1
|
Caponio GR, Wang DQH, Di Ciaula A, De Angelis M, Portincasa P. Regulation of Cholesterol Metabolism by Bioactive Components of Soy Proteins: Novel Translational Evidence. Int J Mol Sci 2020; 22:ijms22010227. [PMID: 33379362 PMCID: PMC7794713 DOI: 10.3390/ijms22010227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hypercholesterolemia represents one key pathophysiological factor predisposing to increasing risk of developing cardiovascular disease worldwide. Controlling plasma cholesterol levels and other metabolic risk factors is of paramount importance to prevent the overall burden of disease emerging from cardiovascular-disease-related morbidity and mortality. Dietary cholesterol undergoes micellization and absorption in the small intestine, transport via blood, and uptake in the liver. An important amount of cholesterol originates from hepatic synthesis, and is secreted by the liver into bile together with bile acids (BA) and phospholipids, with all forming micelles and vesicles. In clinical medicine, dietary recommendations play a key role together with pharmacological interventions to counteract the adverse effects of chronic hypercholesterolemia. Bioactive compounds may also be part of initial dietary plans. Specifically, soybean contains proteins and peptides with biological activity on plasma cholesterol levels and this property makes soy proteins a functional food. Here, we discuss how soy proteins modulate lipid metabolism and reduce plasma cholesterol concentrations in humans, with potential outcomes in improving metabolic- and dyslipidemia-related conditions.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy;
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Agostino Di Ciaula
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy;
- Correspondence: (M.D.A.); (P.P.); Tel.: +39-080-5442949 (M.D.A.); +39-080-5478893 (P.P.)
| | - Piero Portincasa
- Division of Internal Medicine Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
- Correspondence: (M.D.A.); (P.P.); Tel.: +39-080-5442949 (M.D.A.); +39-080-5478893 (P.P.)
| |
Collapse
|
2
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances In reverse Cholesterol Transport. Ann Hepatol 2017; 16:s27-s42. [PMID: 29080338 DOI: 10.5604/01.3001.0010.5495] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Atherosclerosis is characterized by lipid accumulation, inflammatory response, cell death and fibrosis in the arterial wall, and is major pathological basis for ischemic coronary heart disease (CHD), which is the leading cause of morbidity and mortality in the USA and Europe. Intervention studies with statins have shown to reduce LDL cholesterol levels and subsequently the risk of developing CHD. However, not all the aggressive statin therapy could decrease the risk of developing CHD. Many clinical and epidemiological studies have clearly demonstrated that the HDL cholesterol is inversely associated with risk of CHD and is a critical and independent component of predicting its risk. Elucidations of HDL metabolism give rise to therapeutic targets with potential to raising plasma HDL cholesterol levels, thereby reducing the risk of developing CHD. The concept of reverse cholesterol transport is based on the hypothesis that HDL displays an cardioprotective function, which is a process involved in the removal of excess cholesterol that is accumulated in the peripheral tissues (e.g., macrophages in the aortae) by HDL, transporting it to the liver for excretion into the feces via the bile. In this review, we summarize the latest advances in the role of the lymphatic route in reverse cholesterol transport, as well as the biliary and the non-biliary pathways for removal of cholesterol from the body. These studies will greatly increase the likelihood of discovering new lipid-lowering drugs, which are more effective in the prevention and therapeutic intervention of CHD that is the major cause of human death and disability worldwide.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
|
5
|
Vinson A, Prongay K, Ferguson B. The value of extended pedigrees for next-generation analysis of complex disease in the rhesus macaque. ILAR J 2014; 54:91-105. [PMID: 24174435 DOI: 10.1093/ilar/ilt041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Complex diseases (e.g., cardiovascular disease and type 2 diabetes, among many others) pose the biggest threat to human health worldwide and are among the most challenging to investigate. Susceptibility to complex disease may be caused by multiple genetic variants (GVs) and their interaction, by environmental factors, and by interaction between GVs and environment, and large study cohorts with substantial analytical power are typically required to elucidate these individual contributions. Here, we discuss the advantages of both power and feasibility afforded by the use of extended pedigrees of rhesus macaques (Macaca mulatta) for genetic studies of complex human disease based on next-generation sequence data. We present these advantages in the context of previous research conducted in rhesus macaques for several representative complex diseases. We also describe a single, multigeneration pedigree of Indian-origin rhesus macaques and a sample biobank we have developed for genetic analysis of complex disease, including power of this pedigree to detect causal GVs using either genetic linkage or association methods in a variance decomposition approach. Finally, we summarize findings of significant heritability for a number of quantitative traits that demonstrate that genetic contributions to risk factors for complex disease can be detected and measured in this pedigree. We conclude that the development and application of an extended pedigree to analysis of complex disease traits in the rhesus macaque have shown promising early success and that genome-wide genetic and higher order -omics studies in this pedigree are likely to yield useful insights into the architecture of complex human disease.
Collapse
|
6
|
Vinson A, Mitchell AD, Toffey D, Silver J, Raboin MJ. Sex-specific heritability of spontaneous lipid levels in an extended pedigree of Indian-origin rhesus macaques (Macaca mulatta). PLoS One 2013; 8:e72241. [PMID: 23951301 PMCID: PMC3738547 DOI: 10.1371/journal.pone.0072241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
The rhesus macaque is an important model for human atherosclerosis but genetic determinants of relevant phenotypes have not yet been investigated in this species. Because lipid levels are well-established and heritable risk factors for human atherosclerosis, our goal was to assess the heritability of lipoprotein cholesterol and triglyceride levels in a single, extended pedigree of 1,289 Indian-origin rhesus macaques. Additionally, because increasing evidence supports sex differences in the genetic architecture of lipid levels and lipid metabolism in humans and macaques, we also explored sex-specific heritability for all lipid measures investigated in this study. Using standard methods, we measured lipoprotein cholesterol and triglyceride levels from fasted plasma in a sample of 193 pedigreed rhesus macaques selected for membership in large, paternal half-sib cohorts, and maintained on a low-fat, low cholesterol chow diet. Employing a variance components approach, we found moderate heritability for total cholesterol (h2=0.257, P=0.032), LDL cholesterol (h2=0.252, P=0.030), and triglyceride levels (h2=0.197, P=0.034) in the full sample. However, stratification by sex (N=68 males, N=125 females) revealed substantial sex-specific heritability for total cholesterol (0.644, P=0.004, females only), HDL cholesterol (0.843, P=0.0008, females only), VLDL cholesterol (0.482, P=0.018, males only), and triglyceride levels (0.705, P=0.001, males only) that was obscured or absent when sexes were combined in the full sample. We conclude that genes contribute to spontaneous variation in circulating lipid levels in the Indian-origin rhesus macaque in a sex-specific manner, and that the rhesus macaque is likely to be a valuable model for sex-specific genetic effects on lipid risk factors for human atherosclerosis. These findings are a first-ever report of heritability for cholesterol levels in this species, and support the need for expanded analysis of these traits in this population.
Collapse
Affiliation(s)
- Amanda Vinson
- Oregon National Primate Research Center, Beaverton, Oregon, United States of America.
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Rideout TC, Harding SV, Mackay D, Abumweis SS, Jones PJ. High basal fractional cholesterol synthesis is associated with nonresponse of plasma LDL cholesterol to plant sterol therapy. Am J Clin Nutr 2010; 92:41-6. [PMID: 20444957 DOI: 10.3945/ajcn.2009.29073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The cholesterol-lowering effectiveness of plant sterol (PS) therapy is hindered by wide-ranging variability in LDL-cholesterol responsiveness across individuals. To capitalize on the LDL-cholesterol-lowering potential of PS in the clinical setting, it is paramount to characterize the metabolic factors that underlie this heterogeneity of responsiveness. OBJECTIVE The objective was to investigate the relation between cholesterol synthesis and plasma LDL-cholesterol reductions in response to PS consumption. DESIGN We evaluated previously conducted clinical PS interventions incorporating stable-isotope measures of cholesterol synthesis and conducted feeding studies in animal models of response (Syrian Golden hamsters) and nonresponse (C57BL/6J mice) to PS consumption. RESULTS From our clinical study population (n = 113), we identified 47 nonresponders (3.73 +/- 1.10% change in LDL cholesterol) and 66 responders (-15.16 +/- 1.04% change in LDL cholesterol) to PS therapy. The basal cholesterol fractional synthesis rate (FSR) as measured by direct deuterium incorporation was 23% higher (P = 0.003) in the nonresponder subgroup than in responders to PS therapy. The basal cholesterol FSR correlated (r = 0.22, P = 0.02) with the percentage change in LDL cholesterol after PS intervention. In support of our clinical observations, nonresponding mice showed a 77% higher (P = 0.001) basal cholesterol FSR than that of responding hamsters. Compared with control mice, PS-fed mice showed an increase in hepatic nuclear sterol regulatory element binding protein 2 abundance (1.3-fold of control, P = 0.04) and beta-hydroxy-beta-methylglutaryl coenzyme A reductase-mRNA expression (2.4-fold of control, P = 0.00). CONCLUSION The results suggest that subjects with high basal cholesterol synthesis are less responsive to PS treatment than are subjects with low basal cholesterol synthesis.
Collapse
Affiliation(s)
- Todd C Rideout
- Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, Canada.
| | | | | | | | | |
Collapse
|
9
|
Chan J, Donalson LM, Kushwaha RS, Ferdinandusse S, VandeBerg JF, VandeBerg JL. Differential expression of hepatic genes involved in cholesterol homeostasis in high- and low-responding strains of laboratory opossums. Metabolism 2008; 57:718-24. [PMID: 18442639 PMCID: PMC2465809 DOI: 10.1016/j.metabol.2008.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Plasma very low-density lipoprotein and low-density lipoprotein (VLDL+LDL) cholesterol levels of 2 partially inbred strains of opossums (Monodelphis domestica) differ markedly when they are fed a high-cholesterol and low-fat (HCLF) diet. High-responding opossums exhibit a dramatic increase (>10-fold) in VLDL+LDL cholesterol, whereas low-responding opossums exhibit a minimal increase (<2-fold) in VLDL+LDL cholesterol. The genes responsible for the accumulation of high levels of plasma VLDL+LDL cholesterol in high-responding opossums have not yet been identified. In this study, we analyzed the expression of genes encoding for (1) 4 bile acid synthesis enzymes (CYP7A1, CYP27A1, CYP8B1, and CYP7B1); (2) 3 cholesterol synthesis enzymes (HMGCR, HMGCS1, and SQLE); (3) the LDL receptor (LDLR); (4) 2 sterol transporters (ABCG5 and ABCG8); and (5) 2 bile acid transporters (ABCB11 and SLC10A1) to determine how the expression of these genes was affected by dietary cholesterol in the 2 strains of opossums. We found differences between high and low responders in the expression of cholesterol synthesis genes on the basal diet, as well as differences in the expression of the CYP27A1, ABCG5, ABCG8, and SLC10A1 genes on the HCLF diet. CYP27A1 messenger RNA levels were lower in the livers of high responders compared with low responders, whereas CYP27A1 messenger RNA levels in extrahepatic tissues were similar in high and low responders on the HCLF diet. Low levels of CYP27A1, ABCG5, and ABCG8 expression in the liver may contribute to hypercholesterolemia in high-responding opossums.
Collapse
Affiliation(s)
- Jeannie Chan
- Southwest National Primate Research Center, Department of Genetics, Southwest Foundation for Biomedical Research, PO Box 760549, San Antonio, TX 78245-0549, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Wang DQH, Carey MC. Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J Lipid Res 2003; 44:1042-59. [PMID: 12588946 DOI: 10.1194/jlr.d200041-jlr200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rate of intestinal cholesterol (Ch) absorption is an important criterion for quantitation of Ch homeostasis. However, studies in the literature suggest that percent Ch absorption, measured usually by a fecal dual-isotope ratio method, spans a wide range, from 20% to 90%, in healthy inbred mice on a chow diet. In the present study, we adapted four standard methods, one direct (lymph collection) and three indirect (plasma and fecal dual-isotope ratio, and sterol balance) measurements of Ch absorption and applied them to mice. Our data establish that all methodologies can be valid in mice, with all methods supporting the concept that gallstone-susceptible C57L mice absorb significantly more Ch (37 +/- 5%) than gallstone-resistant AKR mice (24 +/- 4%). We ascertained that sources of error in the literature leading to marked differences in Ch absorption efficiencies between laboratories relate to a number of technical factors, most notably expertise in mouse surgery, complete solubilization and delivery of radioisotopes, appropriate collection periods for plasma and fecal samples, and total extraction of radioisotopes from feces. We find that all methods provide excellent interexperimental agreement, and the ranges obtained challenge previously held beliefs regarding the spread of intestinal Ch absorption efficiencies in mice. The approaches documented herein provide quantifiable methodologies for exploring genetic mechanisms of Ch absorption, and for investigating the assembly and secretion of chylomicrons, as well as intestinal lipoprotein metabolism in mice.
Collapse
Affiliation(s)
- David Q-H Wang
- Gastroenterology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | |
Collapse
|
11
|
Abstract
Atherosclerosis and its major clinical manifestation, coronary heart disease, is and will remain the main cause of mortality. Reviews on this subject dealt with factors that enhance development of atherosclerosis. This review deals with a new facet, that some individuals are less prone to develop atherosclerosis: (1) despite high cholesterol intake or (2) despite hypercholesterolemia with elevated low-density lipoprotein cholesterol (LDL-C) levels. The variability of response of plasma cholesterol to dietary intake was shown to be regulated by liver x receptor (LXR) that determines the rate of intestinal cholesterol absorption through the ATP-binding cassette (ABC) gene family. Other gene products, such as apolipoprotein-E (apo-E), scavenger receptor-B1 (SR-B1) and acyl coenzyme: cholesterol acyltransferase-2 (ACAT-2) affect cholesterol absorption also. The role of a genetic background for relative resistance to atherosclerosis is highlighted by subjects with familial hypercholesterolemia in whom high plasma cholesterol levels has not curtailed their expected life span. Studies in animals have shown that resistance to atherosclerosis in spite of hypercholesterolemia is affected by factors such as high-density lipoprotein (HDL) phospholipids that enhance reverse cholesterol transport, non-responsiveness to induction or lack of monocyte chemotactic protein-1 (MCP-1), C-C chemokine receptor 2 (CCR2), macrophage colony stimulating factor (MCSF), or vascular cell adhesion molecule-1 (VCAM-1). Since macrophages have been regarded as pro- or anti-atherogenic, evidence was collated that the high activity of scavenger receptors may contribute towards resistance to atherosclerosis if accompanied by adequate amounts of apo-E for cholesterol removal.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/genetics
- Arteriosclerosis/complications
- Arteriosclerosis/genetics
- CD36 Antigens/genetics
- Carrier Proteins/genetics
- Chemokine CCL2/genetics
- Cholesterol/blood
- Cholesterol/genetics
- Cholesterol, Dietary
- Coronary Disease/complications
- Coronary Disease/genetics
- DNA-Binding Proteins
- Gene Expression Regulation/genetics
- Genetic Markers/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Hypercholesterolemia/complications
- Hypercholesterolemia/genetics
- Liver X Receptors
- Macrophage Colony-Stimulating Factor/genetics
- Membrane Proteins
- Orphan Nuclear Receptors
- Receptors, CCR2
- Receptors, Chemokine/genetics
- Receptors, Cytoplasmic and Nuclear
- Receptors, Immunologic
- Receptors, Lipoprotein
- Receptors, Retinoic Acid/genetics
- Receptors, Scavenger
- Receptors, Thyroid Hormone/genetics
- Scavenger Receptors, Class B
- Sterol O-Acyltransferase/genetics
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Resistance/genetics
Collapse
Affiliation(s)
- Olga Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
12
|
Nguyen LB, Shefer S, Salen G, Tint G, Ruiz F, Bullock J. Mechanisms for cholesterol homeostasis in rat jejunal mucosa: effects of cholesterol, sitosterol, and lovastatin. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31679-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Abstract
The strong association between intestinal cholesterol absorption and total plasma cholesterol level has renewed interest in the absorptive process and stimulated the generation of new animal models. Increasingly, new studies suggest that cholesterol absorption is genetically controlled and supports a protein-mediated mechanism for cholesterol uptake into the intestinal mucosal cell. Insights into potential mechanisms are predicted to lead to novel pharmacological approaches to inhibit cholesterol absorption.
Collapse
Affiliation(s)
- P A Dawson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
14
|
Sehayek E, Ono JG, Shefer S, Nguyen LB, Wang N, Batta AK, Salen G, Smith JD, Tall AR, Breslow JL. Biliary cholesterol excretion: a novel mechanism that regulates dietary cholesterol absorption. Proc Natl Acad Sci U S A 1998; 95:10194-9. [PMID: 9707623 PMCID: PMC21484 DOI: 10.1073/pnas.95.17.10194] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of dietary cholesterol absorption was examined in C57BL/6 and transgenic mice with liver overexpression of the scavenger receptor BI (SR-BI Tg). In C57BL/6 animals, feeding 0.02 to 1% (wt/wt) dietary cholesterol resulted in a dose-dependent decrease in the percentage of dietary cholesterol absorbed. A plot of total daily mass of dietary cholesterol absorbed versus the percentage by weight of cholesterol in the diet yielded a curve suggesting a saturable process with a Km of 0.4% (wt/wt) and a Vmax of 0.65 mg cholesterol/g body weight per day. Dietary cholesterol suppressed hepatic 3-hydroxy-3-methylglutaryl CoA reductase activity, stimulated cholesterol 7alpha-hydroxylase activity, and enhanced fecal excretion of bile acids, but none of these changes correlated with the percentage of dietary cholesterol absorption. Dietary cholesterol also caused an increase in biliary cholesterol concentration, and in this case the concentration of biliary cholesterol was strongly and inversely correlated with the percentage dietary cholesterol absorption (r = -0.63, P < 0.0001). Biliary cholesterol concentration was also directly correlated with daily cholesterol intake, dietary cholesterol mass absorption, and liver cholesterol ester content. Transgene-induced overexpression of SR-BI resulted in a stimulation of excretion of cholesterol into the bile and suppressed percentage dietary cholesterol absorption. Furthermore, biliary cholesterol levels in SR-BI Tg mice were strongly and inversely correlated with the percentage of dietary cholesterol absorbed (r = -0.99, P < 0.0008). In summary, these results suggest that the excretion of cholesterol into the bile plays an important role in regulating the percentage absorption of dietary cholesterol.
Collapse
Affiliation(s)
- E Sehayek
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Turley SD, Spady DK, Dietschy JM. Identification of a metabolic difference accounting for the hyper- and hyporesponder phenotypes of cynomolgus monkey. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37178-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Kushwaha RS, Guntupalli B, Rice KS, Carey KD, McGill HC. Effect of dietary cholesterol and fat on the expression of hepatic sterol 27-hydroxylase and other hepatic cholesterol-responsive genes in baboons (Papio species). Arterioscler Thromb Vasc Biol 1995; 15:1404-11. [PMID: 7670955 DOI: 10.1161/01.atv.15.9.1404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Our studies of baboons with low and high responses to dietary cholesterol and fat suggest that low-responding baboons increase the activity of hepatic sterol 27-hydroxylase, an important enzyme of bile acid synthesis, considerably more than do high-responding baboons when challenged with a high-cholesterol, high-fat (HCHF) diet. The present studies were conducted to determine whether hepatic sterol 27-hydroxylase mRNA levels and plasma 27-hydroxycholesterol concentrations also differed with dietary responsiveness. Sixteen adult male baboons with a wide range of VLDL cholesterol plus LDL cholesterol (VLDL+LDL cholesterol) response to an HCHF diet were selected. They were examined first while on a chow diet and then after 1, 3, 6, 10, 18, 26, 36, 52, 72, and 104 weeks on the HCHF diet. Plasma and lipoprotein cholesterol concentrations increased rapidly during the first 3 weeks and stabilized thereafter. On the basis of the response in VLDL/LDL cholesterol, we selected five low-responding, four medium-responding, and five high-responding baboons for more intensive study in more detail. In low responders, the major increase in serum cholesterol concentration was in HDL cholesterol, whereas in medium and high responders it was in both VLDL+LDL and HDL cholesterol. In low and medium responders, serum or VLDL+LDL cholesterol did not change after 3 weeks of consumption of the HCHF diet, whereas in high responders VLDL+LDL cholesterol declined between 78 and 104 weeks.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R S Kushwaha
- Department of Physiology and Medicine, Southwest Foundation for Biomedical Research, San Antonio, Tex 78228-0147, USA
| | | | | | | | | |
Collapse
|
17
|
Kushwaha RS, Rice KS, Lewis DS, McGill HC, Carey KD. The role of cholesterol absorption and hepatic cholesterol content in high and low responses to dietary cholesterol and fat in pedigreed baboons (Papio species). Metabolism 1993; 42:714-22. [PMID: 8510515 DOI: 10.1016/0026-0495(93)90238-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Selective breeding has produced baboon families with low and high plasma cholesterol responses to dietary cholesterol and fat. We used 12 high- and 12 low-responding (mainly in low-density lipoprotein [LDL] cholesterol) pedigreed baboons to determine whether cholesterol absorption and hepatic cholesterol concentration are associated with these responses. We measured cholesterol absorption first on the chow diet, which was low in cholesterol and fat, and after 3 and 13 weeks on the challenge diets, which contained 0.45 mg cholesterol/kcal and 40% of calories as either coconut oil or corn oil. Plasma, lipoprotein, and hepatic cholesterol concentrations were measured 1 week after cholesterol absorption measurements. High-responding baboons had higher percentage cholesterol absorption than low-responding baboons on both chow and challenge diets, regardless of the type of dietary fat. Both high and low responders had higher percentage cholesterol absorption with corn oil than with coconut oil. High responders also had higher hepatic cholesterol concentrations than low responders on chow and after consuming the challenge diets for 4 weeks. After consuming the challenge diets for 14 weeks, low responders fed coconut oil had hepatic cholesterol levels equal to those of high responders, while low responders fed corn oil continued to have low hepatic cholesterol levels. Thus, percentage cholesterol absorption is consistently higher in high-responding baboons regardless of diet, but hepatic cholesterol concentration varies with duration of challenge and type of fat. The results suggest that both cholesterol absorption and hepatic cholesterol concentration regulate cholesterolemic responses to diet, but by different mechanisms.
Collapse
Affiliation(s)
- R S Kushwaha
- Department of Physiology and Medicine, Southwest Foundation for Biomedical Research, San Antonio, TX 78228-0147
| | | | | | | | | |
Collapse
|
18
|
Meijer GW, Van der Palen JG, De Vries H, Kempen HJ, Van der Voort HA, Van Zutphen LF, Beynen AC. Evaluation of the use of serum lathosterol concentration to assess whole-body cholesterol synthesis in rabbits. J Lipid Res 1992. [DOI: 10.1016/s0022-2275(20)41548-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|