1
|
Todorov SD, Alves VF, Popov I, Weeks R, Pinto UM, Petrov N, Ivanova IV, Chikindas ML. Antimicrobial Compounds in Wine. Probiotics Antimicrob Proteins 2024; 16:763-783. [PMID: 37855943 DOI: 10.1007/s12602-023-10177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- CISAS- Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana do Castelo, Portugal.
| | - Virginia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), 74605-170, Goiânia, GO, Brazil
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Olimpijskij av., 1, 354340, Federal Territory Sirius, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Nikolay Petrov
- Laboratory of Virology, New Bulgarian University, Montevideo str. 21, 1618, Sofia, Bulgaria
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164, Sofia, Bulgaria
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
2
|
Lee S, Jo SH, Hong CE, Lee J, Cha B, Park JM. Plastid methylerythritol phosphate pathway participates in the hypersensitive response-related cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1032682. [PMID: 36388595 PMCID: PMC9645581 DOI: 10.3389/fpls.2022.1032682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Programmed cell death (PCD), a characteristic feature of hypersensitive response (HR) in plants, is an important cellular process often associated with the defense response against pathogens. Here, the involvement of LytB, a gene encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase that participates in the final step of the plastid methylerythritol phosphate (MEP) pathway, in plant HR cell death was studied. In Nicotiana benthmiana plants, silencing of the NbLytB gene using virus-induced gene silencing (VIGS) caused plant growth retardation and albino leaves with severely malformed chloroplasts. In NbLytB-silenced plants, HR-related cell death mediated by the expression of either the human proapoptotic protein gene Bax or an R gene with its cognate Avr effector gene was inhibited, whereas that induced by the nonhost pathogen Pseudomonas syringae pv. syringae 61 was enhanced. To dissect the isoprenoid pathway and avoid the pleiotropic effects of VIGS, chemical inhibitors that specifically inhibit isoprenoid biosynthesis in plants were employed. Treatment of N. benthamiana plants with fosmidomycin, a specific inhibitor of the plastid MEP pathway, effectively inhibited HR-related PCD, whereas treatment with mevinolin (a cytoplasmic mevalonate pathway inhibitor) and fluridone (a carotenoid biosynthesis inhibitor) did not. Together, these results suggest that the MEP pathway as well as reactive oxygen species (ROS) generation in the chloroplast play an important role in HR-related PCD, which is not displaced by the cytosolic isoprenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Sanghun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Chi Eun Hong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Jiyoung Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
- Biological Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeongeup, South Korea
| | - Byeongjin Cha
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
3
|
Huang L, Goda HA, Abdel-Hamid M, Renye Jr JA, Yang P, Huang Z, Zeng QK, Li L. Partial characterization of probiotic lactic acid bacteria isolated from Chinese dairy products. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1900233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Li Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Hanan A. Goda
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud Abdel-Hamid
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - John A. Renye Jr
- United States Department of Agriculture, Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, USA
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Zizhen Huang
- Guangxi Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Nanning, China
| | - Qing-Kun Zeng
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
4
|
Abstract
The frequent outbreaks of life-threatening RNA viruses, including the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose tremendous challenges to humanity. The author proposes that creating a more alkaline extracellular environment that is unsuitable for the fusion between the envelope of SARS-CoV-2 and the host cell membrane is a promising method to prevent the entry of coronaviruses into human cells. The alkaline environment could be achieved by exposing the general public to water-clustered negative air ions (NAIs), both indoors and outdoors, to induce a gradual increase in the pH of the human body. Previous studies have demonstrated that there are no harmful effects of high-concentration NAIs on human health.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry, Marshall University, Huntington, WV 25755, USA.,Department of Chemistry, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
5
|
Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms 2020; 8:microorganisms8050752. [PMID: 32429521 PMCID: PMC7285323 DOI: 10.3390/microorganisms8050752] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
In Africa, milk production, processing and consumption are integral part of traditional food supply, with dairy products being a staple component of recommended healthy diets. This review provides an overview of the microbial safety characteristics of milk production and fermented dairy products in Africa. The object is to highlight the main microbial food safety hazards in the dairy chain and to propose appropriate preventive and control measures. Pathogens of public health concern including Mycobacterium bovis, Brucella abortus and Coxiella burnettii, which have largely been eradicated in many developed nations, still persist in the dairy chain in Africa. Factors such as the natural antimicrobial systems in milk and traditional processing technologies, including fermentation, heating and use of antimicrobial additives, that can potentially contribute to microbial safety of milk and dairy products in Africa will be discussed. Practical approaches to controlling safety hazards in the dairy chain in Africa have been proposed. Governmental regulatory bodies need to set the necessary national and regional safety standards, perform inspections and put measures in place to ensure that the standards are met, including strong enforcement programs within smallholder dairy chains. Dairy chain actors would require upgraded knowledge and training in preventive approaches such as good agricultural practices (GAP), hazard analysis and critical control points (HACCP) design and implementation and good hygienic practices (GHPs). Food safety education programs should be incorporated into school curricula, beginning at the basic school levels, to improve food safety cognition among students and promote life-long safe food handling behaviour.
Collapse
|
6
|
Amin F, Bano B. Damage of cystatin due to ROS-generation and radical-scavenging activity of antioxidants and associated compounds. Int J Biol Macromol 2018; 119:369-379. [DOI: 10.1016/j.ijbiomac.2018.07.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
|
7
|
Jiang SY, Ma A, Ramachandran S. Negative Air Ions and Their Effects on Human Health and Air Quality Improvement. Int J Mol Sci 2018; 19:E2966. [PMID: 30274196 PMCID: PMC6213340 DOI: 10.3390/ijms19102966] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022] Open
Abstract
Negative air ions (NAIs) have been discovered for more than 100 years and are widely used for air cleaning. Here, we have carried out a comprehensive reviewing on the effects of NAIs on humans/animals, and microorganisms, and plant development. The presence of NAIs is credited for increasing psychological health, productivity, and overall well-being but without consistent or reliable evidence in therapeutic effects and with controversy in anti-microorganisms. Reports also showed that NAIs could help people in relieving symptoms of allergies to dust, mold spores, and other allergens. Particulate matter (PM) is a major air pollutant that affects human health. Experimental data showed that NAIs could be used to high-efficiently remove PM. Finally, we have reviewed the plant-based NAI release system under the pulsed electric field (PEF) stimulation. This is a new NAI generation system which releases a huge amount of NAIs under the PEF treatment. The system may be used to freshen indoor air and reduce PM concentration in addition to enriching oxygen content and indoor decoration at home, school, hospital, airport, and other indoor areas.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Ali Ma
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
8
|
Grebennikova S, Maklyakov Y. Experimental and clinical study of the efficacy of medicines containing omega-3 and 6 polyunsaturated fatty acids, in the treatment of inflammatory skin diseases. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.28420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Over the recent years, the attention of scientists regarding the search for alternative means of treatment, including local therapy, of inflammatory skin diseases, has been focused in recent years on medicines containing omega-3 and 6 polyunsaturated fatty acids (PUFA).Objectives: to substantiate the feasibility of using medicines containing omega-3 and 6 polyunsaturated fatty acids and antioxidants in the treatment of inflammatory skin diseases.Methods:The studies were carried out on 224 conventional white rats of the Wistar line in compliance with the international principles of the European Convention for the Protection of Vertebrates. A burn injury was used to cause experimental simple irritant contact dermatitis. After trying various treatment options with using Omegaven, histopathological examinations of 18 fragments of affected skin of white rats with cross sections stained with hematoxylin–eosin and pikrofuxin by Van Gieson’s method. The state of lipid peroxidation (LPO) in blood and affected skin was evaluated in the animals. One hundred forty-six patients with inflammatory skin diseases (dermatitis simple irritant contact, allergic contact dermatitis, atopic dermatitis, neurodermatitis, psoriasis, cutaneous mastocytosis in children) were observed. In treatment, there were used medicines with omega-3 and 6 PUFA or an antioxidant medicines.Results and discussion: Skin reactions of dermatitis simple irritant contact in rats after burn injury were evaluated at different points of time. The observations showed higher efficacy of medicines containing PUFA than standard anti-inflammatory agents in the treatment of simple irritant contact dermatitis. Histopathological examination of the skin of white rats with simple irritant contact dermatitis after the 11-day treatment revealed that the expression and composition of the cellular reaction in the lesions with a predominating lymphocytes and macrophages (mainly cell response) differ significantly from those trated with Radevit ointment (segmented neutrophil leukocytes, eosinophils – delay in the acute phase of inflammation). There was identified a smaller thickness (up to 1/3) of the strips of granulation tissue under the actively proliferating cells of the epidermis. It was possible to demonstrate the superiority with respect to reducing the activity of LPO medicines containing omega-3 and 6 PUFA, over those with anti-inflammatory action. The clinical observations of patients showed high efficacy of the local treatment with medicines containing omega-3 and 6 PUFA, or antioxidant.Conclusion: For the first time, the mechanism of implementing an anti-inflammatory effect of the experimental medicines containing omega-3 and 6 polyunsaturated fatty acids (Omegaven, Vitamin F99 cream rich), – an antioxidant effect - when treating simple irritant contact dermatitis when treating simple irritant contact dermatitis; that is the weakening of the severity of oxidative stress. For the first time, the greatest contribution of an increased activity of catalase to the weakening of oxidative stress in the affected skin is shown.
Collapse
|
9
|
Abstract
![]()
Conventionally, the
singly occupied molecular orbital (SOMO) of
a radical species is considered to be the highest occupied molecular
orbital (HOMO), but this is not the case always. In this study, we
considered a number of radicals from smallest diatomic anion radicals
such as superoxide anion radical to one-electron oxidized DNA related
base radicals that show the SOMO is energetically lower than one or
more doubly occupied molecular orbitals (MOs) (SOMO–HOMO level
inversion). The electronic configurations are calculated employing
the B3LYP/6-31++G** method, with the inclusion of aqueous phase via
the integral equation formalism of the polarized continuum model solvation
model. From the extensive study of the electronic configurations of
radicals produced by one-electron oxidation or reduction of natural-DNA
bases, bromine-, sulfur-, selenium-, and aza-substituted DNA bases,
as well as 20 diatomic molecules, we highlight the following important
findings: (i) SOMO–HOMO level inversion is a common phenomenon
in radical species. (ii) The more localized spin density in σ-orbital
on a single atom (carbon, nitrogen, oxygen, sulfur, or selenium),
the greater the gap between HOMO and SOMO. (iii) In species with SOMO–HOMO
level inversion, one-electron oxidation takes place from HOMO not
from the SOMO, which produces a molecule in its triplet ground state.
Oxidation of aqueous superoxide anion producing triplet molecular
oxygen is one example of many. (iv) These results are for conventional
radicals and in contrast with those reported for distonic radical
anions in which SOMO–HOMO gaps are smaller for more localized
radicals and the orbital inversions vanish in water. Our findings
yield new insights into the properties of free radical systems.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University , Rochester, Michigan 48309, United States
| |
Collapse
|
10
|
Liu Y, Rousseaux S, Tourdot-Maréchal R, Sadoudi M, Gougeon R, Schmitt-Kopplin P, Alexandre H. Wine microbiome: A dynamic world of microbial interactions. Crit Rev Food Sci Nutr 2017; 57:856-873. [PMID: 26066835 DOI: 10.1080/10408398.2014.983591] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most fermented products are generated by a mixture of microbes. These microbial consortia perform various biological activities responsible for the nutritional, hygienic, and aromatic qualities of the product. Wine is no exception. Substantial yeast and bacterial biodiversity is observed on grapes, and in both must and wine. The diverse microorganisms present interact throughout the winemaking process. The interactions modulate the hygienic and sensorial properties of the wine. Many studies have been conducted to elucidate the nature of these interactions, with the aim of establishing better control of the two fermentations occurring during wine processing. However, wine is a very complex medium making such studies difficult. In this review, we present the current state of research on microbial interactions in wines. We consider the different kinds of interactions between different microorganisms together with the consequences of these interactions. We underline the major challenges to obtaining a better understanding of how microbes interact. Finally, strategies and methodologies that may help unravel microbe interactions in wine are suggested.
Collapse
Affiliation(s)
- Youzhong Liu
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France.,b Research Unit Analytical BioGeoChemistry , Helmholtz ZentrumMünchen, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany
| | - Sandrine Rousseaux
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Raphaëlle Tourdot-Maréchal
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Mohand Sadoudi
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Régis Gougeon
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Philippe Schmitt-Kopplin
- b Research Unit Analytical BioGeoChemistry , Helmholtz ZentrumMünchen, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany.,c Chair of Analytical Food Chemistry , Technische Universität München , Freising-Weihenstephan , Germany
| | - Hervé Alexandre
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| |
Collapse
|
11
|
El-Bachá R, De-Lima-Filho J, Guedes R. Dietary Antioxidant Deficiency Facilitates Cortical Spreading Depression Induced by Photoactivated Riboflavin. Nutr Neurosci 2016; 1:205-12. [DOI: 10.1080/1028415x.1998.11747230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Aminnezhad S, Kermanshahi RK, Ranjbar R. Evaluation of Synergistic Interactions Between Cell-Free Supernatant of Lactobacillus Strains and Amikacin and Genetamicin Against Pseudomonas aeruginosa. Jundishapur J Microbiol 2015; 8:e16592. [PMID: 26034539 PMCID: PMC4449849 DOI: 10.5812/jjm.8(4)2015.16592] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/16/2014] [Accepted: 04/27/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The indiscriminate use of antibiotics in the treatment of infectious diseases can increase the development of antibiotic resistance. Therefore, there is a big demand for new sources of antimicrobial agents and alternative treatments for reduction of antibiotic dosage required to decrease the associated side effects. OBJECTIVES In this study, the synergistic action of aminoglycoside antibiotics and cell-free supernatant (CFS) of probiotic (Lactobacillus rahmnosus and L. casei) against Pseudomonas aeruginosa PTCC 1430 was evaluated. MATERIALS AND METHODS A growth medium for culturing of probiotic bacteria was separated by centrifugation. The antimicrobial effects of CFS of probiotic bacteria were evaluated using the agar well diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated using the micro dilution method. Finally, an interaction between CFS and amikacin or gentamicin against P. aeruginosa PTCC 1430 was examined through the checkerboard method and fractional inhibitory concentration (FIC). Furthermore, CFSs from Lactobacillus strains were analyzed by reversed phase HPLC (RP-HPLC) for antimicrobial compounds. RESULTS The results showed a significant effect of CFS on the growth of P. aeruginosa. The MIC and MBC of CFS from L. casei were 62.5 µL⁄mL while the MIC and MBC of CFS from L. rhamnosus were 62.5 μL⁄mL and 125 μL⁄mL, respectively. Using the FIC indices, synergistic interactions were observed in combination of CFS and antibiotics. Fractional Inhibitory Concentration indices of CFS from L. casei and aminoglycoside antibiotics were 0.124 and 0.312 while FIC indices of CFS from L. rhamnosus and aminoglycoside antibiotics were 0.124 and 0.56, respectively showing a synergism effect. The results of RP-HPLC showed that CFS of Lactobacillus strains contained acetic acid, lactic acid and hydrogen peroxide (H2O2). CONCLUSIONS Our findings indicate that probiotic bacterial strains of Lactobacillus have a significant inhibitory effect on the growth of P. aeruginosa PTCC 1430. The antimicrobial potency of this combination can be useful for designing and developing alternative therapeutic strategies against P. aeruginosa infections.
Collapse
Affiliation(s)
- Sargol Aminnezhad
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
| | | | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
13
|
Saragosti E, Tchernov D, Katsir A, Shaked Y. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS One 2010; 5:e12508. [PMID: 20856857 PMCID: PMC2939047 DOI: 10.1371/journal.pone.0012508] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/28/2010] [Indexed: 11/19/2022] Open
Abstract
Background Reactive oxygen species (ROS) are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems. Methodology/Principal Findings In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O2−) in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminesence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached) and aposymbiont (bleached) corals, and of cultured Symbiodinium (from clades A and C). Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10−11–10−9 mol O2− mg protein−1 min−1 in the dark. In the light, a two-fold enhancement in O2− production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O2− production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI) strongly inhibited O2− production by corals (and more moderately by algae), possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O2− detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O2− detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD). Conclusions/Significance The findings of substantial extracellular O2− production as well as extracellular O2− detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal build-up of O2−, which may in turn be linked to oxidative stress mediated bleaching.
Collapse
Affiliation(s)
- Eldad Saragosti
- Interuniversity Institute for Marine Sciences, Eilat, Israel
- Department of Evolution, Systematics and Ecology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Eilat, Israel
| | - Dan Tchernov
- Interuniversity Institute for Marine Sciences, Eilat, Israel
- Department of Evolution, Systematics and Ecology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Eilat, Israel
| | - Adi Katsir
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yeala Shaked
- Interuniversity Institute for Marine Sciences, Eilat, Israel
- Fredy & Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Eilat, Israel
- * E-mail:
| |
Collapse
|
14
|
Tamm C, Zhivotovsky B, Ceccatelli S. Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis. Apoptosis 2008; 13:354-63. [PMID: 18181021 DOI: 10.1007/s10495-007-0172-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.
Collapse
Affiliation(s)
- Christoffer Tamm
- Division of Toxicology and Neurotoxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
15
|
Baek D, Jin Y, Jeong JC, Lee HJ, Moon H, Lee J, Shin D, Kang CH, Kim DH, Nam J, Lee SY, Yun DJ. Suppression of reactive oxygen species by glyceraldehyde-3-phosphate dehydrogenase. PHYTOCHEMISTRY 2008; 69:333-8. [PMID: 17854848 DOI: 10.1016/j.phytochem.2007.07.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/22/2007] [Accepted: 07/24/2007] [Indexed: 05/04/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a classical glycolytic enzyme, is involved in cellular energy production and has important housekeeping functions. In this report, we show that a GAPDH from Arabidopsis, GAPDHa, has a novel function involved in H(2)O(2)-mediated cell death in yeast and Arabidopsis protoplasts. GAPDHa was cloned along with other plant genes that suppress Bax-induced cell death in yeast. Flow cytometry analyses with dihydrorhodamine 123 indicated that H(2)O(2) production mediated by Bax expression in yeast cells was greatly reduced when Bax was coexpressed with GAPDHa. In plants, GAPDHa transcript levels were greatly increased by H(2)O(2) treatment. Furthermore, transformation of GAPDHa into Arabidopsis protoplasts strongly suppressed heat shock-induced H(2)O(2) production and cell death. Together, our results indicate that GAPDH controls generation of H(2)O(2) by Bax and heat shock, which in turn suppresses cell death in yeast and plant cells.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Duthie GG, Wahle KWJ, James WPT. Oxidants, Antioxidants and Cardiovascular Disease. Nutr Res Rev 2007; 2:51-62. [DOI: 10.1079/nrr19890007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Estrada N, de Jesús Romero M, Campa-Córdova A, Luna A, Ascencio F. Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:502-10. [PMID: 17613278 DOI: 10.1016/j.cbpc.2007.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/18/2022]
Abstract
This study documents effects of the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison, on juvenile farmed (5.9+/-0.39 cm) giant lions-paw scallop Nodipecten subnodosus. Scallops were fed bloom concentrations of toxic dinoflagellate G. catenatum for 7 h. The effect of the toxic dinoflagellate in different tissues was determined by analysis of antioxidant enzymes (catalase, superoxide dismutase, gluthathione peroxidase), thiobarbituric acid reactive substances (lipid peroxidation), and hydrolytic enzymes (proteases, glycosidases, phosphatases, lipases, and esterases). Histopathological photos record the effects of the toxic dinoflagellate in various tissues. The results show that juvenile lions-paw scallops produce pseudo-feces, partially close their shell, increase melanization, and aggregate hemocytes. Several enzymes were affected and could serve as biological markers. In general, the adductor muscle was not affected. In the digestive gland, some enzymes could be the result of defensive and digestive processes. Gills and mantle tissue were markedly affected because these sites respond first to toxic dinoflagellates, leading to the idea that proteolytic cascades could be involved.
Collapse
Affiliation(s)
- Norma Estrada
- Departamento de Patología Marina, Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico
| | | | | | | | | |
Collapse
|
18
|
Ammor S, Tauveron G, Dufour E, Chevallier I. Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control 2006. [DOI: 10.1016/j.foodcont.2005.02.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ. Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. PLANT MOLECULAR BIOLOGY 2004; 56:15-27. [PMID: 15604726 DOI: 10.1007/s11103-004-3096-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An Arabidopsis protoplast system was developed for dissecting plant cell death in individual cells. Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces apoptotic-like cell death in Arabidopsis. Bax accumulation in Arabidopsis mesophyll protoplasts expressing murine Bax cDNA from a glucocorticoid-inducible promoter results in cytological characteristics of apoptosis, namely DNA fragmentation, increased vacuolation, and loss of plasma membrane integrity. In vivo targeting analysis monitored using jellyfish green fluorescent protein (GFP) reporter indicated full-length Bax was localized to the mitochondria, as it does in animal cells. Deletion of the carboxyl-terminal transmembrane domain of Bax completely abolished targeting to mitochondria. Bax expression was followed by reactive oxygen species (ROS) accumulation. Treatment of protoplasts with the antioxidant N -acetyl- -cysteine (NAC) during induction of Bax expression strongly suppressed Bax-mediated ROS production and the cell death phenotype. However, some population of the ROS depleted cells still induced cell death, indicating that there is a process that Bax-mediated plant cell death is independent of ROS accumulation. Accordingly, suppression of Bax-mediated plant cell death also takes place in two different processes. Over-expression of a key redox-regulator, Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) down-regulated ROS accumulation and suppressed Bax-mediated cell death and transient expression of Arabidopsis Bax inhibitor-1 (AtBI-1) substantially suppressed Bax-induced cell death without altering cellular ROS level. Taken together, our results collectively suggest that the Bax-mediated cell death and its suppression in plants is mediated by ROS-dependent and -independent processes.
Collapse
Affiliation(s)
- Dongwon Baek
- Environmental Biotechnology National Core Research Center, and Division of Applied Life Science (BK21 program), Graduate School of Gyeongsang National University, Jinju, 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luo QH, Zhang JJ, Hu XL, Jiang XQ, Shen MC, Li FM. A study on the reaction of copper complex of dioxotetraamine with superoxide ion by spectrophotometry and pulse radiolysis. Inorganica Chim Acta 2004. [DOI: 10.1016/s0020-1693(03)00432-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Arun S, Thirumurugan R, Visakan R, Balamurugan S, Arunachalam V, Subramanian P. Optimal analytical conditions for catalase in fresh water prawn, Macrobrachium malcolmsonii. Biotech Histochem 2003; 78:1-4. [PMID: 12713134 DOI: 10.1080/10520290312120001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The cytosol of hepatopancreas was prepared from the freshwater prawn Macrobrachium malcolmsonii, and optimal assay conditions, ie., concentration of substrate, pH, and temperature, were determined to measure basal activities and kinetic constants of catalase activity. The properties of catalase were examined in M. macolmsonii, because quantitative data on catalase are limited in crustacean species. The optimal pH for catalase was 7.0. The activation energy was 3.55 Kcal/mol and energy inhibition value was 5.16 Kcal/mol. The value of energy inhibition is higher than that of energy activation. This may be due to inhibition of catalase by some substrate other than H2O2. A Km of 66.6 mM was also determined from various concentrations of substrate.
Collapse
Affiliation(s)
- S Arun
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
22
|
Moon H, Baek D, Lee B, Prasad DT, Lee SY, Cho MJ, Lim CO, Choi MS, Bahk J, Kim MO, Hong JC, Yun DJ. Soybean ascorbate peroxidase suppresses Bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem Biophys Res Commun 2002; 290:457-62. [PMID: 11779192 DOI: 10.1006/bbrc.2001.6208] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bax, a mammalian proapoptotic member of the Bcl-2 family, can induce cell death when expressed in yeast or plant cells. To identify plant Bax inhibitors, we cotransformed a soybean cDNA library and the Bax gene into yeast cells and screened for expressed genes that prevented Bax-induced apoptosis. From the Bax-inhibiting genes isolated, ascorbate peroxidase (sAPX) was selected for characterization. The transcription of sAPX in plants was specifically induced by oxidative stress. Moreover, overexpression of sAPX partially suppressed the H(2)O(2)-sensitive phenotype of yeast cytosolic catalase T (Deltactt)- and thermosensitive phenotype of cytochrome c peroxidase (Deltaccp)-deleted mutant cells. Examination of reactive oxygen species (ROS) production using the fluorescence method of dihydrorhodamine 123 oxidation revealed that expression of Bax in yeast cells generated ROS, which was greatly reduced by coexpression with sAPX. Our results collectively suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Bax-induced cell death in yeast.
Collapse
Affiliation(s)
- Haejeong Moon
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Amorini AM, Fazzina G, Lazzarino G, Tavazzi B, Di Pierro D, Santucci R, Sinibaldi F, Galvano F, Galvano G. Activity and mechanism of the antioxidant properties of cyanidin-3-O-beta-glucopyranoside. Free Radic Res 2001; 35:953-66. [PMID: 11811546 DOI: 10.1080/10715760100301451] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study, the antioxidant activity, the interaction with reactive oxygen species and the redox potential of cyanidin-3-O-beta-glucopyranoside (C-3-G), the main anthocyanin present in juice of pigmented oranges, were evaluated in detail. C-3-G effects on low density lipoproteins (LDL) oxidation induced by 40 microM Cu at a pH of 7.4 were compared with those of resveratrol and ascorbic acid, two other natural antioxidants. All cyanidin-3-O-beta-glucopyranoside concentrations used (1, 2, 5, 10, 20, 50, 100 and 200 microM) inhibited malondialdehyde (MDA) generation (an index of lipid peroxidation), the inhibition being significantly higher than that obtained with equal concentrations of resveratrol and ascorbic acid (IC50 = 6.5 microM for C-3-G, 34 microM for resveratrol and 212 microM for ascorbic acid). Experiments of LDL oxidation performed at a pH of 5.0 or 6.0 showed that C-3-G antioxidant activity is not influenced by pH variations between 5.0 and 7.4. This suggests that metal chelation, exerted by C-3-G through the eventual dissociation of its phenolic groups, plays a minor role in its protective mechanism. The presence of C-3-G produced significantly higher protective effects of pigmented orange juice (obtained from Moro cultivar) with respect to blond orange juice, when tested on copper-induced LDL oxidation. The evaluation of the direct interaction with reactive oxygen species (H2O2, -O2, OH*), demonstrated that C-3-G is quickly oxidized by these compounds and it is, therefore, a highly efficient oxygen free radical scavenger. The powerful C-3-G antioxidant activity is in excellent agreement with the very negative redox potential (-405 mV), determined through direct current cyclic voltammetry measurements. On the basis of these results, C-3-G should be considered as one of the most effective antioxidants that can be assumed with dietary plants; therefore, pigmented oranges represent a very relevant C-3-G source because of the high content of this anthocyanin in their juice.
Collapse
Affiliation(s)
- A M Amorini
- Department of Chemical Sciences, University of Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Alekhova T, Sof'in A, Kobelkova T, Marco R, Dournon C. Sex-linked differences in activity of enzymes in the blood of the urodele amphibian Pleurodeles waltl. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:819-25. [PMID: 11691617 DOI: 10.1016/s1095-6433(01)00413-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Few data are available on enzyme activity in amphibian plasma or erythrocytes. We measured the activity of several blood enzymes in the urodele amphibian Pleurodeles waltl reared under standard laboratory conditions. In subsequent experiments, we will estimate and compare the physiological and biochemical conditions of P. waltl when reared under extreme temperature or microgravity conditions. The enzymes selected were glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, superoxide dismutase, catalase, isocitrate dehydrogenase and glucose-6-phosphate dehydrogenase. In fresh plasma samples, enzyme activity in females was higher than in males, except for aspartate and alanine aminotransferases, which were equivalent in females and males. Glutamate dehydrogenase activity was higher in males than in females. In female erythrocytes, the activity of all enzymes was higher than in male erythrocytes. We have also studied the storage conditions of samples and observed that for most enzymes, the activity in freshly isolated plasma and erythrocyte preparations decreased after storage at -18 or +4 degrees C.
Collapse
Affiliation(s)
- T Alekhova
- A.N. Bach Biochemistry Institute of the Russian Academy of Sciences, Leninsky prospekt 33, 117071 Moscow, Russia
| | | | | | | | | |
Collapse
|
25
|
Oxidative stress and apoptosis. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2000; 7:153-163. [PMID: 10996508 DOI: 10.1016/s0928-4680(00)00053-5] [Citation(s) in RCA: 858] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Apoptosis or programmed cell death, is essential for the normal functioning and survival of most multi-cellular organisms. The morphological and biochemical characteristics of apoptosis, however, are highly conserved during the evolution. It is currently believed that apoptosis can be divided into at least three functionally distinct phases, i.e. induction, effector and execution phase. Recent studies have demonstrated that reactive oxygen species (ROS) and the resulting oxidative stress play a pivotal role in apoptosis. Antioxidants and thiol reductants, such as N-acetylcysteine, and overexpression of manganese superoxide (MnSOD) can block or delay apoptosis. Bcl-2, an endogenously produced protein, has been shown to prevent cells from dying of apoptosis apparently by an antioxidative mechanism. Taken together ROS, and the resulting cellular redox change, can be part of signal transduction pathway during apoptosis. It is now established that mitochondria play a prominent role in apoptosis. During mitochondrial dysfunction, several essential players of apoptosis, including pro-caspases, cytochrome C, apoptosis-inducing factor (AIF), and apoptotic protease-activating factor-1 (APAF-1) are released into the cytosol. The multimeric complex formation of cytochrome C, APAF-1 and caspase 9 activates downstream caspases leading to apoptotic cell death. All the three functional phases of apoptosis are under the influence of regulatory controls. Thus, increasing evidences provide support that oxidative stress and apoptosis are closely linked physiological phenomena and are implicated in pathophysiology of some of the chronic diseases including AIDS, autoimmunity, cancer, diabetes mellitus, Alzheimer's and Parkinson's and ischemia of heart and brain.
Collapse
|
26
|
Antioxidant enzymes activity in subcellular fraction of freshwater prawnsM. malcolmsonii andM. lamarrei lamarrei. Appl Biochem Biotechnol 1998. [DOI: 10.1007/bf02787773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Stachlewitz RF, Gao W, Zhong Z, Connor HD, Mason RP, Thurman RG. Generation of lipid free radicals by adherent leukocytes from transplanted rat liver. Transpl Int 1998. [DOI: 10.1111/j.1432-2277.1998.tb00817.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
The oxidation of nickelII(1,4,8,11-tetraazacyclotetradecane) by hydroperoxyl radicals: A pulse radiolysis study. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)05968-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Jiang Y, Yao SD, Lin NY. Fast repair of oxidizing oh radical adduct of dGMP by hydroxycinnamic acid derivatives. A pulse radiolytic study. Radiat Phys Chem Oxf Engl 1993 1997. [DOI: 10.1016/s0969-806x(96)00167-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994; 17:235-48. [PMID: 7982629 DOI: 10.1016/0891-5849(94)90079-5] [Citation(s) in RCA: 769] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eukaryotic cells have to constantly cope with highly reactive oxygen-derived free radicals. Their defense against these free radicals is achieved by natural antioxidant molecules but also by antioxidant enzymes. In this paper, we review some of the data comparing the efficiency of three different antioxidant enzymes: Cu/Zn-superoxide dismutase (Cu/Zn-SOD), catalase, and selenium-glutathione peroxidase. We perform our comparison on one experimental model (human fibroblasts) where the activities of these three antioxidant enzymes have been modulated inside the cells, and the repercussion of these changes was investigated in different conditions. We also focus our attention on the protecting role of selenium-glutathione peroxidase, because this enzyme is very rarely studied due to the difficulties linked to its biochemical properties. These studies evidenced that all three antioxidant enzymes give protection for the cells. They show a high efficiency for selenium-glutathione peroxidase and emphasize the fact that each enzyme has a specific as well as an irreplaceable function. They are all necessary for the survival of the cell even in normal conditions. In addition, these three enzymes act in a cooperative or synergistic way to ensure a global cell protection. However, optimal protection is achieved only when an appropriate balance between the activities of these enzymes is maintained. Interpretation of the deleterious effects of free radicals has to be analyzed not only as a function of the amount of free radicals produced but also relative to the efficiency and to the activities of these enzymatic and chemical antioxidant systems. The threshold of protection can indeed vary dramatically as a function of the level of activity of these enzymes.
Collapse
Affiliation(s)
- C Michiels
- Laboratoire de Biochimie Cellulaire, Facultés Universitaires Notre Dame de la Paix, Namur, Belgium
| | | | | | | |
Collapse
|
31
|
Darnet S, Thomas D, Legoy MD. Use of enzymatic oxygen scavengers to prevent lactate dehydrogenase inactivation by oxygen radicals. Enzyme Microb Technol 1993. [DOI: 10.1016/0141-0229(93)90109-f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
van Hillegersberg R, Marijnissen JP, Kort WJ, Zondervan PE, Terpstra OT, Star WM. Interstitial photodynamic therapy in a rat liver metastasis model. Br J Cancer 1992; 66:1005-14. [PMID: 1457339 PMCID: PMC1978052 DOI: 10.1038/bjc.1992.402] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) of hepatic tumours has been restricted owing to the preferential retention of photosensitizers in liver tissue. We therefore investigated interstitial tumour illumination as a means of selective PDT. A piece of colon carcinoma CC531 was implanted in the liver of Wag/Rij rats. Photofrin was administered (5 mg kg-1 i.v.) 2 days before laser illumination. Tumours with a mean (+/- s.e.) diameter of 5.7 +/- 0.1 mm (n = 106, 20 days after implantation) were illuminated with 625 nm light, at 200 mW cm-1 from a 0.5 cm cylindrical diffuser and either 100, 200, 400, 800 or 1600 J cm-1. Control groups received either laser illumination only, Photofrin only or diffuser insertion only. Short-term effects were studied on the second day after illumination by light microscopy and computer-assisted integration of the circumference of damaged areas. Long-term effects were studied on day 36. To determine the biochemistry of liver damage and function, serum ASAT and ALAT levels were measured on day 1 and 2, and antipyrine clearance on day 1. Tumour and surrounding liver necrosis increased with light dose delivered (P < 0.001). Best long-term results were obtained at 800 J cm-1 with complete tumour remission in 4 out of 6 animals. No deterioration in liver function was found. The results of this study show the ability of interstitial PDT to cause major destruction of tumour tissue in the liver combined with minimal liver damage.
Collapse
Affiliation(s)
- R van Hillegersberg
- Department of Surgery, Erasmus University, Medical Faculty, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Byczkowski JZ, Kulkarni AP. Vanadium redox cycling, lipid peroxidation and co-oxygenation of benzo(a)pyrene-7,8-dihydrodiol. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1125:134-41. [PMID: 1315157 DOI: 10.1016/0005-2760(92)90037-v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mechanism of lipid peroxidation triggered by vanadium in human term placental microsomes was reinvestigated in vitro. Production of lipid peroxyl radicals was estimated from co-oxygenation of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol. Vanadyl(IV), but not vanadate(V) caused a dose-dependent co-oxygenation. Vanadate(V) required the presence of reduced nicotinamide adenine dinucleotide phosphate to trigger co-oxygenation of benzo(a)pyrene-7,8-dihydrodiol. To determine the role of pre-formed lipid hydroperoxides, the results obtained with partially peroxidized linoleic acid were compared with those of fresh linoleate. Superoxide dismutase inhibited the co-oxygenation of reaction when fresh linoleic acid was used. To further characterize the role of superoxide anion-radical in the vanadium redox cycling, the increase of optical density of vanadate(V) dissolved in Tris buffer was measured at 328 nm during the addition of KO2. The rate of this reaction producing peroxy-vanadyl complex was decreased by superoxide dismutase, especially, in the presence of catalase. It is suggested that vanadium catalyzes two separate processes, both leading to enhanced lipid peroxidation: (i) initiation, dependent on superoxide and triggered by peroxy-vanadyl; (ii) propagation, dependent on pre-formed lipid hydroperoxide not sensitive to superoxide dismutase. It is postulated that the vanadium-triggered initiation of lipid peroxidation may be crucial for toxicity in organs with limited endogenous lipid peroxidation.
Collapse
Affiliation(s)
- J Z Byczkowski
- Toxicology Program, College of Public Health, University of South Florida, Tampa 33612
| | | |
Collapse
|
34
|
Tarshis M, Salman M. Uptake of a fluorescent-labeled fatty acid by spiroplasma floricola cells. Arch Microbiol 1992; 157:258-63. [PMID: 1510559 DOI: 10.1007/bf00245159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
12-(1-pyrene)dodecanoic fatty acid (P12) uptake by Spiroplasma floricola BNR-1 cells was characterized with regard to its kinetics, specificity, metabolism and susceptibility to protein and lipid inhibitors. The uptake process depended on temperature and pH, and exhibited biphasic saturation kinetics with a very low (2.7 microM) and a high (37 microM) apparent Km value. Lauric, myristic, palmitic, stearic and oleic fatty acids did not compete with P12 for transport. The fluorescence of P12 was exclusively recovered in the neutral lipid fraction, suggesting that this fatty acid is not further utilized for phospholipid biosynthesis. Valinomycin, carbonylcyanide m-chlorophenyldrazone (CCCP), dicyclohexylcarbodiimide (DCCD), and pronase strongly reduced P12 uptake by cells, but not by membrane vesicles, affecting the high affinity (low Km) component of the uptake system. Uptake of P12 by cells, as well as by membrane vesicles, was very sensitive to glutaraldehyde, chlorpromazine, phospholipase A21 and ascorbate with FeCl3, which affected the low affinity (high Km) component of a transport system. Digitonin stimulated P12 uptake. We suggest that the incorporation of P12 into spiroplasma cell membrane is a two-step process: a high specificity energy-dependent and protease-sensitive binding to the outer surface of membrane, and a low specificity and energy-independent diffusion and partition into the membrane lipid environment.
Collapse
Affiliation(s)
- M Tarshis
- Department of Membrane and Ultrastructure Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
35
|
Abstract
The oxygen supply of inner media and thickened intima of atherosclerosis prone arteries depends largely on diffusion from the endothelium. Conditions which increase wall thickness and oxygen diffusion or reduce oxygen transmissibility produce hypoxia and steep PO2 gradients within the wall. Cerebral injury and myocardial reperfusion studies indicate that intermittent hypoxia and steep PO2 gradients lead to oxyradical formation and tissue damage. Products of lipid and sterol peroxidation are found in atherosclerotic plaques and can be generated by arterial wall cells in culture. It is likely that peroxidation occurs directly within the arterial wall. Sufficient oxyradical generation occurs during normal oxygen metabolism that local scavenger mechanisms are required to avoid tissue damage. Experimental hypertension, hyperlipemia and balloon injury produce medial hypoxia with steep PO2 gradients and redistribution of the pattern of arterial wall antioxidant enzymes. This suggests that minor deviations from normal arterial wall anatomy and function can lead to oxyradicals which can be directly injurious and can amplify the atherogenic potential of lipoprotein infiltration.
Collapse
Affiliation(s)
- D W Crawford
- Atherosclerosis Research Institute, University of Southern California, Los Angeles 90033
| | | |
Collapse
|
36
|
|
37
|
Sud'ina GF, Tatarintsev AV, Koshkin AA, Zaitsev SV, Fedorov NA, Varfolomeev SD. The role of adhesive interactions and extracellular matrix fibronectin from human polymorphonuclear leukocytes in the respiratory burst. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1091:257-60. [PMID: 2001408 DOI: 10.1016/0167-4889(91)90187-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Arg-Gly-Asp (RGD) tripeptide and ajoene were used for studying the role of adhesive receptors in the respiratory burst. Activation of the respiratory burst was examined by using luminol-dependent and lucigenin-dependent chemiluminescence. Recently, it was shown that ajoene, (E, Z)-4,5,9-trithiadodeca-1,6,11-trien-9-oxide, a substance isolated from garlic extract, inhibits the binding of fibrinogen to activated platelets by direct interaction with fibrinogen receptor (Apitz-Castro, R., Lederma, E., Escalante, J. and Jain, M.K. (1986) Biochem. Biophys. Res. Commun. 141, 145-150). Taking into consideration the structural and functional similarity of integrins, it would be reasonable to assume that ajoene as well as RGD can inhibit adhesive interactions of human neutrophils. We have shown that the effect of various activators on the respiratory burst was abolished by ajoene or RGD treatment. The inhibitory effect of RGD and ajoene was dose-dependent. The treatment of neutrophils with antiserum against human plasma fibronectin inhibited the respiratory burst in response to formyl-methionyl-leucylphenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). This effect is dose-dependent and reversible with the addition of fibronectin. These data indicate that the respiratory burst in human neutrophils is mediated by the integrin family of receptors and that interactions between the extracellular matrix fibronectin and cells are necessary for the respiratory burst.
Collapse
|
38
|
Bolkenius FN, Grisar JM, De Jong W. A water-soluble quaternary ammonium analog of alpha-tocopherol, that scavenges lipoperoxyl, superoxyl and hydroxyl radicals. FREE RADICAL RESEARCH COMMUNICATIONS 1991; 14:363-72. [PMID: 1778507 DOI: 10.3109/10715769109093425] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The new water-soluble ammonium-analog of alpha-tocopherol (vitamin E) (compound 1: 3,4-dihydro-6-hydroxy-N,N, N-2,5,7,8-heptamethyl-2H-1-benzopyran-2-ethanaminium 4-methylbenzenesulfonate) and its tertiary amine derivative (compound 2: 3,4-dihydro-2-(2-dimethylaminoethyl)-2,5,7,8-tetramethyl-2H-1-benzopyran -6-ol hydrochloride) were investigated as scavengers of oxygen-derived free radicals. Compounds 1 and 2 were at least 40 times more potent inhibitors of Fe-driven heart microsomal lipid peroxidation than Trolox. While the alpha-tocopherol analogs had the same potency as scavengers of xanthine/xanthine oxidase-generated superoxyl radicals, the thiol compounds D,L-penicillamine and N-2-mercaptopropionyl glycine reacted at a much slower rate. The O-acetyl derivatives of compounds 1 and 2 were not scavengers of superoxyl radicals. Considerable differences between the alpha-tocopherol analogs were observed in their competition with 2-deoxyribose for hydroxyl radicals (OH.). Compound 2 was equipotent with Trolox and thiourea, whereas the reactivity of these substances was diminished by more than 30% as compared to compound 1. Although showing lower reactivity, the O-acetyl derivatives of compounds 1 and 2 were active nevertheless as OH.-scavengers. The previously reported high potency of compound 1 in reducing infarct size during myocardial ischemia/reperfusion appears to be due to its radical-scavenging properties, likely to be enhanced by its previously described cardioselectivity.
Collapse
Affiliation(s)
- F N Bolkenius
- Marion Merrell Dow Research Institute, Strasbourg, France
| | | | | |
Collapse
|
39
|
del Río LA, Sandalio LM, Palma JM. A new cellular function for peroxisomes related to oxygen free radicals? EXPERIENTIA 1990; 46:989-92. [PMID: 2171977 DOI: 10.1007/bf01940651] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although in cell biology peroxisomes are still 'young' organelles, it is becoming increasingly clear that they are involved in important cellular functions. Recent results have indicated the presence of the metalloenzyme superoxide dismutase in peroxisomes and the production of superoxide free radicals (O2-) in these oxidative organelles. These findings, together with other experimental evidence, point towards the existence of new roles for peroxisomes in cellular active oxygen metabolism, something that has a potential impact in multiple areas of cell biology, particularly in biochemistry and biomedicine.
Collapse
Affiliation(s)
- L A del Río
- Unidad de Bioquímica Vegetal, Estación Experimental del Zaidin, C.S.I.C., Granada, Spain
| | | | | |
Collapse
|
40
|
Role of oxygen free radicals in the mutagenic effects of drugs and other xenobiotics (review). Pharm Chem J 1990. [DOI: 10.1007/bf00766539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Meshulam A, Cohen H, Meyerstein D. 5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane-nickel(II) as a catalyst for oxidations by superoxide in aqueous solutions. A pulse radiolysis study. Inorganica Chim Acta 1990. [DOI: 10.1016/s0020-1693(00)85094-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Goldstein S, Czapski G. Transition metal ions and oxygen radicals. INTERNATIONAL REVIEW OF EXPERIMENTAL PATHOLOGY 1990; 31:133-64. [PMID: 2292472 DOI: 10.1016/b978-0-12-364931-7.50010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S Goldstein
- Department of Physical Chemistry, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
43
|
Dely M, Zsoldos T, Puppi A, Tigyi A. Opposite effects of methylene blue and ascorbate on lipid peroxidation in muscles. Correlation with the redox state. I. Experiments on satisfied frogs. Chem Biol Interact 1990; 75:213-23. [PMID: 2164455 DOI: 10.1016/0009-2797(90)90119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homogenates of heart, stomach and rectus abdominis muscles of the frog have shown different degrees of malondialdehyde (MDA) formation. MDA content was highest in heart, and lowest in stomach musculature. The resultant tissue redox-state potential (RSP) and redox potential (E'0) in homogenates determined potentiometrically also showed differences with opposite signs in relation to MDA levels. An electron acceptor, methylene blue (MB), decreased but an electron donor, ascorbate (Asc), increased the MDA level in each of the muscles. These effects were dependent upon the concentration of MB and Asc and proportional to the control MDA content in each muscle. Thus an inverse interdependence between MDA level and redox state existed even when a positive change in redox potentials was induced by MB, and also when a negative change was induced by Asc. Since there was a close negative correlation between the changes of MDA concentration and redox potential in the homogenates, it is strongly suggested that the changes of redox state in muscle are implicated in the processes leading to lipid peroxidation (LP).
Collapse
Affiliation(s)
- M Dely
- Central Laboratory of Animal Research, University Medical School, Pécs, Hungary
| | | | | | | |
Collapse
|
44
|
Griot C, Vandevelde M, Richard A, Peterhans E, Stocker R. Selective degeneration of oligodendrocytes mediated by reactive oxygen species. FREE RADICAL RESEARCH COMMUNICATIONS 1990; 11:181-93. [PMID: 1965721 DOI: 10.3109/10715769009088915] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanism underlying demyelination in inflammatory canine distemper encephalitis is uncertain. Macrophages and their secretory products are thought to play an important effector role in this lesion. Recently, we have shown that anti-canine distemper virus antibodies, known to occur in chronic inflammatory lesions, stimulate macrophages leading to the secretion of reactive oxygen species (ROS). To investigate whether ROS could be involved in demyelination, dog glial cell cultures were exposed to xanthine/xanthine oxidase (X/XO), a system capable of generating O2-. This treatment resulted in a specific time-dependent degeneration and loss of oligodendrocytes, the myelin producing cells of the central nervous system. Initial degeneration was not associated with a decrease in viability of oligodendrocytes as judged by trypan blue and propidium iodide exclusion. Astrocytes and brain macrophages were not affected morphologically by this treatment. Further, an evaluation of the effect of several ROS scavengers, transition metal chelators and inhibitors of poly (ADP-ribose) polymerase suggests that a metal dependent formation of .OH or a similar highly oxidizing species could be responsible for the observed selective damage to oligodendrocytes.
Collapse
Affiliation(s)
- C Griot
- Institute of Animal Neurology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Monboisse JC, Gillery P, Maquart FX, Borel JP. Production of superoxide anion by glycated proteins: involvement in complications of diabetes mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 264:551-4. [PMID: 2173881 DOI: 10.1007/978-1-4684-5730-8_83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J C Monboisse
- Laboratoire de Biochimie, Hôpital R. Debré, Reims, France
| | | | | | | |
Collapse
|
46
|
Duncan CJ, Rudge MF. A model for the oxygen-paradox in mouse cardiac muscle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 94:667-71. [PMID: 2575953 DOI: 10.1016/0300-9629(89)90614-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Mouse ventricle strips provide a good model system for studying cellular damage in mammalian cardiac muscle. 2. Anoxia rapidly causes destruction of the myofilament apparatus that is characteristic of calcium-triggered damage in muscle cells, and it is suggested that anoxia promotes release of calcium from the mitochondria. 3. Oxygen exacerbates this damage which is independent of extracellular calcium; it is suggested that it initiates myofilament damage by activation at an intracellular site, probably the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- C J Duncan
- Department of Zoology, University of Liverpool, UK
| | | |
Collapse
|
47
|
Byczkowski JZ, Kulkarni AP. NADPH-dependent drug redox cycling and lipid peroxidation in microsomes from human term placenta. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1989; 21:183-90. [PMID: 2501113 DOI: 10.1016/0020-711x(89)90107-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.
Collapse
Affiliation(s)
- J Z Byczkowski
- Florida Toxicology Research Center, College of Public Health, University of South Florida, Tampa 33612
| | | |
Collapse
|