1
|
Wang J, Liu X, Wang Q, Shi M, Li C, Hou H, Lim KJ, Wang Z, Yang Z. Characterization of pecan PEBP family genes and the potential regulation role of CiPEBP-like1 in fatty acid synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112326. [PMID: 39580031 DOI: 10.1016/j.plantsci.2024.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Phosphatidyl ethanolamine-binding protein (PEBP) plays important roles in plant growth and development. However, few studies have investigated the PEBP gene family in pecan (Carya illinoinensis), particularly the function of the PEBP-like subfamily. In this study, we identified 12 PEBP genes from the pecan genome and classified them into four subfamilies: MFT-like, FT-like, TFL1-like and PEBP-like. Multiple sequence alignment, gene structure, and conserved motif analyses indicated that pecan PEBP subfamily genes were highly conserved. Cis-element analysis revealed that many light responsive elements and plant hormone-responsive elements are found in CiPEBPs promoters. Additionally, RNA-seq and RT-qPCR showed that CiPEBP-like1 was highly expressed during kernel filling stage. GO and KEGG enrichment analysis further indicated that CiPEBP-like1 was involved in fatty acid biosynthesis and metabolism progress. Overexpression of CiPEBP-like1 led to earlier flowering and altered fatty acid composition in Arabidopsis seeds. RT-qPCR confirmed that CiPEBP-like1 promoted fatty acid synthesis by regulating the expression of key genes. Overall, this study contributes to a comprehensive understanding of the potential functions of the PEBP family genes and lay a foundation to modifying fatty acid composition in pecan kernel.
Collapse
Affiliation(s)
- Jiani Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Xinyao Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Qiaoyan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Miao Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Caiyun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Huating Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China.
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
2
|
Wu Y, Ma H, Liu Z. Genetically predicted metabolites mediate the association between lipidome and malignant melanoma of skin. Front Oncol 2024; 14:1430533. [PMID: 39319051 PMCID: PMC11419955 DOI: 10.3389/fonc.2024.1430533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Objective To investigate the causal relationship between lipidome and malignant melanoma of skin (MMOS), while identifying and quantifying the role of metabolites as potential mediators. Methods A two-sample Mendelian randomization (MR) analysis of lipid species (n=7174) and MMOS was performed using pooled data from genome-wide association studies (GWAS). In addition, we quantified the proportion of metabolite-mediated lipidome effects on MMOS by two-step MR. Results This study identified potential causal relationships between 11 lipids and MMOS, and 40 metabolites and MMOS, respectively. Phosphatidylethanolamine (18:0_18:2) levels mined from 179 lipids by MR Analysis increased the risk of MMOS (OR: 1.962; 95%CI:1.298,2.964; P=0.001). There is no strong evidence for a relationship between genetically predicted MMOS and phosphatidylethanolamine (18:0_18:2) levels (P=0.628). The proportion of gene predictions for phosphatidylethanolamine (18:0_18:2) levels mediated by 1-stearoyl-(glycosylphosphatidylinositol) GPI (18:0) levels was 12.40%. Conclusion This study identifies 1-stearoyl-GPI (18:0) levels as a potential mediator that may mediate the causal relationship between phosphatidylethanolamine (18:0_18:2) levels and MMOS, This provides direction for the investigation of MMOS, but further research of other possible potential mediators is still needed.
Collapse
Affiliation(s)
- Yuzhou Wu
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Hang Ma
- Rheumatology and Immunology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenyu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yang J, Ning C, Liu Z, Zheng C, Mao Y, Wu Q, Wang D, Liu M, Zhou S, Yang L, He L, Liu Y, He C, Chen J, Liu J. Genome-Wide Characterization of PEBP Gene Family and Functional Analysis of TERMINAL FLOWER 1 Homologs in Macadamia integrifolia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2692. [PMID: 37514306 PMCID: PMC10385423 DOI: 10.3390/plants12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to breed commercial varieties with superior traits. Recent studies have shown that members of the phosphatidylethanolamine binding protein (PEBP) family play pivotal roles in regulating plant architecture and flowering time in various plants. In this study, thirteen members of MiPEBP were identified in the genome of M. integrifolia, and they are highly similarity in both motif and gene structure. A phylogenetic analysis divided the MiPEBP genes into three subfamilies: MFT-like, FT-like and TFL1-like. We subsequently identified two TERMINAL FLOWER 1 homologues from the TFL1-like subfamily, MiTFL1 and MiTFL1-like, both of which were highly expressed in stems and vegetative shoots, while MiTFL1-like was highly expressed in young leaves and early flowers. A subcellular location analysis revealed that both MiTFL1 and MiTFL1-like are localized in the cytoplasm and nucleus. The ectopic expression of MiTFL1 can rescue the early-flowering and terminal-flower phenotypes in the tfl1-14 mutant of Arabidopsis thaliana, and it indicates the conserved functions in controlling the inflorescence architecture and flowering time. This study will provide insight into the isolation of PEBP family members and the key targets for breeding M. integrifolia with improved traits in plant architecture and flowering time.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Conghui Ning
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Ziyan Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Cheng Zheng
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingli Liu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Chengzhong He
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| |
Collapse
|
4
|
Li Y, Xiao L, Zhao Z, Zhao H, Du D. Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L. BMC Genom Data 2023; 24:27. [PMID: 37138210 PMCID: PMC10155459 DOI: 10.1186/s12863-023-01127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND With the release of genomic data for B.rapa, B.oleracea, and B.napus, research on the genetic and molecular functions of Brassica spp. has entered a new stage. PEBP genes in plants play an important role in the transition to flowering as well as seed development and germination. Molecular evolutionary and functional analyses of the PEBP gene family in B.napus based on molecular biology methods can provide a theoretical basis for subsequent investigations of related regulators. RESULTS In this paper, we identified a total of 29 PEBP genes from B.napus that were located on 14 chromosomes and 3 random locations. Most members contained 4 exons and 3 introns; motif 1 and motif 2 were the characteristic motifs of PEBP members. On the basis of intraspecific and interspecific collinearity analyses, it is speculated that fragment replication and genomic replication are the main drivers of for the amplification and evolution of the PEBP gene in the B.napus genome. The results of promoter cis-elements prediction suggest that BnPEBP family genes are inducible promoters, which may directly or indirectly participate in multiple regulatory pathways of plant growth cycle. Furthermore, the tissue-specific expression results show that the expression levels of BnPEBP family genes in different tissues were quite different, but the gene expression organization and patterns of the same subgroup were basically the same. qRT‒PCR revealed certain spatiotemporal patterns in the expression of the PEBP subgroups in roots, stems, leaves, buds, and siliques, was tissue-specific, and related to function. CONCLUSIONS A systematic comparative analysis of the B.napus PEBP gene family was carried out at here. The results of gene identification, phylogenetic tree construction, structural analysis, gene duplication analysis, prediction of promoter cis-elements and interacting proteins, and expression analysis provide a reference for exploring the molecular mechanisms of BnPEBP family genes in future research.
Collapse
Affiliation(s)
- Yanling Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Lu Xiao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Zhi Zhao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Hongping Zhao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Dezhi Du
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China.
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China.
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China.
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China.
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China.
| |
Collapse
|
5
|
Bach VN, Ding J, Yeung M, Conrad T, Odeh HN, Cubberly P, Figy C, Ding HF, Trumbly R, Yeung KC. A Negative Regulatory Role for RKIP in Breast Cancer Immune Response. Cancers (Basel) 2022; 14:cancers14153605. [PMID: 35892864 PMCID: PMC9330697 DOI: 10.3390/cancers14153605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Breast cancer is the second most common cancer in women worldwide. Regulation of breast cancer metastasis remains an elusive phenomenon. Elucidating the mechanistic pathway of metastatic signaling may identify targets for regulating cancer metastatic potential. Raf-1 kinase inhibitor protein (RKIP) has been shown to negatively regulate signaling pathways involved in cancer progression and metastasis. RKIP may suppress metastasis of breast cancer cells by downregulating elements of the immune system. Abstract Raf-1 kinase inhibitor protein was first identified as a negative regulator of the Raf signaling pathway. Subsequently, it was shown to have a causal role in containing cancer progression and metastasis. Early studies suggested that RKIP blocks cancer progression by inhibiting the Raf-1 pathway. However, it is not clear if the RKIP tumor and metastasis suppression function involve other targets. In addition to the Raf signaling pathway, RKIP has been found to modulate several other signaling pathways, affecting diverse biological functions including immune response. Recent advances in medicine have identified both positive and negative roles of immune response in cancer initiation, progression and metastasis. It is possible that one way that RKIP exerts its effect on cancer is by targeting an immune response mechanism. Here, we provide evidence supporting the causal role of tumor and metastasis suppressor RKIP in downregulating signaling pathways involved with immune response in breast cancer cells and discuss its potential ramification on cancer therapy.
Collapse
Affiliation(s)
- Vu N. Bach
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Jane Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Georgia, GA 30912, USA; (J.D.); (H.-F.D.)
| | - Miranda Yeung
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Taylor Conrad
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Hussain N. Odeh
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Paige Cubberly
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Christopher Figy
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Georgia, GA 30912, USA; (J.D.); (H.-F.D.)
| | - Robert Trumbly
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
- Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA
- Correspondence: (R.T.); (K.C.Y.)
| | - Kam C. Yeung
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH 43614, USA; (V.N.B.); (M.Y.); (T.C.); (H.N.O.); (P.C.); (C.F.)
- Correspondence: (R.T.); (K.C.Y.)
| |
Collapse
|
6
|
Dong Y, Lin X, Kapoor A, Gu Y, Xu H, Major P, Tang D. Insights of RKIP-Derived Suppression of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13246388. [PMID: 34945007 PMCID: PMC8699807 DOI: 10.3390/cancers13246388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite an intensive research effort in the past few decades, prostate cancer (PC) remains a top cause of cancer death in men, particularly in the developed world. The major cause of fatality is the progression of local prostate cancer to metastasis disease. Treatment of patients with metastatic prostate cancer (mPC) is generally ineffective. Based on the discovery of mPC relying on androgen for growth, many patients with mPC show an initial response to the standard of care: androgen deprivation therapy (ADT). However, lethal castration resistant prostate cancers (CRPCs) commonly develop. It is widely accepted that intervention of metastatic progression of PC is a critical point of intervention to reduce PC death. Accumulative evidence reveals a role of RKIP in suppression of PC progression towards mPC. We will review current evidence and discuss the potential utilization of RKIP in preventing mPC progression. Abstract Prostate cancer (PC) is a major cause of cancer death in men. The disease has a great disparity in prognosis. Although low grade PCs with Gleason scores ≤ 6 are indolent, high-risk PCs are likely to relapse and metastasize. The standard of care for metastatic PC (mPC) remains androgen deprivation therapy (ADT). Resistance commonly occurs in the form of castration resistant PC (CRPC). Despite decades of research efforts, CRPC remains lethal. Understanding of mechanisms underpinning metastatic progression represents the overarching challenge in PC research. This progression is regulated by complex mechanisms, including those regulating PC cell proliferation, epithelial–mesenchymal transition (EMT), and androgen receptor (AR) signaling. Among this PC metastatic network lies an intriguing suppressor of PC metastasis: the Raf kinase inhibitory protein (RKIP). Clinically, the RKIP protein is downregulated in PC, and showed further reduction in mPC. In xenograft mouse models for PC, RKIP inhibits metastasis. In vitro, RKIP reduces PC cell invasion and sensitizes PC cells to therapeutic treatments. Mechanistically, RKIP suppresses Raf-MEK-ERK activation and EMT, and modulates extracellular matrix. In return, Snail, NFκB, and the polycomb protein EZH2 contribute to inhibition of RKIP expression. In this review, we will thoroughly analyze RKIP’s tumor suppression actions in PC.
Collapse
Affiliation(s)
- Ying Dong
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
| | - Hui Xu
- The Division of Nephrology, Xiangya Hospital of the Central South University, Changsha 410008, China;
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Damu Tang
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.D.); (X.L.); (A.K.); (Y.G.)
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35168)
| |
Collapse
|
7
|
Suramin Targets the Conserved Ligand-Binding Pocket of Human Raf1 Kinase Inhibitory Protein. Molecules 2021; 26:molecules26041151. [PMID: 33670019 PMCID: PMC7926937 DOI: 10.3390/molecules26041151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Suramin was initially used to treat African sleeping sickness and has been clinically tested to treat human cancers and HIV infection in the recent years. However, the therapeutic index is low with numerous clinical side-effects, attributed to its diverse interactions with multiple biological macromolecules. Here, we report a novel binding target of suramin, human Raf1 kinase inhibitory protein (hRKIP), which is an important regulatory protein involved in the Ras/Raf1/MEK/ERK (MAPK) signal pathway. Biolayer interference technology showed that suramin had an intermediate affinity for binding hRKIP with a dissociation constant of 23.8 µM. Both nuclear magnetic resonance technology and molecular docking analysis revealed that suramin bound to the conserved ligand-binding pocket of hRKIP, and that residues K113, W173, and Y181 play crucial roles in hRKIP binding suramin. Furthermore, suramin treatment at 160 µM could profoundly increase the ERK phosphorylation level by around 3 times. Our results indicate that suramin binds to hRKIP and prevents hRKIP from binding with hRaf1, thus promoting the MAPK pathway. This work is beneficial to both mechanistically understanding the side-effects of suramin and efficiently improving the clinical applications of suramin.
Collapse
|
8
|
Abo-Kadoum MA, Assad M, Dai Y, Lambert N, Moure UAE, Eltoukhy A, Nzaou SAE, Moaaz A, Xie J. Mycobacterium tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c is involved in cell wall arabinogalactan biosynthesis via phosphorylation. Microbiol Res 2020; 242:126615. [PMID: 33189070 DOI: 10.1016/j.micres.2020.126615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis Rv2140c is a function unknown conserved phosphatidylethanolamine-binding protein (PEBP), homologous to Raf kinase inhibitor protein (RKIP) in human beings. To delineate its function, we heterologously expressed Rv2140c in a non-pathogenic M. smegmatis. Quantitative phosphoproteomic analysis between two recombinant strains Ms_Rv2140c and Ms_vec revealed that Rv2140c differentially regulate 425 phosphorylated sites representing 282 proteins. Gene ontology GO, and a cluster of orthologous groups COG analyses showed that regulated phosphoproteins by Rv2140c were mainly associated with metabolism and cellular processes. Rv2140c significantly repressed phosphoproteins involved in signaling, including serine/threonine-protein kinases and two-component system, and the arabinogalactan biosynthesis pathway phosphoproteins were markedly up-regulated, suggesting a role of Rv2140c in modulating cell wall. Consistent with phosphoproteomic data, Rv2140c altered some phenotypic properties of M. smegmatis such as colony morphology, cell wall permeability, survival in acidic conditions, and active lactose transport. In summary, we firstly demonstrated the role of PEBP protein Rv2140c, especially in phosphorylation of mycobacterial arabinogalactan biosynthesis proteins.
Collapse
Affiliation(s)
- M A Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch, Egypt
| | - Mohammed Assad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yongdong Dai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Nzungize Lambert
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch, Egypt; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Stech A E Nzaou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Asmaa Moaaz
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol 2020; 109:20-30. [PMID: 32507412 DOI: 10.1016/j.semcdb.2020.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
Plant growth and development, particularly the induction of flowering, are tightly controlled by key regulators in response to endogenous and environmental cues. The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family of phosphatidylethanolamine-binding protein (PEBP) genes is central to plant development, especially the regulation of flowering time and plant architecture. FT, the long-sought florigen, promotes flowering and TFL1 represses flowering. The balance between FT and TFL1 modulates plant architecture by switching the meristem from indeterminate to determinate growth, or vice versa. Recent studies in a broad range of plant species demonstrated that, in addition to their roles in flowering time and plant architecture, FT/TFL1 family genes participate in diverse aspects of plant development, such as bamboo seed germination and potato tuber formation. In this review, we briefly summarize the evolution of the FT/TFL1 family and highlight recent findings on their conserved and divergent functions in different species.
Collapse
|
10
|
Jin H, Tang X, Xing M, Zhu H, Sui J, Cai C, Li S. Molecular and transcriptional characterization of phosphatidyl ethanolamine-binding proteins in wild peanuts Arachis duranensis and Arachis ipaensis. BMC PLANT BIOLOGY 2019; 19:484. [PMID: 31706291 PMCID: PMC6842551 DOI: 10.1186/s12870-019-2113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/31/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in the regulation of plant architecture and flowering time. The functions of PEBP genes have been studied in many plant species. However, little is known about the characteristics and expression profiles of PEBP genes in wild peanut species, Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanuts. RESULTS In this study, genome-wide identification methods were used to identify and characterize a total of 32 peanut PEBP genes, 16 from each of the two wild peanut species, A. duranensis and A. ipaensis. These PEBP genes were classified into 3 groups (TERMINAL FLOWER1-like, FLOWERING LOCUS T-like, and MOTHER OF FT AND TFL1-like) based on their phylogenetic relationships. The gene structures, motifs, and chromosomal locations for each of these PEBPs were analyzed. In addition, 4 interchromosomal duplications and 1 tandem duplication were identified in A. duranensis, and 2 interchromosomal paralogs and 1 tandem paralog were identified in A. ipaensis. Ninety-five different cis-acting elements were identified in the PEBP gene promoter regions and most genes had different numbers and types of cis-elements. As a result, the transcription patterns of these PEBP genes varied in different tissues and under long day and short day conditions during different growth phases, indicating the functional diversities of PEBPs in different tissues and their potential functions in plant photoperiod dependent developmental pathways. Moreover, our analysis revealed that AraduF950M/AraduWY2NX in A. duranensis, and Araip344D4/Araip4V81G in A. ipaensis are good candidates for regulating plant architecture, and that Aradu80YRY, AraduYY72S, and AraduEHZ9Y in A. duranensis and AraipVEP8T in A. ipaensis may be key factors regulating flowering time. CONCLUSION Sixteen PEBP genes were identified and characterized from each of the two diploid wild peanut genomes, A. duranensis and A. ipaensis. Genetic characterization and spatio-temporal expression analysis support their importance in plant growth and development. These findings further our understanding of PEBP gene functions in plant species.
Collapse
Affiliation(s)
- Hanqi Jin
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xuemin Tang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Mengge Xing
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
11
|
Huang Q, Wei J, Wei L, Zhang X, Bai F, Wen S, Wei Y, Tan S, Lu Z, Lin X. Retracted
: Role of RKIP in human hepatic stellate cell proliferation, invasion, and metastasis. J Cell Biochem 2018; 120:6168-6177. [DOI: 10.1002/jcb.27904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Quanfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi University of Chinese Medicine Nanning Guangxi China
| | - Jinbin Wei
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| | - Ling Wei
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| | - Xiaolin Zhang
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| | - Facheng Bai
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| | - Shujuan Wen
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| | - Yuanyuan Wei
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| | - Shimei Tan
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| | - Zhongpeng Lu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi University of Chinese Medicine Nanning Guangxi China
- Pharmaceutical College, University of Arkansas Medical School Little Rock Arkansas
| | - Xing Lin
- Life Sciences Institute and Pharmaceutical College, Guangxi Medical University Nanning Guangxi China
| |
Collapse
|
12
|
Iqbal J, Zhang K, Jin N, Zhao Y, Liu Q, Ni J, Shen L. Selenium positively affects the proteome of 3 × Tg-AD mice cortex by altering the expression of various key proteins: unveiling the mechanistic role of selenium in AD prevention. J Neurosci Res 2018; 96:1798-1815. [DOI: 10.1002/jnr.24309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Javed Iqbal
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Kaoyuan Zhang
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Na Jin
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Yuxi Zhao
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Qiong Liu
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Jiazuan Ni
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| |
Collapse
|
13
|
Pyo JH, Jeon HJ, Park JS, Lee JS, Chung HY, Yoo MA. Drosophila PEBP1 inhibits intestinal stem cell aging via suppression of ERK pathway. Oncotarget 2018; 9:17980-17993. [PMID: 29719584 PMCID: PMC5915051 DOI: 10.18632/oncotarget.24834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
The intestine is a high cellular turnover tissue largely dependent on the regenerative function of stem cell throughout life, and a signaling center for the health and viability of organisms. Therefore, better understanding of the mechanisms underlying the regulation of intestinal stem cell (ISC) regenerative potential is essential for the possible intervention of aging process and age-related diseases. Drosophila midgut is a well-established model system for studying the mechanisms underlying ISC regenerative potential during aging. Here, we report the requirement of Drosophila phosphatidylethanolamine binding protein 1 (PEBP1) in ISC regenerative potential. We showed that PEBP1 was strongly expressed in enterocytes (ECs) of guts and its decrease with age and oxidative stress. Furthermore, the downregulation of PEBP1 in ECs accelerates ISC aging, as evidenced by ISC hyper-proliferation, γH2AX accumulation, and centrosome amplification, and intestinal hyperplasia. The decrease in PEBP1 expression was associated with increased extracellular signal-regulated kinase (ERK) activity in ECs. All these phenotypes by EC-specific depletion of PEBP1 were rescued by the concomitant inhibition of ERK signaling. Our findings evidence that the age-related downregulation of PEBP1 in ECs is a novel cause accelerating ISC aging and that PEBP1 is an EC-intrinsic suppressor of epidermal growth factor receptor (EGFR)/ERK signaling. Our study provides molecular insights into the tight regulation of EGFR/ERK signaling in niches for stem cell regenerative potential.
Collapse
Affiliation(s)
- Jung-Hoon Pyo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea.,Institute of Systems Biology (ISB), Pusan National University, Busan, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ho-Jun Jeon
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Joung-Sun Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea.,Institute of Systems Biology (ISB), Pusan National University, Busan, Republic of Korea
| | - Jae-Sun Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hae-Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea.,Institute of Systems Biology (ISB), Pusan National University, Busan, Republic of Korea
| |
Collapse
|
14
|
He H, Willems LAJ, Batushansky A, Fait A, Hanson J, Nijveen H, Hilhorst HWM, Bentsink L. Effects of Parental Temperature and Nitrate on Seed Performance are Reflected by Partly Overlapping Genetic and Metabolic Pathways. PLANT & CELL PHYSIOLOGY 2016; 57:473-87. [PMID: 26738545 DOI: 10.1093/pcp/pcv207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
Seed performance is affected by the seed maturation environment, and previously we have shown that temperature, nitrate and light intensity were the most influential environmental factors affecting seed performance. Seeds developed in these environments were selected to assess the underlying metabolic pathways, using a combination of transcriptomics and metabolomics. These analyses revealed that the effects of the parental temperature and nitrate environments were reflected by partly overlapping genetic and metabolic networks, as indicated by similar changes in the expression levels of metabolites and transcripts. Nitrogen metabolism-related metabolites (asparagine, γ-aminobutyric acid and allantoin) were significantly decreased in both low temperature (15 °C) and low nitrate (N0) maturation environments. Correspondingly, nitrogen metabolism genes (ALLANTOINASE, NITRATE REDUCTASE 1, NITRITE REDUCTASE 1 and NITRILASE 4) were differentially regulated in the low temperature and nitrate maturation environments, as compared with control conditions. High light intensity during seed maturation increased galactinol content, and displayed a high correlation with seed longevity. Low light had a genotype-specific effect on cell surface-encoding genes in the DELAY OF GERMINATION 6-near isogenic line (NILDOG6). Overall, the integration of phenotypes, metabolites and transcripts led to new insights into the regulation of seed performance.
Collapse
Affiliation(s)
- Hanzi He
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Leo A J Willems
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Albert Batushansky
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben-Gurion, Israel
| | - Aaron Fait
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben-Gurion, Israel
| | - Johannes Hanson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden Department of Molecular Plant Physiology, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | - Harm Nijveen
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands Laboratory of Bioinformatics, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Henk W M Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands
| | - Leónie Bentsink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, The Netherlands Department of Molecular Plant Physiology, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| |
Collapse
|
15
|
Molecular and Functional Characterization of FLOWERING LOCUS T Homologs in Allium cepa. Molecules 2016; 21:molecules21020217. [PMID: 26891287 PMCID: PMC6274202 DOI: 10.3390/molecules21020217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 01/20/2023] Open
Abstract
Onion bulbing is an important agricultural trait affecting economic value and is regulated by flowering-related genes. FLOWERING LOCUS T (FT)-like gene function is crucial for the initiation of flowering in various plant species and also in asexual reproduction in tuber plants. By employing various computational analysis using RNA-Seq data, we identified eight FT-like genes (AcFT) encoding PEBP (phosphatidylethanolamine-binding protein) domains in Allium cepa. Sequence and phylogenetic analyses of FT-like proteins revealed six proteins that were identical to previously reported AcFT1-6 proteins, as well as one (AcFT7) with a highly conserved region shared with AcFT6 and another (comp106231) with low similarity to MFT protein, but containing a PEBP domain. Homology modelling of AcFT7 proteins showed similar structures and conservation of amino acids crucial for function in AtFT (Arabidopsis) and Hd3a (rice), with variation in the C-terminal region. Further, we analyzed AcFT expression patterns in different transitional stages, as well as under SD (short-day), LD (long-day), and drought treatment in two contrasting genotypic lines EM (early maturation, 36101) and LM (late maturation, 36122). The FT transcript levels were greatly affected by various environmental factors such as photoperiod, temperature and drought. Our results suggest that AcFT7 is a member of the FT-like genes in Allium cepa and may be involved in regulation of onion bulbing, similar to other FT genes. In addition, AcFT4 and AcFT7 could be involved in establishing the difference in timing of bulb maturity between the two contrasting onion lines.
Collapse
|
16
|
Kim SJ, Hong SM, Yoo SJ, Moon S, Jung HS, Ahn JH. Post-Translational Regulation of FLOWERING LOCUS T Protein in Arabidopsis. MOLECULAR PLANT 2016; 9:308-311. [PMID: 26548373 DOI: 10.1016/j.molp.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Soo-Jin Kim
- Creative Research Initiatives, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Sung Myun Hong
- Creative Research Initiatives, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Seong Jeon Yoo
- Creative Research Initiatives, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Suhyun Moon
- Creative Research Initiatives, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Hye Seung Jung
- Creative Research Initiatives, Department of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Ji Hoon Ahn
- Creative Research Initiatives, Department of Life Sciences, Korea University, Seoul 136-701, Korea.
| |
Collapse
|
17
|
Raf kinase inhibitor protein mediated signaling inhibits invasion and metastasis of hepatocellular carcinoma. Biochim Biophys Acta Gen Subj 2016; 1860:384-91. [DOI: 10.1016/j.bbagen.2015.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 11/18/2022]
|
18
|
Fukada H, Mima J, Nagayama M, Kato M, Ueda M. Biochemical Analysis of the Yeast Proteinase Inhibitor (IC) Homolog ICh and Its Comparison with IC. Biosci Biotechnol Biochem 2014; 71:472-80. [PMID: 17317927 DOI: 10.1271/bbb.60528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carboxypeptidase Y (CPY) inhibitor (I(C)) and its homologous protein (I(C)h) are thought to be members of the phosphatidylethanolamine-binding protein (PEBP) family of Saccharomyces cerevisiae. The biochemical characterization of I(C) and its inhibition mode toward CPY were recently reported, but I(C)h has not been characterized. The molecular mass of I(C)h was determined to be 22,033.7. The N-terminal Met1 was cleaved and the amino group of Ser2 was acetylated. I(C)h is folded as a monomeric beta-protein and is devoid of disulfide bonds. It has no inhibitory activity toward CPY, and it does not form a complex with CPY. I(C)h was exclusively expressed in the early log phase, whereas I(C) was expressed in the logarithmic and stationary phase. The intracellular localization of I(C)h was different from that of I(C). These findings provide insights into the physiological functions of I(C)h.
Collapse
Affiliation(s)
- Hiroaki Fukada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, Japan
| | | | | | | | | |
Collapse
|
19
|
Harn HJ, Chen YL, Lin PC, Cheng YL, Lee SC, Chiou TW, Yang HH. Exploration of Potential Tumor Markers for Lung Adenocarcinomas by Two-Dimensional Gel Electrophoresis Coupled with Nano-LC/MS/MS. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Guo W, Dong Z, Guo Y, Lin X, Chen Z, Kuang G, Yang Z. Aberrant methylation and loss expression of RKIP is associated with tumor progression and poor prognosis in gastric cardia adenocarcinoma. Clin Exp Metastasis 2012; 30:265-75. [PMID: 22983529 DOI: 10.1007/s10585-012-9533-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/03/2012] [Indexed: 02/07/2023]
Abstract
Raf kinase inhibitory protein (RKIP) has been identified as a member of a novel class of molecules which implicated in cancer progression and suppress the metastatic spread of tumors. The aim of this study was to investigate the promoter methylation and expression of RKIP, determine the prognostic significance of RKIP in gastric cardia adenocarcinoma (GCA). MSP approach and immunohistochemistry methods were used respectively to examine methylation status and protein expression of RKIP in GCA tissues. The frequency of RKIP methylation in GCA tumor tissues (62.1 %) was significantly higher than that in corresponding normal tissues (4.1 %) and was associated with TNM stage, histological differentiation, depth of invasion, LN metastasis, distant metastasis or recurrence, and upper gastrointestinal cancers (UGIC) family history. Positive staining of RKIP in GCA tumor tissues (34.5 %) was significantly decreased than that in corresponding normal tissues (84.1 %) and was associated with RKIP methylation. RKIP may act as a tumor suppressor gene in GCA by regulation of the Raf-1/MEK/ERK signaling pathway. GCA patients in stage III and IV, with positive UGIC family history, and hypermethylation and down-expression of RKIP were most likely to develop metastatic disease and also showed the worse survival. RKIP methylation in GCA was an independent prognostic marker for survival using multivariate Cox regression analysis (P = 0.04). In all, aberrant hypermethylation of RKIP may be one of the mechanisms that lead to loss or down expression of the gene in GCA especially in individuals with UGIC family history. Additionally, hypermethylation and loss of RKIP expression may be used as a marker to predict clinical outcome of GCA.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
21
|
An LP, Maeda T, Sakaue T, Takeuchi K, Yamane T, Du PG, Ohkubo I, Ogita H. Purification, molecular cloning and functional characterization of swine phosphatidylethanolamine-binding protein 4 from seminal plasma. Biochem Biophys Res Commun 2012; 423:690-6. [DOI: 10.1016/j.bbrc.2012.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
22
|
Beaufour M, Godin F, Vallée B, Cadene M, Bénédetti H. Interaction Proteomics Suggests a New Role for the Tfs1 Protein in Yeast. J Proteome Res 2012; 11:3211-8. [DOI: 10.1021/pr201239t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martine Beaufour
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, UPR 4301, affiliated to the University of Orléans, rue Charles Sadron,
45071 Orléans cedex 2
| | - Fabienne Godin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, UPR 4301, affiliated to the University of Orléans, rue Charles Sadron,
45071 Orléans cedex 2
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, UPR 4301, affiliated to the University of Orléans, rue Charles Sadron,
45071 Orléans cedex 2
| | - Martine Cadene
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, UPR 4301, affiliated to the University of Orléans, rue Charles Sadron,
45071 Orléans cedex 2
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, UPR 4301, affiliated to the University of Orléans, rue Charles Sadron,
45071 Orléans cedex 2
| |
Collapse
|
23
|
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. PLANT PHYSIOLOGY 2011; 156:1967-77. [PMID: 21642442 PMCID: PMC3149940 DOI: 10.1104/pp.111.176206] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
The phosphatidyl ethanolamine-binding protein (PEBP) gene family is present in all eukaryote kingdoms, with three subfamilies identified in angiosperms (FLOWERING LOCUS T [FT], MOTHER OF FT AND TFL1 [MFT], and TERMINAL FLOWER1 [TFL1] like). In angiosperms, PEBP genes have been shown to function both as promoters and suppressors of flowering and to control plant architecture. In this study, we focus on previously uncharacterized PEBP genes from gymnosperms. Extensive database searches suggest that gymnosperms possess only two types of PEBP genes, MFT-like and a group that occupies an intermediate phylogenetic position between the FT-like and TFL1-like (FT/TFL1-like). Overexpression of Picea abies PEBP genes in Arabidopsis (Arabidopsis thaliana) suggests that the FT/TFL1-like genes (PaFTL1 and PaFTL2) code for proteins with a TFL1-like function. However, PaFTL1 and PaFTL2 also show highly divergent expression patterns. While the expression of PaFTL2 is correlated with annual growth rhythm and mainly confined to needles and vegetative and reproductive buds, the expression of PaFTL1 is largely restricted to microsporophylls of male cones. The P. abies MFT-like genes (PaMFT1 and PaMFT2) show a predominant expression during embryo development, a pattern that is also found for many MFT-like genes from angiosperms. P. abies PEBP gene expression is primarily detected in tissues undergoing physiological changes related to growth arrest and dormancy. A first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy was required, and the second duplication resulting in the FT-like and TFL1-like clades probably coincided with the evolution of angiosperms.
Collapse
|
24
|
Raijmakers R, Dadvar P, Pelletier S, Gouw J, Rumpel K, Heck AJR. Target profiling of a small library of phosphodiesterase 5 (PDE5) inhibitors using chemical proteomics. ChemMedChem 2011; 5:1927-36. [PMID: 20862763 DOI: 10.1002/cmdc.201000303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inhibitors of phosphodiesterase 5 (PDE5) are widely used for the treatment of erectile dysfunction and pulmonary hypertension. The commercially available inhibitors are effective, well-tolerated drugs, but differ in their phosphodiesterase specificity. To explore and manipulate the specificity of PDE5 inhibitors, a small library of four inhibitors was synthesized using the structure of known PDE5 inhibitors as a scaffold. Their inhibitory potency towards PDE5 and related family members was evaluated. Next, they were immobilized on a matrix to perform affinity pull-down assays in rat testis tissue, followed by mass spectrometric (MS) analysis. By using unique peptide spectral counts of identified proteins in the MS analysis, we were able to assess the relative binding of these inhibitors to a large set of proteins, allowing the determination of their selectivity profiles in vitro. For selected proteins of interest, the results were verified using quantitative isotopic dimethyl labeling and immunoblotting, and isothermal titration calorimetry (ITC). For the PDE5 inhibitors, our data reveal that even slight chemical modifications can bias their selectivity significantly towards other interacting proteins, opening up the potential of these compounds to be used as scaffolds for the development of inhibitors for new protein targets. In a broad sense, we demonstrate that the combination of chemical proteomics and unique peptide spectral counting allows for the confident and facile analysis of the differential interactome of bioactive small molecules.
Collapse
Affiliation(s)
- Reinout Raijmakers
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Shemon AN, Heil GL, Granovsky AE, Clark MM, McElheny D, Chimon A, Rosner MR, Koide S. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands. PLoS One 2010; 5:e10479. [PMID: 20463977 PMCID: PMC2864760 DOI: 10.1371/journal.pone.0010479] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/27/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. METHODS/FINDINGS In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. CONCLUSIONS/SIGNIFICANCE This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.
Collapse
Affiliation(s)
- Anne N. Shemon
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Gary L. Heil
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Alexey E. Granovsky
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Mathew M. Clark
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois, United States of America
| | - Dan McElheny
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Alexander Chimon
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| | - Marsha R. Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Martins-De-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, Maccarrone G, Turck CW, Gattaz WF. Proteome analysis of schizophrenia brain tissue. World J Biol Psychiatry 2010; 11:110-20. [PMID: 20109112 DOI: 10.3109/15622970903490626] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Proteome analysis has emerged as a promising strategy to the identification of potential biomarkers and to further confirm the importance of certain pathways in the schizophrenia (SCZ) pathophysiology. Reviewing the results of 13 proteome studies in SCZ brain tissue, we aimed to provide information regarding potential proteins biomarkers as well as information about the pathophysiology of the disease. METHODS AND RESULTS Using two-dimensional gel electrophoresis and shotgun mass spectrometry, 31 proteins were consistently found differentially expressed in the brains of SCZ patients. The most frequent protein alterations reported in SCZ were related to brain energy metabolism, brain plasticity, and synaptic function, processes that are thought to belong to the core of the biology of this disease. The recurrent identification and validation of inter-related protein clusters, determined in different samples and approaches, strongly reinforces the putative involvement of certain pathways in SCZ. CONCLUSIONS The availability of reliable markers not only paves the way to the development of new therapeutic strategies but also points out the possibility of their use as peripheral blood markers that may potentially contribute to the early SCZ detection and early therapeutic intervention, both of which can reduce the social and cognitive consequences of the disease.
Collapse
|
27
|
Rautureau G, Jouvensal L, Vovelle F, Schoentgen F, Locker D, Decoville M. Expression and characterization of the PEBP homolog genes from Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:55-69. [PMID: 19309003 DOI: 10.1002/arch.20300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phosphatidylethanolamine binding proteins (PEBPs) family is evolutionarily conserved and involved in different physiological phenomena. PEBPs were found in many species from bacteria to mammals. Despite numerous studies, PEBPs' biological function and mode of action remain elusive. Based on sequence homology, seven PEBP genes were detected in the Drosophila genome. Only one of them, the odorant binding protein (OBP), has been characterized. To date nothing is known concerning the expression pattern and biological roles of the six other PEBP genes. By RT-PCR and Western blot analysis, we examined expression of the PEBPs in different tissues and embryos. The 6 PEBPs were differentially expressed. Only one, CG10298, is specific of only one tissue: the testis. Additionally, by comparing in wild type and male-sterile mutants we show that CG10298 is present only during spermatid differentiation. Furthermore, by comparing structural parameters of the six PEBP proteins with those of human PEBP-1, we have established that PEBP CG10298 is most closely related to human PEBP.
Collapse
Affiliation(s)
- Gilles Rautureau
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans, France
| | | | | | | | | | | |
Collapse
|
28
|
Yi Z, Jingting C, Yu Z. Proteomics Reveals Protein Profile Changes in Cyclooxygenase-2 Inhibitor-Treated Endometrial Cancer Cells. Int J Gynecol Cancer 2009; 19:326-33. [DOI: 10.1111/igc.0b013e31819f1b4d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Objective:To examine effects of an inhibitor of cyclooxygenase (COX)-2, NS-398, on the proliferation, apoptosis and invasion characteristics of endometrial cancer cell RL95-2.Methods:(1) Western blotting was carried out to determine COX-2 protein expression in RL95-2 cells and normal endometrium specimens. (2) The effect of NS-398 treatment on the cell proliferation, apoptosis, and invasion was assessed by methyl thiazolyl tetrazolium assay, flow cytometry, and matrigel invasion assay, respectively. (3) Finally, the proteomic analysis was used to find out proteins that are differentially expressed because of NS-398 treatment.Results:(1) COX-2 protein in RL95-2 cell line was significantly higher than that in normal endometrium. (2) NS-398 had significant growth inhibition effects on RL95-2 cells in a dose- and time-dependent manner. (3) NS-398 increased the proportion of cells in G1 and decreased the proportion of cells in the G2 phase in RL95-2 cells. (4) NS-398 could restrain endometrial cancer cells invasion. (5) The proteomic analysis revealed several proteins that are differentially expressed because of NS-398 treatment; the down-regulated proteins identified are hnRNP K, α enolase, Hsp70, tropomyosin, and protein disulfide isomerase, the up-regulated protein is phosphatidylethanolamine binding protein.Conclusions:The expression of COX-2 plays an important role in tumorigenesis of endometrial cancer. NS-398 can inhibit the ability of RL95-2 cell proliferation, viability, and invasion. In this study, the well-resolved reproducible 2-DE maps of NS-398 treated and control RL95-2 cells were established, and the significantly different expressed proteins are preliminary identified.
Collapse
|
29
|
Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism. Mol Cell Biol 2008; 29:1306-20. [PMID: 19103740 DOI: 10.1128/mcb.01271-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.
Collapse
|
30
|
Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell Res 2008; 18:452-7. [PMID: 18379591 DOI: 10.1038/cr.2008.43] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.
Collapse
|
31
|
Gombault A, Godin F, Sy D, Legrand B, Chautard H, Vallée B, Vovelle F, Bénédetti H. Molecular basis of the Tfs1/Ira2 interaction: a combined protein engineering and molecular modelling study. J Mol Biol 2007; 374:604-17. [PMID: 17945254 DOI: 10.1016/j.jmb.2007.09.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/19/2007] [Accepted: 09/19/2007] [Indexed: 11/27/2022]
Abstract
Tfs1p and Ylr179cp are yeast proteins belonging to the PEBP family. Tfs1p, but not Ylr179cp, has been shown to interact with and inhibit Ira2p, a GTPase-activating protein of Ras. Tfs1p has been shown to be a specific inhibitor of the CPY protease and the 3D structure of the complex has been resolved. To shed light on the molecular determinants of Tfs1p involved in the Tfs1/Ira2 interaction, the 3D structure of Ylr179cp has been modelled and compared to that of Tfs1p. Tfs1p point mutants and Tfs1 hybrid proteins combining regions of Tfs1p and Ylr179cp were also designed and their function was tested. Results, interpreted from a structural point of view, show that the accessibility of the surface pocket of Tfs1p, its N-terminal region and the specific electrostatic properties of a large surface region containing these two elements, play a crucial role in this interaction.
Collapse
Affiliation(s)
- Aurélie Gombault
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, UPR 4301, affiliated to the University of Orléans and to INSERM, rue Charles Sadron, 45071 ORLEANS Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bianchi L, Lorenzoni P, Bini L, Weber E, Tani C, Rossi A, Agliano M, Pallini V, Sacchi G. Protein expression profiles of Bos taurus blood and lymphatic vessel endothelial cells. Proteomics 2007; 7:1600-14. [PMID: 17486557 DOI: 10.1002/pmic.200600855] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The endothelium is a metabolically active organ that regulates the interaction between blood or lymph and the vessel or the surrounding tissue. Blood endothelium has been the object of many investigations whereas lymphatic endothelium biology is yet poorly understood. This report deals with a proteomic approach to the characterization and comparative analysis of lymphatic and blood vessel endothelial cells (ECs). By 2-DE we visualized the protein profiles of EC extracts from the thoracic aorta, inferior vena cava, and thoracic duct of Bos taurus. The three obtained electropherograms were then analyzed by specific software, and 113 quantitative and 25 qualitative differences were detected between the three endothelial gels. The cluster analysis of qualitative and quantitative differences evidenced the protein pattern of lymphatic ECs to be more similar to the venous than to the arterial one. Moreover, venous ECs were interestingly found showing a protein expression profile more similar to the lymphatic ECs than to the arterial ones. We also identified 64 protein spots by MALDI-TOF MS and ESI-IT MS/MS and three reference maps of bovine endothelium were obtained. The functional implications of the identified proteins in vascular endothelial biology are discussed.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Molecular Biology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Diao WF, Höger H, Chen WQ, Pollak A, Lubec G. Estrous-cycle-dependent hippocampal levels of signaling proteins. Hippocampus 2007; 17:563-76. [PMID: 17427236 DOI: 10.1002/hipo.20293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is information that proteins are expressed in a hormone-dependent manner but no systematic study on this subject has been carried out to the best of our knowledge. We therefore decided to investigate protein expression in a well-studied brain area, the hippocampus, in female rats at various phases of the estrous cycle and in male rats. Male and female OFA Sprague-Dawley rats were used in the studies and estrous phases were determined using vaginal smears and females were grouped according to PE, E, ME, and DE. Hippocampal tissue was taken, proteins extracted, run on two-dimensional gel electrophoresis and proteins were identified by mass spectrometry methods (MALDI-TOF-TOF and nano-LC-ESI-MS/MS). Individual signaling protein levels quantified by specific software were shown to depend on sex and phase of the estrous cycle. These include NG,NG-dimethylarginine dimethylaminohydrolase for nitric oxide signaling, stathmin, SH3 domain protein 2A, SH3 domain protein 2B, S100 calcium binding protein B, calcyclin-binding protein, Syndapin I, GTPase HRas, guanine nucleotide-binding proteins, septin 8, G-septin alpha, phosphtidylethanolamine-binding protein, several protein phosphatases. Results from this study, although increasing complexity of protein knowledge, may help to design further investigations at the protein level and may assist to interpret literature on protein expression and brain protein levels.
Collapse
Affiliation(s)
- Wei-Fei Diao
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, A-1090, Vienna, Austria
| | | | | | | | | |
Collapse
|
34
|
Pan JZ, Xi J, Tobias JW, Eckenhoff MF, Eckenhoff RG. Halothane binding proteome in human brain cortex. J Proteome Res 2007; 6:582-92. [PMID: 17269715 DOI: 10.1021/pr060311u] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhaled anesthetics bind specifically to a wide variety of proteins in the brain. This set of proteins must include those that contribute to the physiological and behavioral phenotypes of anesthesia and the related side effects. To identify the anesthetic-binding targets and functional pathways associated with these targets in human brain, halothane photolabeling and two-dimensional (2D) gel electrophoresis were used. Both membrane and soluble proteins from human temporal cortex were prepared. More than 300 membrane and 400 soluble protein spots were detected on the stained blots, of which 23 membrane and 34 soluble proteins were labeled by halothane and identified by mass spectroscopy. Their functional classification reveals five groups, including carbohydrate metabolism, protein folding, oxidative phosphorylation, nucleoside triphosphatase, and dimer/kinase activity with different correlative stringency. When network analysis of the interaction between these protein molecules is used, the weighted interaction accentuates the cellular protein components important in cell growth and proliferation, cell cycle and cell death, and cell-cell signaling and interactions, although no pathway was specific. This study provides evidence for multiple anesthetic binding targets and suggests potential pathways involved in their actions.
Collapse
Affiliation(s)
- Jonathan Z Pan
- Department of Anesthesiology and Critical Care, University of Pennsylvania Health System, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
35
|
Hu G, Steen BR, Lian T, Sham AP, Tam N, Tangen KL, Kronstad JW. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog 2007; 3:e42. [PMID: 17367210 PMCID: PMC1828699 DOI: 10.1371/journal.ppat.0030042] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 02/06/2007] [Indexed: 11/26/2022] Open
Abstract
A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase A (PKA) is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential targets for anti-cryptococcal therapy.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Mima J, Fukada H, Nagayama M, Ueda M. Specific membrane binding of the carboxypeptidase Y inhibitor I(C), a phosphatidylethanolamine-binding protein family member. FEBS J 2006; 273:5374-83. [PMID: 17076703 DOI: 10.1111/j.1742-4658.2006.05530.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
I(C), an endogenous cytoplasmic inhibitor of vacuolar carboxypeptidase Y in the yeast Saccharomyces cerevisiae, is classified as a member of the phosphatidylethanolamine-binding protein family. The binding of I(C) to phospholipid membranes was first analyzed using a liposome-binding assay and by surface plasmon resonance measurements, which revealed that the affinity of this inhibitor was not for phosphatidylethanolamine but for anionic phospholipids, such as phosphatidylserine, phosphatidylinositol 3-phosphate, phosphatidylinositol 3,4-bisphosphate, and phosphatidylinositol 3,4,5-trisphosphate, with K(D) values below 100 nm. The liposome-binding assay and surface plasmon resonance analyses of I(C), when complexed with carboxypeptidase Y, and the mutant forms of I(C) further suggest that the N-terminal segment (Met1-His18) in its carboxypeptidase Y-binding sites is involved in the specific and efficient binding to anionic phospholipid membranes. The binding of I(C) to cellular membranes was subsequently analyzed by fluorescence microscopy of yeast cells producing the green fluorescent protein-tagged I(C), suggesting that I(C) is specifically targeted to vacuolar membranes rather than cytoplasmic membranes, during the stationary growth phase. The present findings provide novel insights into the membrane-targeting and biological functions of I(C) and phosphatidylethanolamine-binding proteins.
Collapse
Affiliation(s)
- Joji Mima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan.
| | | | | | | |
Collapse
|
37
|
Angelone T, Goumon Y, Cerra MC, Metz-Boutigue MH, Aunis D, Tota B. The emerging cardioinhibitory role of the hippocampal cholinergic neurostimulating peptide. J Pharmacol Exp Ther 2006; 318:336-44. [PMID: 16608915 DOI: 10.1124/jpet.106.102103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal cholinergic neurostimulating peptide (HCNP), which derives from phosphatidylethanolamine-binding protein (also named Raf kinase inhibitor protein), enhances acetylcholine synthesis in the hippocampal medial septal nuclei. It is present in the chromaffin secretory granules of the adrenal cells and under stress is cosecreted with peptide hormones and catecholamines. Using the isolated rat heart perfused according to Langendorff to reveal the cardiotropic action of HCNP on the mammalian heart, we showed that rat HCNP exerts, at concentrations of 5x10(-13) to 10(-6) M, a negative inotropism under basal conditions (left ventricular pressure variations ranging from -8.34+/-0.94% to -21+/-3.5%) and enhances the cholinergic-mediated negative inotropy through direct interaction with G-protein-coupled muscarinic receptor pathway. Under adrenergic stimulation (isoproterenol), the peptide exerts an antiadrenergic action. The analysis of the percentage of rate pressure product variations in terms of EC50 values of isoproterenol alone (-8.5+/-0.3; r2=0.90) and in the presence of rat HCNP at 0.01 nM (-6.9+/-0.36; r2=0.88) revealed a competitive type of antagonism of the peptide. HCNP does not affect either heart rate or coronary pressure. The evidence that HCNP in mammals may play a novel role as an inhibitory cardiac modulator throughout an involvement of the myocardial G-protein-coupled receptor pathway provides new insights regarding the neurohumoral control of heart function under normal and physiopathological conditions.
Collapse
Affiliation(s)
- Tommaso Angelone
- Department of Pharmaco-Biology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | |
Collapse
|
38
|
Brand A, Yavin E. Translocation of Ethanolamine Phosphoglyceride is Required for Initiation of Apoptotic Death in OLN-93 Oligodendroglial Cells. Neurochem Res 2005; 30:1257-67. [PMID: 16341587 DOI: 10.1007/s11064-005-8797-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2005] [Indexed: 01/21/2023]
Abstract
The possible interplay between extracellular signal-regulated protein kinase (ERK) activation and ethanolamine phosphoglycerides (PG) membrane bilayer translocation following oxidative stress (OS) (0.5 mM H2O2/0.05 mM Fe2+), was examined in oligodendroglia, OLN93, cells with altered plasma membrane PG composition. Cells supplemented with 50 microM docosahexaenoic acid (DHA, 22:6n3) to increase the number of potential double bond targets for OS in ethanolamine-PG (EPG) were compared to cells with diminished content of EPG, attained by the addition of 0.5 mM N,N-dimethylethanolamine (dEa). After 30 min OS, EPG translocation accompanied by sustained ERK activation and nuclear translocation culminating in apoptosis was found in DHA-supplemented cells in contrast to no EPG translocation, a brief ERK activation, but no nuclear translocation, and no cell death in DHA/dEa-supplemented cells. DHA/dEa-supplemented cells pretreated with the protein-tyrosine phosphatases inhibitor Na3VO4 followed by OS, although expressing a sustained ERK activation and nuclear translocation, failed to show apoptosis and lacked EPG translocation. In DHA-supplemented cells U0126, a MEK inhibitor, prevented ERK activation and EPG translocation and protected from cell death. These findings most likely indicate that ERK activation is an indispensable component for the signaling cascades leading to EPG translocation but only activation of the latter is leading to OS-induced apoptotic cell death.
Collapse
Affiliation(s)
- Annette Brand
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
39
|
George AJ, Holsinger RMD, McLean CA, Tan SS, Scott HS, Cardamone T, Cappai R, Masters CL, Li QX. Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Aging 2005; 27:614-23. [PMID: 15941609 DOI: 10.1016/j.neurobiolaging.2005.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/01/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
Phosphatidylethanolamine binding protein (PEBP) is a multifunctional protein, with proposed roles as the precursor protein of hippocampal cholinergic neurostimulating peptide (HCNP), and as the Raf kinase inhibitor protein (RKIP). Previous studies have demonstrated a decrease in PEBP mRNA in CA1 region of AD hippocampus. The current study demonstrates that PEBP is decreased in the hippocampus of 11 month Tg2576 mice, in the absence of change in mRNA levels compared to non-transgenic littermates. The level of PEBP in transgenic mouse hippocampus significantly decreases at 11 months (a time point when Abeta begins accumulating) and 15 months (when Abeta plaques have formed). There was a significant correlation between decreased PEBP expression and accumulation of Abeta. Immunohistochemical studies on Tg2576 and AD brain sections demonstrate that PEBP immunoreactivities are present at the periphery of dense multicore Abeta plaques, and in selective astrocytes, primarily surrounding plaques. These findings suggest that PEBP expression may be influenced by accumulation of Abeta. Down-regulation of PEBP may result in lower levels of HCNP or altered coordination of signal transduction pathways that may contribute to neuronal dysfunction and pathogenesis in AD.
Collapse
Affiliation(s)
- Amee J George
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Keller ET, Fu Z, Brennan M. The biology of a prostate cancer metastasis suppressor protein: Raf kinase inhibitor protein. J Cell Biochem 2005; 94:273-8. [PMID: 15565643 DOI: 10.1002/jcb.20169] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Raf kinase inhibitor protein (RKIP) was originally identified as a protein that bound membrane phospholipids and was named phosphatidylethanolamine binding protein-2 (PEBP-2). RKIP was than identified as a protein that bound Raf and blocked its ability to phosphorylate MEK, thus earning its new name of RKIP. Subsequent to identification of its role in the Raf:MEK pathway, RKIP has been demonstrated to regulate several other signaling pathways including G-protein signaling and NF-kappaB signaling. Its involvement in several signaling pathways has engendered RKIP to contribute to several physiological processes including membrane biosynthesis, spermatogenesis, neural development, and apoptosis. RKIP is expressed in many tissues including brain, lung, and liver and thus, dysregulation of RKIP expression or function has potential to contribute to pathophysiology in these tissues. Loss of RKIP expression in prostate cancer cells confers a metastatic phenotype on them. Additionally, restoration of RKIP expression in a metastatic prostate cancer cell line does not effect primary tumor growth, but it does inhibit prostate cancer metastasis. These parameters identify RKIP as a metastasis suppressor gene. In this review, the biology and pathophysiology of RKIP is described.
Collapse
Affiliation(s)
- Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, Michigan 48109-0940, USA.
| | | | | |
Collapse
|
41
|
Mima J, Hayashida M, Fujii T, Narita Y, Hayashi R, Ueda M, Hata Y. Structure of the Carboxypeptidase Y Inhibitor IC in Complex with the Cognate Proteinase Reveals a Novel Mode of the Proteinase–Protein Inhibitor Interaction. J Mol Biol 2005; 346:1323-34. [PMID: 15713484 DOI: 10.1016/j.jmb.2004.12.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/03/2004] [Accepted: 12/08/2004] [Indexed: 10/26/2022]
Abstract
Carboxypeptidase Y (CPY) inhibitor, IC, shows no homology to any other known proteinase inhibitors and rather belongs to the phosphatidylethanolamine-binding protein (PEBP) family. We report here on the crystal structure of the IC-CPY complex at 2.7 A resolution. The structure of IC in the complex with CPY consists of one major beta-type domain and a N-terminal helical segment. The structure of the complex contains two binding sites of IC toward CPY, the N-terminal inhibitory reactive site (the primary CPY-binding site) and the secondary CPY-binding site, which interact with the S1 substrate-binding site of CPY and the hydrophobic surface flanked by the active site of the enzyme, respectively. It was also revealed that IC had the ligand-binding site, which is conserved among PEBPs and the putative binding site of the polar head group of phospholipid. The complex structure and analyses of IC mutants for inhibitory activity and the binding to CPY demonstrate that the N-terminal inhibitory reactive site is essential both for inhibitory function and the complex formation with CPY and that the binding of IC to CPY constitutes a novel mode of the proteinase-protein inhibitor interaction. The unique binding mode of IC toward the cognate proteinase provides insights into the inhibitory mechanism of PEBPs toward serine proteinases and into the specific biological functions of IC belonging to the PEBP family as well.
Collapse
Affiliation(s)
- Joji Mima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Chautard H, Jacquet M, Schoentgen F, Bureaud N, Bénédetti H. Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. EUKARYOTIC CELL 2004; 3:459-70. [PMID: 15075275 PMCID: PMC387632 DOI: 10.1128/ec.3.2.459-470.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ras proteins are guanine nucleotide-binding proteins that are highly conserved among eukaryotes. They are involved in signal transduction pathways and are tightly regulated by two sets of antagonistic proteins: GTPase-activating proteins (GAPs) inhibit Ras proteins, whereas guanine exchange factors activate them. In this work, we describe Tfs1p, the first physiological inhibitor of a Ras GAP, Ira2p, in Saccharomyces cerevisiae. TFS1 is a multicopy suppressor of the cdc25-1 mutation in yeast and corresponds to the so-called Ic CPY cytoplasmic inhibitor. Moreover, Tfs1p belongs to the phosphatidylethanolamine-binding protein (PEBP) family, one member of which is RKIP, a kinase and serine protease inhibitor and a metastasis inhibitor in prostate cancer. In this work, the results of (i) a two-hybrid screen of a yeast genomic library, (ii) glutathione S-transferase pulldown experiments, (iii) multicopy suppressor tests of cdc25-1 mutants, and (iv) stress resistance tests to evaluate the activation level of Ras demonstrate that Tfs1p interacts with and inhibits Ira2p. We further show that the conserved ligand-binding pocket of Tfs1-the hallmark of the PEBP family-is important for its inhibitory activity.
Collapse
Affiliation(s)
- Hélène Chautard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, UPR 4301, University of Orléans and INSERM, 45071 Orléans Cedex 2, France
| | | | | | | | | |
Collapse
|
43
|
Abstract
The metastatic cascade is a complicated process that involves many steps from gain of the metastatic phenotype in the primary tumor cells through establishment of macroscopic tumor at the distant target organ. A group of genes, termed metastasis suppressor genes (MSG), encode for proteins that inhibit various steps of the metastatic cascade. Accordingly, loss of MSG promotes the metastatic phenotype. Although several MSG have been identified, the mechanisms through which they enhance metastasis are not clearly defined. Gene array analysis of a low metastatic LNCaP prostate cancer cell line compared to its highly metastatic derivative C4-2B prostate cancer cell line revealed decreased expression of raf kinase inhibitor protein (RKIP) in the C4-2B cell line. RKIP blocks the activation of several signaling pathways including MEK, G-proteins and NFkappaB. Immunohistochemical analysis of prostate cancer primary tumors and metastases revealed that RKIP protein expression was decreased in metastases. Restoration of RKIP expression in the C4-2B cell line diminished metastasis in a murine model. These results demonstrate that RKIP is a MSG. Loss of RKIP enhanced both angiogenesis and vascular invasion, and protected against apoptosis. These findings suggest that targeting the RKIP pathway may diminish the metastatic cascade. However, challenges exist as to the best method to target RKIP expression. Restoration of RKIP expression in all cancer cells in vivo is challenging. A plausible strategy is to use small molecules that target proteins in signaling pathways that are dysregulated due to loss of RKIP.
Collapse
Affiliation(s)
- Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor 48109-0940, USA.
| |
Collapse
|
44
|
Levy F, Rabel D, Charlet M, Bulet P, Hoffmann JA, Ehret-Sabatier L. Peptidomic and proteomic analyses of the systemic immune response of Drosophila. Biochimie 2004; 86:607-16. [PMID: 15556270 DOI: 10.1016/j.biochi.2004.07.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 07/06/2004] [Indexed: 11/26/2022]
Abstract
Insects have developed an efficient host defense against microorganisms, which involves humoral and cellular mechanisms. Numerous data highlight similarities between defense responses of insects and innate immunity of mammals. The fruit fly, Drosophila melanogaster, is a favorable model system for the analysis of the first line defense against microorganisms. Taking advantages of improvements in mass spectrometry (MS), two-dimensional (2D) gel electrophoresis and bioinformatics, differential analyses of blood content (hemolymph) from immune-challenged versus control Drosophila were performed. Two strategies were developed: (i) peptidomic analyses through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and high performance liquid chromatography for molecules below 15 kDa, and (ii) proteomic studies based on 2D gel electrophoresis, MALDI-TOF fingerprinting and database searches, for compounds of greater molecular masses. The peptidomic strategy led to the detection of a large number of peptides induced in the hemolymph of challenged flies as compared to controls. Of these, 28 were characterized, amongst which were antimicrobial peptides. The 2D gel electrophoresis strategy led to the detection of 70 spots differentially regulated by at least fivefold after microbial infection. This approach yielded the identity of a series of proteins that were related to the Drosophila immune response, such as proteases, protease inhibitors, prophenoloxydase-activating enzymes, serpins and a Gram-negative binding protein-like protein. This strategy also brought to light new candidates with a potential function in the immune response (odorant-binding protein, peptidylglycine alpha-hydroxylating monooxygenase and transferrin). Interestingly, several molecules resulting from the cleavage of proteins were detected after a fungal infection. Together, peptidomic and proteomic analyses represent new tools to characterize molecules involved in the innate immune reactions of Drosophila.
Collapse
Affiliation(s)
- Francine Levy
- Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
45
|
Kirchhoff C, Araki Y, Huhtaniemi I, Matusik RJ, Osterhoff C, Poutanen M, Samalecos A, Sipilä P, Suzuki K, Orgebin-Crist MC. Immortalization by large T-antigen of the adult epididymal duct epithelium. Mol Cell Endocrinol 2004; 216:83-94. [PMID: 15109748 DOI: 10.1016/j.mce.2003.10.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The SV40 large T-antigen has been widely used to convert various cell types to a transformed phenotype, and also to induce progressive tumours in transgenic animals. The objectives of this review are to compare and discuss three different approaches to generate epididymal epithelial cell lines using the large T-antigen. In the first approach, retroviral transfection of primary cultures was used to immortalize canine epididymal cells in vitro; the other two approaches used transgenic mice expressing the large T-antigen. In one of these in vivo approaches, a construct consisting of the coding sequence of a temperature sensitive (ts) SV40 large T-antigen was inserted in a mouse genome. When the cells are exposed to the permissive temperature of 33 degrees C, functional expression of the large T-antigen occurs and cells start to proliferate. In the second in vivo approach a tissue-specific promoter, the 5kb GPX5 promoter, was used to direct expression of the large T-antigen to the epididymal duct epithelium.
Collapse
Affiliation(s)
- Christiane Kirchhoff
- Division of Reproductive Sciences, IHF Institute for Hormone & Fertility Research, University of Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Levy F, Bulet P, Ehret-Sabatier L. Proteomic Analysis of the Systemic Immune Response of Drosophila. Mol Cell Proteomics 2004; 3:156-66. [PMID: 14645501 DOI: 10.1074/mcp.m300114-mcp200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Improvements in two-dimensional gel electrophoresis, mass spectrometry, and bioinformatics provide new tools to characterize proteins involved in a physiological process, such as the immune response of the insect model Drosophila melanogaster. Profiling of the proteins present in the hemolymph (insect blood) of noninfected flies versus flies infected with bacteria or fungi was performed by two-dimensional gel electrophoresis, silver or Coomassie staining, and image analysis. Through this differential analysis, more than 70 out of 160 spots were up- or down-regulated by at least 5-fold after microbial infection. Coomassie staining, in-gel digestion, and database searches yielded the identity of a series of proteins that are directly involved in the Drosophila immune system. This included proteases, protease inhibitors, and recognition molecules such as prophenoloxydase-activating enzymes, serpins, and Gram-negative binding protein-like. Proteins with a potential function in the immune response were also identified, such as an odorant binding protein, peptidylglycine alpha-hydroxylating monooxygenase, and transferrin, affording new candidates for further investigation of innate immune mechanisms. Moreover, several molecules resulting from the cleavage of proteins were detected after the fungal infection. Altogether, this first differential proteomic analysis of the immune response of Drosophila paves the way for the study of proteins affected during innate immunity.
Collapse
Affiliation(s)
- Francine Levy
- Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
47
|
Vierstraete E, Verleyen P, Baggerman G, D'Hertog W, Van den Bergh G, Arckens L, De Loof A, Schoofs L. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc Natl Acad Sci U S A 2004; 101:470-5. [PMID: 14707262 PMCID: PMC327171 DOI: 10.1073/pnas.0304567101] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insects respond to microbial infection by the rapid and transient expression of several genes encoding antibacterial peptides. In this paper we describe a powerful technique, two-dimensional difference gel electrophoresis, that, when combined with mass spectrometry, can be used to study the immune response of Drosophila melanogaster at the protein level. By comparatively analyzing the hemolymph proteome of 2,000 third-instar Drosophila larvae, we identified 10 differential proteins that appear in the fruit fly hemolymph very early after an immune-challenge with lipopolysaccharides. These proteins can be assigned to the immune response, because they are not induced after sterile injury. Reduction of integral variability or quantification problems related to conventional two-dimensional electrophoresis and improvement of image analysis were achieved by the use of two fluorescent dyes to label the two different protein samples. Some of the immune-induced proteins, such as thioester-containing protein 2, can be assigned to specific aspects of the immune response; others were already reported as being involved in stress response. An immune-induced protein (CG18594) is homologous to a mammalian serine protease inhibitor that mediates the mitogen-activated protein kinase and the NF-kappa B signaling pathways. In addition, a number of proteins that had not been associated with the immune response before were isolated and identified, and some of these were still present in the hemolymph 4 h after injury. Determining the function of all of these immune-induced proteins represents an exciting challenge for increasing our knowledge of insect immunity.
Collapse
Affiliation(s)
- Evy Vierstraete
- Laboratory of Developmental Physiology, Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Odabaei G, Chatterjee D, Jazirehi AR, Goodglick L, Yeung K, Bonavida B. Raf-1 Kinase Inhibitor Protein: Structure, Function, Regulation of Cell Signaling, and Pivotal Role in Apoptosis. Adv Cancer Res 2004; 91:169-200. [PMID: 15327891 DOI: 10.1016/s0065-230x(04)91005-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The acquisition of resistance to conventional therapies such as radiation and chemotherapeutic drugs remains the major obstacle in the successful treatment of cancer patients. Tumor cells acquire resistance to apoptotic stimuli and it has been demonstrated that conventional therapies exert their cytotoxic activities primarily by inducing apoptosis in the cells. Resistance to radiation and chemotherapeutic drugs has led to the development of immunotherapy and gene therapy approaches with the intent of overcoming resistance to drugs and radiation as well as enhancing the specificity to eliminate tumor cells. However, cytotoxic lymphocytes primarily kill by apoptosis and, therefore, drug-resistant tumor cells may also be cross-resistant to immunotherapy. To evade apoptosis, tumor cells have adopted various mechanisms that interfere with the apoptotic signaling pathways and promote constitutive activation of cellular proliferation and survival pathways. Thus, modifications of the antiapoptotic genes in cancer cells are warranted for the effectiveness of conventional therapies as well as novel immunotherapeutic approaches. Such modifications will avert the resistant phenotype of the tumor cells and will render them susceptible to apoptosis. Current studies, both in vitro and preclinically in vivo, have been aimed at the modification and regulation of expression of apoptosis-related gene products and their activities. A novel protein designated Raf-1 kinase inhibitor protein (RKIP) has been partially characterized. RKIP is a member of the phosphatidylethanolamine-binding protein family. RKIP has been shown to disrupt the Raf-1-MEK1/2 [mitogen-activated protein kinase-ERK (extracellular signal-regulated kinase) kinase-1/2]-ERK1/2 and NF-kappaB signaling pathways, via physical interaction with Raf-1-MEK1/2 and NF-kappaB-inducing kinase or transforming growth factor beta-activated kinase-1, respectively, thereby abrogating the survival and antiapoptotic properties of these signaling pathways. In addition, RKIP has been shown to act as a signal modifier that enhances receptor signaling by inhibiting G protein-coupled receptor kinase-2. By regulating cell signaling, growth, and survival through its expression and activity, RKIP is considered to play a pivotal role in cancer, regulating apoptosis induced by drugs or immune-mediated stimuli. Overexpression of RKIP sensitizes tumor cells to chemotherapeutic drug-induced apoptosis. Also, induction of RKIP by drugs or anti-receptor antibodies sensitizes cancer cells to drug-induced apoptosis. In this review, we discuss the discovery, structure, function, and significance of RKIP in cancer.
Collapse
Affiliation(s)
- Golaun Odabaei
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
49
|
Mima J, Narita Y, Chiba H, Hayashi R. The multiple site binding of carboxypeptidase Y inhibitor (IC) to the cognate proteinase. Implications for the biological roles of the phosphatidylethanolamine-binding protein. J Biol Chem 2003; 278:29792-8. [PMID: 12791700 DOI: 10.1074/jbc.m301859200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine carboxypeptidase inhibitor in the cytoplasm of Saccharomyces cerevisiae, IC, specifically inhibits vacuolar carboxypeptidase Y (CPY) and belongs to a functionally unknown family of phosphatidylethanolamine-binding proteins (PEBPs). In the presence of 1 M guanidine hydrochloride, a CPY-IC complex is formed and is almost fully activated. The reactivities of phenylmethylsulfonyl fluoride, p-chloromercuribenzoic acid, and diisopropyl fluorophosphate toward the complex are considerably increased in 1 M guanidine hydrochloride, indicating that IC contains a binding site other than its inhibitory reactive site. IC is able to form the complex with diisopropyl fluorophosphate-modified CPY. Tryptic digestion of the complex indicates that two fragments from IC are involved in complex formation with CPY. These findings demonstrate the multiple site binding of IC with CPY. Considering the fact that mouse PEBP has recently been identified as a novel thrombin inhibitor, the binding that characterizes the CPY-IC complex could be a common feature of PEBPs.
Collapse
Affiliation(s)
- Joji Mima
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
50
|
|