1
|
Raguette LE, Cuomo AE, Belfon KAA, Tian C, Hazoglou V, Witek G, Telehany SM, Wu Q, Simmerling C. phosaa14SB and phosaa19SB: Updated Amber Force Field Parameters for Phosphorylated Amino Acids. J Chem Theory Comput 2024. [PMID: 39151116 DOI: 10.1021/acs.jctc.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Phosphorylated amino acids are involved in many cell regulatory networks; proteins containing these post-translational modifications are widely studied both experimentally and computationally. Simulations are used to investigate a wide range of structural and dynamic properties of biomolecules, such as ligand binding, enzyme-reaction mechanisms, and protein folding. However, the development of force field parameters for the simulation of proteins containing phosphorylated amino acids using the Amber program has not kept pace with the development of parameters for standard amino acids, and it is challenging to model these modified amino acids with accuracy comparable to proteins containing only standard amino acids. In particular, the popular ff14SB and ff19SB models do not contain parameters for phosphorylated amino acids. Here, the dihedral parameters for the side chains of the most common phosphorylated amino acids are trained against reference data from QM calculations adopting the ff14SB approach, followed by validation against experimental data. Library files and corresponding parameter files are provided, with versions that are compatible with both ff14SB and ff19SB.
Collapse
Affiliation(s)
- Lauren E Raguette
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Abbigayle E Cuomo
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kellon A A Belfon
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chuan Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Victoria Hazoglou
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Gabriela Witek
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stephen M Telehany
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Qin Wu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S. Impact of Lysine Succinylation on the Biology of Fungi. Curr Issues Mol Biol 2024; 46:1020-1046. [PMID: 38392183 PMCID: PMC10888112 DOI: 10.3390/cimb46020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.
Collapse
Affiliation(s)
- John Adejor
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoqi Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Kadir AA, Stubbs BJ, Chong C, Lee H, Cole M, Carr C, Hauton D, McCullagh J, Evans RD, Clarke K. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart. J Physiol 2023; 601:1207-1224. [PMID: 36799478 PMCID: PMC10684314 DOI: 10.1113/jp284270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
In heart, glucose and glycolysis are important for anaplerosis and potentially therefore for d-β-hydroxybutyrate (βHB) oxidation. As a glucose store, glycogen may also furnish anaplerosis. We determined the effects of glycogen content on βHB oxidation and glycolytic rates, and their downstream effects on energetics, in the isolated rat heart. High glycogen (HG) and low glycogen (LG) containing hearts were perfused with 11 mM [5-3 H]glucose and/or 4 mM [14 C]βHB to measure glycolytic rates or βHB oxidation, respectively, then freeze-clamped for glycogen and metabolomic analyses. Free cytosolic [NAD+ ]/[NADH] and mitochondrial [Q+ ]/[QH2 ] ratios were estimated using the lactate dehydrogenase and succinate dehydrogenase reaction, respectively. Phosphocreatine (PCr) and inorganic phosphate (Pi ) concentrations were measured using 31 P-nuclear magnetic resonance spectroscopy. Rates of βHB oxidation in LG hearts were half that in HG hearts, with βHB oxidation directly proportional to glycogen content. βHB oxidation decreased glycolysis in all hearts. Glycogenolysis in glycogen-replete hearts perfused with βHB alone was twice that of hearts perfused with βHB and glucose, which had significantly higher levels of the glycolytic intermediates fructose 1,6-bisphosphate and 3-phosphoglycerate, and higher free cytosolic [NAD+ ]/[NADH]. βHB oxidation increased the Krebs cycle intermediates citrate, 2-oxoglutarate and succinate, the total NADP/H pool, reduced mitochondrial [Q+ ]/[QH2 ], and increased the calculated free energy of ATP hydrolysis (∆GATP ). Although βHB oxidation inhibited glycolysis, glycolytic intermediates were not depleted, and cytosolic free NAD remained oxidised. βHB oxidation alone increased Krebs cycle intermediates, reduced mitochondrial Q and increased ∆GATP . We conclude that glycogen facilitates cardiac βHB oxidation by anaplerosis. KEY POINTS: Ketone bodies (d-β-hydroxybutyrate, acetoacetate) are increasingly recognised as important cardiac energetic substrates, in both healthy and diseased hearts. As 2-carbon equivalents they are cataplerotic, causing depletion of Krebs cycle intermediates; therefore their utilisation requires anaplerotic supplementation, and intra-myocardial glycogen has been suggested as a potential anaplerotic source during ketone oxidation. It is demonstrated here that cardiac glycogen does indeed provide anaplerotic substrate to facilitate β-hydroxybutyrate oxidation in isolated perfused rat heart, and this contribution was quantified using a novel pulse-chase metabolic approach. Further, using metabolomics and 31 P-MR, it was shown that glycolytic flux from myocardial glycogen increased the heart's ability to oxidise βHB, and βHB oxidation increased the mitochondrial redox potential, ultimately increasing the free energy of ATP hydrolysis.
Collapse
Affiliation(s)
- Azrul Abdul Kadir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | | - Cher‐Rin Chong
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideAustralia
| | - Henry Lee
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Mark Cole
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Carolyn Carr
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - David Hauton
- Department of ChemistryUniversity of OxfordOxfordUK
| | | | - Rhys D. Evans
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab 2022; 34:947-968. [PMID: 35728586 PMCID: PMC9262871 DOI: 10.1016/j.cmet.2022.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/03/2023]
Abstract
In this review, we focus on recent developments in our understanding of nutrient-induced insulin secretion that challenge a key aspect of the "canonical" model, in which an oxidative phosphorylation-driven rise in ATP production closes KATP channels. We discuss the importance of intrinsic β cell metabolic oscillations; the phasic alignment of relevant metabolic cycles, shuttles, and shunts; and how their temporal and compartmental relationships align with the triggering phase or the secretory phase of pulsatile insulin secretion. Metabolic signaling components are assigned regulatory, effectory, and/or homeostatic roles vis-à-vis their contribution to glucose sensing, signal transmission, and resetting the system. Taken together, these functions provide a framework for understanding how allostery, anaplerosis, and oxidative metabolism are integrated into the oscillatory behavior of the secretory pathway. By incorporating these temporal as well as newly discovered spatial aspects of β cell metabolism, we propose a much-refined MitoCat-MitoOx model of the signaling process for the field to evaluate.
Collapse
Affiliation(s)
- Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| | - Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Richard G Kibbey
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Marc Prentki
- Molecular Nutrition Unit and Montreal Diabetes Research Center, CRCHUM, and Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, Montréal, ON, Canada.
| |
Collapse
|
5
|
Transcriptome Sequencing Analysis Reveals Dynamic Changes in Major Biological Functions during the Early Development of Clearhead Icefish, Protosalanx chinensis. FISHES 2022. [DOI: 10.3390/fishes7030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early development, when many important developmental events occur, is a critical period for fish. However, research on the early development of clearhead icefish is very limited, especially in molecular research. In this study, we aimed to explore the dynamic changes in the biological functions of five key periods in clearhead icefish early development, namely the YL (embryonic), PM (first day after hatching), KK (fourth day after hatching), LC (seventh day after hatching), and SL (tenth day after hatching) stages, through transcriptome sequencing and different analysis strategies. A trend expression analysis and an enrichment analysis revealed that the expression ofgenes encoding G protein-coupled receptors and their ligands, i.e., prss1_2_3, pomc, npy, npb, sst, rln3, crh, gh, and prl that are associated with digestion and feeding regulation gradually increased during early development. In addition, a weighted gene co-expression network analysis (WGCNA) showed that eleven modules were significantly associated with early development, among which nine modules were significantly positively correlated. Through the enrichment analysis and hub gene identification results of these nine modules, it was found that the pathways related to eye, bone, and heart development were significantly enriched in the YL stage, and the ccnd2, seh1l, kdm6a, arf4, and ankrd28 genes that are associated with cell proliferation and differentiation played important roles in these developmental processes; the pak3, dlx3, dgat2, and tas1r1 genes that are associated with jaw and tooth development, TG (triacylglycerol) synthesis, and umami amino acid receptors were identified as hub genes for the PM stage; the pathways associated with aerobic metabolism and unsaturated fatty acid synthesis were significantly enriched in the KK stage, with the foxk, slc13a2_3_5, ndufa5, and lsc2 genes playing important roles; the pathways related to visual perception were significantly enriched in the LC stage; and the bile acid biosynthetic and serine-type peptidase activity pathways were significantly enriched in the SL stage. These results provide a more detailed understanding of the processes of early development of clearhead icefish.
Collapse
|
6
|
Jing Y, Li X, Liu Z, Li XD. Roles of Negatively Charged Histone Lysine Acylations in Regulating Nucleosome Structure and Dynamics. Front Mol Biosci 2022; 9:899013. [PMID: 35547393 PMCID: PMC9081332 DOI: 10.3389/fmolb.2022.899013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 01/08/2023] Open
Abstract
The nucleosome, the basic repeating unit of chromatin, is a dynamic structure that consists of DNA and histones. Insights derived from biochemical and biophysical approaches have revealed that histones posttranslational modifications (PTMs) are key regulators of nucleosome structure and dynamics. Mounting evidence suggests that the newly identified negatively charged histone lysine acylations play significant roles in altering nucleosome and chromatin dynamics, subsequently affecting downstream DNA-templated processes including gene transcription and DNA damage repair. Here, we present an overview of the dynamic changes of nucleosome and chromatin structures in response to negatively charged histone lysine acylations, including lysine malonylation, lysine succinylation, and lysine glutarylation.
Collapse
Affiliation(s)
- Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- *Correspondence: Xiang David Li, ; Yihang Jing,
| | - Xin Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- *Correspondence: Xiang David Li, ; Yihang Jing,
| |
Collapse
|
7
|
Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021; 11:metabo11090572. [PMID: 34564387 PMCID: PMC8467939 DOI: 10.3390/metabo11090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
A theory that can best explain the facts of a phenomenon is more likely to advance knowledge than a theory that is less able to explain the facts. Cancer is generally considered a genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen) or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing most cancers.
Collapse
|
8
|
Veluthakal R, Thurmond DC. Emerging Roles of Small GTPases in Islet β-Cell Function. Cells 2021; 10:1503. [PMID: 34203728 PMCID: PMC8232272 DOI: 10.3390/cells10061503] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Several small guanosine triphosphatases (GTPases) from the Ras protein superfamily regulate glucose-stimulated insulin secretion in the pancreatic islet β-cell. The Rho family GTPases Cdc42 and Rac1 are primarily involved in relaying key signals in several cellular functions, including vesicle trafficking, plasma membrane homeostasis, and cytoskeletal dynamics. They orchestrate specific changes at each spatiotemporal region within the β-cell by coordinating with signal transducers, guanine nucleotide exchange factors (GEFs), GTPase-activating factors (GAPs), and their effectors. The Arf family of small GTPases is involved in vesicular trafficking (exocytosis and endocytosis) and actin cytoskeletal dynamics. Rab-GTPases regulate pre-exocytotic and late endocytic membrane trafficking events in β-cells. Several additional functions for small GTPases include regulating transcription factor activity and mitochondrial dynamics. Importantly, defects in several of these GTPases have been found associated with type 2 diabetes (T2D) etiology. The purpose of this review is to systematically denote the identities and molecular mechanistic steps in the glucose-stimulated insulin secretion pathway that leads to the normal release of insulin. We will also note newly identified defects in these GTPases and their corresponding regulatory factors (e.g., GDP dissociation inhibitors (GDIs), GEFs, and GAPs) in the pancreatic β-cells, which contribute to the dysregulation of metabolism and the development of T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Abstract
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG′ATP hydrolysis of −56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gabriel Arismendi-Morillo
- Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
10
|
Chinopoulos C, Seyfried TN. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2019; 10:1759091418818261. [PMID: 30909720 PMCID: PMC6311572 DOI: 10.1177/1759091418818261] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers. Ultrastructural and biochemical evidence shows that GBM cells exhibit mitochondrial abnormalities incompatible with energy production through oxidative phosphorylation (OxPhos). Under such conditions, the mitochondrial F0-F1 ATP synthase operates in reverse at the expense of ATP hydrolysis to maintain a moderate membrane potential. Moreover, expression of the dimeric M2 isoform of pyruvate kinase in GBM results in diminished ATP output, precluding a significant ATP production from glycolysis. If ATP synthesis through both glycolysis and OxPhos was impeded, then where would GBM cells obtain high-energy phosphates for growth and invasion? Literature is reviewed suggesting that the succinate-CoA ligase reaction in the tricarboxylic acid cycle can substantiate sufficient ATP through mitochondrial substrate-level phosphorylation (mSLP) to maintain GBM growth when OxPhos is impaired. Production of high-energy phosphates would be supported by glutaminolysis—a hallmark of GBM metabolism—through the sequential conversion of glutamine → glutamate → alpha-ketoglutarate → succinyl CoA → succinate. Equally important, provision of ATP through mSLP would maintain the adenine nucleotide translocase in forward mode, thus preventing the reverse-operating F0-F1 ATP synthase from depleting cytosolic ATP reserves. Because glucose and glutamine are the primary fuels driving the rapid growth of GBM and most tumors for that matter, simultaneous restriction of these two substrates or inhibition of mSLP should diminish cancer viability, growth, and invasion.
Collapse
|
11
|
Huang J, Nguyen VH, Hamblin KA, Maytum R, van der Giezen M, Fraser ME. ATP-specificity of succinyl-CoA synthetase from Blastocystis hominis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:647-659. [PMID: 31282474 DOI: 10.1107/s2059798319007976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022]
Abstract
Succinyl-CoA synthetase (SCS) catalyzes the only step of the tricarboxylic acid cycle that leads to substrate-level phosphorylation. Some forms of SCS are specific for ADP/ATP or for GDP/GTP, while others can bind all of these nucleotides, generally with different affinities. The theory of `gatekeeper' residues has been proposed to explain the nucleotide-specificity. Gatekeeper residues lie outside the binding site and create specific electrostatic interactions with incoming nucleotides to determine whether the nucleotides can enter the binding site. To test this theory, the crystal structure of the nucleotide-binding domain in complex with Mg2+-ADP was determined, as well as the structures of four proteins with single mutations, K46βE, K114βD, V113βL and L227βF, and one with two mutations, K46βE/K114βD. The crystal structures show that the enzyme is specific for ADP/ATP because of interactions between the nucleotide and the binding site. Nucleotide-specificity is provided by hydrogen-bonding interactions between the adenine base and Gln20β, Gly111β and Val113β. The O atom of the side chain of Gln20β interacts with N6 of ADP, while the side-chain N atom interacts with the carbonyl O atom of Gly111β. It is the different conformations of the backbone at Gln20β, of the side chain of Gln20β and of the linker that make the enzyme ATP-specific. This linker connects the two subdomains of the ATP-grasp fold and interacts differently with adenine and guanine bases. The mutant proteins have similar conformations, although the L227βF mutant shows structural changes that disrupt the binding site for the magnesium ion. Although the K46βE/K114βD double mutant of Blastocystis hominis SCS binds GTP better than ATP according to kinetic assays, only the complex with Mg2+-ADP was obtained.
Collapse
Affiliation(s)
- Ji Huang
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Vinh H Nguyen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Karleigh A Hamblin
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, England
| | - Robin Maytum
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, England
| | | | - Marie E Fraser
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
12
|
Loss of succinyl-CoA synthase ADP-forming β subunit disrupts mtDNA stability and mitochondrial dynamics in neurons. Sci Rep 2017; 7:7169. [PMID: 28769029 PMCID: PMC5541051 DOI: 10.1038/s41598-017-05168-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/24/2017] [Indexed: 11/30/2022] Open
Abstract
Succinyl Coenzyme A synthetase (SCS) is a key mitochondrial enzyme. Defected SCS ADP-forming β subunit (SCS A-β) is linked to lethal infantile Leigh or leigh-like syndrome. However, the impacts of SCS A-β deficiency on mitochondria specifically in neurons have not yet been comprehensively investigated. Here, by down-regulating the expression levels of SCS A-β in cultured mouse neurons, we have found that SCS A-β deficiency induces severe mitochondrial dysfunction including lowered oxidative phosphorylation (OXPHOS) efficiency, increased mitochondrial superoxide production, and mtDNA depletion as well as aberrations of mitochondrial fusion and fission proteins, which eventually leads to neuronal stress. Our data also suggest that the deregulation of mitochondrial nucleoside diphosphate kinase (NDPK) together with defects in mitochondrial transcription factors including mitochondrial DNA pol γ and Twinkle contribute to SCS A-β deficiency-mediated mtDNA instability. Furthermore, we have found that SCS A-β deficiency has detrimental influence on neuronal mitochondrial dynamics. Put together, the results have furnished our knowledge on the pathogenesis of SCS A-β deficiency-related mitochondrial diseases and revealed the vital role of SCS A-β in maintaining neuronal mitochondrial quality control and neuronal physiology.
Collapse
|
13
|
Németh B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM, Horvath G, Tretter L, Mócsai A, Csépányi-Kömi R, Iordanov I, Adam-Vizi V, Chinopoulos C. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. FASEB J 2015; 30:286-300. [PMID: 26358042 DOI: 10.1096/fj.15-279398] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/31/2015] [Indexed: 01/28/2023]
Abstract
Itaconate is a nonamino organic acid exhibiting antimicrobial effects. It has been recently identified in cells of macrophage lineage as a product of an enzyme encoded by immunoresponsive gene 1 (Irg1), acting on the citric acid cycle intermediate cis-aconitate. In mitochondria, itaconate can be converted by succinate-coenzyme A (CoA) ligase to itaconyl-CoA at the expense of ATP (or GTP), and is also a weak competitive inhibitor of complex II. Here, we investigated specific bioenergetic effects of increased itaconate production mediated by LPS-induced stimulation of Irg1 in murine bone marrow-derived macrophages (BMDM) and RAW-264.7 cells. In rotenone-treated macrophage cells, stimulation by LPS led to impairment in substrate-level phosphorylation (SLP) of in situ mitochondria, deduced by a reversal in the directionality of the adenine nucleotide translocase operation. In RAW-264.7 cells, the LPS-induced impairment in SLP was reversed by short-interfering RNA(siRNA)-but not scrambled siRNA-treatment directed against Irg1. LPS dose-dependently inhibited oxygen consumption rates (61-91%) and elevated glycolysis rates (>21%) in BMDM but not RAW-264.7 cells, studied under various metabolic conditions. In isolated mouse liver mitochondria treated with rotenone, itaconate dose-dependently (0.5-2 mM) reversed the operation of adenine nucleotide translocase, implying impairment in SLP, an effect that was partially mimicked by malonate. However, malonate yielded greater ADP-induced depolarizations (3-19%) than itaconate. We postulate that itaconate abolishes SLP due to 1) a "CoA trap" in the form of itaconyl-CoA that negatively affects the upstream supply of succinyl-CoA from the α-ketoglutarate dehydrogenase complex; 2) depletion of ATP (or GTP), which are required for the thioesterification by succinate-CoA ligase; and 3) inhibition of complex II leading to a buildup of succinate which shifts succinate-CoA ligase equilibrium toward ATP (or GTP) utilization. Our results support the notion that Irg1-expressing cells of macrophage lineage lose the capacity of mitochondrial SLP for producing itaconate during mounting of an immune defense.
Collapse
Affiliation(s)
- Beáta Németh
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Doczi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dániel Csete
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kacso
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dora Ravasz
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniel Adams
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kiss
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Adam M Nagy
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergo Horvath
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Laszlo Tretter
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Mócsai
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roland Csépányi-Kömi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Iordan Iordanov
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vera Adam-Vizi
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christos Chinopoulos
- *Department of Medical Biochemistry and Department of Physiology, Semmelweis University, Budapest, Hungary; and Lendület Neurobiochemistry Research Group, Lendület Inflammation Physiology Research Group, Laboratory for Neurobiochemistry, and Lendület Ion Channel Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
14
|
Huang J, Malhi M, Deneke J, Fraser ME. Structure of GTP-specific succinyl-CoA synthetase in complex with CoA. Acta Crystallogr F Struct Biol Commun 2015; 71:1067-71. [PMID: 26249701 PMCID: PMC4528943 DOI: 10.1107/s2053230x15011188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/09/2015] [Indexed: 11/10/2022] Open
Abstract
Pig GTP-specific succinyl-CoA synthetase is an αβ-heterodimer. The crystal structure of the complex with the substrate CoA was determined at 2.1 Å resolution. The structure shows CoA bound to the amino-terminal domain of the α-subunit, with the free thiol extending from the adenine portion into the site where the catalytic histidine residue resides.
Collapse
Affiliation(s)
- Ji Huang
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Manpreet Malhi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jan Deneke
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Marie Elizabeth Fraser
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
15
|
Zhang JZ, Gao Y, Lu QP, Sa RN, Zhang HF. iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes. J Zhejiang Univ Sci B 2015; 16:465-78. [PMID: 26055908 PMCID: PMC4471598 DOI: 10.1631/jzus.b1400266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/31/2015] [Indexed: 01/13/2023]
Abstract
Non-starch polysaccharide enzymes (NSPEs) have long been used in the feed production of monogastric animals to degrade non-starch polysaccharide to oligosaccharides and promote growth performance. However, few studies have been conducted on the effect of such enzymes on skeletal muscle in monogastric animals. To elucidate the mechanism of the effect of NSPEs on skeletal muscle, an isobaric tag for relative and absolute quantification (iTRAQ) for differential proteomic quantitation was applied to investigate alterations in the proteome in the longissimus muscle (LM) of growing pigs after a 50-d period of supplementation with 0.6% NSPEs in the diet. A total of 51 proteins were found to be differentially expressed in the LM between a control group and the NSPE group. Functional analysis of the differentially expressed protein species showed an increased abundance of proteins related to energy production, protein synthesis, muscular differentiation, immunity, oxidation resistance and detoxification, and a decreased abundance of proteins related to inflammation in the LM of the pigs fed NSPEs. These findings have important implications for understanding the mechanisms whereby dietary supplementation with NSPEs enzymes can promote growth performance and improve muscular metabolism in growing pigs.
Collapse
Affiliation(s)
- Ji-ze Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Jilin University, Changchun 130062, China
| | - Qing-ping Lu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ren-na Sa
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong-fu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain. J Bioenerg Biomembr 2014; 47:33-41. [PMID: 25370487 DOI: 10.1007/s10863-014-9586-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
Abstract
We have recently shown that the ATP-forming SUCLA2 subunit of succinyl-CoA ligase, an enzyme of the citric acid cycle, is exclusively expressed in neurons of the human cerebral cortex; GFAP- and S100-positive astroglial cells did not exhibit immunohistoreactivity or in situ hybridization reactivity for either SUCLA2 or the GTP-forming SUCLG2. However, Western blotting of post mortem samples revealed a minor SUCLG2 immunoreactivity. In the present work we sought to identify the cell type(s) harboring SUCLG2 in paraformaldehyde-fixed, free-floating surgical human cortical tissue samples. Specificity of SUCLG2 antiserum was supported by co-localization with mitotracker orange staining of paraformaldehyde-fixed human fibroblast cultures, delineating the mitochondrial network. In human cortical tissue samples, microglia and oligodendroglia were identified by antibodies directed against Iba1 and myelin basic protein, respectively. Double immunofluorescence for SUCLG2 and Iba1 or myelin basic protein exhibited no co-staining; instead, SUCLG2 appeared to outline the cerebral microvasculature. In accordance to our previous work there was no co-localization of SUCLA2 immunoreactivity with either Iba1 or myelin basic protein. We conclude that SUCLG2 exist only in cells forming the vasculature or its contents in the human brain. The absence of SUCLA2 and SUCLG2 in human glia is in compliance with the presence of alternative pathways occurring in these cells, namely the GABA shunt and ketone body metabolism which do not require succinyl CoA ligase activity, and glutamate dehydrogenase 1, an enzyme exhibiting exquisite sensitivity to inhibition by GTP.
Collapse
|
17
|
Dobolyi A, Ostergaard E, Bagó AG, Dóczi T, Palkovits M, Gál A, Molnár MJ, Adam-Vizi V, Chinopoulos C. Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct 2013; 220:135-51. [PMID: 24085565 DOI: 10.1007/s00429-013-0643-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/18/2013] [Indexed: 11/24/2022]
Abstract
SUCLA2 encodes the ATP-forming β subunit (A-SUCL-β) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here, we show that immunoreactivity of A-SUCL-β in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL-β immunoreactivity co-localized >99 % with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL-β antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL-β immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming β subunit (G-SUCL-β) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL-β immunoreactivity that was, however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chinopoulos C. The "B space" of mitochondrial phosphorylation. J Neurosci Res 2011; 89:1897-904. [PMID: 21541983 DOI: 10.1002/jnr.22659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/09/2011] [Accepted: 03/10/2011] [Indexed: 11/07/2022]
Abstract
It was recently shown that, in progressively depolarizing mitochondria, the F(0) -F(1) ATP synthase and the adenine nucleotide translocase (ANT) may change directionality independently from each other (Chinopoulos et al. [2010] FASEB J. 24:2405). When the membrane potentials at which these two molecular entities reverse directionality, termed reversal potential (Erev), are plotted as a function of matrix ATP/ADP ratio, an area of the plot is bracketed by the Erev_ATPase and the Erev_ANT, which we call "B space". Both reversal potentials are dynamic, in that they depend on the fluctuating values of the participating reactants; however, Erev_ATPase is almost always more negative than Erev_ANT. Here we review the conditions that define the boundaries of the "B space". Emphasis is placed on the role of matrix substrate-level phosphorylation, because during metabolic compromise this mechanism could maintain mitochondrial membrane potential and prevent the influx of cytosolic ATP destined for hydrolysis by the reversed F(0) -F(1) ATP synthase.
Collapse
|
19
|
Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:143-60. [PMID: 21443629 DOI: 10.1111/j.1365-313x.2011.04512.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants, the superfamily of carboxyl-CoA ligases and related proteins, collectively called acyl activating enzymes (AAEs), has evolved to provide enzymes for many pathways of primary and secondary metabolism and for the conjugation of hormones to amino acids. Across the superfamily there is only limited sequence similarity, but a series of highly conserved motifs, including the AMP-binding domain, make it easy to identify members. These conserved motifs are best understood in terms of the unique domain-rotation architecture that allows AAE enzymes to catalyze the two distinct steps of the CoA ligase reaction. Arabidopsis AAE sequences were used to identify the AAE gene families in the sequenced genomes of green algae, mosses, and trees; the size of the respective families increased with increasing degree of organismal cellular complexity, size, and generation time. Large-scale genome duplications and small-scale tandem gene duplications have contributed to AAE gene family complexity to differing extents in each of the multicellular species analyzed. Gene duplication and evolution of novel functions in Arabidopsis appears to have occurred rapidly, because acquisition of new substrate specificity is relatively easy in this class of proteins. Convergent evolution has also occurred between members of distantly related clades. These features of the AAE superfamily make it difficult to use homology searches and other genomics tools to predict enzyme function.
Collapse
Affiliation(s)
- Jay Shockey
- USDA-ARS, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, LA 70124, USA.
| | | |
Collapse
|
20
|
Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Töröcsik B, Doczi J, Turiak L, Kiss G, Konràd C, Vajda S, Vereczki V, Oh RJ, Adam-Vizi V. Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. FASEB J 2010; 24:2405-16. [PMID: 20207940 DOI: 10.1096/fj.09-149898] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In pathological conditions, F(0)F(1)-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F(0)F(1)-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F(0)F(1)-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal K(ATP) channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.
Collapse
Affiliation(s)
- Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Tuzolto St. 37-47, Room 4.521, Budapest, Hungary 1094.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Phillips D, Aponte AM, French SA, Chess DJ, Balaban RS. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism. Biochemistry 2009; 48:7140-9. [PMID: 19527071 DOI: 10.1021/bi900725c] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Succinyl-CoA synthetase (SCS) is the only mitochondrial enzyme capable of ATP production via substrate level phosphorylation in the absence of oxygen, but it also plays a key role in the citric acid cycle, ketone metabolism, and heme synthesis. Inorganic phosphate (P(i)) is a signaling molecule capable of activating oxidative phosphorylation at several sites, including NADH generation and as a substrate for ATP formation. In this study, it was shown that P(i) binds the porcine heart SCS alpha-subunit (SCSalpha) in a noncovalent manner and enhances its enzymatic activity, thereby providing a new target for P(i) activation in mitochondria. Coupling 32P labeling of intact mitochondria with SDS gel electrophoresis revealed that 32P labeling of SCSalpha was enhanced in substrate-depleted mitochondria. Using mitochondrial extracts and purified bacterial SCS (BSCS), we showed that this enhanced 32P labeling resulted from a simple binding of 32P, not covalent protein phosphorylation. The ability of SCSalpha to retain its 32P throughout the SDS denaturing gel process was unique over the entire mitochondrial proteome. In vitro studies also revealed a P(i)-induced activation of SCS activity by more than 2-fold when mitochondrial extracts and purified BSCS were incubated with millimolar concentrations of P(i). Since the level of 32P binding to SCSalpha was increased in substrate-depleted mitochondria, where the matrix P(i) concentration is increased, we conclude that SCS activation by P(i) binding represents another mitochondrial target for the P(i)-induced activation of oxidative phosphorylation and anaerobic ATP production in energy-limited mitochondria.
Collapse
Affiliation(s)
- Darci Phillips
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-1061, USA
| | | | | | | | | |
Collapse
|
22
|
Akhter Y, Yellaboina S, Farhana A, Ranjan A, Ahmed N, Hasnain SE. Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their role in pathogenesis. Gene 2007; 407:148-58. [PMID: 18022770 DOI: 10.1016/j.gene.2007.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
cAMP Receptor Protein (CRP)/Fumarate Nitrate Reductase Regulator (FNR) family proteins are ubiquitous regulators of cell stress in eubacteria. These proteins are commonly associated with maintenance of intracellular oxygen levels, redox-state, oxidative and nitrosative stresses, and extreme temperature conditions by regulating expression of target genes that contain regulatory cognate DNA elements. We describe the use of informatics enabled comparative genomics to identify novel genes under the control of CRP regulator in Mycobacterium tuberculosis (M.tb). An inventory of CRP regulated genes and their operon context in important mycobacterial species such as M. leprae, M. avium subsp. paratuberculosis and M. smegmatis and several common genes within this genus including the important cellular functions, mainly, cell-wall biogenesis, cAMP signaling and metabolism associated with such regulons were identified. Our results provide a possible theoretical framework for better understanding of the stress response in mycobacteria. The conservation of the CRP regulated genes in pathogenic mycobacteria, as opposed to non-pathogenic ones, highlights the importance of CRP-regulated genes in pathogenesis.
Collapse
Affiliation(s)
- Yusuf Akhter
- Laboratory of Molecular and Cellular Biology, CDFD, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
23
|
Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI. Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 2007; 5:253-64. [PMID: 17403370 PMCID: PMC1876711 DOI: 10.1016/j.cmet.2007.02.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/01/2006] [Accepted: 02/15/2007] [Indexed: 11/15/2022]
Abstract
Nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl-CoA synthetase (SCS) catalyze substrate-level synthesis of mitochondrial GTP (mtGTP) and ATP (mtATP). While mtATP yield from glucose metabolism is coupled with oxidative phosphorylation and can vary, each molecule of glucose metabolized within pancreatic beta cells produces approximately one mtGTP, making mtGTP a potentially important fuel signal. In INS-1 832/13 cells and cultured rat islets, siRNA suppression of the GTP-producing pathway (DeltaSCS-GTP) reduced glucose-stimulated insulin secretion (GSIS) by 50%, while suppression of the ATP-producing isoform (DeltaSCS-ATP) increased GSIS 2-fold. Insulin secretion correlated with increases in cytosolic calcium, but not with changes in NAD(P)H or the ATP/ADP ratio. These data suggest a role for mtGTP in controlling pancreatic GSIS through modulation of mitochondrial metabolism, possibly involving mitochondrial calcium. Furthermore, in light of its tight coupling to TCA oxidation rates, mtGTP production may serve as an important molecular signal of TCA-cycle activity.
Collapse
Affiliation(s)
- Richard G. Kibbey
- Department of Internal Medicine, Howard Hughes Medical Institute Yale University School of Medicine New Haven, CT 06520, USA
| | - Rebecca L. Pongratz
- Department of Internal Medicine, Howard Hughes Medical Institute Yale University School of Medicine New Haven, CT 06520, USA
| | - Anthony J. Romanelli
- Department of Internal Medicine, Howard Hughes Medical Institute Yale University School of Medicine New Haven, CT 06520, USA
| | - Claes B. Wollheim
- Department of Cell Physiology and Metabolism University Medical Center CH-1211 Geneva 4, Switzerland
| | - Gary W. Cline
- Department of Internal Medicine, Howard Hughes Medical Institute Yale University School of Medicine New Haven, CT 06520, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Howard Hughes Medical Institute Yale University School of Medicine New Haven, CT 06520, USA
- Department of Cellular, Howard Hughes Medical Institute Yale University School of Medicine New Haven, CT 06520, USA
- Department of Molecular Physiology, Howard Hughes Medical Institute Yale University School of Medicine New Haven, CT 06520, USA
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Nishimura JS. Succinyl-CoA synthetase structure-function relationships and other considerations. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 58:141-72. [PMID: 3521216 DOI: 10.1002/9780470123041.ch4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Fraser ME, Hayakawa K, Hume MS, Ryan DG, Brownie ER. Interactions of GTP with the ATP-grasp domain of GTP-specific succinyl-CoA synthetase. J Biol Chem 2006; 281:11058-65. [PMID: 16481318 DOI: 10.1074/jbc.m511785200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two isoforms of succinyl-CoA synthetase exist in mammals, one specific for ATP and the other for GTP. The GTP-specific form of pig succinyl-CoA synthetase has been crystallized in the presence of GTP and the structure determined to 2.1 A resolution. GTP is bound in the ATP-grasp domain, where interactions of the guanine base with a glutamine residue (Gln-20beta) and with backbone atoms provide the specificity. The gamma-phosphate interacts with the side chain of an arginine residue (Arg-54beta) and with backbone amide nitrogen atoms, leading to tight interactions between the gamma-phosphate and the protein. This contrasts with the structures of ATP bound to other members of the family of ATP-grasp proteins where the gamma-phosphate is exposed, free to react with the other substrate. To test if GDP would interact with GTP-specific succinyl-CoA synthetase in the same way that ADP interacts with other members of the family of ATP-grasp proteins, the structure of GDP bound to GTP-specific succinyl-CoA synthetase was also determined. A comparison of the conformations of GTP and GDP shows that the bases adopt the same position but that changes in conformation of the ribose moieties and the alpha- and beta-phosphates allow the gamma-phosphate to interact with the arginine residue and amide nitrogen atoms in GTP, while the beta-phosphate interacts with these residues in GDP. The complex of GTP with succinyl-CoA synthetase shows that the enzyme is able to protect GTP from hydrolysis when the active-site histidine residue is not in position to be phosphorylated.
Collapse
Affiliation(s)
- Marie E Fraser
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | | | | | | | | |
Collapse
|
26
|
Lambeth DO. Reconsideration of the significance of substrate-level phosphorylation in the citric acid cycle*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 34:21-29. [PMID: 21638627 DOI: 10.1002/bmb.2006.49403401021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
For nearly 50 years, students of metabolism in animals have been taught that a substrate-level phosphorylation in the Krebs citric acid cycle produces GTP that subsequently undergoes a transphosphorylation with ADP catalyzed by nucleoside diphosphate kinase. Research in the past decade has revealed that animals also express an ADP-forming succinate-CoA ligase whose activity exceeds that of the GDP-forming enzyme in some tissues. Here I argue that the primary fate of GTP is unlikely to be transphosphorylation with ADP. Rather, two succinate-CoA ligases with different nucleotide specificities have evolved to better integrate and regulate the central metabolic pathways that involve the citric acid cycle. The products of substrate-level phosphorylation, ATP and/or GTP, may represent a pool of nucleotide that has a different phosphorylation potential than the ATP made by oxidative phosphorylation and may be channeled to meet specific needs within mitochondria and the cell. Further research is needed to determine the applicable mechanisms and how they vary in tissues.
Collapse
Affiliation(s)
- David O Lambeth
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203-9037.
| |
Collapse
|
27
|
Lambeth DO, Tews KN, Adkins S, Frohlich D, Milavetz BI. Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. J Biol Chem 2004; 279:36621-4. [PMID: 15234968 DOI: 10.1074/jbc.m406884200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For nearly 50 years, succinyl-CoA synthetase in animals was thought to be specific for guanine nucleotides. Recently, we purified and characterized both an ADP-forming succinyl-CoA synthetase from pigeon breast muscle and the GDP-forming enzyme from liver (Johnson, J. D., Muhonen, W. W., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27573-27579). Using the sequences of the pigeon enzymes as queries in BLAST searches, we obtained genetic evidence that both enzymes are expressed in a wide range of animal species (Johnson, J. D., Mehus, J. G., Tews, K., Milavetz, B. I., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27580-27586). Here we extend those observations by presenting data from Western and Northern blots and enzymatic assays showing that both proteins are widely expressed in mammals with the relative amounts varying from tissue to tissue. We suggest that both succinyl-CoA synthetases catalyze the reverse reaction in the citric acid cycle in which the ADP-forming enzyme augments ATP production, whereas the GDP-forming enzyme supports GTP-dependent anabolic processes. Widely accepted shuttle mechanisms are invoked to explain how transport of P-enolpyruvate across mitochondrial membranes can transfer high energy phosphate between the cytosol and mitochondrial matrix.
Collapse
Affiliation(s)
- David O Lambeth
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA.
| | | | | | | | | |
Collapse
|
28
|
Alarcon C, Wicksteed B, Prentki M, Corkey BE, Rhodes CJ. Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation. Diabetes 2002; 51:2496-504. [PMID: 12145163 DOI: 10.2337/diabetes.51.8.2496] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The secondary signals emanating from increased glucose metabolism, which lead to specific increases in proinsulin biosynthesis translation, remain elusive. It is known that signals for glucose-stimulated insulin secretion and proinsulin biosynthesis diverge downstream of glycolysis. Consequently, the mitochondrial products ATP, Krebs cycle intermediates, glutamate, and acetoacetate were investigated as candidate stimulus-coupling signals specific for glucose-induced proinsulin biosynthesis in rat islets. Decreasing ATP levels by oxidative phosphorylation inhibitors showed comparable effects on proinsulin biosynthesis and total protein synthesis. Although it is a cofactor, ATP is unlikely to be a metabolic stimulus-coupling signal specific for glucose-induced proinsulin biosynthesis. Neither glutamic acid methyl ester nor acetoacetic acid methyl ester showed a specific effect on glucose-stimulated proinsulin biosynthesis. Interestingly, among Krebs cycle intermediates, only succinic acid monomethyl ester specifically stimulated proinsulin biosynthesis. Malonic acid methyl ester, an inhibitor of succinate dehydrogenase, also specifically increased glucose-induced proinsulin biosynthesis without affecting islet ATP levels or insulin secretion. Glucose caused a 40% increase in islet intracellular succinate levels, but malonic acid methyl ester showed no further effect, probably due to efficient conversion of succinate to succinyl-CoA. In this regard, a GTP-dependent succinyl-CoA synthetase activity was found in cytosolic fractions of pancreatic islets. Thus, succinate and/or succinyl-CoA appear to be preferential metabolic stimulus-coupling factors for glucose-induced proinsulin biosynthesis translation.
Collapse
Affiliation(s)
- Cristina Alarcon
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | | | |
Collapse
|
29
|
Fraser ME, James MN, Bridger WA, Wolodko WT. Phosphorylated and dephosphorylated structures of pig heart, GTP-specific succinyl-CoA synthetase. J Mol Biol 2000; 299:1325-39. [PMID: 10873456 DOI: 10.1006/jmbi.2000.3807] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Succinyl-CoA synthetase (SCS) catalyzes the reversible phosphorylation/dephosphorylation reaction:¿¿¿rm succinyl ¿hbox ¿-¿CoA+NDP+P_i¿leftrightarrow succinate+CoA+NTP¿¿where N denotes adenosine or guanosine. In the course of the reaction, an essential histidine residue is transiently phosphorylated. We have crystallized and solved the structure of the GTP-specific isoform of SCS from pig heart (EC 6.2.1.4) in both the dephosphorylated and phosphorylated forms. The structures were refined to 2.1 A resolution. In the dephosphorylated structure, the enzyme is stabilized via coordination of a phosphate ion by the active-site histidine residue and the two "power" helices, one contributed by each subunit of the alphabeta-dimer. Small changes in the conformations of residues at the amino terminus of the power helix contributed by the alpha-subunit allow the enzyme to accommodate either the covalently bound phosphoryl group or the free phosphate ion. Structural comparisons are made between the active sites in these two forms of the enzyme, both of which can occur along the catalytic path. Comparisons are also made with the structure of Escherichia coli SCS. The domain that has been shown to bind ADP in E. coli SCS is more open in the pig heart, GTP-specific SCS structure.
Collapse
Affiliation(s)
- M E Fraser
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
30
|
Lacombe ML, Milon L, Munier A, Mehus JG, Lambeth DO. The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 2000; 32:247-58. [PMID: 11768308 DOI: 10.1023/a:1005584929050] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biochemical experiments over the past 40 years have shown that nucleoside diphosphate (NDP) kinase activity, which catalyzes phosphoryl transfer from a nucleoside triphosphate to a nucleoside diphosphate, is ubiquitously found in organisms from bacteria to human. Over the past 10 years, eight human genes of the nm23/NDP kinase family have been discovered that can be separated into two groups based on analysis of their sequences. In addition to catalysis, which may not be exhibited by all isoforms, evidence for regulatory roles has come recently from the discovery of the genes nm23 and awd, which encode NDP kinases and are involved in tumor metastasis and Drosophila development, respectively. Current work shows that the human NDP kinase genes are differentially expressed in tissues and that their products are targeted to different subcellular locations. This suggests that Nm23/NDP kinases possess different, but specific, functions within the cell, depending on their localization. The roles of NDP kinases in metabolic pathways and nucleic acid synthesis are discussed.
Collapse
Affiliation(s)
- M L Lacombe
- INSERM U402, Faculté de Médecine Saint-Antoine, Paris, France.
| | | | | | | | | |
Collapse
|
31
|
Furuyama K, Sassa S. Interaction between succinyl CoA synthetase and the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic anemia. J Clin Invest 2000; 105:757-64. [PMID: 10727444 PMCID: PMC377455 DOI: 10.1172/jci6816] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The first and the rate-limiting enzyme of heme biosynthesis is delta-aminolevulinate synthase (ALAS), which is localized in mitochondria. There are 2 tissue-specific isoforms of ALAS, erythroid-specific (ALAS-E) and nonspecific ALAS (ALAS-N). To identify possible mitochondrial factors that modulate ALAS-E function, we screened a human bone marrow cDNA library, using the mitochondrial form of human ALAS-E as a bait protein in the yeast 2-hybrid system. Our screening led to the isolation of the beta subunit of human ATP-specific succinyl CoA synthetase (SCS-betaA). Using transient expression and coimmunoprecipitation, we verified that mitochodrially expressed SCS-betaA associates specifically with ALAS-E and not with ALAS-N. Furthermore, the ALAS-E mutants R411C and M426V associated with SCS-betaA, but the D190V mutant did not. Because the D190V mutant was identified in a patient with pyridoxine-refractory X-linked sideroblastic anemia, our findings suggest that appropriate association of SCS-betaA and ALAS-E promotes efficient use of succinyl CoA by ALAS-E or helps translocate ALAS-E into mitochondria.
Collapse
Affiliation(s)
- K Furuyama
- Laboratory of Biochemical Hematology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Joyce MA, Fraser ME, Brownie ER, James MN, Bridger WA, Wolodko WT. Probing the nucleotide-binding site of Escherichia coli succinyl-CoA synthetase. Biochemistry 1999; 38:7273-83. [PMID: 10353839 DOI: 10.1021/bi990527s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Succinyl-CoA synthetase (SCS) catalyzes the reversible interchange of purine nucleoside diphosphate, succinyl-CoA, and Pi with purine nucleoside triphosphate, succinate, and CoA via a phosphorylated histidine (H246alpha) intermediate. Two potential nucleotide-binding sites were predicted in the beta-subunit, and have been differentiated by photoaffinity labeling with 8-N3-ATP and by site-directed mutagenesis. It was demonstrated that 8-N3-ATP is a suitable analogue for probing the nucleotide-binding site of SCS. Two tryptic peptides from the N-terminal domain of the beta-subunit were labeled with 8-N3-ATP. These corresponded to residues 107-119beta and 121-146beta, two regions lying along one side of an ATP-grasp fold. A mutant protein with changes on the opposite side of the fold (G53betaV/R54betaE) was unable to be phosphorylated using ATP or GTP, but could be phosphorylated by succinyl-CoA and Pi. A mutant protein designed to probe nucleotide specificity (P20betaQ) had a Km(app) for GTP that was more than 5 times lower than that of wild-type SCS, whereas parameters for the other substrates remained unchanged. Mutations of residues in the C-terminal domain of the beta-subunit designed to distrupt one loop of the Rossmann fold (I322betaA, and R324betaN/D326betaA) had the greatest effect on the binding of succinate and CoA. They did not disrupt the phosphorylation of SCS with nucleotides. It was concluded that the nucleotide-binding site is located in the N-terminal domain of the beta-subunit. This implies that there are two active sites approximately 35 A apart, and that the H246alpha loop moves between them during catalysis.
Collapse
Affiliation(s)
- M A Joyce
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO. Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. J Biol Chem 1998; 273:27580-6. [PMID: 9765291 DOI: 10.1074/jbc.273.42.27580] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly ATP- and GTP-specific isoforms of succinyl-CoA synthetase in pigeon incorporate the same alpha-subunit, but different beta-subunits (Johnson, J. D., Muhonen, W. W., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27573-27579). The sequences of the mature subunits were determined by methods based on reverse transcription-polymerase chain reaction. The 306-residue mature alpha-subunit in pigeon shows >88% identity to its homologues in pig and rat. The sequences of the mature ATP- and GTP-specific beta-subunits (A-beta and G-beta, respectively) in pigeon are 54% identical. These sequences were used to identify expressed sequence tags for human and mouse that were highly homologous to G-beta and A-beta, respectively. The sequences for mature A-beta and G-beta in mouse and human were completed and verified by polymerase chain reaction. The sequence of A-beta in pig was also obtained. The mammalian A-beta sequences show >89% identity to each other; the G-beta sequences are similarly related. However, pairwise comparisons of the A-beta and G-beta sequences revealed <53% identity. Alignment with two sequences of the beta-subunit in Caenorhabditis elegans suggests that the A-beta and G-beta genes arose by duplication early in the evolution of multicellular eucaryotes. The expression of A-beta is strong in numerous mouse and human tissues, which suggests that ATP-specific succinyl-CoA synthetase also plays an important role in species throughout the animal kingdom.
Collapse
Affiliation(s)
- J D Johnson
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | | | | | |
Collapse
|
34
|
Johnson JD, Muhonen WW, Lambeth DO. Characterization of the ATP- and GTP-specific succinyl-CoA synthetases in pigeon. The enzymes incorporate the same alpha-subunit. J Biol Chem 1998; 273:27573-9. [PMID: 9765290 DOI: 10.1074/jbc.273.42.27573] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two succinyl-CoA synthetases, one highly specific for GTP/GDP and the other for ATP/ADP, have been purified to homogeneity from pigeon liver and breast muscle. The two enzymes are differentially distributed in pigeon, with only the GTP-specific enzyme detected in liver and the ATP-specific enzyme in breast muscle. Based on assays in the direction of CoA formation, the ratios of GTP-specific to ATP-specific activities in kidney, brain, and heart are approximately 7, 1, and 0.1, respectively. Both enzymes have the characteristic alpha- and beta-subunits found in other succinyl-CoA synthetases. Studies of the alpha-subunit by electrophoresis, mass spectrometry, reversed-phase high performance liquid chromatography, and peptide mapping showed that it was the same in the two enzymes. Characterization of the beta-subunits by the same methods indicated that they were different, with the tryptic peptide maps providing evidence that the beta-subunits likely differ along their entire sequences. Because the two succinyl-CoA synthetases incorporate the same alpha-subunit, the determinants of nucleotide specificity must reside within the beta-subunit. Determination of the apparent Michaelis constants showed that the affinity of the GTP-specific enzyme for GDP is greater than that of the ATP-specific enzyme for ADP (7 versus 250 microM). Rather large differences in apparent Km values were also observed for succinate and phosphate.
Collapse
Affiliation(s)
- J D Johnson
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | |
Collapse
|
35
|
Lambeth DO, Mehus JG, Ivey MA, Milavetz BI. Characterization and cloning of a nucleoside-diphosphate kinase targeted to matrix of mitochondria in pigeon. J Biol Chem 1997; 272:24604-11. [PMID: 9305928 DOI: 10.1074/jbc.272.39.24604] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nucleoside-diphosphate kinase (NDP kinase) from the matrix space of mitochondria in pigeon liver was purified to homogeneity. Degenerate oligonucleotide primers to the N-terminal sequence of the purified protein and the region containing the active site histidine were used in reverse transcriptase-polymerase chain reaction to obtain a major portion of the coding sequence for the mature protein. The sequences of the C and N termini of the mature protein, and eight residues in the signal peptide, were obtained by rapid amplification of cDNA end procedures. The entire coding sequence of a cytosolic form of NDP kinase was also determined. Both isoforms, which share 53% sequence identity, possess the characteristically conserved regions of known NDP kinases. The mature mitochondrial NDP kinase protein migrates in molecular sieving columns with an apparent molecular mass of about 66 kDa. It shows very high thermal stability even though it lacks the proline residue in the killer of prune loop, and the Tyr/Glu C termini that are important in stabilizing other NDP kinases. The affinity of the mitochondrial isoform for adenine and guanine nucleotides is much higher than for pyrimidine nucleotides, but the enzyme is especially susceptible to substrate inhibition by GDP. Semi-quantitative reverse transcriptase-polymerase chain reaction showed that the relative levels of expression of the mitochondrial isoform are liver > kidney >> heart = brain > breast muscle. The cytosolic isoform is strongly and approximately equally expressed in these same five tissues. This work is the first characterization of a NDP kinase isoform that is found in the matrix space of mitochondria.
Collapse
Affiliation(s)
- D O Lambeth
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA.
| | | | | | | |
Collapse
|
36
|
Ryan DG, Lin T, Brownie E, Bridger WA, Wolodko WT. Mutually exclusive splicing generates two distinct isoforms of pig heart succinyl-CoA synthetase. J Biol Chem 1997; 272:21151-9. [PMID: 9261120 DOI: 10.1074/jbc.272.34.21151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified two distinct cDNAs encoding the alpha-subunit of pig heart succinyl-CoA synthetase. The derived amino acid sequence of one of these, PHalpha57, is highly similar to the alpha-subunit of the rat liver precursor enzyme. The second cDNA, PHalpha108, was identical throughout its sequence with PHalpha57 except for a stretch of 108 nucleotides which replaced a 57 nucleotide sequence in PHalpha57. Coexpression of either alpha-subunit cDNA with a common pig heart beta-subunit cDNA produced isozymes with GTP-specific enzyme activity. The enzyme produced by the combination of PHalpha57 and the beta-subunit cDNA resembled the "native" enzyme purified from pig heart tissue. In contrast, the expressed enzyme from the combination with PHalpha108 was clearly distinguishable from the native enzyme by, for example, hydroxyapatite chromatography. Moreover, it was now apparent that this isoform had been observed in previous preparations of the native enzyme, but always in very low amounts and, thus, disregarded. We have shown further that the two mRNA transcripts arise from a single gene and are generated by mutually exclusive splicing. The production of the PHalpha108 message involves the use of a non-canonical splice site pair, AT-AA. Finally, we provide evidence for tissue specific regulation in the splicing of the PHalpha108 message.
Collapse
Affiliation(s)
- D G Ryan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
37
|
Muhonen WW, Lambeth DO. The compartmentation of nucleoside diphosphate kinase in mitochondria. Comp Biochem Physiol B Biochem Mol Biol 1995; 110:211-23. [PMID: 7858944 DOI: 10.1016/0305-0491(94)00123-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The compartmentation of nucleoside diphosphate kinase (NDPK) was studied in mitochondria isolated from heart and liver of rat, rabbit, and pigeon. Compartmentation was assessed by determining latencies of enzyme activities, fractionating mitochondria with digitonin, and treating mitochondria with trypsin in the presence and absence of digitonin. NDPK activity in pigeon liver mitochondria was five- and seven-fold higher than in rat and rabbit liver mitochondria. The ratios of NDPK activities in liver vs. heart mitochondria were about 15 for rat, 2 for rabbit, and more than 40 for pigeon. Nearly all NDPK in pigeon liver mitochondria is in the matrix space, but outside the matrix in rat and rabbit liver mitochondria. Most NDPK in pigeon heart mitochondria was located outside the matrix while a significant fraction may be in the matrix of rat and rabbit heart mitochondria. These results are discussed relative to the assumed role that mitochondrial NDPK transfers the phosphoryl group of GTP produced in the Krebs cycle to the adenine nucleotide pool.
Collapse
Affiliation(s)
- W W Muhonen
- Department of Biochemistry and Molecular Biology, School of Medicine, University of North Dakota, Grand Forks 58202
| | | |
Collapse
|
38
|
|
39
|
Kadrmas EF, Ray PD, Lambeth DO. Apparent ATP-linked succinate thiokinase activity and its relation to nucleoside diphosphate kinase in mitochondrial matrix preparations from rabbit. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1074:339-46. [PMID: 1653609 DOI: 10.1016/0304-4165(91)90083-s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The relative abilities of ATP and GTP to support succinyl-CoA synthesis by mitochondrial matrix fractions prepared from rabbit heart and liver mitoplasts were investigated. The activity supported by ATP in rabbit heart preparations was less than 15% of that obtained with GTP, while no ATP-supported activity was observed in rabbit liver preparations. However, the addition of 30 micromolar GDP to matrix fractions from either heart or liver stimulated the ATP-supported activity to 40% of that observed with GTP, and the further addition of bovine liver nucleoside diphosphate kinase in the presence of 8 microM added GDP increased the activity to near that observed with GTP. The specific activity of nucleoside diphosphate kinase assayed directly in mitochondrial matrix from heart was about 15% of the specific activity of ATP-supported succinate thiokinase induced upon adding GDP. Evidence for a complex between nucleoside diphosphate kinase and succinate thiokinase in mitochondrial matrix from rabbit heart was obtained by glycerol density gradient centrifugation. It is proposed that binding of nucleoside diphosphate kinase to succinate thiokinase activates the former enzyme, accounts for the ATP-supported succinyl-CoA synthetase activity observed, and is involved in the channeling of high energy phosphate from GTP produced in the Krebs cycle to the ATP pool.
Collapse
Affiliation(s)
- E F Kadrmas
- Department of Biochemistry and Molecular Biology, School of Medicine, University of North Dakota, Grand Forks 58202
| | | | | |
Collapse
|
40
|
Russell RR, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest 1991; 87:384-90. [PMID: 1671390 PMCID: PMC295088 DOI: 10.1172/jci115008] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To determine the temporal relationship between changes in contractile performance and flux through the citric acid cycle in hearts oxidizing acetoacetate, we perfused isolated working rat hearts with either glucose or acetoacetate (both 5 mM) and freeze-clamped the tissue at defined times. After 60 min of perfusion, hearts utilizing acetoacetate exhibited lower systolic and diastolic pressures and lower cardiac outputs. The oxidation of acetoacetate increased the tissue content of 2-oxoglutarate and glutamate and decreased the content of succinyl-CoA suggesting inhibition of citric acid cycle flux through 2-oxoglutarate dehydrogenase. Whereas hearts perfused with either acetoacetate or glucose were similar with respect to their function for the first 20 min, changes in tissue metabolites were already observed within 5 min of perfusion at near-physiological workloads. The addition of lactate or propionate, but not acetate, to hearts oxidizing acetoacetate improved contractile performance, although inhibition of 2-oxoglutarate dehydrogenase was probably not diminished. If lactate or propionate were added, malate and citrate accumulated indicating utilization of anaplerotic pathways for the citric acid cycle. We conclude that a decreased rate of flux through 2-oxoglutarate dehydrogenase in hearts oxidizing acetoacetate precedes, and may be responsible for, contractile failure and is not the result of decreased cardiac work. Further, anaplerosis play an important role in the maintenance of contractile function in hearts utilizing acetoacetate.
Collapse
Affiliation(s)
- R R Russell
- Department of Medicine, University of Texas Medical School, Houston 77030
| | | |
Collapse
|
41
|
Jenkins TM, Eisenthal R, Weitzman PD. Two distinct succinate thiokinases in both bloodstream and procyclic forms of Trypanosoma brucei. Biochem Biophys Res Commun 1988; 151:257-61. [PMID: 3348777 DOI: 10.1016/0006-291x(88)90587-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two succinate thiokinase activities specific for either adenine or guanine nucleotides have been found in Trypanosoma brucei. Key glycolytic and citric acid cycle enzymes were measured to show repression of glycolysis and derepression of the citric acid cycle in the procyclic form, relative to the bloodstream form. A marked rise in adenine-linked succinate thiokinase activity accompanied a rise in activity of citric acid cycle enzymes. However, guanine-linked succinate thiokinase was found to increase only slightly in activity. These results implicate the adenine-linked enzyme as an essential component of the citric acid cycle, whereas the guanine-linked enzyme appears to be under separate control. This communication also reports for the first time the occurrence of citrate synthase activity in the bloodstream (long slender) form of T. brucei.
Collapse
Affiliation(s)
- T M Jenkins
- Department of Biochemistry, University of Bath, U.K
| | | | | |
Collapse
|
42
|
Jenkins TM, Weitzman PD. Distinct physiological roles of animal succinate thiokinases. Association of guanine nucleotide-linked succinate thiokinase with ketone body utilization. FEBS Lett 1986; 205:215-8. [PMID: 2943604 DOI: 10.1016/0014-5793(86)80900-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two distinct succinate thiokinases have recently been shown to exist in animal tissues, one specific for guanine nucleotide and the other for adenine nucleotide. Their physiological roles have here been investigated by comparing the levels of the two enzymes in liver and brain of normal and diabetic rats. A marked rise in the level of brain guanine nucleotide-linked succinate thiokinase in the diabetic condition is consistent with an enhanced utilization of ketone bodies and hence with the associated elevated demand for succinyl-CoA for the activation of acetoacetate. Taken together with the reported mitochondrial values of the ATP/ADP and GTP/GDP ratios, the results are interpreted to indicate that the adenine nucleotide-linked enzyme functions as a component of the citric acid cycle whereas the guanine nucleotide-linked enzyme functions in the opposite metabolic direction to produce succinyl-CoA from succinate.
Collapse
|
43
|
Abstract
Succinate thiokinase has been purified from pigeon breast muscle. It has been confirmed that the enzyme is entirely specific for ATP, and Km is very high (approximately 0.8 mM). Activity in mitochondrial sonicates is low enough for it to be doubtful whether the enzyme can support citric acid cycle flux in the tissue. The enzyme appears to have an Mr of 80 000-100 000, and to have two unequal subunits. As determined by SDS gel electrophoresis one subunit certainly has an Mr of 40 000.
Collapse
|
44
|
|
45
|
Taegtmeyer H. Six blind men explore an elephant: aspects of fuel metabolism and the control of tricarboxylic acid cycle activity in heart muscle. Basic Res Cardiol 1984; 79:322-36. [PMID: 6477383 DOI: 10.1007/bf01908033] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many aspects of the interactions of energy providing substrates and the operational control of the tricarboxylic acid cycle are still unclear. This statement is well supported by the sometimes conflicting observations in heart muscle. The paper discusses some of the knowns and unknowns of tricarboxylic acid cycle regulation and discusses mechanisms of metabolite accumulation in this tissue. It is concluded that the data available at this time are insufficient to propose a unifying concept.
Collapse
|
46
|
Taegtmeyer H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 1983; 78:435-50. [PMID: 6626122 DOI: 10.1007/bf02070167] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this work was to establish the reasons why ketone bodies, although readily oxidized, do not sustain a physiological work output of the isolated rat heart for more than 30 to 45 min (Taegtmeyer, H., et al., Biochem. J. 186, 701-711 (1980)). First, it was found that the addition of glucose or of asparagine increased the rate of acetoacetate removal by 52 and 77% respectively, and availability of oxaloacetate was one factor limiting the oxidation of acetoacetate. Second, in freeze clamped hearts perfusion with acetoacetate alone caused an increase in the tissue content of acetyl-CoA, citrate, 2-oxoglutarate and glutamate but no change in malate and a decrease in aspartate when compared with glucose as substrate. The changes of aspartate and glutamate exceeded those of 2-oxoglutarate forty times. This means that oxaloacetate formed from aspartate must have passed through the stages of the citric acid cycle to form glutamate and that there was an inhibition of the 2-oxoglutarate dehydrogenase reaction. Third, in hearts perfused with acetoacetate and propionate the accumulation of glutamate and 2-oxoglutarate as well as the decrease in aspartate were associated with a sharp drop in CoASH from 0.258 to 0.093 mumol/g dry wt. This indicates that the accumulation of CoA thioesters left insufficient mitochondrial CoASH for the 2-oxoglutarate dehydrogenase reaction. Fourth, in contrast to acetoacetate cardiac function was unimpaired with acetate plus glucose. With these substrates citrate, 2-oxoglutarate, malate and aspartate all accumulated, either due to formation of oxaloacetate by pyruvate carboxylase or transamination of glutamate with pyruvate. It appears that the changes in cardiac performance and metabolism caused by acetoacetate can be explained by a relative inhibition of the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. The hypothesis is advanced that this might be due to a shortage of intramitochondrial free [CoASH], but the exact mechanism of this inhibition awaits further elucidation.
Collapse
|
47
|
Cooney GJ, Taegtmeyer H, Newsholme EA. Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart. Biochem J 1981; 200:701-3. [PMID: 7342978 PMCID: PMC1163594 DOI: 10.1042/bj2000701] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Flux through the tricarboxylic acid cycle was calculated from oxygen consumption in hearts perfused near the physiological work load. Activities of citrate synthase, 2-oxoglutarate dehydrogenase and succinate dehydrogenase were measured in the same hearts. Only the activities of 2-oxoglutarate dehydrogenase correlated with calculated fluxes through the cycle.
Collapse
|