1
|
Kızıltunç E, Gökalp S, Biberoğlu G, Yalçın Y, Cihan B, Öktem RM, İnci A, Tümer L, Yalçın MR, Abacı A. Is lysosomal acid lipase activity associated with the presence and severity of coronary artery disease? Herz 2024; 49:75-80. [PMID: 37528297 DOI: 10.1007/s00059-023-05200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Lipid metabolism is considerably complex and there can be many critical steps in atherogenesis. The association between lysosomal acid lipase (LAL) activity and coronary artery disease (CAD) has not been elucidated in detail. We aimed to evaluate the association between LAL activity with the presence and severity of CAD in patients who are seen in daily clinical practice. METHODS Patients who underwent coronary angiography were divided into groups according to the angiography results. Syntax scores and Gensini scores were calculated. The LAL activity was measured from dried blood spots. RESULTS Median LAL activity values were similar in all study groups (normal coronary arteries: 0.40 nmol/punch/h; non-obstructive CAD: 0.44 nmol/punch/h; obstructive chronic CAD: 0.40 nmol/punch/h; obstructive acute coronary syndrome: 0.48 nmol/punch/h) and there was no correlation between coronary atherosclerotic burden and LAL activity (correlation coefficients Syntax score and LAL: -0.032; Gensini score and LAL: -0.030). In addition, no relationship between serum lipid levels and LAL activity was detected. CONCLUSION The presence of CAD and its severity is not associated with the LAL activity in patients encountered in daily clinical practice.
Collapse
Affiliation(s)
- Emrullah Kızıltunç
- Department of Cardiology. Emniyet, Gazi University School of Medicine, 06560, Ankara, Yenimahalle, Turkey.
| | - Sabire Gökalp
- Department of Pediatric Metabolism and Nutrition, Gazi University School of Medicine, Ankara, Turkey
| | - Gürsel Biberoğlu
- Department of Pediatric Metabolism and Nutrition, Gazi University School of Medicine, Ankara, Turkey
| | - Yakup Yalçın
- Department of Cardiology. Emniyet, Gazi University School of Medicine, 06560, Ankara, Yenimahalle, Turkey
| | - Burcu Cihan
- Department of Cardiology. Emniyet, Gazi University School of Medicine, 06560, Ankara, Yenimahalle, Turkey
| | - Rıdvan M Öktem
- Department of Pediatric Metabolism and Nutrition, Gazi University School of Medicine, Ankara, Turkey
| | - Aslı İnci
- Department of Pediatric Metabolism and Nutrition, Gazi University School of Medicine, Ankara, Turkey
| | - Leyla Tümer
- Department of Pediatric Metabolism and Nutrition, Gazi University School of Medicine, Ankara, Turkey
| | - Mehmet R Yalçın
- Department of Cardiology. Emniyet, Gazi University School of Medicine, 06560, Ankara, Yenimahalle, Turkey
| | - Adnan Abacı
- Department of Cardiology. Emniyet, Gazi University School of Medicine, 06560, Ankara, Yenimahalle, Turkey
| |
Collapse
|
2
|
Rajamohan F, Reyes AR, Tu M, Nedoma NL, Hoth LR, Schwaid AG, Kurumbail RG, Ward J, Han S. Crystal structure of human lysosomal acid lipase and its implications in cholesteryl ester storage disease. J Lipid Res 2020; 61:1192-1202. [PMID: 32482718 PMCID: PMC7397744 DOI: 10.1194/jlr.ra120000748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Indexed: 11/20/2022] Open
Abstract
Lysosomal acid lipase (LAL) is a serine hydrolase that hydrolyzes cholesteryl ester (CE) and TGs delivered to the lysosomes into free cholesterol and fatty acids. LAL deficiency due to mutations in the LAL gene (LIPA) results in accumulation of TGs and cholesterol esters in various tissues of the body leading to pathological conditions such as Wolman's disease and CE storage disease (CESD). Here, we present the first crystal structure of recombinant human LAL (HLAL) to 2.6 Å resolution in its closed form. The crystal structure was enabled by mutating three of the six potential glycosylation sites. The overall structure of HLAL closely resembles that of the evolutionarily related human gastric lipase (HGL). It consists of a core domain belonging to the classical α/β hydrolase-fold family with a classical catalytic triad (Ser-153, His-353, Asp-324), an oxyanion hole, and a "cap" domain, which regulates substrate entry to the catalytic site. Most significant structural differences between HLAL and HGL exist at the lid region. Deletion of the short helix, 238NLCFLLC244, at the lid region implied a possible role in regulating the highly hydrophobic substrate binding site from self-oligomerization during interfacial activation. We also performed molecular dynamic simulations of dog gastric lipase (lid-open form) and HLAL to gain insights and speculated a possible role of the human mutant, H274Y, leading to CESD.
Collapse
Affiliation(s)
| | | | - Meihua Tu
- Pfizer Worldwide Research, Cambridge, MA 02139
| | | | | | | | | | | | | |
Collapse
|
3
|
Evans TD, Sergin I, Zhang X, Razani B. Target acquired: Selective autophagy in cardiometabolic disease. Sci Signal 2017; 10:eaag2298. [PMID: 28246200 PMCID: PMC5451512 DOI: 10.1126/scisignal.aag2298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accumulation of damaged or excess proteins and organelles is a defining feature of metabolic disease in nearly every tissue. Thus, a central challenge in maintaining metabolic homeostasis is the identification, sequestration, and degradation of these cellular components, including protein aggregates, mitochondria, peroxisomes, inflammasomes, and lipid droplets. A primary route through which this challenge is met is selective autophagy, the targeting of specific cellular cargo for autophagic compartmentalization and lysosomal degradation. In addition to its roles in degradation, selective autophagy is emerging as an integral component of inflammatory and metabolic signaling cascades. In this Review, we focus on emerging evidence and key questions about the role of selective autophagy in the cell biology and pathophysiology of metabolic diseases such as obesity, diabetes, atherosclerosis, and steatohepatitis. Essential players in these processes are the selective autophagy receptors, defined broadly as adapter proteins that both recognize cargo and target it to the autophagosome. Additional domains within these receptors may allow integration of information about autophagic flux with critical regulators of cellular metabolism and inflammation. Details regarding the precise receptors involved, such as p62 and NBR1, and their predominant interacting partners are just beginning to be defined. Overall, we anticipate that the continued study of selective autophagy will prove to be informative in understanding the pathogenesis of metabolic diseases and to provide previously unrecognized therapeutic targets.
Collapse
Affiliation(s)
- Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiangyu Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Rajamohan F, Reyes AR, Ruangsiriluk W, Hoth LR, Han S, Caspers N, Tu M, Ward J, Kurumbail RG. Expression and functional characterization of human lysosomal acid lipase gene (LIPA) mutation responsible for cholesteryl ester storage disease (CESD) phenotype. Protein Expr Purif 2015; 110:22-9. [DOI: 10.1016/j.pep.2014.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/27/2022]
|
5
|
Guénard F, Houde A, Bouchard L, Tchernof A, Deshaies Y, Biron S, Lescelleur O, Biertho L, Marceau S, Pérusse L, Vohl MC. Association of LIPA gene polymorphisms with obesity-related metabolic complications among severely obese patients. Obesity (Silver Spring) 2012; 20:2075-82. [PMID: 22395809 DOI: 10.1038/oby.2012.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The lipase A, lysosomal acid, cholesterol esterase enzyme (LIPA) is involved in the hydrolysis of triglycerides (TGs) and cholesteryl esters (CEs) delivered to lysosomes. LIPA deficiency in human causes two distinct phenotypes characterized by intracellular storage of CE and derangements in the control of cholesterol production, namely the Wolman disease (WD) and the CE storage disease (CESD). To test the potential association of LIPA gene polymorphisms with obesity-related metabolic complications, promoter, exons, and intronic flanking regions of the LIPA gene were first sequenced in 25 individuals. From the 14 common polymorphisms identified, 12 tagging single-nucleotide polymorphisms (tSNPs) were genotyped in a cohort of 1,751 obese individuals. After adjustments for the effect of age, sex, diabetes, and medication, the C allele of SNP rs1051338 was associated with lower blood pressure (BP; systolic (SBP) P = 0.004; diastolic (DBP) P = 0.006). Three of the tested SNPs were associated with modifications of the plasma lipid profile. The G/G genotype of rs2071509 was associated with higher high-density lipoprotein cholesterol (HDL-C) levels (P = 0.009) and minor allele of rs1131706 was also associated with higher HDL-C (P = 0.004) and an association between rs3802656 and total cholesterol (total-C)/HDL-C ratio was identified (P = 0.04). These results thus suggest that LIPA polymorphisms contribute to the interindividual variability observed in obesity-related metabolic complications.
Collapse
Affiliation(s)
- Frédéric Guénard
- Nutraceuticals and Functional Foods Institute, Laval University, Quebec City, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Atherosclerosis remains the leading cause of death in the developed countries. In addition to lipid-lowering drugs - statins, dietary control, and exercise, new approaches are needed for the treatment and prevention of atherosclerosis. This review will focus on the role(s) of lysosomal acid lipase and its use as an enzyme therapy to reduce atherosclerotic lesions in a mouse model and to examine the molecular basis supporting this novel strategy and its mechanism of effect. RECENT FINDINGS Administration of human lysosomal acid lipase via tail vein into mice with atherosclerosis eliminates early aortic and coronary ostial lesions and reduces lesional size in advanced disease. The reduction of advanced lesional area is related to decreases in foamy macrophages, collagen positive areas, and necrotic areas. Compared with sham-treated mice, the human lysosomal acid lipase-treated mice also have reduced levels of plasma cholesteryl esters, and reduced levels of hepatic cholesterol and triglycerides. SUMMARY These studies indicate that administrated lysosomal acid lipase affects the atherogenesis by at least two mechanisms: (1) direct targeting of lesional macrophages with resultant decreases in cholesteryl esters and triglyceride in the lysosomes of macrophages in the lesions; (2) systemic effects that mediate the liver to reduce the hepatic cholesteryl ester and triglyceride release, possibly leading to reduced production of VLDL and LDL.
Collapse
Affiliation(s)
- Hong Du
- The Children's Hospital Research Foundation of Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
7
|
Buechler C, Ullrich H, Aslanidis C, Bared SM, Lingenhel A, Ritter M, Schmitz G. Lipoprotein (a) downregulates lysosomal acid lipase and induces interleukin-6 in human blood monocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1642:25-31. [PMID: 12972290 DOI: 10.1016/s0167-4889(03)00083-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The association of elevated lipoprotein (a) (Lp(a)) with an increased risk for coronary events is clearly established. This increased risk may in part be due to the activation of monocytes as major cells involved in atherogenesis. High concentrations of plasma Lp(a) were shown to influence the gene expression of human blood monocytes and in the present study we demonstrate a reduced abundance of the lysosomal acid lipase (LAL) mRNA in monocytes of patients with coronary disease and selective Lp(a) hyperlipidemia. This is also supported by in vitro studies where purified Lp(a) but not low-density lipoprotein (LDL) was shown to downregulate mRNA levels of the LAL in control monocytes. A correlation of Lp(a) serum levels and the proinflammatory cytokine IL-6 was recently also described. Therefore, we investigated whether Lp(a) is capable to enhance the release of this acute phase cytokine from human blood monocytes. Purified Lp(a) led to an increased secretion of IL-6, but not TNF-alpha arguing against a general activation of these cells. The association of reduced LAL activity with the premature development of coronary artery disease has been demonstrated in patients with hypercholesterolemia, and in the present study we show for the first time that LAL expression is suppressed in monocytes from patients with Lp(a) hyperlipidemia and by purified Lp(a). In addition, increased levels of IL-6 also predict future cardiovascular events and IL-6 secretion was also induced by purified Lp(a).
Collapse
Affiliation(s)
- Christa Buechler
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Straubeta Allee 11, D-93042 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Ries S, Büchler C, Schindler G, Aslanidis C, Ameis D, Gasche C, Jung N, Schambach A, Fehringer P, Vanier MT, Belli DC, Greten H, Schmitz G. Different missense mutations in histidine-108 of lysosomal acid lipase cause cholesteryl ester storage disease in unrelated compound heterozygous and hemizygous individuals. Hum Mutat 2000; 12:44-51. [PMID: 9633819 DOI: 10.1002/(sici)1098-1004(1998)12:1<44::aid-humu7>3.0.co;2-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholesteryl ester storage disease (CESD) and Wolman disease (WD) are both autosomal recessive disorders associated with reduced activity of lysosomal acid lipase (LAL), that leads to the tissue accumulation of cholesteryl esters in endosomes and lysosomes. WD is caused by genetic defects of LAL that leave no residual enzymatic activity, while in CESD patients a residual LAL activity can be identified. We have analyzed the LAL cDNA in three CESD patients from two nonrelated families and identified the mutations responsible for the disease. The associated genetic defects characterized revealed compound heterozygosity for a splice defect leading to skipping of exon 8, due to a G-->A transition at position -1 of the exon 8 splice donor site, and a point mutation leading to a Hisl08Pro change (CAT-->CCT) in two patients (siblings) with mild CESD phenotype. A further CESD patient was hemizygous for a His108-->Arg missense mutation (CAT-->CGT) in combination with a partial deletion of the LAL gene and was affected more severely. Expression of the LAL enzymes with the His108-->Pro and His108-->Arg mutation in insect cells revealed residual enzymatic activities of 4.6% versus 2.7%, respectively, compared with controls. Therefore, His108 seems to play a crucial role in folding or catalytic activity of the lysosomal acid lipase. This is the first description of two different, naturally occurring mutations involving the same amino acid residue in the lysosomal acid lipase in unrelated CESD patients. Moreover, our results demonstrate that the variable manifestation of CESD can be explained by mutation-dependent, variable inactivation of the LAL enzyme.
Collapse
Affiliation(s)
- S Ries
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuriwaki K, Yoshida H. Morphological characteristics of lipid accumulation in liver-constituting cells of acid lipase deficiency rats (Wolman's disease model rats). Pathol Int 1999; 49:291-7. [PMID: 10365847 DOI: 10.1046/j.1440-1827.1999.00862.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lysosomal acid lipase is a hydrolase essential for the intracellular degradation of cholesteryl esters and triglycerides. In the laboratory, rats with congenital deficiency of lysosomal acid lipase and marked accumulation of cholesteryl ester, cholesterol free and triglyceride in livers (Wolman's disease rat or Yoshida rat) that corresponded to human Wolman's disease were found and maintained. The morphological characteristics of accumulated lipids in the livers of affected rats were examined also. Many small lipid droplets and lipid crystals were found in the cytoplasms of hepatocytes and ED1-positive and ED2-positive foamy Kupffer's cells, respectively. Electron microscopically, many electron-lucent lipid droplets with limiting membrane were found in hepatocytes. Foamy Kupffer's cells had many multivesicular bodies with limiting membrane, which contained crivilinear bodies, lipid droplets and crystal clefts. At areas of aggregation of foamy Kupffer's cells forming islets, there were many desmin-positive Ito cells. Small lipid droplets with limiting membrane were also found in the cytoplasm of Ito cells and endothelial cells. These findings, which were obtained by morphological methods, indicated that triglyceride and both cholesteryl ester and free cholesterol accumulated in lipolysosomes mainly in hepatocytes and Kupffer's cells, respectively, and suggest that lysosomal acid lipase could participate in dissolution of the membrane.
Collapse
Affiliation(s)
- K Kuriwaki
- Department of Pathology I, Faculty of Medicine, Kagoshima University, Japan
| | | |
Collapse
|
10
|
Ries S, Büchler C, Langmann T, Fehringer P, Aslanidis C, Schmitz G. Transcriptional regulation of lysosomal acid lipase in differentiating monocytes is mediated by transcription factors Sp1 and AP-2. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32467-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Pagani F, Pariyarath R, Garcia R, Stuani C, Burlina AB, Ruotolo G, Rabusin M, Baralle FE. New lysosomal acid lipase gene mutants explain the phenotype ofWolman disease and cholesteryl ester storage disease. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32518-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Pagani F, Pariyarath R, Stuani C, Garcia R, Baralle FE. Cysteine residues in human lysosomal acid lipase are involved in selective cholesteryl esterase activity. Biochem J 1997; 326 ( Pt 1):265-9. [PMID: 9337878 PMCID: PMC1218664 DOI: 10.1042/bj3260265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human lysosomal acid lipase (LAL) catalyses the deacylation of triacylglycerol and cholesteryl esters in the acidic lysosomal compartment. Treatment of LAL with the reducing agent dithiothreitol affected the triacylglycerol and cholesteryl esterase activities differentially, suggesting the involvement of cysteine residues in determining substrate specificity. To identify the residues involved, human LAL cDNA, under the control of the T7 promoter and tagged with a herpes simplex virus coding epitope, was specifically mutated in order to introduce single amino acid substitutions of each of the six cysteine residues of mature LAL. All Cys-227 mutants showed selectively decreased activity towards cholesteryl oleate, while preserving that towards trioleylglycerol. Substitutions of Cys-236, Cys-240 and Cys-244 affected catalysis towards the two substrates to a variable degree, depending on the side chain of the amino acid introduced. The replacement of Cys-41 or Cys-188 did not result in the preferential cleavage of either one of the two substrates. These data indicate that Cys-227, Cys-236, Cys-240 and Cys-244 play a crucial role in determining LAL substrate specificity. We propose that these cysteine residues are involved in the hydrolysis of cholesteryl ester by affecting selectively the access of this substrate to the catalytic active site. In addition, the fact that the catalytic activity is never completely abolished in cysteine mutants demonstrates that LAL is not a thiol enzyme.
Collapse
Affiliation(s)
- F Pagani
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | |
Collapse
|
13
|
Hui DY. Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1303:1-14. [PMID: 8816847 DOI: 10.1016/0005-2760(96)00085-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D Y Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, OH 45267-0529, USA
| |
Collapse
|
14
|
Nakagawa H, Matsubara S, Kuriyama M, Yoshidome H, Fujiyama J, Yoshida H, Osame M. Cloning of rat lysosomal acid lipase cDNA and identification of the mutation in the rat model of Wolman's disease. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39205-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Affiliation(s)
- W J Johnson
- Department of Biochemistry, MCP Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
16
|
Ameis D, Brockmann G, Knoblich R, Merkel M, Ostlund RE, Yang JW, Coates PM, Cortner JA, Feinman SV, Greten H. A 5' splice-region mutation and a dinucleotide deletion in the lysosomal acid lipase gene in two patients with cholesteryl ester storage disease. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39900-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Anderson RA, Byrum RS, Coates PM, Sando GN. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci U S A 1994; 91:2718-22. [PMID: 8146180 PMCID: PMC43441 DOI: 10.1073/pnas.91.7.2718] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genomic sequences encoding the human lysosomal acid lipase/cholesteryl esterase (sterol esterase; EC 3.1.1.13) have been isolated and sequenced, and the information has been used to identify mutations in both alleles of the gene from a patient with Wolman disease, an autosomal recessive lysosomal lipid storage disorder. The genomic locus consists of 10 exons spread over 36 kb. The 5' flanking region is G+C-rich and has characteristics of a "housekeeping" gene promoter. One of the identified mutations involves the insertion of a T residue after position 634, resulting in the appearance of an in-frame translation stop signal 13 codons downstream. The second mutation is a T-to-C transition at nucleotide 638. This results in a leucine-to-proline substitution at amino acid 179 and is predicted to lead to the disruption of the alpha-helical structure in a highly conserved region of the protein. These mutations are each capable of completely disrupting the catalytic function of the lysosomal acid cholesteryl ester hydrolase; their presence can account for the extreme phenotype of the lysosomal lipid storage disorder manifested in members of this patient's family.
Collapse
Affiliation(s)
- R A Anderson
- Department of Internal Medicine, Wake Forest University Medical Center, Winston-Salem, NC 27157
| | | | | | | |
Collapse
|
18
|
Ameis D, Merkel M, Eckerskorn C, Greten H. Purification, characterization and molecular cloning of human hepatic lysosomal acid lipase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:905-14. [PMID: 8112342 DOI: 10.1111/j.1432-1033.1994.tb18572.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal acid lipase (LAL) is a hydrolase essential for the intracellular degradation of cholesteryl esters and triacylglycerols. This report describes a multi-step procedure for the purification of LAL from human liver. After solubilization with non-ionic detergent, acid hydrolase activity was purified 17000-fold to apparent homogeneity by sequential chromatography on Concanavalin A Sepharose, carboxymethyl-cellulose, phenyl Superose, Mono S cation exchange and Superose 12 gel-filtration columns. This procedure yielded two silver-staining protein bands of 56 kDa and 41 kDa on SDS/PAGE. Size-exclusion chromatography of the 41-kDa protein indicated that the enzyme was catalytically competent as a monomer of approximately 38 kDa. When assayed in the presence of cholesteryl oleate or trioleoylglycerol, purified acid lipase had Vmax values of 4390 nmol fatty acid.min-1.mg protein and 4756 nmol fatty acid.min-1.mg protein-1, and apparent Km values of 0.142 mM and 0.138 mM, respectively. The purified enzyme was most active at low pH (4.5-5.0) and required non-ionic detergent and ethylene glycol for optimal stability. Incubation of the 41-kDa acid lipase with endoglucosaminidase H reduced the molecular mass by 4-6 kDa, demonstrating Asn-linked glycosylation with high-mannose oligosaccharides. Deglycosylation did not affect enzymic activity, indicating that carbohydrates are not required for LAL activity. Based on partial peptide sequence, an oligonucleotide was synthesized and utilized to isolate LAL cDNA clones from a human liver cDNA library. A full-length LAL cDNA contained 2626 nucleotides and coded for a predicted protein of 372 amino acids, preceded by a 27 residue hydrophobic signal peptide. Hepatic LAL differed from fibroblast acid lipase at the N-terminus and revealed extensive similarities with human gastric lipase and rat lingual lipase, confirming a gene family of acid lipases. Northern hybridization using the complete LAL cDNA as a radiolabeled probe indicated striking differences in mRNA expression among human tissues. LAL mRNA was most abundant in brain, lung, kidney and mammary gland. Placenta and HeLa cells expressed intermediate amounts of LAL mRNA, while RNA extracted from liver and heart showed low levels of expression.
Collapse
Affiliation(s)
- D Ameis
- Department of Medicine, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
19
|
Klima H, Ullrich K, Aslanidis C, Fehringer P, Lackner KJ, Schmitz G. A splice junction mutation causes deletion of a 72-base exon from the mRNA for lysosomal acid lipase in a patient with cholesteryl ester storage disease. J Clin Invest 1993; 92:2713-8. [PMID: 8254026 PMCID: PMC288469 DOI: 10.1172/jci116888] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genetic defect leading to cholesteryl ester storage disease (CESD) has been determined in a 12-yr-old patient. Lysosomal acid lipase (LAL) activity in cultured skin fibroblasts was reduced to approximately 9% of control fibroblasts. Plasma cholesterol (255 mg/dl) and LDL-cholesterol (215 mg/dl) were elevated whereas HDL-cholesterol was reduced (19 mg/dl). Triglycerides were moderately elevated (141 mg/dl). There were no clinical abnormalities with the exception of hepatosplenomegaly. Both parents have reduced LAL activity in white blood cells. PCR analysis of the LAL mRNA from the propositus revealed a single slightly smaller mRNA species in skin fibroblasts as well as in leukocytes. The mother of the patient and his older brother had two mRNA species: one of normal size and one of the same size as the propositus. The father has a LAL mRNA of normal size only. Sequence analysis of a PCR-amplified cDNA fragment showed a 72-bp in-frame deletion resulting in the loss of the codons for amino acids 254-277. Analysis of genomic DNA revealed that the 72 bp represent an exon, indicating that the deletion in the mRNA is caused by defective splicing. Sequence analysis of the patient's genomic DNA revealed a G-->A substitution in the last nucleotide of the 72-bp exon in one of his alleles. The mutant allele was shown to cosegregate with the truncated mRNA in the pedigree, providing further evidence that the G-->A substitution causes aberrant splicing and exon skipping. No normal-sized mRNA is detectable in the propositus even though he is not homozygous for the splice site mutation. This can be only accounted for by assuming that he is a compound heterozygote with a null allele inherited from his father. In summary, the data presented provide evidence that deletion of the codons for amino acids 254-277 in the LAL mRNA in combination with a null allele cause the clinical expression of CESD in our patient.
Collapse
Affiliation(s)
- H Klima
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universität Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Onuma T, Tsutsui M, Boku A, Yanada A, Ochiai S, Takebe K. Acid cholesteryl ester hydrolase activity of mononuclear leukocytes in patients with non-insulin-dependent diabetes mellitus: studies before and after treatment of diabetes. Atherosclerosis 1992; 92:229-32. [PMID: 1632850 DOI: 10.1016/0021-9150(92)90282-l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The change of acid cholesteryl ester hydrolase activity in mononuclear leukocyte following treatment of diabetes mellitus was studied in 21 patients with non-insulin-dependent diabetes mellitus (NIDDM). Enzyme activity before treatment in the patients was significantly lower than that in 14 age-matched healthy subjects (1.20 +/- 0.15; mean +/- S.E. vs. 2.20 +/- 0.17 nmol/mg protein/h, P less than 0.01). Enzyme activity before treatment in the patients was significantly increased (P less than 0.05) after 4-8 weeks of treatment. However, enzyme activity of 1.43 +/- 0.14 nmol/mg protein/h observed after treatment in the patients was significantly lower (P less than 0.01) than that in the healthy subjects. There was a significant negative correlation between enzyme activity before treatment and the increase in enzyme activity following treatment (rs = -0.555, P less than 0.01, n = 21). These results indicate that low level of enzyme activity may be insufficiently improved by the treatment of diabetes, and the risk for the development of atherosclerosis as viewed from the enzyme activity may persist even after the treatment in NIDDM.
Collapse
Affiliation(s)
- T Onuma
- Third Department of Internal Medicine, Hirosaki University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Anderson R, Sando G. Cloning and expression of cDNA encoding human lysosomal acid lipase/cholesteryl ester hydrolase. Similarities to gastric and lingual lipases. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54597-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
|
23
|
Kodama H, Nagao Y, Arakawa K, Akiyama H, Akagi O, Nohara N. Acid cholesterol esterase activity in the foam cells isolated from rabbit experimental xanthoma tissues. J Dermatol 1988; 15:294-8. [PMID: 3058759 DOI: 10.1111/j.1346-8138.1988.tb03696.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|