1
|
Head TB, Pérez-Moreno JL, Ventura T, Durica DS, Mykles DL. Two cGMP-dependent protein kinases have opposing effects on molt-inhibiting hormone regulation of Y-organ ecdysteroidogenesis. J Exp Biol 2025; 228:JEB249739. [PMID: 39850985 DOI: 10.1242/jeb.249739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Decapod crustaceans regulate molting through steroid molting hormones (ecdysteroids) synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers. cGMP-dependent protein kinase (PKG) is the presumed effector of MIH signaling by inhibiting mechanistic Target of Rapamycin Complex 1 (mTORC1)-dependent ecdysteroidogenesis. Phylogenetic analysis of PKG contiguous sequences in CrusTome, as well as 35 additional species in NCBI RefSeq, identified 206 PKG1 sequences in 108 species and 59 PKG2 sequences in 53 species. These included four PKG1α splice variants in the N-terminal region that were unique to decapods, as well as PKG1β and PKG2 homologs. In vitro assays using YOs from the blackback land crab (Gecarcinus lateralis) and green shore crab (Carcinus maenas) determined the effects of MIH±PKG inhibitors on ecdysteroid secretion. A general PKG inhibitor, Rp-8-Br-PET-cGMPS, countered the effects of MIH, as ecdysteroid secretion increased in PKG-inhibited YOs compared with C. maenas YOs incubated with MIH alone. By contrast, a PKG2-specific inhibitor, AP-C5 {4-(4-[1H-imidazol-1-yl]phenyl)-N-2-propyn-1-yl-2-pyrimidinamine}, enhanced the effects of MIH, as ecdysteroid secretion decreased in G. lateralis and C. maenas YOs incubated with AP-C5 and MIH compared with YOs incubated with MIH alone. These data suggest that both PKG1 and PKG2 are activated by MIH, but have opposing effects on mTORC1-dependent ecdysteroidogenesis. A model is proposed in which the dominant role of PKG1 is countered by PKG2, resulting in low ecdysteroid production by the basal YO during intermolt.
Collapse
Affiliation(s)
- Talia B Head
- Department of Biology, Colorado State University, Fort Collins, CO 80521, USA
| | | | - Tomer Ventura
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - David S Durica
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80521, USA
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
2
|
Techa S, Thongda W, Bunphimpapha P, Ittarat W, Boonbangyang M, Wilantho A, Ngamphiw C, Pratoomchat B, Nounurai P, Piyapattanakorn S. Isolation and functional identification of secretin family G-protein coupled receptor from Y-organ of the mud crab, Scylla olivacea. Gene X 2023; 848:146900. [DOI: 10.1016/j.gene.2022.146900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
|
3
|
Head TB, Mykles DL, Tomanek L. Proteomic analysis of the crustacean molting gland (Y-organ) over the course of the molt cycle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:193-210. [DOI: 10.1016/j.cbd.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
|
4
|
Alexander JL, Oliphant A, Wilcockson DC, Audsley N, Down RE, Lafont R, Webster SG. Functional Characterization and Signaling Systems of Corazonin and Red Pigment Concentrating Hormone in the Green Shore Crab, Carcinus maenas. Front Neurosci 2018; 11:752. [PMID: 29379412 PMCID: PMC5775280 DOI: 10.3389/fnins.2017.00752] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropeptides play a central role as neurotransmitters, neuromodulators and hormones in orchestrating arthropod physiology. The post-genomic surge in identified neuropeptides and their putative receptors has not been matched by functional characterization of ligand-receptor pairs. Indeed, until very recently no G protein-coupled receptors (GPCRs) had been functionally defined in any crustacean. Here we explore the structurally-related, functionally-diverse gonadotropin-releasing hormone paralogs, corazonin (CRZ) and red-pigment concentrating hormone (RPCH) and their G-protein coupled receptors (GPCRs) in the crab, Carcinus maenas. Using aequorin luminescence to measure in vitro Ca2+ mobilization we demonstrated receptor-ligand pairings of CRZ and RPCH. CRZR-activated cell signaling in a dose-dependent manner (EC50 0.75 nM) and comparative studies with insect CRZ peptides suggest that the C-terminus of this peptide is important in receptor-ligand interaction. RPCH interacted with RPCHR with extremely high sensitivity (EC50 20 pM). Neither receptor bound GnRH, nor the AKH/CRZ-related peptide. Transcript distributions of both receptors indicate that CRZR expression was, unexpectedly, restricted to the Y-organs (YO). Application of CRZ peptide to YO had no effect on ecdysteroid biosynthesis, excepting a modest stimulation in early post-molt. CRZ had no effect on heart activity, blood glucose levels, lipid mobilization or pigment distribution in chromatophores, a scenario that reflected the distribution of its mRNA. Apart from the well-known activity of RPCH as a chromatophorotropin, it also indirectly elicited hyperglycemia (which was eyestalk-dependent). RPCHR mRNA was also expressed in the ovary, indicating possible roles in reproduction. The anatomy of CRZ and RPCH neurons in the nervous system is described in detail by immunohistochemistry and in situ hybridization. Each peptide has extensive but non-overlapping distribution in the CNS, and neuroanatomy suggests that both are possibly released from the post-commissural organs. This study is one of the first to deorphanize a GPCR in a crustacean and to provide evidence for hitherto unknown and diverse functions of these evolutionarily-related neuropeptides.
Collapse
Affiliation(s)
- Jodi L. Alexander
- School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - David C. Wilcockson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | | | - Rene Lafont
- IBPS-BIOSIPE, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Simon G. Webster
- School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| |
Collapse
|
5
|
Zuo H, Yuan J, Niu S, Yang L, Weng S, He J, Xu X. A molting-inhibiting hormone-like protein from Pacific white shrimp Litopenaeus vannamei is involved in immune responses. FISH & SHELLFISH IMMUNOLOGY 2018; 72:544-551. [PMID: 29158205 DOI: 10.1016/j.fsi.2017.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The molting-inhibiting hormones (MIHs) from the crustacean hyperglycemic hormone (CHH) family are a group of neuropeptides that are implicated in regulation of molting and reproduction in crustaceans. In this study, a novel protein containing a typical crustacean neuropeptide domain was identified from Litopenaeus vannamei. The protein showed high homology with other shrimp MIHs and was then designated as a MIH-like protein (MIHL). Among the detected tissues, the heart expressed the highest level of MIHL. The expression of MIHL could be significantly up-regulated after infection with white spot syndrome virus (WSSV), gram-negative bacterium Vibro parahaemolyticus and gram-positive bacterium Staphylococcus aureus, indicating that MIHL could be involved in immune responses. The promoter of MIHL was predicted to contain two NF-κB binding sites and could be regulated by the NF-κB family protein Relish but not Dorsal, suggesting that MIHL could be an effector gene of the IMD/Relish pathway. Silencing of MIHL in vivo by RNAi strategy significantly down-regulated the expression of many immune effector genes and increased the mortalities of shrimp infected by V. parahaemolyticus and WSSV and their copy numbers in tissues. These confirmed that MIHL could play a role in antiviral and antibacterial immune responses in shrimp.
Collapse
Affiliation(s)
- Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China
| | - Jia Yuan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shengwen Niu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China.
| |
Collapse
|
6
|
Tsutsui N, Sakamoto T, Arisaka F, Tanokura M, Nagasawa H, Nagata K. Crystal structure of a crustacean hyperglycemic hormone (CHH) precursor suggests structural variety in the C-terminal regions of CHH superfamily members. FEBS J 2016; 283:4325-4339. [PMID: 27743429 DOI: 10.1111/febs.13926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/25/2016] [Accepted: 10/12/2016] [Indexed: 11/27/2022]
Abstract
The crustacean hyperglycemic hormone (CHH) is one of the major hormones in crustaceans, and peptides belonging to the CHH superfamily have been found in diverse ecdysozoans. Although the basic function of CHH is to control energy metabolism, it also plays various roles in crustacean species, such as in molting and vitellogenesis. Here, we present the crystal structure of Pej-SGP-I-Gly, a partially active precursor of CHH from the kuruma prawn Marsupenaeus japonicus, which has an additional Gly residue in place of the C-terminal amide group of the mature Pej-SGP-I. The 1.6-angstrom crystal structure showed not only the common CHH superfamily scaffold comprising three α-helices, three disulfide bridges, and a hydrophobic core but also revealed that the C-terminal part has a variant backbone fold that is specific to Pej-SGP-I-Gly. The α-helix 4 of Pej-SGP-I-Gly was much longer than that of molt-inhibiting hormone (Pej-MIH) from the same species, and as a result, the following C-terminal helix, corresponding to α-helix 5 in MIH, was not formed. Unlike monomeric Pej-MIH, Pej-SGP-I-Gly forms a homodimer in the crystal structure via its unique α-helix 4. The unexpected dissimilar folds between Pej-SGP-I-Gly and Pej-MIH appear to be the result of their distinct C-terminal amino acid sequences. Variations in amino acid sequences and lengths and the resulting variety of backbone folds allow the C-terminal and sterically adjoining regions to confer different hormonal activities in diverse CHH superfamily members. DATABASE Structural data are available in the PDB under the accession number 5B5I.
Collapse
Affiliation(s)
- Naoaki Tsutsui
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi, Japan
| | - Fumio Arisaka
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
7
|
Techa S, Chung JS. Ecdysteroids regulate the levels of Molt-Inhibiting Hormone (MIH) expression in the blue crab, Callinectes sapidus. PLoS One 2015; 10:e0117278. [PMID: 25849453 PMCID: PMC4388526 DOI: 10.1371/journal.pone.0117278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/19/2014] [Indexed: 12/05/2022] Open
Abstract
Arthropod molt is coordinated through the interplay between ecdysteroids and neuropeptide hormones. In crustaceans, changes in the activity of Y-organs during the molt cycle have been regulated by molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). Little has been known of the mode of direct effects of ecdysteroids on the levels of MIH and CHH in the eyestalk ganglia during the molt cycle. This study focused on a putative feedback of ecdysteroids on the expression levels of MIH transcripts using in vitro incubation study with ecdysteroids and in vivo RNAi in the blue crab, Callinectes sapidus. Our results show a specific expression of ecdysone receptor (EcR) in which EcR1 is the major isoform in eyestalk ganglia. The initial elevation of MIH expression at the early premolt stages is replicated by in vitro incubations of eyestalk ganglia with ecdysteroids that mimic the intrinsic conditions of D0 stage: the concentration (75 ng/ml) and composition (ponasterone A and 20-hydroxyecdysone at a 3:1 (w:w) ratio). Additionally, multiple injections of EcR1-dsRNA reduce MIH expression by 67%, compared to the controls. Our data provide evidence on a putative feedback mechanism of hormonal regulation during molting cycle, specifically how the molt cycle is repeated during the life cycle of crustaceans. The elevated concentrations of ecdysteroids at early premolt stage may act positively on the levels of MIH expression in the eyestalk ganglia. Subsequently, the increased MIH titers in the hemolymph at postmolt would inhibit the synthesis and release of ecdysteroids by Y-organs, resulting in re-setting the subsequent molt cycle.
Collapse
Affiliation(s)
- Sirinart Techa
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, Maryland, 21202, United States of America
| | - J. Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Columbus Center, Baltimore, Maryland, 21202, United States of America
- * E-mail:
| |
Collapse
|
8
|
Webster SG, Wilcockson DC, Sharp JH. Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas. Gen Comp Endocrinol 2013; 182:54-64. [PMID: 23247273 DOI: 10.1016/j.ygcen.2012.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
Abstract
Very little is known regarding the release patterns of neuropeptides involved in ecdysis of crustaceans compared to insects. In particular, the dynamics of release of the insect cuticle hardening hormone bursicon, which has only recently been discovered in crustaceans, is unknown. Bursicon has not previously been identified as a circulating neurohormone in these animals. Since patterns of release were likely to be ephemeral, bursicon, as well as two other neurohormones involved in the ecdysis program in crustaceans, crustacean cardioactive peptide (CCAP) and crustacean hyperglycaemic hormone (CHH) were measured in single haemolymph samples in Carcinus maenas. For bursicon, an ultrasensitive time resolved-fluoroimmunoassay (TR-FIA) was developed, which firstly involved its characterisation by HPLC, bioassay and immunoassay. Simultaneous measurement of three neurohormones was performed at unparalleled levels of resolution, which has not previously been reported in any invertebrate. Additionally, expression patterns and architecture of neurones expressing both bursicon and CCAP were determined in the CNS during the moult cycle. Bursicon and CCAP are released in a massive surge, likely a single global exocytotic event on emergence, just after release of CHH. Despite co-localisation of CCAP and bursicon in neurones of the CNS, observations suggest that differential packaging of CCAP can occur in the pericardial organs in a small population of secretory boutons, thus accounting for observations showing release of some CCAP during the penultimate stages of the ecdysis program. The results obtained vividly illustrate the dynamism of neuropeptide cascades occurring during crustacean ecdysis, and also allow proposal of a hypothesis of its endocrine control.
Collapse
|
9
|
Abuhagr AM, Blindert JL, Nimitkul S, Zander IA, LaBere SM, Chang SA, MacLea KS, Chang ES, Mykles DL. Molt regulation in green and red color morphs of the crab, Carcinus maenas: gene expression of molt-inhibiting hormone signaling components. J Exp Biol 2013; 217:796-808. [DOI: 10.1242/jeb.093385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In decapod crustaceans, regulation of molting is controlled by the X-organ/sinus gland complex in the eyestalks. The complex secretes molt-inhibiting hormone (MIH), which suppresses production of ecdysteroids by the Y-organ (YO). MIH signaling involves NO and cGMP in the YO, which expresses NO synthase (NOS) and NO-sensitive guanylyl cyclase (GC-I). Molting can generally be induced by eyestalk ablation (ESA), which removes the primary source of MIH, or by multiple leg autotomy (MLA). In our work on Carcinus maenas, however, ESA has limited effects on hemolymph ecdysteroid titers and animals remain in intermolt by 7 days post-ESA, suggesting that adults are refractory to molt induction techniques. Consequently, the effects of ESA and MLA on molting and YO gene expression in C. maenas green and red color morphotypes were determined at intermediate (16 and 24 days) and long-term (~90 days) intervals. In intermediate-interval experiments, ESA of intermolt animals caused transient 2- to 4-fold increases in hemolymph ecdysteroid titers during the first 2 weeks. In intermolt animals, long-term ESA increased hemolymph ecdysteroid titers 4 to 5-fold by 28 days post treatment, but there was no late premolt peak (>400 pg/μl) characteristic of late premolt animals and animals did not molt by 90 days post-ESA. There was no effect of ESA and MLA on the expression of Cm-elongation factor 2 (EF2), Cm-NOS, the beta subunit of GC-I (Cm-GC-Iβ), a membrane receptor GC (Cm-GC-II), and a soluble NO-insensitive GC (Cm-GC-III) in green morphs. Red morphs were affected by prolonged ESA and MLA treatments, as indicated by large decreases in Cm-EF2, Cm-GC-II, and Cm-GC-III mRNA levels. ESA accelerated the transition of green morphs to the red phenotype in intermolt animals, indicating that molting and integument color changes are not necessarily coupled. ESA delayed molting in premolt green morphs, whereas intact and MLA animals molted by 30 days post treatment. There were significant effects on YO gene expression in intact animals; Cm-GC-Iβ mRNA increased during premolt and Cm-GC-III mRNA decreased during premolt and increased during postmolt. Cm-MIH transcripts were detected in eyestalk ganglia, brain, and thoracic ganglion from green intermolt animals and ESA had no significant effect on Cm-MIH mRNA levels in brain and thoracic ganglion. The data suggest that MIH in the brain and thoracic ganglion prevents molt induction in green ESA animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Sharon A. Chang
- University of California-Davis, Bodega Marine Laboratory, USA
| | | | - Ernest S. Chang
- University of California-Davis, Bodega Marine Laboratory, USA
| | | |
Collapse
|
10
|
Molecular cloning and characterization of three cDNAs encoding allatostatin-like neurosecretory peptides from Pandalopsis japonica. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:334-48. [DOI: 10.1016/j.cbpb.2012.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/21/2022]
|
11
|
New functions of arthropod bursicon: inducing deposition and thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus. PLoS One 2012; 7:e46299. [PMID: 23029467 PMCID: PMC3460823 DOI: 10.1371/journal.pone.0046299] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Arthropod growth requires molt-associated changes in softness and stiffness of the cuticle that protects from desiccation, infection and injury. Cuticle hardening in insects depends on the blood-borne hormone, bursicon (Burs), although it has never been determined in hemolymph. Whilst also having Burs, decapod crustaceans reiterate molting many more times during their longer life span and are encased in a calcified exoskeleton, which after molting undergoes similar initial cuticle hardening processes as in insects. We investigated the role of homologous crustacean Burs in cuticular changes and growth in the blue crab, Callinectes sapidus. We found dramatic increases in size and number of Burs cells during development in paired thoracic ganglion complex (TGC) neurons with pericardial organs (POs) as neurohemal release sites. A skewed expression of Burs β/Burs α mRNA in TGC corresponds to protein contents of identified Burs β homodimer and Burs heterodimer in POs. In hemolymph, Burs is consistently present at ∼21 pM throughout the molt cycle, showing a peak of ∼89 pM at ecdysis. Since initial cuticle hardness determines the degree of molt-associated somatic increment (MSI), we applied recombinant Burs in vitro to cuticle explants of late premolt or early ecdysis. Burs stimulates cuticle thickening and granulation of hemocytes. These findings demonstrate novel cuticle-associated functions of Burs during molting, while the unambiguous and constant presence of Burs in cells and hemolymph throughout the molt cycle and life stages may implicate further functions of its homo- and heterodimer hormone isoforms in immunoprotective defense systems of arthropods.
Collapse
|
12
|
Two type I crustacean hyperglycemic hormone (CHH) genes in Morotoge shrimp (Pandalopsis japonica): cloning and expression of eyestalk and pericardial organ isoforms produced by alternative splicing and a novel type I CHH with predicted structure shared with type II CHH peptides. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:88-99. [PMID: 22525298 DOI: 10.1016/j.cbpb.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 11/23/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) peptide family members play critical roles in growth and reproduction in decapods. Three cDNAs encoding CHH family members (Pj-CHH1ES, Pj-CHH1PO, and Pj-CHH2) were isolated by a combination of bioinformatic analysis and conventional cloning strategies. Pj-CHH1ES and Pj-CHH1PO were products of the same gene that were generated by alternative mRNA splicing, whereas Pj-CHH2 was the product of a second gene. The Pj-CHH1 and Pj-CHH2 genes had four exons and three introns, suggesting the two genes arose from gene duplication. The three cDNAs were classified in the type I CHH subfamily, as the deduced amino acid sequences had a CHH precursor-related peptide sequence positioned between the N-terminal signal sequence and C-terminal mature peptide sequence. The Pj-CHH1ES isoform was expressed at a higher level in the eyestalk X-organ/sinus gland (XO/SG) complex and at a lower level in the gill. The Pj-CHH1PO isoform was expressed at higher levels in the XO/SG complex, brain, abdominal ganglion, and thoracic ganglion and at a lower level in the epidermis. Pj-CHH2 was expressed at a higher level in the thoracic ganglion and at a lower level in the gill. Real-time polymerase chain reaction was used to quantify the effects of eyestalk ablation on the mRNA levels of the three Pj-CHHs in the brain, thoracic ganglion, and gill. Eyestalk ablation reduced expression of Pj-CHH1ES in the brain and Pj-CHH1PO and Pj-CHH2 in the thoracic ganglion. Sequence alignment of the Pj-CHHs with CHHs from other species indicated that Pj-CHH2 had an additional alanine at position #9 of the mature peptide. Molecular modeling showed that the Pj-CHH2 mature peptide had a short alpha helix (α1) in the N-terminal region, which is characteristic of type II CHHs. This suggests that Pj-CHH2 differs in function from other type I CHHs.
Collapse
|
13
|
Webster SG, Keller R, Dircksen H. The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. Gen Comp Endocrinol 2012; 175:217-33. [PMID: 22146796 DOI: 10.1016/j.ygcen.2011.11.035] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/21/2011] [Indexed: 12/21/2022]
Abstract
Apart from providing an up-to-date review of the literature, considerable emphasis was placed in this article on the historical development of the field of "crustacean eyestalk hormones". A role of the neurosecretory eyestalk structures of crustaceans in endocrine regulation was recognized about 80 years ago, but it took another half a century until the first peptide hormones were identified. Following the identification of crustacean hyperglycaemic hormone (CHH) and moult-inhibiting hormone (MIH), a large number of homologous peptides have been identified to this date. They comprise a family of multifunctional peptides which can be divided, according to sequences and precursor structure, into two subfamilies, type-I and -II. Recent results on peptide sequences, structure of genes and precursors are described here. The best studied biological activities include metabolic control, moulting, gonad maturation, ionic and osmotic regulation and methyl farnesoate synthesis in mandibular glands. Accordingly, the names CHH, MIH, and GIH/VIH (gonad/vitellogenesis-inhibiting hormone), MOIH (mandibular organ-inhibiting hormone) were coined. The identification of ITP (ion transport peptide) in insects showed, for the first time, that CHH-family peptides are not restricted to crustaceans, and data mining has recently inferred their occurrence in other ecdysozoan clades as well. The long-held tenet of exclusive association with the eyestalk X-organ-sinus gland tract has been challenged by the finding of several extra nervous system sites of expression of CHH-family peptides. Concerning mode of action and the question of target tissues, second messenger mechanisms are discussed, as well as binding sites and receptors. Future challenges are highlighted.
Collapse
|
14
|
Sook Chung J, Bachvaroff TR, Trant J, Place A. A second copper zinc superoxide dismutase (CuZnSOD) in the blue crab Callinectes sapidus: cloning and up-regulated expression in the hemocytes after immune challenge. FISH & SHELLFISH IMMUNOLOGY 2012; 32:16-25. [PMID: 22056499 DOI: 10.1016/j.fsi.2011.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
The full-length cDNA (1362 nucleotides, GenBank JF736621) encoding an extracellular copper zinc superoxide dismutase initially isolated from an EST library of the blue crab Callinectes sapidus was characterized using 3' RACE and named Cas-ecCuZnSOD-2. The open reading frame of Cas-ecCuZnSOD-2 contains 203 deduced amino acids with the conserved active catalytic center for copper and zinc binding and the post-translational modification at two putative N-glycosylation and nine phosphorylation sites. Overall, the deduced amino acids of Cas-ecCuZnSOD-2 shared only 35% sequence identity with that of Cas-ecCuZnSOD (GenBank AF264031) which was previously found in C. sapidus, while it showed ∼75% sequence identity to Scylla paramamosain ecCuZnSOD (GenBank FJ774661). The expression profile of Cas-ecCuZnSOD-2 and the other three C. sapidus SODs: ecCuZn, cytMn- and mitMn SODs was largely ubiquitous among the tested tissues obtained from a juvenile female at intermolt: brain, eyestalk ganglia, pericardial organs, and thoracic ganglia complex (nervous system); hepatopancreas (digestive system); heart, artery and hemocytes (circulatory system); gill and antennal gland (excretory system), hypodermis, and Y-organ (endocrine organ). Our study reports, for the first time in the crustaceans, expression analyses for all four Cas-SODs in hemocytes after immune challenges. Crabs challenged with lipopolysaccharides (LPS) injection had a remarkable induction of Cas-ecCuZnSOD-2 expression along with three other SODs in hemocytes, suggesting that Cas-SODs including Cas-ecCuZnSOD-2 are involved in the defense system, possibly innate immunity and immunocompetency of C. sapidus.
Collapse
Affiliation(s)
- J Sook Chung
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 East Pratt Street, Columbus Center, Suite 236, Baltimore, MD 21202, USA.
| | | | | | | |
Collapse
|
15
|
Chang ES, Mykles DL. Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol 2011; 172:323-30. [PMID: 21501612 DOI: 10.1016/j.ygcen.2011.04.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 01/28/2023]
Abstract
Molting is a highly complex process that requires precise coordination to be successful. We describe the early classical endocrinological experiments that elucidated the hormones and glands responsible for this process. We then describe the more recent experiments that have provided information on the cellular and molecular aspects of molting. In addition to providing a review of the scientific literature, we have also included our perspectives.
Collapse
Affiliation(s)
- Ernest S Chang
- Bodega Marine Laboratory, University of California-Davis, Bodega Bay, CA 94923, USA.
| | | |
Collapse
|
16
|
Ward DA, Sefton EM, Prescott MC, Webster SG, Wainwright G, Rees HH, Fisher MJ. Efficient identification of proteins from ovaries and hepatopancreas of the unsequenced edible crab, Cancer pagurus, by mass spectrometry and homology-based, cross-species searching. J Proteomics 2010; 73:2354-64. [DOI: 10.1016/j.jprot.2010.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/06/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
|
17
|
Naya Y, Ohnishi M, Ikeda M, Miki W, Nakanishi K. What is molt-inhibiting hormone? The role of an ecdysteroidogenesis inhibitor in the crustacean molting cycle. Proc Natl Acad Sci U S A 2010; 86:6826-9. [PMID: 16594067 PMCID: PMC297939 DOI: 10.1073/pnas.86.17.6826] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The in vivo molt-inhibitory effects of the ecdysone biosynthesis inhibitors 3-hydroxy-L-kynurenine and xanthurenic acid were investigated. These ecdysone biosynthesis inhibitors, isolated from the eyestalks of blue crabs (Callinectes sapidus), were injected into eyestalk-ablated crayfish (Procambarus clarkii). The active factor was found to be species-nonspecific within crabs and crayfish. The seasonal profiles of the xanthurenic acid and ecdysone titers exhibited a staggered relationship. Moreover, the activity of a 3-hydroxy-L-kynurenine aminotransferase varied during the molting cycle. The data suggested that 3-hydroxy-L-kynurenine, which is secreted from the X-organ-sinus gland complex of crustaceans, is released into the hemolymph, and after accumulating at the surface of the Y-organ, is converted into the active form, xanthurenic acid. Xanthurenic acid was found to profoundly repress ecdysteroidogenesis in vitro.
Collapse
Affiliation(s)
- Y Naya
- Suntory Institute for Bioorganic Research, Shimamoto-cho, Mishima-gun, Osaka 618, Japan
| | | | | | | | | |
Collapse
|
18
|
Conserved role of cyclic nucleotides in the regulation of ecdysteroidogenesis by the crustacean molting gland. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:470-7. [DOI: 10.1016/j.cbpa.2008.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/23/2022]
|
19
|
Nakatsuji T, Lee CY, Watson RD. Crustacean molt-inhibiting hormone: Structure, function, and cellular mode of action. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:139-48. [DOI: 10.1016/j.cbpa.2008.10.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
20
|
NGERNSOUNGNERN PIYADA, NGERNSOUNGNERN APICHART, SOBHON PRASERT, SRETARUGSA PRAPEE. Gonadotropin-releasing hormone (GnRH) and a GnRH analog induce ovarian maturation in the giant freshwater prawn,Macrobrachium rosenbergii. INVERTEBR REPROD DEV 2009. [DOI: 10.1080/07924259.2009.9652298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Nakatsuji T, Han DW, Jablonsky MJ, Harville SR, Muccio DD, Watson RD. Expression of crustacean (Callinectes sapidus) molt-inhibiting hormone in Escherichia coli: characterization of the recombinant peptide and assessment of its effects on cellular signaling pathways in Y-organs. Mol Cell Endocrinol 2006; 253:96-104. [PMID: 16790313 DOI: 10.1016/j.mce.2006.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/10/2006] [Accepted: 05/12/2006] [Indexed: 11/24/2022]
Abstract
A neuropeptide, molt-inhibiting hormone (MIH), negatively regulates the synthesis of ecdysteroid molting hormones by crustacean Y-organs. We report here the expression of blue crab (Callinectes sapidus) MIH in Escherichia coli. Bacteria were transformed with an expression plasmid containing a cDNA insert encoding MIH. After induction of protein synthesis, recombinant MIH (recMIH) was detected in the insoluble fraction of cell lysates. The insoluble recMIH was refolded and purified by reversed-phase high performance liquid chromatography (RP-HPLC). The refolded peptide was MIH-immunoreactive and comigrated with native MIH on RP-HPLC. Mass and CD spectral analyses showed the mass number and secondary structure of the recombinant peptide were as predicted for MIH. Bioassays showed recMIH dose-dependently suppresses ecdysteroid synthesis by Y-organs. The combined results suggest that recMIH is properly folded. In subsequent experiments, recMIH was used to assess cellular signaling pathways linked to MIH-mediated suppression of ecdysteroidogenesis. Incubation of Y-organs with recMIH produced an increase in intracellular cGMP content, but had no effect on intracellular cAMP. Further, a cGMP analog significantly suppressed ecdysteroid production, but neither cAMP analogs nor an activator of adenylyl cyclase had a detectable effect on ecdysteroidogenesis. The results are consistent with the hypothesis that MIH-induced suppression of ecdysteroidogenesis in Y-organs of C. sapidus is mediated by a cGMP second messenger. We anticipate recMIH will be a useful tool for additional studies of the cellular actions and physiological functions of MIH.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zheng J, Lee CY, Watson RD. Molecular cloning of a putative receptor guanylyl cyclase from Y-organs of the blue crab, Callinectes sapidus. Gen Comp Endocrinol 2006; 146:329-36. [PMID: 16426608 DOI: 10.1016/j.ygcen.2005.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 11/02/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Crustacean molt-inhibiting hormone (MIH), a polypeptide produced by neurosecretory cells in eyestalk ganglia, suppresses the synthesis of ecdysteroid molting hormones by paired Y-organs. Data from several sources indicate the effects of MIH are mediated, at least in part, by a cGMP second messenger. Based on these and related findings, our working hypothesis is that the MIH receptor is a receptor guanylyl cyclase (rGC). In studies reported here, we used a PCR-based cloning strategy (RT-PCR followed by 5'- and 3'-RACE) to clone from blue crab (Callinectes sapidus) Y-organs a cDNA (CsGC-YO1) encoding a putative rGC. DNA sequence analysis revealed a 3807 base pair open reading frame encoding a 56 residue signal peptide and a 1213 residue rGC. Analysis of the deduced amino acid sequence showed that CsGC-YO1 contains the signature domains characteristic of rGCs, including an extracellular ligand-binding domain, a single transmembrane domain, a kinase-like domain, a dimerization domain, and a cyclase catalytic domain. CsGC-YO1 is most closely related to an rGC from the crayfish, Procambarus claikii (PcGC-M2, 58.4% identity), and rGCs from three insect species (33.1-37.5% identity). Conserved cysteine residues are similarly distributed in the extracellular domains of CsGC-YO1, PcGC-M2, and the three insect rGCs. RT-PCR revealed the CsGC-YO1 transcript is expressed in Y-organs and several other tissues. While other interpretations of the data are possible, our working hypothesis is that the cloned cDNA encodes an MIH receptor.
Collapse
Affiliation(s)
- Junying Zheng
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
23
|
Coast GM, Garside CS, Webster SG, Schegg KM, Schooley DA. Mosquito natriuretic peptide identified as a calcitonin-like diuretic hormone in Anopheles gambiae (Giles). ACTA ACUST UNITED AC 2006; 208:3281-91. [PMID: 16109890 DOI: 10.1242/jeb.01760] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mosquito natriuretic peptide (MNP), an uncharacterised peptide from the yellow fever mosquito, Aedes aegypti, acts via cyclic AMP to stimulate secretion of Na+-rich urine by opening a Na+ conductance in the basolateral membrane of Malpighian tubule principal cells. Corticotropin releasing factor (CRF)-related peptides and calcitonin (CT)-like diuretic peptides use cyclic AMP as a second messenger and were therefore considered likely candidates for MNP. BLAST searches of the genome of the malaria mosquito Anopheles gambiae, gave sequences for the CRF-related peptide Anoga-DH44 and the CT-like peptide Anoga-DH31, which were synthesised and tested for effects on Malpighian tubules from An. gambiae and Ae. aegypti, together with 8-bromo-cyclic AMP. The cyclic AMP analogue stimulated secretion of Na+-rich urine by An. gambiae Malpighian tubules, reproducing the response to MNP in Ae. aegypti. It also depolarised the principal cell basolateral membrane voltage (Vb) while hyperpolarising the transepithelial voltage (Vt) to a similar extent. Anoga-DH4) and Anoga-DH31 stimulated production of cyclic AMP, but not cyclic GMP, by Malpighian tubules of An. gambiae. Both peptides had diuretic activity, but only Anoga-DH31 had natriuretic activity and stimulated fluid secretion to the same extent as 8-bromo-cyclic AMP. Likewise, Anoga-DH31 reproduced the effects of cyclic AMP on tubule electrophysiology, whereas Anoga-DH44 initially hyperpolarised Vb and depolarised Vt, which is the opposite of the effect of Anoga-DH31. Anoga-DH44 and Anoga-DH31 were also tested for effects on fluid secretion and ion transport by Ae. aegypti tubules. As in An. gambiae, the CRF-related peptide Anoga-DH44 had a non-specific effect on the transport of Na+ and K+, whereas the CT-like peptide Anoga-DH31 specifically stimulated transepithelial Na+ transport. We conclude that the CT-like peptide Anoga-DH31 is the previously uncharacterised mosquito natriuretic peptide.
Collapse
Affiliation(s)
- Geoffrey M Coast
- Department of Biology, Birkbeck (University of London), London WC1E 7HX, UK.
| | | | | | | | | |
Collapse
|
24
|
Structure, Function and Mode of Action of Select Arthropod Neuropeptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2006. [DOI: 10.1016/s1572-5995(06)80026-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Jasmani S, Ohira T, Jayasankar V, Tsutsui N, Aida K, Wilder MN. Localization of vitellogenin mRNA expression and vitellogenin uptake during ovarian maturation in the giant freshwater prawn Macrobrachium rosenbergii. ACTA ACUST UNITED AC 2004; 301:334-43. [PMID: 15039992 DOI: 10.1002/jez.a.20044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In situ hybridization and immunohistochemical techniques were used to investigate the dynamics of vitellogenin (Vg) mRNA expression and Vg uptake during ovarian maturation in the hepatopancreas and ovary at differing stages of ovarian maturation in both intact and eyestalk ablated female Macrobrachium rosenbergii. In the hepatopancreas of intact animals, Vg mRNA expression was detected faintly two days after ecdysis, and signals showed a gradual increase as the molt cycle advanced to the premolt stages, but decreased at the late premolt stage. Vg mRNA was detected in the R-cells of the hepatopancreas, indicating that these cells are responsible for synthesizing Vg. No Vg mRNA expression was observed in the ovary. Immunohistochemistry results for the hepatopancreas showed a pattern of staining intensity similar to that of in situ hybridization. Increases in the accumulation of yolk protein in the oocytes occurred concomitantly with increasing Vg mRNA expression. In eyestalk ablated animals, Vg mRNA expression and Vg uptake showed similar but accelerated patterns to those of intact animals. This study has confirmed on the cellular level previous results that Vg synthesis is intrinsically correlated to ovarian maturation and the molt cycle in M. rosenbergii.
Collapse
Affiliation(s)
- Safiah Jasmani
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Nakatsuji T, Sonobe H. Regulation of ecdysteroid secretion from the Y-organ by molt-inhibiting hormone in the American crayfish, Procambarus clarkii. Gen Comp Endocrinol 2004; 135:358-64. [PMID: 14723887 DOI: 10.1016/j.ygcen.2003.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In crustaceans, molt-inhibiting hormone (MIH) has been proposed to regulate molting by inhibiting the secretion of ecdysteroids from the Y-organ. Thus, MIH titer in the hemolymph should be inversely related to ecdysteroid titers during the molt cycle. However, it has not been demonstrated whether the MIH titer in the hemolymph changes during the molt cycle. The purpose of this study was to determine the changes in the MIH titers in the hemolymph during the molt cycle of the American crayfish, Procambarus clarkii, and to discuss the role of MIH in regulation of molting. As predicted by the hypothesis, the hemolymph MIH titer was high at the intermolt stage when the hemolymph ecdysteroid titer was low, and the MIH titer decreased to a basal level at the early premolt stage when the hemolymph ecdysteroid titer began to increase slightly. At the middle premolt stage when the hemolymph ecdysteroid titer increased, the MIH titer was restored to a level as high as that during the intermolt stage. This is in contradiction to the hypothesis. However, the Y-organs at this stage scarcely responded to MIH both in vitro and in vivo. The present findings suggest that ecdysteroid secretion from the Y-organ may be regulated not only by changes in the hemolymph MIH titer, but also by changes in the responsiveness of the Y-organ to MIH.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Life and Functional Material Science, Graduate School of Natural Sciences, Konan University, Kobe 658-8501, Japan
| | | |
Collapse
|
27
|
SHIH TUNGWEI, SUZUKI YUZURU, NAGASAWA HIROMICHI, AIDA KATSUMI. Immunohistochemical and morphological studies of hyperglycemic hormone-and molt-inhibiting hormone-producing cells in the eyestalk of kuruma prawn,Penaeus japonicus, in relation to molting. INVERTEBR REPROD DEV 2003. [DOI: 10.1080/07924259.2003.9652515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Yu X, Chang ES, Mykles DL. Characterization of limb autotomy factor-proecdysis (LAF(pro)), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis. THE BIOLOGICAL BULLETIN 2002; 202:204-212. [PMID: 12086991 DOI: 10.2307/1543470] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molting and limb regeneration are tightly coupled processes, both of which are regulated by ecdysteroid hormone synthesized and secreted by the Y-organs. Regeneration of lost appendages can affect the timing and duration of the proecdysial, or premolt, stage of the molt cycle. Autotomy of all eight walking legs induces precocious molts in various decapod crustacean species. In the land crab Gecarcinus lateralis, autotomy of a partially regenerated limb bud before a critical period during proecdysis (regeneration index <17) delays molting so that a secondary limb bud (2 degrees LB) forms and the animal molts with a complete set of walking legs. It is hypothesized that 2 degrees LBs secrete a factor, termed limb autotomy factor-proecdysis (LAF(pro)), that inhibits molting by suppressing the Y-organs from secreting ecdysone. Molting was induced by autotomy of eight walking legs; autotomy of primary (1 degrees ) LBs reduced the level of ecdysteroid hormone in the hemolymph 73% by one week after limb bud autotomy (LBA). Injection of extracts from 2 degrees LBs, but not 1 degrees LBs, inhibited 1 degrees LB growth in proecdysial animals, thus having the same effect on molting as LBA. The inhibitory activity in 2 degrees LB extracts was stable after boiling in water for 15 min, but was destroyed by boiling 15 min in 0.1 N acetic acid or incubation with proteinase K. These results support the hypothesis that LAF(pro) is a peptide that resembles a molt-inhibiting hormone.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Biology, Cell and Molecular Biology Program, Colorado State University, Fort Collins 80523, USA
| | | | | |
Collapse
|
29
|
Borst DW, Wainwright G, Rees HH. In vivo regulation of the mandibular organ in the edible crab, Cancer pagurus. Proc Biol Sci 2002; 269:483-90. [PMID: 11886640 PMCID: PMC1690911 DOI: 10.1098/rspb.2001.1870] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Considerable evidence indicates that methyl farnesoate (MF) production by the crustacean mandibular organs is negatively regulated by neuropeptides from the sinus gland (SG) in the eyestalk. In the crab Cancer pagurus, two neuropeptides (MO-IH-1 and -2) have been isolated from the SG that inhibit MF synthesis by mandibular organs of female crabs in vitro. To test their activity in vivo, we treated eyestalk-ablated male crabs with SG extracts (SGEs) or MO-IH-1 and -2. SGEs reduced haemolymph levels of MF by 60-80%, while MO-IH-1 and -2 had little effect. Protease treatment of SGEs destroyed the in vivo activity, suggesting that the extract contains an additional peptide responsible for the in vivo activity. When separated by reversed-phase high performance liquid chromatography (HPLC), the in vivo activity eluted in fractions prior to MO-IH-1 and -2. When mandibular organs were removed from animals previously treated in vivo with these active fractions, they had reduced levels of MF synthesis and activity of farnesoic acid O-methyl transferase compared with mandibular organs from animals treated with saline. Together, these results indicate that the regulation of the crustacean mandibular organ is complex and may involve several SG compounds. Some of these compounds (i.e., MO-IH-1 and -2) act directly on the tissue while others affect the mandibular organ indirectly.
Collapse
Affiliation(s)
- D W Borst
- Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| | | | | |
Collapse
|
30
|
Lee KJ, Watson RD. Expression of crustacean (Callinectes sapidus) molt-inhibiting hormone in insect cells using recombinant baculovirus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:41-51. [PMID: 11754021 DOI: 10.1002/jez.1141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molt-inhibiting hormone (MIH) negatively regulates the synthesis of ecdysteroid molting hormones by crustacean Y-organs. We report here the expression of blue crab (Callinectes sapidus) MIH in insect cells using recombinant baculovirus. Insect Sf9 cells were transfected with recombinant baculovirus containing a DNA insert encoding the C. sapidus MIH prohormone (signal sequence plus mature hormone). The construct was designed to yield a mature, fully processed recombinant MIH (recMIH). Several baculovirus recombinants showing no contamination with wild-type viral DNA were subsequently analyzed for their ability to direct expression of recMIH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins from infected cells revealed time-dependent expression of two proteins of approximately the predicted size for the C. sapidus MIH prohormone and mature hormone. Western blot results (using antiserum against MIH of Carcinus maenas) indicated that the proteins were MIH-immunoreactive. N-Terminal amino acid sequence data and mass spectral analysis indicated the expressed proteins were of the correct sequence and molecular mass. Cell lysates containing the recombinant protein dose-dependently suppressed the synthesis of ecdysteroids by Y-organs in vitro. We anticipate the recombinant peptide will prove useful for studies of the structure and function of MIH.
Collapse
Affiliation(s)
- Kara J Lee
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
31
|
Watson RD, Lee KJ, Borders KJ, Dircksen H, Lilly KY. Molt-inhibiting hormone immunoreactive neurons in the eyestalk neuroendocrine system of the blue crab, Callinectes sapidus. ARTHROPOD STRUCTURE & DEVELOPMENT 2001; 30:69-76. [PMID: 18088946 DOI: 10.1016/s1467-8039(01)00024-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2000] [Revised: 06/11/2001] [Accepted: 06/22/2001] [Indexed: 05/25/2023]
Abstract
The production of ecdysteroid molting hormones by crustacean Y-organs is negatively regulated by a neuropeptide, molt-inhibiting hormone. It is generally agreed that molt-inhibiting hormone is produced and released by the eyestalk neuroendocrine system. In the present study, immunocytochemical methods were used to detect molt-inhibiting hormone immunoreactive neurons in eyestalk ganglia of the blue crab, Callinectes sapidus. The primary antiserum used was generated against molt-inhibiting hormone of the green shore crab, Carcinus maenas. A preliminary Western blot analysis indicated the antiserum binds molt-inhibiting hormone of Callinectes sapidus. Using confocal and conventional immunofluorescence microscopy, molt-inhibiting hormone immunoreactivity was visualized in whole mounts and thin sections of Callinectes sapidus eyestalk ganglia. Immunoreactivity was detected in 15-25 neurosecretory cell bodies in the medulla terminalis X-organ, their associated axons and collateral branches, and their axon terminals in the neurohemal sinus gland. The cellular organization of molt-inhibiting hormone immunoreactive neurons in blue crabs is generally similar to that reported for other crab species. The combined results suggest the cellular structure of the molt-inhibiting hormone neuroendocrine system is highly conserved among brachyurans.
Collapse
Affiliation(s)
- R D Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
32
|
MARCO HEATHERG, BLAIS CATHERINE, SOYEZ DANIEL, GÄDE GERD. Characterisation of moult-inhibiting activities of sinus glands of the spiny lobster,Jasus lalandii. INVERTEBR REPROD DEV 2001. [DOI: 10.1080/07924259.2001.9652473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Molecular Cloning, Expression, and Tissue Distribution of Crustacean Molt-Inhibiting Hormone. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.3.407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Watson RD, Lee KJ, Shihong Q, Ming L, Heidi R U, Robert D R, Eugene S. Molecular Cloning, Expression, and Tissue Distribution of Crustacean Molt-Inhibiting Hormone1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0407:mceatd]2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Dircksen H, Böcking D, Heyn U, Mandel C, Chung JS, Baggerman G, Verhaert P, Daufeldt S, Plösch T, Jaros PP, Waelkens E, Keller R, Webster SG. Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem J 2001; 356:159-70. [PMID: 11336648 PMCID: PMC1221824 DOI: 10.1042/0264-6021:3560159] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
About 24 intrinsic neurosecretory neurons within the pericardial organs (POs) of the crab Carcinus maenas produce a novel crustacean hyperglycaemic hormone (CHH)-like peptide (PO-CHH) and two CHH-precursor-related peptides (PO-CPRP I and II) as identified immunochemically and by peptide chemistry. Edman sequencing and MS revealed PO-CHH as a 73 amino acid peptide (8630 Da) with a free C-terminus. PO-CHH and sinus gland CHH (SG-CHH) share an identical N-terminal sequence, positions 1-40, but the remaining sequence, positions 41-73 or 41-72, differs considerably. PO-CHH may have different precursors, as cDNA cloning of PO-derived mRNAs has revealed several similar forms, one exactly encoding the peptide. All PO-CHH cDNAs contain a nucleotide stretch coding for the SG-CHH(41-76) sequence in the 3'-untranslated region (UTR). Cloning of crab testis genomic DNA revealed at least four CHH genes, the structure of which suggest that PO-CHH and SG-CHH arise by alternative splicing of precursors and possibly post-transcriptional modification of PO-CHH. The genes encode four exons, separated by three variable introns, encoding part of a signal peptide (exon I), the remaining signal peptide residues, a CPRP, the PO-CHH(1-40)/SG-CHH(1-40) sequences (exon II), the remaining PO-CHH residues (exon III) and the remaining SG-CHH residues and a 3'-UTR (exon IV). Precursor and gene structures are more closely related to those encoding related insect ion-transport peptides than to penaeid shrimp CHH genes. PO-CHH neither exhibits hyperglycaemic activity in vivo, nor does it inhibit Y-organ ecdysteroid synthesis in vitro. From the morphology of the neurons it seems likely that novel functions remain to be discovered.
Collapse
Affiliation(s)
- H Dircksen
- Institut für Zoophysiologie, Universität Bonn, Endenicher Allee 11-13, D-53115 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Spanings-Pierrot C, Soyez D, Van Herp F, Gompel M, Skaret G, Grousset E, Charmantier G. Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. Gen Comp Endocrinol 2000; 119:340-50. [PMID: 11017781 DOI: 10.1006/gcen.2000.7527] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Total extracts of sinus glands (SG) of the euryhaline grapsid crab Pachygrapsus marmoratus contain peptidic factor(s) that stimulate osmoregulatory processes in isolated and perfused posterior gills from crabs acclimated to dilute seawater. This study investigated the nature of the active factor(s). Separation of P. marmoratus SG peptides by reverse-phase HPLC, followed by a direct enzyme-linked immunosorbent assay using an anti-Carcinus maenas crustacean hyperglycemic hormone (CHH) antiserum, identified a major immunoreactive chromatographic peak. A glucose quantification bioassay demonstrated a strong and specific hyperglycemic activity following injection of the immunoreactive peak, therefore defined as the CHH of P. marmoratus. Isolated posterior gills were then perfused with HPLC fractions using a dose of 4 SG equivalents/assay. The CHH fraction consistently and significantly increased the transepithelial potential difference and Na(+) influx by about 50%. The effect was rapid and reversible. Another substance of unknown nature (eluted earlier than CHH in the HPLC gradient) caused a small increase in Na(+) influx (14%) but had no effect on the transepithelial potential difference. No other peptidic product from the SG had significant effect on the measured osmoregulatory parameters. These results indicate that CHH, in addition to its hyperglycemic activity, is also implicated in the control of branchial ionic transport. This neuropeptide may thus constitute a major factor involved in the control of osmoregulation in decapod crustaceans.
Collapse
Affiliation(s)
- C Spanings-Pierrot
- Laboratoire d'Ecophysiologie des Invertébrés, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Phlippen MK, Webster SG, Chung JS, Dircksen H. Ecdysis of decapod crustaceans is associated with a dramatic release of crustacean cardioactive peptide into the haemolymph. J Exp Biol 2000; 203:521-36. [PMID: 10637181 DOI: 10.1242/jeb.203.3.521] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On the basis of detailed analyses of morphological characteristics and behavioural events associated with ecdysis in a crab (Carcinus maenas) and a crayfish (Orconectes limosus), a comprehensive substaging system has been introduced for the ecdysis stage of the moult cycle of these decapod crustaceans. In a remarkably similar stereotyped ecdysis sequence in both species, a passive phase of water uptake starting with bulging and rupture of thoracoabdominal exoskeletal junctions is followed by an active phase showing distinct behavioural changes involved in the shedding of the head appendages, abdomen and pereiopods. Together with an enzyme immunoassay for crustacean cardioactive peptide (CCAP), the substaging has been used to demonstrate a large, rapid and reproducible peak in haemolymph CCAP levels (increases of approximately 30-fold in the crab and more than 100-fold in the crayfish compared with intermoult titres) during the later stages of active ecdysis. We suggest that the release of CCAP (accumulated in late premoult) from the crab pericardial organs or the crayfish ventral nerve cord accounts for many of the changes in behaviour and physiology seen during ecdysis and that this neurohormone is likely to be of critical importance in crustaceans and other arthropods.
Collapse
Affiliation(s)
- M K Phlippen
- Institut für Zoophysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 11-13, D-53115 Bonn, Germany
| | | | | | | |
Collapse
|
38
|
Chan SM. Cloning of a shrimp (Metapanaeus ensis) cDNA encoding a nuclear receptor superfamily member: an insect homologue of E75 gene. FEBS Lett 1998; 436:395-400. [PMID: 9801156 DOI: 10.1016/s0014-5793(98)01148-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Degenerate primers were derived from the amino acid sequence in the DNA binding domain of the Drosophila ecdysone receptor (DmEcR). Several partial cDNAs were amplified from the shrimp epidermis by reverse transcription polymerase chain reaction (RT-PCR). One of these fragments shows the highest amino acid sequence homology to the insect ecdysone inducible gene E75. This partial cDNA was used as a probe to screen the swimming leg cDNA library of the shrimp, Metapenaeus ensis. A 3.6 kb cDNA clone was obtained. The longest open reading frame of this cDNA consists of 606 amino acids and its deduced amino acid sequence has all five domains typical of a nuclear receptor. The putative polyadenylation signal is located at about 400 bp 3' to the stop signal. The deduced amino acid sequence of this cDNA shows the highest identity to that of the E75A reported in Manduca sexta, Galleria melonella, Drosophila melanogaster, and Choristoneura fumiferana. Based on the amino acid sequence comparison, the shrimp nuclear receptor is considered the insect homologue of E75A. Northern blot analysis shows that the shrimp E75 is expressed in the epidermis, eyestalk and the nerve cord of the pre-molt shrimp. Moreover, E75 transcripts can be detected in the epidermal tissues of early pre-molt shrimp by in situ hybridization. To determine whether the shrimp could also express other E75s like the insects, 5' end RACE and RT-PCR were performed on epidermal cDNA of a single shrimp. Subcloning and DNA sequence determination of the PCR products confirmed the presence of two other forms of E75 (tentatively called E75C and E75D) in shrimp. By RT-PCR, different levels of E75 expression can be detected in the epidermis, nerve cord and the eyestalk of early pre-molt shrimp. In addition to the different levels of expression of the shrimp E75s in the epidermis, the pattern of their expression is also different during the molting cycle. This is the first report on the cloning of a shrimp nuclear receptor superfamily member.
Collapse
Affiliation(s)
- S M Chan
- Department of Zoology, The University of Hong Kong, China.
| |
Collapse
|
39
|
Khayat M, Yang W, Aida K, Nagasawa H, Tietz A, Funkenstein B, Lubzens E. Hyperglycaemic hormones inhibit protein and mRNA synthesis in in vitro-incubated ovarian fragments of the marine shrimp Penaeus semisulcatus. Gen Comp Endocrinol 1998; 110:307-18. [PMID: 9593651 DOI: 10.1006/gcen.1998.7078] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work shows for the first time that peptides belonging to the Crustacean hyperglycaemic hormone family (CHH-family hormones) from Penaeus japonicus affect protein and mRNA synthesis in in vitro-incubated ovarian explant fragments removed from vitellogenic females of Penaeus semisulcatus. Reduced levels of protein synthesis, determined by TCA-precipitable 35S-labeled proteins, were found in the presence of crude sinus gland extracts from both P. semisulcatus and P. japonicus. A similar inhibitory effect compared to controls was found with each of the seven CHH-family peptides. Non-CHH-family peptides did not reduce protein synthesis. Crude sinus gland extracts prepared from P. semisulcatus were at least 20-fold more effective than sinus gland extracts of P. japonicus. The inhibition level was directly related to the concentration of the peptide in the incubation media, but its degree varied among the different tested peptides. The profile of proteins synthesized during in vitro incubation was analyzed using polyacrylamide gel electrophoresis under denatured and reduced conditions (SDS-PAGE), followed by autoradiography. Synthesis of several proteins was reduced, including proteins with electrophoretic mobility similar to that of vitellin. Immunoprecipitation with antiserum prepared against native ovarian vitellin confirmed the inhibitory effect of CHH-family peptides on vitellin synthesis. The crude sinus gland extract and CHH-family peptides also inhibited RNA synthesis, as determined by [3H]uridine incorporation into mRNA of ovarian fragments. It is concluded that in addition to their role in carbohydrate metabolism, CHH-family peptides may also influence ovarian physiology in crustaceans.
Collapse
Affiliation(s)
- M Khayat
- George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Chung JS, Webster SG. Does the N-terminal pyroglutamate residue have any physiological significance for crab hyperglycemic neuropeptides? EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:358-64. [PMID: 8841399 DOI: 10.1111/j.1432-1033.1996.0358h.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A characteristic feature of all crustacean hyperglycemic hormones (CHH) is that they are always present in the sinus gland as multiple forms or isoforms. The amino acid sequence of the minor form of CHH from the green shore crab, Carcinus maenas, was determined by automated microsequencing and MS, and was almost identical to that of the major form, except that the N-terminal residue was glutamine rather than pyroglutamate. Limited analysis (electrospray MS and amino acid composition) of the two corresponding forms of CHH from the edible crab, Cancer pagurus, suggested a similar phenomenon in this species. For C. maenas, both forms were indistinguishable in terms of their ability to cause sustained hyperglycemia in vivo and repression of ecdysteroid synthesis in vitro. Similarly, the two forms were immunologically identical in RIA, and exhibited similar binding characteristics in competitive-receptor-binding assays. CD studies showed only minor differences in presumed secondary structure. In vitro release experiments with isolated sinus glands demonstrated that both forms are probably released in a stoichiometric manner and that both peptides are present in the haemolymph at the same ratio as that in the sinus gland. Preliminary results suggest that the in vivo clearance/degradation rates of both peptides are similar. The unblocked (Gln) terminus is of particular significance, since the presence of this amino acid indicates that this peptide is derived from a precursor that does not possess the same structure of those of established preproCHH, or that N-terminal processing is slow, which results in the presence of unblocked CHH in sinus glands. The similar biological activity of the unblocked CHH to that of the blocked CHH suggests that the N-terminal pyroglutamate residue has no obvious biological significance (with respect to the known functions of CHH), an observation which is in contrast to the widely accepted paradigms concerning the stability and biological activity of N-terminally blocked and unblocked peptides.
Collapse
Affiliation(s)
- J S Chung
- School of Biological Sciences, University of Wales Bangor, UK
| | | |
Collapse
|
42
|
Wainwright G, Webster SG, Wilkinson MC, Chung JS, Rees HH. Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus. Involvement in multihormonal regulation of growth and reproduction. J Biol Chem 1996; 271:12749-54. [PMID: 8662685 DOI: 10.1074/jbc.271.22.12749] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Current evidence indicates that methyl farnesoate is the crustacean equivalent of the juvenile hormones of insects. This putative hormone is produced by the mandibular organs and is negatively regulated by a neuropeptide produced and secreted by the X-organ-sinus gland complex of the eyestalk. To identify this neuropeptide, a bioassay was developed which measures the inhibition of methyl farnesoate synthesis by mandibular organs exposed to fractionated sinus gland extracts from the crab, Cancer pagurus. Two neuropeptides, named mandibular organ-inhibiting hormones (MOIH-1 and -2) repressed methyl farnesoate synthesis. MOIH-1 was fully sequenced by automated Edman degradation of endoproteinase-derived fragments and further characterized by mass spectrometry. This peptide consisted of 78 residues (Mr 9235.6), with unblocked termini and three intrachain disulfide bridges. MOIH-2 appeared to be almost identical to MOIH-1 with the exception of a Gln for Lys substitution at position 33. Comparison with previously sequenced crustacean neuropeptides shows that these MOIHs are members of the ever expanding crustacean hyperglycemic hormone family, with significant sequence similarity to molt-inhibiting hormones (MIHs). It is possible that these two structurally similar peptides (MIH, MOIH) may control mutually exclusive physiological phenomena (somatic and gonadal growth), suggesting a complex hormonal integration of these processes in crustaceans.
Collapse
Affiliation(s)
- G Wainwright
- Department of Biochemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Chung JS, Wilkinson MC, Webster SG. Determination of the amino acid sequence of the moult-inhibiting hormone from the edible crab, Cancer pagurus. Neuropeptides 1996; 30:95-101. [PMID: 8868306 DOI: 10.1016/s0143-4179(96)90061-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Putative moult-inhibiting hormone (MIH) from sinus glands of the edible crab Cancer pagurus was characterized by high-performance liquid chromatography, followed by fractional bioassay (inhibition of ecdysteroid synthesis by Y-organs) and immunoassay (using antisera raised against Carcinus MIH). This peptide was fully sequenced by automated Edman degradation of endoproteinase-derived fragments. C. pagurus MIH is a 78 residue peptide (M(r) 9194), with free N- and C-termini and three intrachain disulphide bridges. Comparison with previously published MIH sequences confirms a high degree of sequence identity (c. 80%), supporting the view that brachyurans (crabs), possess distinct, structurally similar MIH neuropeptides.
Collapse
Affiliation(s)
- J S Chung
- School of Biological Sciences, University of Wales Bangor, Gwynedd, UK
| | | | | |
Collapse
|
44
|
BLAIS CATHERINE, SEFIANI MAJIDA, TOULLEC JEANYVES, SOYEZ DANIEL. In vitroproduction of ecdysteroids by Y-organs ofPenaeus vannamei(Crustacea, Decapoda). Correlation with hemolymph titers. INVERTEBR REPROD DEV 1994. [DOI: 10.1080/07924259.1994.9672395] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Saïdi B, de Bessé N, Webster SG, Sedlmeier D, Lachaise F. Involvement of cAMP and cGMP in the mode of action of molt-inhibiting hormone (MIH) a neuropeptide which inhibits steroidogenesis in a crab. Mol Cell Endocrinol 1994; 102:53-61. [PMID: 7523205 DOI: 10.1016/0303-7207(94)90097-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In crustaceans, production of molting hormones (or ecdysteroids) by the molting glands (Y-organs; YO), is under negative control exerted by a neuropeptide, the molt-inhibiting hormone (MIH). MIH of the crab Carcinus maenas inhibits in vitro steroidogenesis of basal (intermolt crab) or activated (premolt crab) YO. MIH inhibits secretion of the two ecdysteroids synthesized by crab YO, ecdysone (E) secreted throughout the molting cycle, and 25-deoxyecdysone (25dE), secreted during the premolt period. At a MIH concentration of 10(-8) M, E is reduced about 50% and 25dE 94%. Regardless of the molting stage, this inhibition of steroidogenesis is reversible, dose dependent and measurable after 5 min. On intermolt YO, MIH induced cGMP increase and 8BrcGMP mimics the effect of MIH: at this stage cGMP seems to be involved with MIH inhibition of steroidogenesis. On premolt YO MIH induced a transient increase of cAMP (2-fold) and a long-lasting enhancement of cGMP (60-fold). On active YO, we demonstrated that a low concentration (10(-5) M) of dbcAMP, 8BrcAMP, 8BrcGMP, or agents increasing intracellular cAMP, mimic MIH effects and inhibit steroidogenesis. From these observations it is concluded that both cyclic nucleotides are involved in the mode of action of MIH on activated YO. At this premolt period, MIH/cAMP may act cooperatively with MIH/cGMP in the inhibitory control of steroidogenesis by crab YO.
Collapse
Affiliation(s)
- B Saïdi
- Laboratoire de Biochimie et Physiologie du Développement, ENS, URA 686, Paris, France
| | | | | | | | | |
Collapse
|
46
|
Dissociated cell suspensions ofCarcinus maenas Y-organs as a tool to study ecdysteroid production and its regulation. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf01984955] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Klein JM, Mangerich S, de Kleijn DP, Keller R, Weidemann WM. Molecular cloning of crustacean putative molt-inhibiting hormone (MIH) precursor. FEBS Lett 1993; 334:139-42. [PMID: 8224217 DOI: 10.1016/0014-5793(93)81699-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A cDNA encoding the complete precursor of the putative molt-inhibiting hormone (MIH) of the shore crab, Carcinus maenas, was isolated and sequenced. The precursor consists of a putative 35 amino acid signal peptide and the 78 amino acid mature MIH. The deduced MIH amino acid sequence is in complete agreement with the sequence previously determined by Edman degradation. In situ hybridization revealed MIH-expression in a subpopulation of large neurosecretory perikarya of the medulla terminalis X-organ in the eyestalk.
Collapse
Affiliation(s)
- J M Klein
- Institute for Zoophysiology, University of Bonn, Germany
| | | | | | | | | |
Collapse
|
48
|
Sedlmeier D, Fenrich R. Regulation of ecdysteroid biosynthesis in crayfish Y-organs: I. Role of cyclic nucleotides. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/jez.1402650415] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Kummer G, Keller R. High-affinity binding of crustacean hyperglycemic hormone (CHH) to hepatopancreatic plasma membranes of the crab Carcinus maenas and the crayfish Orconectes limosus. Peptides 1993; 14:103-8. [PMID: 8382808 DOI: 10.1016/0196-9781(93)90016-a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The binding properties of the crustacean hyperglycemic hormone (CHH) of two species, the shore crab, Carcinus maenas (Brachyura) and the crayfish, Orconectes limosus (Astacura), were investigated using purified plasma membranes of one of the main target organs, the hepatopancreas. Assays were performed under equilibrium binding conditions with 125I-CHH as labeled ligand and unlabeled CHH in increasing concentrations as displacing ligand. In both cases, comparable binding characteristics were observed for the homologous CHH to the respective hepatopancreatic membrane source, indicating saturable and displaceable binding with nonlinear dependence on monovalent cations and a dissociation constant (Kd) of 4 to 6 x 10(-10) M. Binding capacity was in the range of 200-400 fmol/mg membrane protein. In heterologous displacement studies a certain degree of species specificity was found, particularly with regard to selective binding by the Orconectes receptor, suggesting that the group specificity of biological activity of CHH reflects coevolution of both hormone and receptor.
Collapse
Affiliation(s)
- G Kummer
- Institut für Zoophysiologie, Universität Bonn, Germany
| | | |
Collapse
|
50
|
Aguilar MB, Quackenbush L, Hunt DT, Shabanowitz J, Huberman A. Identification, purification and initial characterization of the vitellogenesis-inhibiting hormone from the Mexican crayfish Procambarus bouvieri (Ortmann). ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0305-0491(92)90039-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|