modulated by ERK and have been implicated in MMP-13 gene expression. TPA stimulated ERK-dependent increases in c-Fos protein and the c-Fos content of AP-1 complexes. MMP-13 promoter studies indicated that TPA requires AP-1, but not Runx, to induce MMP-13 gene expression. These studies show that in mouse keratinocytes MMP-13 gene expression can be induced through a Runx-independent pathway that involves the ERK-dependent modulation of AP-1.
Collapse
Affiliation(s)
- Nicholette A Zeliadt
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Yang CM, Chien CS, Yao CC, Hsiao LD, Huang YC, Wu CB. Mechanical strain induces collagenase-3 (MMP-13) expression in MC3T3-E1 osteoblastic cells. J Biol Chem 2004; 279:22158-65. [PMID: 15044466 DOI: 10.1074/jbc.m401343200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical strain plays a crucial role in bone remodeling during growth and development and healing of bone besides systemic and local factors. One of the major factors involves in remodeling process is matrix metalloproteinases (MMPs) such as MMP-13 that has been shown to degrade the native interstitial collagens in several tissues. To study how mechanical strain affects extracellular matrix degradation by MMP-13, a biaxial strain was applied to MC3T3-E1 osteoblastic cells plated onto a collagen-coated flexible elastic membrane. The MMP-13 protein and mRNA expression were determined by Western blotting and reverse transcriptase-PCR, respectively. The zymographic activities of MMP-13 increased dramatically at 30 min, reached a peak by 2-fold at 1 h, and maintained up to 4 h. Moreover, the MMP-13 and c-fos mRNA expressed at 5 min, increased to 2.8- and 3-fold at 1 h, respectively, and gradually declined thereafter. Cycloheximide and actinomycin D did not inhibit the MMP-13 and c-fos mRNA expression, suggesting that such expression does not require de novo protein synthesis and not change their stabilities. To investigate which of the mitogen-activated protein kinase (MAPK) pathways involves in the expression of MMP-13, inhibitors such as PD98059, SB203580, and SP600125 were used. However, only PD98059 (an inhibitor of MEK1/2 activation) inhibited MMP-13 and c-fos gene expression; the result was further substantiated by transfecting with the dominant negative mutants of MEK1/2 (MEK K97R) and ERK2. Taken together, our results showed that mechanical strain induces the MMP-13 expression through MEK-ERK signaling pathway to regulate mechanical adaptation.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Jung JC, West-Mays JA, Stramer BM, Byrne MH, Scott S, Mody MK, Sadow PM, Krane SM, Fini ME. Activity and expression ofXenopus laevis matrix metalloproteinases: Identification of a novel role for the hormone prolactin in regulating collagenolysis in both amphibians and mammals. J Cell Physiol 2004; 201:155-64. [PMID: 15281098 DOI: 10.1002/jcp.20037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prolactin (PRL) has long been implicated in Xenopus metamorphosis as an anti-metamorphic and/or juvenilizing hormone. Numerous studies showed that PRL could prevent effects of either endogenous or exogenous thyroid hormone (TH; T(3)). It has been shown that expression of matrix metalloproteinases (MMPs) is induced by TH during Xenopus metamorphosis. Direct in vivo evidence, however, for such anti-TH effects by PRL with respect to MMPs has not been available for the early phase of Xenopus development or metamorphosis. To understand the functional role of PRL, we investigated effects of PRL on Xenopus collagenase-3 (XCL3) and collagenase-4 (XCL4) expression in a cultured Xenopus laevis cell line, XL-177. Northern blot analysis demonstrated that XCL3 and XCL4 expression were not detected in control or T(3)-treated cells, but were differentially induced by PRL in a dose- and time-dependent fashion. Moreover, treatment with IL-1alpha as well as phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, or H8, a protein kinase A (PKA) inhibitor, augmented PRL-induced collagenase expression, suggesting that multiple protein kinase pathways and cytokines may participate in PRL-induced collagenase expression. Interestingly, XCL3 expression could be induced in XL-177 cells by T(3), but only when co-cultured with prometamorphic Xenopus tadpole tails (stage 54/55), suggesting that the tails secrete a required intermediate signaling molecule(s) for T(3)-induced XCL3 expression. Taken together, these data demonstrate that XCL3 and XCL4 can be differentially induced by PRL and T(3) and further suggest that PRL is a candidate regulator of TH-independent collagenase expression during the organ/tissue remodeling which occurs in Xenopus development.
Collapse
Affiliation(s)
- Jae-Chang Jung
- Department of Biology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schaefer B, Rivas-Estilla AM, Meraz-Cruz N, Reyes-Romero MA, Hernández-Nazara ZH, Domínguez-Rosales JA, Schuppan D, Greenwel P, Rojkind M. Reciprocal modulation of matrix metalloproteinase-13 and type I collagen genes in rat hepatic stellate cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1771-80. [PMID: 12759235 PMCID: PMC1868138 DOI: 10.1016/s0002-9440(10)64312-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2003] [Indexed: 02/05/2023]
Abstract
Collagen degradation by matrix metalloproteinases is the limiting step in reversing liver fibrosis. Although collagen production in cirrhotic livers is increased, the expression and/or activity of matrix metalloproteinases could be normal, increased in early fibrosis, or decreased during advanced liver cirrhosis. Hepatic stellate cells are the main producers of collagens and matrix metalloproteinases in the liver. Therefore, we sought to investigate whether they simultaneously produce alpha1(I) collagen and matrix metalloproteinase-13 mRNAs. In this communication we show that expression of matrix metalloproteinase-13 mRNA is reciprocally modulated by tumor necrosis factor-alpha and transforming growth factor-beta1. When hepatic stellate cells are co-cultured with hepatocytes, matrix metalloproteinase-13 mRNA is up-regulated and alpha1(I) collagen is down-regulated. Injuring hepatocytes with galactosamine further increased matrix metalloproteinase-13 mRNA production. Confocal microscopy and differential centrifugation of co-cultured cells revealed that matrix metalloproteinase-13 is localized mainly within hepatic stellate cells. Studies performed with various hepatic stellate cell lines revealed that they are heterogeneous regarding expression of matrix metalloproteinase-13. Those with myofibroblastic phenotypes produce more type I collagen whereas those resembling freshly isolated hepatic stellate cells express matrix metalloproteinase-13. Overall, these findings strongly support the notion that alpha1(I) collagen and matrix metalloproteinase-13 mRNAs are reciprocally modulated.
Collapse
Affiliation(s)
- Benjamin Schaefer
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gepstein A, Shapiro S, Arbel G, Lahat N, Livne E. Expression of matrix metalloproteinases in articular cartilage of temporomandibular and knee joints of mice during growth, maturation, and aging. ARTHRITIS AND RHEUMATISM 2002; 46:3240-50. [PMID: 12483728 DOI: 10.1002/art.10690] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study examined the involvement of different matrix metalloproteinases (MMPs) in articular cartilage in the process of growth, maturation, and aging of mice, and compared the temporal changes in the expression of MMPs between temporomandibular joints (TMJ) and knee joints. METHODS Homogenates of intact tibial plateau, femoral condyle, and TMJ condyle cartilages from animals of different ages were assessed for gelatinase (MMP-2 and MMP-9) activity by zymography. The messenger RNA (mRNA) expression of MMPs 1, 2, 3, 9, and 13 in tibial plateau cartilage was determined by semiquantitative reverse transcription-polymerase chain reaction, and immunohistochemistry was used to localize MMPs 2, 3, 9, and 13 in the knee joints and TMJ from mice of different ages. RESULTS The pattern of gelatinase (MMP-2 and MMP-9) activity and their protein expression as well as that of MMPs 3 and 13 varied with the age of the mouse, and differences in expression were observed between the knee and TMJ cartilage. The expression of mRNA for the MMPs in the tibial plateau was also age related. CONCLUSION This study demonstrated changes in the protein and mRNA expression of MMPs 2, 9, 3, and 13 during growth, maturation, and aging in mice. The temporal changes were characteristic of the joint, and distinct differences were observed between the TMJ and knee cartilage. The differences in temporospatial expression of MMPs between the knee joint and TMJ may be the result of differences in load and function of these joints. The information provided in this study contributes to a better understanding of the role of these MMPs in the maintenance and integrity of cartilage tissue.
Collapse
|
23
|
Netzel-Arnett S, Mitola DJ, Yamada SS, Chrysovergis K, Holmbeck K, Birkedal-Hansen H, Bugge TH. Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J Biol Chem 2002; 277:45154-61. [PMID: 12192005 DOI: 10.1074/jbc.m206354200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-14 is required for degradation of fibrillar collagen by mesenchymal cells. Here we show that keratinocytes use an alternative plasminogen and matrix metalloproteinase-13-dependent pathway for dissolution of collagen fibrils. Primary keratinocytes displayed an absolute requirement for serum to dissolve collagen. Dissolution of collagen was abolished in plasminogen-depleted serum and could be restored by the exogenous addition of plasminogen. Both plasminogen activator inhibitor-1 and tissue inhibitor of metalloproteinase blocked collagen dissolution, demonstrating the requirement of both plasminogen activation and matrix metalloproteinase activity for degradation. Cell surface plasmin activity was critical for the degradation process as aprotinin, but not alpha(2)-antiplasmin, prevented collagen dissolution. Keratinocytes with single deficiencies in either urokinase or tissue plasminogen activator retained the ability to dissolve collagen. However, collagen fibril dissolution was abolished in keratinocytes with a combined deficiency in both urokinase and tissue plasminogen activator. Combined, but not single, urokinase and tissue plasminogen activator deficiency also completely blocked the activation of the fibrillar collagenase, matrix metalloproteinase-13, by keratinocytes. The activation of matrix metalloproteinase-13 in normal keratinocytes was prevented by plasminogen activator inhibitor-1 and aprotinin but not by tissue inhibitor of metalloproteinase-1 and -2, suggesting that plasmin activates matrix metalloproteinase-13 directly. We propose that plasminogen activation facilitates keratinocyte-mediated collagen breakdown via the direct activation of matrix metalloproteinase-13 and possibly other fibrillar collagenases.
Collapse
Affiliation(s)
- Sarah Netzel-Arnett
- Matrix Metalloproteinase Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang JY, Guo JS, Yang CQ. Expression of exogenous rat collagenase in vitro and in a rat model of liver fibrosis. World J Gastroenterol 2002; 8:901-7. [PMID: 12378639 PMCID: PMC4656584 DOI: 10.3748/wjg.v8.i5.901] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: The present study was conducted to test the hypothesis that the introduction of the collagenase gene into tissue culture cells and into a rat model of liver fibrosis would result in the expression of enzymatically active product.
METHODS: FLAG-tagged full-length rat collagenase cDNA was PCR amplified and cloned into a mammalian expression vector. NIH3T3 cells were then transiently transfected with this construct. Expression of exogenous collagenase mRNA was assessed by RT-PCR, and the exogenous collagenase detected by Western blotting using anti-FLAG monoclonal antibody. Enzymatic activity was detected by gelatin zymography. To determine the effects of exogenous collagenase production in vivo, the construct was bound to glycosyl-poly-L-lysine and then transduced into rats that had developed liver fibrosis as a result of CCl4 plus ethanol treatment. The hepatic expression of the construct and its effect on the formation of liver fibrosis were demonstrated using RT-PCR and immunohistochemistry.
RESULTS: It was found that exogenously expressed rat collagenase mRNA could be detected in NIH3T3 cells following transfection. Enzymatically active collagenase could also be detected in the culture medium. The recombinant plasmid was also expressed in rat liver after in vivo gene transfer. Expression of exogenous rat collagenase correlated with decreased deposition of collagen types I and III in the livers of rats with experimentally induced liver fibrosis.
CONCLUSION: The expression of active exogenous rat collagenase could be achieved in vitro and in vivo. It was suggested that in vivo expression of active exogenous collagenase may have therapeutic effects on the formation of liver fibrosis.
Collapse
Affiliation(s)
- Ji-Yao Wang
- Division of Gastroenterology, Zhongshan Hospital, Fu Dan University, Shanghai 200032, China.
| | | | | |
Collapse
|
25
|
Salminen HJ, Säämänen AMK, Vankemmelbeke MN, Auho PK, Perälä MP, Vuorio EI. Differential expression patterns of matrix metalloproteinases and their inhibitors during development of osteoarthritis in a transgenic mouse model. Ann Rheum Dis 2002; 61:591-7. [PMID: 12079898 PMCID: PMC1754156 DOI: 10.1136/ard.61.7.591] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To characterise the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) during degeneration of articular cartilage in a transgenic Del1 mouse model for osteoarthritis. METHODS Northern analysis was used to measure mRNA levels of MMP-2, -3, -8, -9, -13, and -14, and TIMP-1, -2, and -3 in total RNA extracted from knee joints of transgenic Del1 mice, harbouring a 15 amino acid deletion in the triple helical domain of the alpha1(II) collagen chain, using their non-transgenic littermates as controls. Immunohistochemistry was used to study the presence of cleavage products (neoepitopes) of type II collagen, and the distribution of MMP-13 and TIMP-1 in degenerating cartilage. RESULTS Each of the MMP and TIMP mRNAs analysed exhibited distinct expression patterns during development and osteoarthritic degeneration of the knee joint. The most striking change was up regulation of MMP-13 mRNA expression in the knee joints of Del1 mice at the onset of cartilage degeneration. However, the strongest immunostaining for MMP-13 and its inhibitor TIMP-1 was not seen in the degenerating articular cartilage but in synovial tissue, deep calcified cartilage, and subchondral bone. The localisation of type II collagen neoepitopes in chondrocytes and their pericellular matrix followed a similar pattern; they were not seen in cartilage fibrillations, but in adjacent unaffected cartilage. CONCLUSION The primary localisation of MMP-13 and TIMP-1 in hyperplastic synovial tissue, subchondral bone, and calcified cartilage suggests that up regulation of MMP-13 expression during early degeneration of articular cartilage is a secondary response to cartilage erosion. This interpretation is supported by the distribution of type II collagen neoepitopes. Synovial production of MMP-13 may be related to removal of tissue debris released from articular cartilage. In the deep calcified cartilage and adjacent subchondral bone, MMP-13 probably participates in tissue remodelling.
Collapse
Affiliation(s)
- H J Salminen
- Skeletal Research Programme, Department of Medical Biochemistry, University of Turku, Finland
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Runx2/Cbfa1 plays a central role in skeletal development as demonstrated by the absence of osteoblasts/bone in mice with inactivated Runx2/Cbfa1 alleles. To further investigate the role of Runx2 in cartilage differentiation and to assess the potential of Runx2 to induce bone formation, we cloned chicken Runx2 and overexpressed it in chick embryos using a retroviral system. Infected chick wings showed multiple phenotypes consisting of (1) joint fusions, (2) expansion of carpal elements, and (3) shortening of skeletal elements. In contrast, bone formation was not affected. To investigate the function of Runx2/Cbfa1 during cartilage development, we have generated transgenic mice that express a dominant negative form of Runx2 in cartilage. The selective inactivation of Runx2 in chondrocytes results in a severe shortening of the limbs due to a disturbance in chondrocyte differentiation, vascular invasion, osteoclast differentiation, and periosteal bone formation. Analysis of the growth plates in transgenic mice and in chick limbs shows that Runx2 is a positive regulator of chondrocyte differentiation and vascular invasion. The results further indicate that Runx2 promotes chondrogenesis either by maintaining or by initiating early chondrocyte differentiation. Furthermore, Runx2 is essential but not sufficient to induce osteoblast differentiation. To analyze the role of runx genes in skeletal development, we performed in situ hybridization with Runx2- and Runx3-specific probes. Both genes were coexpressed in cartilaginous condensations, indicating a cooperative role in the regulation of early chondrocyte differentiation and thus explaining the expansion/maintenance of cartilage in the carpus and joints of infected chick limbs.
Collapse
Affiliation(s)
- Sigmar Stricker
- Max-Planck-Institut für Molekulare Genetik, Charité, Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Seeland U, Haeuseler C, Hinrichs R, Rosenkranz S, Pfitzner T, Scharffetter-Kochanek K, Böhm M. Myocardial fibrosis in transforming growth factor-beta(1) (TGF-beta(1)) transgenic mice is associated with inhibition of interstitial collagenase. Eur J Clin Invest 2002; 32:295-303. [PMID: 12027867 DOI: 10.1046/j.1365-2362.2002.00985.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND TGF-beta(1) mediates effects on fibroblast proliferation and collagen synthesis in the myocardium. The extracellular matrix remodeling depends on the fibrillar collagen degrading matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). The in vivo effects of TGF-beta(1) on the MMP/TIMP system in TGF-beta(1) overexpressing transgenic mice were studied. METHODS Male Alb/TGF-beta(1)(cys(223,225)ser) transgenic mice (TG) and nontransgenic controls (C; 8 weeks) were examined. Protein expression of collagen type I, -III, interstitial collagenase (Int Coll), MMP-2, -9, TIMP-1, -2, -4 and TGF-beta(1) as well as enzyme activity (MMP-2, -9) were measured (Western blots, zymographic assays). mRNA expression of the interstitial collagenase and MMP-9 was studied with the Light-Cycler based real-time PCR. RESULTS Overexpression of TGF-beta(1) resulted in a 10-fold increase in plasma and a seven-fold increase in myocardial TGF-beta(1) concentrations. Relative heart weights increased (mg g(-1): 7.8 +/- 0.4 vs. 4.8 +/- 0.6, n = 6; P < 0.01) in TG compared to C. Collagen type I and III increased in TG (1.9-fold and 1.7-fold) compared to controls. Interstitial collagenase protein activity (- 91%) and mRNA expression (-75%) in TG were reduced (P < 0.05-P < 0.001). Gelatinase (MMP-2, MMP-9) expression and activity were not significantly alterated. MMP-inhibitors were increased 2.5-fold (TIMP-1, -4) and 6-fold (TIMP-2) in TG. CONCLUSIONS TGF-beta(1) produces myocardial fibrosis in vivo. This effect is not only produced by a stimulation of matrix protein formation: a complex regulation of MMP and TIMP interaction, namely decrease of expression and activity of interstitial collagenase and an enhanced inhibition by increased levels of TIMPs, are involved. These mechanisms are optional targets for therapeutic interventions in myocardial diseases.
Collapse
Affiliation(s)
- U Seeland
- der Universität des Saarlandes, Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
D'Souza CA, Mak B, Moscarello MA. The up-regulation of stromelysin-1 (MMP-3) in a spontaneously demyelinating transgenic mouse precedes onset of disease. J Biol Chem 2002; 277:13589-96. [PMID: 11830584 DOI: 10.1074/jbc.m108817200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix metalloproteinases (MMPs) are a family of endoproteinases that degrade various components of the extracellular matrix and have been implicated in the pathogenesis of multiple sclerosis. To determine whether up-regulation of MMP-3, or stromelysin-1, was a causative factor during the development of demyelination, we have examined the expression of MMP-3 mRNA and protein in brain tissue of a spontaneously demyelinating mouse model overexpressing DM20 (ND4 line) prior to and during the progression of disease. Stromelysin-1, but not other MMP mRNA was elevated approximately 10-fold in transgenic mice between 5 days and 1 month of age, more than 2 months before the onset of disease, and was coordinately expressed with the DM20 transgene. Stromelysin-1 protein levels were also up-regulated as was tissue inhibitor of metalloproteinase-1 (TIMP-1), an in vivo regulator of stromelysin-1 mRNA. When we crossed our ND4 mice with a line of transgenic mice overexpressing TIMP-1 in brain, clinical signs in these mice were attenuated, and the level of stromelysin-1 protein was reduced. Thus, in this transgenic model of demyelinating disease up-regulation of DM20, MMP-3, and TIMP-1 represent important changes in the chemical pathogenesis in brain, which precede the onset of disease.
Collapse
Affiliation(s)
- Cheryl A D'Souza
- Department of Structural Biology, The Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
29
|
Wu CW, Tchetina EV, Mwale F, Hasty K, Pidoux I, Reiner A, Chen J, Van Wart HE, Poole AR. Proteolysis involving matrix metalloproteinase 13 (collagenase-3) is required for chondrocyte differentiation that is associated with matrix mineralization. J Bone Miner Res 2002; 17:639-51. [PMID: 11918221 DOI: 10.1359/jbmr.2002.17.4.639] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Collagenases are involved in cartilage matrix resorption. Using bovine fetal chondrocytes isolated from physeal cartilages and separated into a distinct prehypertrophic subpopulation, we show that in serum-free culture they elaborate an extracellular matrix and differentiate into hypertrophic chondrocytes. This is characterized by expression of type X collagen and the transcription factor Cbfal and increased incorporation of 45Ca2+ in the extracellular matrix, which is associated with matrix calcification. Collagenase activity, attributable only to matrix metalloproteinase (MMP) 13 (collagenase-3), is up-regulated on differentiation. A nontoxic carboxylate inhibitor of MMP-13 prevents this differentiation; it suppresses expression of type X collagen, Cbfal, and MMP-13 and inhibits increased calcium incorporation in addition to inhibiting degradation of type II collagen in the extracellular matrix. General synthesis of matrix proteins is unaffected. These results suggest that proteolysis involving MMP-13 is required for chondrocyte differentiation that occurs as part of growth plate development and which is associated with matrix mineralization.
Collapse
Affiliation(s)
- C William Wu
- Joint Diseases Laboratory, Shriners Hospitals for Children, Canadian Hospital, Montreal, Quebec
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ricke WA, Smith GW, Smith MF. Matrix metalloproteinase expression and activity following prostaglandin F(2 alpha)-induced luteolysis. Biol Reprod 2002; 66:685-91. [PMID: 11870075 DOI: 10.1095/biolreprod66.3.685] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Luteal tissue contains matrix metalloproteinases (MMPs) that cleave specific components of the extracellular matrix (ECM) and are inhibited by tissue inhibitors of metalloproteinases (TIMPs). We previously reported a decrease in luteal TIMP-1 within 15 min of prostaglandin F(2 alpha) (PGF(2 alpha))-induced luteolysis. An increase in the MMP:TIMP ratio may promote ECM degradation and apoptosis, as observed in other tissues that undergo involution. The objectives of these experiments were to determine whether 1) PGF(2 alpha) affects expression of mRNA encoding fibrillar collagenases (MMP-1 and -13), gelatinases A and B (MMP-2 and -9), membrane type (mt)-1 MMP (MMP-14), stromelysin (MMP-3), and matrilysin (MMP-7), and 2) PGF(2 alpha) increases MMP activity during PGF(2 alpha)-induced luteolysis in sheep. Corpora lutea (n = 3-10/time point) were collected at 0, 15, and 30 min and 1, 2, 4, 6, 12, 24, and 48 h after PGF(2 alpha) administration. Northern blot analysis confirmed the presence of all MMPs except MMP-9. Expression of mRNA for the above MMPs (except MMP-2) increased significantly (P < 0.05) by 30 min, and all MMPs increased significantly (P < 0.05) by 6 h after PGF(2 alpha) administration. Expression of MMP-14 mRNA increased significantly (P < 0.05) by 15 min post-PGF(2 alpha) and remained elevated through 48 h. MMP activity in luteal homogenates (following proenzyme activation and inactivation of inhibitors) was increased significantly (P < 0.05) by 15 min and remained elevated through 48 h post-PGF(2 alpha). MMP activity was localized (in situ zymography) to the pericellular area of various cell types in the 0-h group and was markedly increased by 30 min post-PGF(2 alpha). MMP mRNA expression and activity were significantly increased following PGF(2 alpha) treatment. Increased MMP activity may promote ECM degradation during luteolysis.
Collapse
Affiliation(s)
- William A Ricke
- Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
31
|
Price JS, Chambers MG, Poole AR, Fradin A, Mason RM. Comparison of collagenase-cleaved articular cartilage collagen in mice in the naturally occurring STR/ort model of osteoarthritis and in collagen-induced arthritis. Osteoarthritis Cartilage 2002; 10:172-9. [PMID: 11869077 DOI: 10.1053/joca.2001.0500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The STR/ort mouse develops a naturally occurring osteoarthritis of the femorotibial joint that provides a model with which to establish the time course of biochemical changes taking place in articular cartilage in the disease. Our objective was to define the onset, location and progression of type II collagen cleavage by collagenase in the tibial cartilage of the STR/ort mouse. For comparison, cartilage collagen cleavage was also studied in collagen-induced arthritis in DBA mice. DESIGN STR and control CBA mice aged 6-45 weeks were examined. DBA/1 mice were studied 2 and 3 weeks after initiating collagen-induced arthritis. Collagen cleavage was detected by immunolocalization using the antibody COL2-3/4Cshort which recognizes a carboxy terminal neoepitope created by collagenase cleavage of type I and II collagens. RESULTS No COL 2-3/4Cshort immunostaining was observed in the intact cartilage of healthy young or old mice. The earliest detectable collagen degradation occurred at the cartilage surface coincident with the appearance of surface roughening. As fibrillations developed, further collagen degradation was evident around the edge of the lesion and in adjacent extracellular matrix. In contrast, staining was observed throughout the cartilage matrix in type II collagen-induced arthritis prior to the development of histopathological lesions. CONCLUSION No evidence was found for collagen cleavage in intact/pre-lesional cartilage from STR/ort mice. Local collagen cleavage was, however, clearly associated with very early histopathological lesions and immunostaining with COL 2-3/4Cshort increased with progression of the latter. In contrast, type II collagen cleavage occurs throughout the articular cartilage at an early stage in collagen-induced arthritis.
Collapse
Affiliation(s)
- J S Price
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
32
|
Wu N, Opalenik S, Liu J, Jansen ED, Giro MG, Davidson JM. Real-time visualization of MMP-13 promoter activity in transgenic mice. Matrix Biol 2002; 21:149-61. [PMID: 11852231 DOI: 10.1016/s0945-053x(01)00192-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cutaneous wound repair involves extracellular matrix degradation, cell migration, matrix resynthesis and tissue remodeling. In the rodent, transcriptional regulation of collagenase-3 (MMP-13) most likely plays a role in these processes. Therefore, we isolated and characterized a 1.76-kb 5'-flanking region of the mouse MMP-13 gene. Assay of promoter activity by transient transfection of HT1080 cells and primary mouse skin fibroblasts allowed identification of several functional regions of the 5'-flanking DNA. Expression of luciferase reporter constructs in these cells was induced by phorbol myristate acetate (PMA), but not by transforming growth factor-beta(2) (TGF-beta(2)). To study the regulation of MMP-13 in cutaneous wound healing, we generated transgenic mouse lines harboring the firefly luciferase reporter gene under control of a 660-bp mouse MMP-13 promoter which showed maximal response. MMP-13 mRNA levels in transgenic lung fibroblasts increased 1.5-2.6-fold after PMA challenge. MMP-13 promoter activity in wounds was visualized and quantified in vivo as luciferase bioluminescence. MMP-13 expression was present at day 1 and maximal at day 18 post-wounding. Luciferase activity progressed from the wound margin towards the center of the wound. In situ hybridization showed the same spatial and temporal patterns for the luciferase and endogenous MMP-13 mRNA. Both signals localized predominantly to dermal fibroblasts at the wound periphery but not to granulation tissue or to keratinocytes. These results suggested that MMP-13 participated in the wound healing of acute wounds, and it was a significant factor in long-term remodeling of wound connective tissue in rodent skin.
Collapse
Affiliation(s)
- Nanjun Wu
- Department of Pathology, Vanderbilt University School of Medicine, C-3321 Medical Center North, Nashville, TN 37232-2561, USA
| | | | | | | | | | | |
Collapse
|
33
|
Mwale F, Tchetina E, Wu CW, Poole AR. The assembly and remodeling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J Bone Miner Res 2002; 17:275-83. [PMID: 11811558 DOI: 10.1359/jbmr.2002.17.2.275] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The recent development of new specific immunoassays has provided an opportunity to study the assembly and resorption of type II and IX collagens of the extracellular matrix in relationship to endochondral calcification in situ. Here, we describe how in the bovine fetal physis prehypertrophic chondrocytes deposit an extensive extracellular matrix that, initially, is rich in both type II and type IX collagens and proteoglycan (PG; principally, aggrecan). The majority of the alpha1(IX)-chains lack the NC4 domain consistent with our previous studies with cultured chondrocytes. During assembly, the molar ratio of type II/COL2 domain of the alpha1(IX)-chain varied from 8:1 to 25:1. An increase in the content of Ca2+ and inorganic phosphate (Pi) was initiated in the prehypertrophic zone when the NC4 domain was removed selectively from the alpha1(IX)-chain. This was followed by the progressive loss of the alpha1(IX) COL2 domain and type II collagen. In the hypertrophic zone, the Ca2+/Pi molar ratio ranged from 1.56 to a maximum of 1.74, closely corresponding to that of mature hydroxyapatite (1.67). The prehypertrophic zone had an average ratio Ca2+/Pi ranging from 0.25 to 1, suggesting a phase transformation. At hypertrophy, when mineral content was maximal, type II collagen was reduced maximally in content coincident with a peak of cleavage of this molecule by collagenase when matrix metalloproteinase 13 (MMP-13) expression was maximal. In contrast, PG (principally aggrecan) was retained when hydroxyapatite was formed consistent with the view that this PG does not inhibit and might promote calcification in vivo. Taken together with earlier studies, these findings show that matrix remodeling after assembly is linked closely to initial changes in Ca2+ and Pi to subsequent cellular hypertrophy and mineralization. These changes involve a progressive and selective removal of types II and IX collagens with the retention of the PG aggrecan.
Collapse
Affiliation(s)
- Fackson Mwale
- Jewish General Hospital, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
34
|
Tuckermann JP, Vallon R, Gack S, Grigoriadis AE, Porte D, Lutz A, Wagner EF, Schmidt J, Angel P. Expression of collagenase-3 (MMP-13) in c-fos-induced osteosarcomas and chondrosarcomas is restricted to a subset of cells of the osteo-/chondrogenic lineage. Differentiation 2001; 69:49-57. [PMID: 11776394 DOI: 10.1046/j.1432-0436.2001.690105.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interstitial collagenases have been suggested to play a critical role in bone formation, remodeling, and cancerogenesis. We have previously shown that during mouse development expression of collagenase-3 (MMP-13) is restricted to bone and cartilage (Gack et al., 1995; Tuckermann et al., 2000) and is affected in mice with altered c-Fos and Cbfa-1 expression (Gack et al., 1994; Porte et al., 1999). In this study, using immunohistochemistry (IHC) and in situ hybridization (ISH) techniques, we have identified cells of the osteoblastic lineage to be the origin of strongly enhanced levels of MMP-13 transcripts in c-fos-induced osteosarcomas. Expression in these cells is further increased in c-fos/c-jun double transgenic mice and paralleled by Cbfa-1 expression. Similarly, in spontaneous and radiation-induced osteosarcomas, both c-Fos and MMP-13 proteins are detectable, suggesting that overexpression of both genes is a characteristic feature of osteosarcomas of different origin. We also observed high levels of MMP-13 in c-Fos-induced chondrosarcomas. In osteoblast-like cells and in cells of late chondrocyte differentiation such as hypertrophic chondrocytes, high levels of MMP-13 transcripts were found. In contrast, in anaplastic areas of the tumors representing highly proliferating chondrocytes, no MMP-13 expression is detectable, suggesting that in addition to Fos/AP-1, bone-specific transcription factors are responsible for restricted expression of collagenase-3/MMP-13 in a specific subset of cells of bone and cartilage in physiology and pathology.
Collapse
Affiliation(s)
- J P Tuckermann
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kovacs CS, Chafe LL, Fudge NJ, Friel JK, Manley NR. PTH regulates fetal blood calcium and skeletal mineralization independently of PTHrP. Endocrinology 2001; 142:4983-93. [PMID: 11606467 DOI: 10.1210/endo.142.11.8509] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH and PTHrP both act in the regulation of fetal mineral metabolism. PTHrP regulates placental calcium transfer, fetal blood calcium, and differentiation of the cartilaginous growth plate into endochondral bone. PTH has been shown to influence fetal blood calcium, but its role in skeletal formation remains undefined. We compared skeletal morphology, mineralization characteristics, and gene expression in growth plates of fetal mice that lack parathyroids and PTH (Hoxa3 null) with the effects of loss of PTHrP (Pthrp null), loss of PTH/PTHrP receptor (Pthr1 null), and loss of both PTH and PTHrP (Hoxa3 null x Pthrp null). Loss of PTH alone does not affect morphology or gene expression in the skeletal growth plates, but skeletal mineralization and blood calcium are significantly reduced. In double-mutant fetuses (Hoxa3 null/Pthrp null), combined loss of PTH and PTHrP caused fetal growth restriction, limb shortening, greater reduction of fetal blood calcium, and reduced mineralization. These findings suggest that 1) PTH may play a more dominant role than PTHrP in regulating fetal blood calcium; 2) blood calcium and PTH levels are rate-limiting determinants of skeletal mineral accretion; and 3) lack of both PTH and PTHrP will cause fetal growth restriction.
Collapse
Affiliation(s)
- C S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3V6.
| | | | | | | | | |
Collapse
|
36
|
Engelholm LH, Nielsen BS, Netzel-Arnett S, Solberg H, Chen XD, Lopez Garcia JM, Lopez-Otin C, Young MF, Birkedal-Hansen H, Danø K, Lund LR, Behrendt N, Bugge TH. The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis. J Transl Med 2001; 81:1403-14. [PMID: 11598153 DOI: 10.1038/labinvest.3780354] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The urokinase plasminogen activator receptor-associated protein/Endo180 (uPARAP/Endo180) is a newly discovered member of the macrophage mannose receptor family that was reported to interact with ligand-bound urokinase plasminogen activator receptor (uPAR), matrix metalloprotease-13 (MMP-13), and collagen V on the cell surface. We have determined the sites of expression of this novel receptor during murine postimplantation development. uPARAP/Endo180 was expressed in all tissues undergoing primary ossification, including the developing bones of the viscerocranium and calvarium that ossify intramembranously, and developing long bones undergoing endochondral ossification. uPARAP/Endo180 mRNA was expressed by both immature osteoblasts and by mature osteocalcin-producing osteoblasts-osteocytes, and was coexpressed with MMP-13. Interestingly, osteoblasts also expressed uPAR. Besides bone-forming tissues, uPARAP/Endo180 expression was detected only in a mesenchymal condensation of the midbrain and in the developing lungs. The data suggest a function of this novel protease receptor in bone development, possibly mediated through its interactions with uPAR, MMP-13, or collagen V.
Collapse
Affiliation(s)
- L H Engelholm
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Deten A, Hölzl A, Leicht M, Barth W, Zimmer HG. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol 2001; 33:1191-207. [PMID: 11444923 DOI: 10.1006/jmcc.2001.1383] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extensive myocardial remodeling occurs after transmural myocardial infarction (MI). The infarcted myocardium is being replaced by scar tissue after gradual resorption of the necrotic tissue. The remodeling process involves both synthesis and degradation of collagens as major components of the extracellular matrix (ECM). In the present study we have analyzed the time-dependent changes of the processes related to this fibrosis in the infarct area and in the non-infarcted left ventricle (LV) six hours to 82 days after occlusion of the left anterior descending coronary artery (LAD) in rats. We also examined whether changes occurred in the expression pattern of the transforming growth factor (TGF) beta isoforms, since this cytokine is known as powerful inductor of fibrosis. Elevation in colligin expression preceded the pronounced increase in mRNA expression of both type I and type III collagen after MI from day three onwards. The maximal increase in colligin protein in the infarct area coincided with the most pronounced expression of collagen I and collagen III mRNA expression. Also, the expression and activity of matrix metalloproteinases (MMPs) and of tissue inhibitor of matrix metalloproteinase (TIMP)-2 mRNA were increased predominantly in the infarct area. TGF beta(1)and TGF-beta(2)expression increased within the first days after MI, whereas TGF-beta(3)expression was elevated predominantly in the infarct area. This pronounced increase in TGF-beta(3)persisted up to 82 days and correlated positively with the parameters of ECM metabolism. Thus, the scar formation is an ongoing dynamic process in which TGF-beta(3)seems to play an active role in the complex ventricular remodeling.
Collapse
Affiliation(s)
- A Deten
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|
38
|
Balbı́n M, Fueyo A, Knäuper V, López JM, Álvarez J, Sánchez LM, Quesada V, Bordallo J, Murphy G, López-Otı́n C. Identification and Enzymatic Characterization of Two Diverging Murine Counterparts of Human Interstitial Collagenase (MMP-1) Expressed at Sites of Embryo Implantation. J Biol Chem 2001. [DOI: 10.1074/jbc.m007674200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Airola K, Fusenig NE. Differential stromal regulation of MMP-1 expression in benign and malignant keratinocytes. J Invest Dermatol 2001; 116:85-92. [PMID: 11168802 DOI: 10.1046/j.1523-1747.2001.00223.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is accumulating evidence of the critical role of tumor stroma in carcinoma development and progression. We have studied the significance of stromal components in regulating matrix metalloproteinases in different stages of human skin carcinogenesis using the HaCaT keratinocyte transformation model. Expression of matrix metalloproteinase 1 and matrix metalloproteinase 13 was analyzed in nontumorigenic HaCaT cells and their c-Ha-ras-transformed tumorigenic clones, benign A-5 and malignant A-5RT3, in response to different matrices and cocultured fibroblasts as well as in transplants in nude mice. When cultured on a collagen type I gel, expression of matrix metalloproteinase 1 mRNA was induced in A-5 and A-5RT3 but less in HaCaT cells, whereas matrix metalloproteinase 13 was only induced in A-5 cells. Induction of matrix metalloproteinase 1 by collagen was also observed in two other malignant HaCaT-ras clones as well as in 2/2 primary squamous cell carcinoma lines. In organotypic cocultures with skin fibroblasts, matrix metalloproteinase 1 mRNA and protein was further strongly upregulated in A-5RT3 cells but less in HaCaT and A-5 cells. Importantly, matrix metalloproteinase 1 was also upregulated in fibroblasts when cocultured with A-5RT3 cells. In vivo, A-5RT3 transplants and subcutaneous tumors expressed matrix metalloproteinase 1 mRNA consistently, preferentially at the tumor front to the mouse stroma. In contrast, matrix metalloproteinase 1 expression was absent in the transplants of A-5 cells and HaCaT cells. Thus, our results demonstrate the specific induction of matrix metalloproteinase 1 in malignant keratinocytes by fibroblasts, supposedly through paracrine-acting factors, and a reciprocally enhanced expression in fibroblasts. This further substantiates the important role of tumor stroma in regulating the expression of matrix metalloproteinase 1, a major matrix-degrading proteinase implicated in tumor invasion.
Collapse
Affiliation(s)
- K Airola
- Division of Differentiation and Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
40
|
Moore BA, Aznavoorian S, Engler JA, Windsor LJ. Induction of collagenase-3 (MMP-13) in rheumatoid arthritis synovial fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:307-18. [PMID: 11040455 DOI: 10.1016/s0925-4439(00)00056-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is a growing body of evidence that implicates matrix metalloproteinases (MMPs) as major players in numerous diseased conditions. The articular cartilage degradation that is characteristic of rheumatoid arthritis (RA) is believed to be mediated by the collagenase subfamily of matrix metalloproteinases. The preference of collagenase-3 (CL-3) for collagen type II makes it a likely candidate in the turnover of articular cartilage and a potential target for drug development. In this study, RA synovial membrane tissue was shown to express CL-3 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) and protein by immunohistochemistry. Fibroblasts isolated and cultured from RA synovial membrane tissue were induced to express CL-3 mRNA. CL-3 mRNA was detected after PMA treatment in 16 of the 18 RA synovial membrane fibroblast cell lines established for this study. These fibroblasts also expressed mRNA for collagenase-1 (CL-1, MMP-1), membrane type-1 matrix metalloproteinase, gelatinase A, gelatinase B, stromelysin-1, stromelysin-2, TIMP-1, and TIMP-2. They were further shown to express CL-1 mRNA constitutively and CL-3 mRNA only after stimulation with PMA, IL-1, TGF-beta1, TNF-alpha, or IL-6 with IL-6sR. These fibroblasts also expressed after induction both CL-1 and CL-3 at the protein level as determined by Western blot analyses and immunofluorescence.
Collapse
Affiliation(s)
- B A Moore
- Research Center in Oral Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
41
|
Zhao W, Byrne MH, Wang Y, Krane SM. Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest 2000; 106:941-9. [PMID: 11032854 PMCID: PMC314341 DOI: 10.1172/jci10158] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mice carrying a targeted mutation (r) in Col1a1, encoding a collagenase-resistant form of type I collagen, have altered skeletal remodeling. In hematoxylin and eosin-stained paraffin sections, we detect empty lacunae in osteocytes in calvariae from Col1a1(r/r) mice at age 2 weeks, increasing through age 10-12 months. Empty lacunae appear to result from osteocyte apoptosis, since staining of osteocytes/periosteal osteoblasts with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling is increased in Col1a1(r/r) relative to wild-type bones. Osteocyte perilacunar matrices stained with Ab that recognizes collagenase collagen alpha1(I) chain cleavage ends in wild-type but not Col1a1(r/r) calvariae. Increased calvarial periosteal and tibial/femoral endosteal bone deposition was found in Col1a1(r/r) mice from ages 3-12 months. Calcein labeling of calvarial surfaces was increased in Col1a1(r/r) relative to wild-type mice. Daily injections of synthetic parathyroid hormone for 30 days increased calcein-surface labeling in wild-type but caused no further increase in the already high calcein staining of Col1a1(r/r) bones. Thus, failure of collagenase cleavage of type I collagen in Col1a1(r/r) mice is associated with osteocyte/osteoblast death but increases bone deposition in a manner that mimics the parathyroid hormone-induced bone surface activation seen in wild-type mice.
Collapse
Affiliation(s)
- W Zhao
- Department of Medicine, Harvard Medical School, Medical Services (Arthritis Unit), Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Although progress has been made in the understanding of the role of metalloproteinases in tumor progression during metastasis, little is known about their contributions, if any, to tumor formation. Accumulating evidence identified an increased presence of several matrix metalloproteinases in human cancers, but the precise role for interstitial collagenase in tumor formation or progression has not been well defined. Transient induction of collagenase was observed in wild-type mouse skin after treatment with the tumor-promoting agents 12-O-tetradecanoylphorbol-13-acetate (TPA) and chrysarobin, which promote tumorigenesis through protein kinase C-dependent and -independent pathways, respectively. Transgenic mice that constitutively express interstitial collagenase within the epidermis of the skin have an increased susceptibility to tumorigenesis and produced tumors at lower doses of TPA as compared with wild-type mice. Similarly, the transgenic mice showed increased tumorigenesis when promoted with chrysarobin. These results demonstrate that collagenase overexpression can contribute to tumorigenesis via protein kinase C-dependent and -independent pathways. Significantly, compared with wild-type mice, the transgenic mice demonstrated an elevated expression of c-fos in the skin at baseline, before tumor promotion, suggesting a molecular mechanism for the increased tumor susceptibility in collagenase transgenic mice. These findings further support the importance of MMP deregulation in tumorigenesis and suggest that the role of MMP family members is not limited to metastasis but may also contribute to initial tumor development.
Collapse
Affiliation(s)
- T D Colandrea
- Department of Biochemistry, University of Medicine and Dentistry-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
43
|
Winchester SK, Selvamurugan N, D'Alonzo RC, Partridge NC. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites. J Biol Chem 2000; 275:23310-8. [PMID: 10779518 DOI: 10.1074/jbc.m003004200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.
Collapse
Affiliation(s)
- S K Winchester
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
44
|
Das SK, Yano S, Wang J, Edwards DR, Nagase H, Dey SK. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse uterus during the peri-implantation period. DEVELOPMENTAL GENETICS 2000; 21:44-54. [PMID: 9291579 DOI: 10.1002/(sici)1520-6408(1997)21:1<44::aid-dvg5>3.0.co;2-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The attachment of the blastocyst to the uterine luminal epithelium and the subsequent invasion by trophoblast cells through the stroma and deciduum occur in a highly regulated manner by remodeling of the extracellular matrix. We investigated the temporal and spatial expression of mRNAs for four matrix metalloproteinases (MMPs; MMP-2 [gelatinase A], MMP-3 [stromelysin 1], MMPs; MMP-2 [gelatinase B], and MMP-13 [collagenase 3]) and tissue inhibitors of metalloproteinases (TIMPs; TIMP-1, TIMP-2, and TIMP-3) in the mouse uterus from days 1 to 8 of pregnancy. Northern blot analyses showed the transcripts for MMP-2, MMP-3, RNA on these days. However, MMP-13 mRNA was not detected in the uterus, and only weak signals for MMP-3 mRNA were detected in the myometrium. Striking expression was observed with MMP-2 mRNA in the subepithelial stroma on days 3-5. With the progression of decidualization on day 6, signals were primarily in the secondary decidual zone. On day 8, MMP-2 mRNA was localized at the site of placenta formation in the mesometrial pole. Signals for MMP-9 mRNA were first detected in a small population of stromal cells exclusively at the site of implantation on day 5 at the antimesometrial pole. However, the most pronounced expressed was noted in trophoblast giant cells on day 8. TIMP-1 mRNA was present in the myometrium on day 1. On days 2-5, modest signals were detected in the stroma, and on days 6 and 8, they were in the secondary decidual zone. Localization of TIMP-2 mRNA was similar to that of TIMP-1 except it was restricted to the stroma on day 1. The regulation of TIMP-3 was more pronounced. While a gradual increase in signals was observed in stromal cells from days 1 to 4, strong signals were detected in antimesometrial stromal cells at the sites of blastocyst attachment on day 5. On days 6 and 7, even stronger signals were present in the primary decidual zone surrounding the embryo, and on day 8 signals were localized primarily in the mesometrial decidual bed. These results suggest that MMP-2 may participate in the early phase of decidualization and neovascularization required for placentation. The restricted MMP-9 expression in stromal cells on day 5 and in trophoblast giant cells on day 8, coupled with the expression of TIMP-3 in the stroma surrounding the embryo, suggests that a fine balance between MMP-9 and TIMP-3 may regulate trophoblast invasion in the uterus.
Collapse
Affiliation(s)
- S K Das
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | | | |
Collapse
|
45
|
Quinn CO, Bizek GM, Agapova OA. Induction of rat interstitial collagenase (MMP-13) mRNA in a development-dependent manner by parathyroid hormone in osteoblastic cells. Endocrine 2000; 12:227-36. [PMID: 10963042 DOI: 10.1385/endo:12:3:227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Revised: 12/21/1999] [Accepted: 01/04/2000] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine whether the production of interstitial collagenase mRNA in response to parathyroid hormone (PTH) changes with osteoblast phenotypic development. To accomplish this, cells derived from fetal rat calvaria were examined. The calvarial osteoblasts, which proliferate when placed in culture, can be made to differentiate after confluence. Studies were performed on cells while they were proliferating, at confluence, and during the differentiation process. The cells were treated with PTH for various times, and interstitial collagenase mRNA was quantified by RNase protection assay. We concluded that the ability of PTH to induce interstitial collagenase mRNA in these cells increased with osteoblast phenotypic development. We also determined that the response could be mimicked by combining the effect of 8-bromo-cAMP and 12-O-tetradecanoyl-phorbol-13-acetate, stimulators of the protein kinase A and protein kinase C pathways, respectively, both known to be activated by PTH. The binding of nuclear factors to two regions previously reported to be important for PTH induction of the gene in UMR 106-01 cells was also examined. These data indicated that the binding of nuclear factors to oligonucleotides encompassing the TRE (-51) or the PEA3 (-80) elements changed with development of the osteoblast phenotype. The latter was also shown to be PTH responsive.
Collapse
Affiliation(s)
- C O Quinn
- Pediatric Research Institute, Department of Pediatrics, St. Louis University Health Sciences Center, MO 63110, USA.
| | | | | |
Collapse
|
46
|
Nuttall RK, Kennedy TG. Epidermal growth factor and basic fibroblast growth factor increase the production of matrix metalloproteinases during in vitro decidualization of rat endometrial stromal cells. Endocrinology 2000; 141:629-36. [PMID: 10650944 DOI: 10.1210/endo.141.2.7302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Numerous growth factors are involved in mediating proliferation and differentiation of endometrial stromal cells during decidualization. During this period, the extracellular matrix of the endometrium undergoes extensive remodeling. We tested the hypothesis that epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-beta regulate expression of matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), during decidualization. Stromal cells were isolated from uteri hormonally sensitized to undergo decidualization and were cultured in the absence or presence of a growth factor. Using substrate-gel electrophoresis with gelatin as the substrate, we detected activity for gelatinase A and B, and collagenase-3, and using casein as a substrate, we detected activity for stromelysin-1. Increasing concentrations of EGF and bFGF resulted in increased activity of gelatinase B, collagenase-3, and stromelysin-1. Northern blot analyses revealed that EGF and bFGF also increased messenger RNA levels for these MMPs. There was no effect of these growth factors on gelatinase or TIMP-1, -2, and -3, nor was there an effect of transforming growth factor-beta on any MMP or TIMP examined. These data demonstrate that EGF and bFGF increase levels of proteolytic enzymes produced by endometrial stromal cells undergoing decidualization in vitro while having no effect on their inhibitors.
Collapse
Affiliation(s)
- R K Nuttall
- Department of Physiology, University of Western Ontario, London, Canada
| | | |
Collapse
|
47
|
Breckon JJ, Papaioannou S, Kon LW, Tumber A, Hembry RM, Murphy G, Reynolds JJ, Meikle MC. Stromelysin (MMP-3) synthesis is up-regulated in estrogen-deficient mouse osteoblasts in vivo and in vitro. J Bone Miner Res 1999; 14:1880-90. [PMID: 10571688 DOI: 10.1359/jbmr.1999.14.11.1880] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex steroids are important regulators of bone cell function and osteoblast-derived matrix metalloproteinases (MMPs) are key mediators of bone resorption during the initial stage of osteoid removal prior to osteoclast attachment. To investigate the mechanism of bone loss following estrogen deficiency, we examined the effects of estrogen on osteoblast synthesis of MMPs and tissue inhibitor of metalloproteinases (TIMPs). Immunolocalization in mouse bone samples ex vivo and primary mouse osteoblast (MOB) cultures was used to document the synthesis of mouse interstitial collagenase (MMP-13), stromelysin-1 (MMP-3), gelatinase-A (MMP-2), and gelatinase-B (MMP-9). Endosteal bone lining cells from distal femoral head and lumbar vertebral body showed an increase in the pattern of synthesis of stromelysin-1 following ovariectomy, compared with sham-operated controls; the synthesis of other MMPs was unaffected. The expression of all classes of MMPs and TIMP-1 and TIMP-2 by MOB in culture was demonstrated by reverse transcriptase-polymerase chain reaction. Following the withdrawal of 17beta-estradiol, MOB cultures showed a significant increase in the number of cells synthesizing stromelysin-1; this effect was enhanced by stimulation with either interleukin-1 or interleukin-6. Northern blot analysis showed only a slight increase in stromelysin-1 mRNA message following the withdrawal of 17beta-estradiol. Our data show an unexpected up-regulation of stromelysin-1 synthesis by osteoblasts both in vivo and in vitro following estrogen withdrawal. Although this effect was not reflected in a significant change in stromelysin-1 mRNA expression in vitro, there is evidence to suggest a role for this enzyme in the early stages of bone loss during the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- J J Breckon
- Bone Biology Unit, Department of Orthodontics, GKT School of Medicine and Dentistry, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Botos I, Meyer E, Swanson SM, Lemaître V, Eeckhout Y, Meyer EF. Structure of recombinant mouse collagenase-3 (MMP-13). J Mol Biol 1999; 292:837-44. [PMID: 10525409 DOI: 10.1006/jmbi.1999.3068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matrix metalloproteinases are crucial in the physiological and pathological degradation of the mammalian extracellular matrix, including breast tumours, and osteoarthritic cartilage. These enzymes are classified according to their matrix substrate specificity. Collagenase-3 (MMP-13) is a member of this family and preferentially cleaves type II collagen, cartilage, fibronectin and aggrecan. Collagenase-3 is normally expressed in hypertrophic chondrocytes, periosteal cells, and osteoblasts during bone development. The structure of the catalytic domain of recombinant mouse collagenase-3, complexed to the hydroxamate inhibitor (RS-113456), is reported at 2.0 A resolution. Molecular replacement and weak phasing information from a single derivative determined the structure. Neither molecular replacement nor derivative methods had a sufficient radius of convergence to yield a refinable structure. The structure illuminates the atomic zinc ion interactions with functional groups in the active site, emphasizing zinc ligation and the very voluminous hydrophobic P1' group for the inhibitor potency. The structure provides insight into the specificity of this enzyme, facilitating design of specific inhibitors to target various diseases.
Collapse
Affiliation(s)
- I Botos
- Department of Biochemistry and Biophysics, Texas A&M University, TX, 77843-2128, USA
| | | | | | | | | | | |
Collapse
|
49
|
Hägglund AC, Ny A, Leonardsson G, Ny T. Regulation and localization of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse ovary during gonadotropin-induced ovulation. Endocrinology 1999; 140:4351-8. [PMID: 10465309 DOI: 10.1210/endo.140.9.7002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At the time of ovulation, proteolytic degradation of the follicular wall is required to release the mature oocyte. Extracellular proteases, such as serine proteases and matrix metalloproteinases (MMPs), are thought to play important roles in this process. In this study we have examined the regulation of 11 MMPs and 3 tissue inhibitors of metalloproteinases (TIMPs) during gonadotropin-induced ovulation in the mouse. Northern blot hybridization showed that messenger RNA for several MMPs and TIMPs, including gelatinase A, MT1-MMP, stromelysin-3, MMP-19, TIMP-1, TIMP-2, and TIMP-3, were present at detectable levels in the mouse ovary. In addition, ovarian extracts contained gelatinolytic activities corresponding to the inactive proforms of gelatinase A and gelatinase B. Most of the MMPs and TIMPs were expressed at a constitutive level throughout the periovulatory period. However, MMP-19 and TIMP-1 revealed a different expression pattern; they were both induced 5-10 times by hCG and reached their maximum levels at 12 h after hCG treatment, corresponding to the time of ovulation. At this time point, MMP-19 and TIMP-1 messenger RNA were localized to the granulosa and thecal-interstitial cells of large preovulatory and ovulating follicles. This temporal and spatial regulation pattern suggests that MMP-19 might be involved in the tissue degradation that occurs during follicular rupture and that TIMP-1 could have a role in terminating MMP activity after ovulation.
Collapse
Affiliation(s)
- A C Hägglund
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | | | | | | |
Collapse
|
50
|
Yamagiwa H, Tokunaga K, Hayami T, Hatano H, Uchida M, Endo N, Takahashi HE. Expression of metalloproteinase-13 (Collagenase-3) is induced during fracture healing in mice. Bone 1999; 25:197-203. [PMID: 10456385 DOI: 10.1016/s8756-3282(99)00157-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In fracture healing, a large amount of cartilage is formed, then rapidly replaced by osseous tissue. This process requires the transition of extracellular matrix component from type II to type I collagen. We investigated the expression of matrix metalloproteinase-13 (MMP-13), which has a high potential to cleave type II as well as type I collagen, during fracture repair in mouse ribs. In situ hybridization demonstrated that MMP-13 mRNA was present throughout the healing process. It was detected in the cells of the periosteum at day 1. As fracture callus grew, strong MMP-13 mRNA signals were detected in cells of the cartilaginous callus. In the reparative and remodeling phases, both hypertrophic chondrocytes and immature osteoblastic cells in the fracture callus expressed MMP-13 mRNA strongly. These cells were located adjacent to tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts at the sites of cartilage/bone transition. In osteoclasts, MMP-13 expression was not detected. The level of MMP-13 mRNA peaked at day 14 postfracture by northern blotting. Immunohistochemical staining showed that MMP-13 was detected primarily in hypertrophic chondrocytes. These results indicate that MMP-13 is induced during fracture healing. The site- and cell-specific expression of MMP-13 and its enzymatic property suggest that MMP-13 initiates the degradation of cartilage matrix, resulting in resorption and remodeling of the callus. In conclusion, MMP-13 plays an important role in the healing process of fractured bone in mice.
Collapse
Affiliation(s)
- H Yamagiwa
- Department of Orthopedic Surgery, Niigata University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|