1
|
Zhang T, Day JH, Su X, Guadarrama AG, Sandbo NK, Esnault S, Denlinger LC, Berthier E, Theberge AB. Investigating Fibroblast-Induced Collagen Gel Contraction Using a Dynamic Microscale Platform. Front Bioeng Biotechnol 2019; 7:196. [PMID: 31475142 PMCID: PMC6702460 DOI: 10.3389/fbioe.2019.00196] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 11/14/2022] Open
Abstract
Mechanical forces have long been recognized as fundamental drivers in biological processes, such as embryogenesis, tissue formation and disease regulation. The collagen gel contraction (CGC) assay has served as a classic tool in the field of mechanobiology to study cell-induced contraction of extracellular matrix (ECM), which plays an important role in inflammation and wound healing. In a conventional CGC assay, cell-laden collagen is loaded into a cell culture vessel (typically a well plate) and forms a disk-shaped gel adhering to the bottom of the vessel. The decrement in diameter or surface area of the gel is used as a parameter to quantify the degree of cell contractility. In this study, we developed a microscale CGC assay with an engineered well plate insert that uses surface tension forces to load and manipulate small volumes (14 μL) of cell-laden collagen. The system is easily operated with two pipetting steps and the microscale device moves dynamically as a result of cellular forces. We used a straightforward one-dimensional measurement as the gel contraction readout. We adapted a conventional lung fibroblast CGC assay to demonstrate the functionality of the device, observing significantly more gel contraction when human lung fibroblasts were cultured in serum-containing media vs. serum-free media (p ≤ 0.05). We further cocultured eosinophils and fibroblasts in the system, two important cellular components that lead to fibrosis in asthma, and observed that soluble factors from eosinophils significantly increase fibroblast-mediated gel contraction (p ≤ 0.01). Our microscale CGC device provides a new method for studying downstream ECM effects of intercellular cross talk using 7- to 35-fold less cell-laden gel than traditional CGC assays.
Collapse
Affiliation(s)
- Tianzi Zhang
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - John H Day
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Xiaojing Su
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Arthur G Guadarrama
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nathan K Sandbo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, United States.,Department of Urology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
2
|
Yang TH, Thoreson AR, Gingery A, Larson DR, Passe SM, An KN, Zhao C, Amadio PC. Collagen gel contraction as a measure of fibroblast function in an animal model of subsynovial connective tissue fibrosis. J Orthop Res 2015; 33:668-74. [PMID: 25626430 PMCID: PMC4415498 DOI: 10.1002/jor.22835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/19/2015] [Indexed: 02/04/2023]
Abstract
Carpal tunnel syndrome (CTS) is a peripheral neuropathy characterized by non-inflammatory fibrosis of the subsynovial connective tissues (SSCT). A rabbit model of CTS was developed to test the hypothesis that SSCT fibrosis causes the neuropathy. We used a cell-seeded collagen-gel contraction model to characterize the fibrosis in this model in terms of cellular mechanics, specifically to compare the ability of SSCT cells from the rabbit model and normal rabbits to contract the gel, and to assess the effect of transforming growth factor-β1,which is upregulated in CTS, on these cells. SSCT fibrosis was induced in six retired breeder female rabbits which were sacrificed at 6 weeks (N = 3) and 12 weeks (n = 3). An additional two rabbits served as controls. SSCT was harvested according to a standard protocol. Gels seeded with SSCT cells from rabbits sacrificed at 6 weeks had significantly higher tensile strength (p < 0.001) and Young's modulus (p < 0.001) than gels seeded with cells from rabbits sacrificed at 12 weeks or control animals. TGF-β1 significantly increased the decay time constant (p < 0.001), tensile strength (p < 0.001), and Young's modulus (p < 0.001) regardless of the cell source. This model may be useful in screening therapeutic agents that may block SSCT fibrosis, identifying possible candidates for CTS treatment.
Collapse
Affiliation(s)
- Tai-Hua Yang
- Biomechanics & Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Andrew R. Thoreson
- Biomechanics & Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Anne Gingery
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Dirk R. Larson
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Sandra M. Passe
- Biomechanics & Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Kai-Nan An
- Biomechanics & Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Chunfeng Zhao
- Biomechanics & Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905 USA
| | - Peter C. Amadio
- Biomechanics & Tendon and Soft Tissue Biology Laboratories, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905 USA,Corresponding Author: Peter C. Amadio, M.D., Tendon & Soft Tissue Biology Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA, Phone: 507-538-1717; Fax: 507-284-5392,
| |
Collapse
|
3
|
Hung HS, Chang CH, Chang CJ, Tang CM, Kao WC, Lin SZ, Hsieh HH, Chu MY, Sun WS, Hsu SH. In vitro study of a novel nanogold-collagen composite to enhance the mesenchymal stem cell behavior for vascular regeneration. PLoS One 2014; 9:e104019. [PMID: 25093502 PMCID: PMC4122411 DOI: 10.1371/journal.pone.0104019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/04/2014] [Indexed: 12/29/2022] Open
Abstract
Novel nanocomposites based on type I collagen (Col) containing a small amount (17.4, 43.5, and 174 ppm) of gold nanoparticles (AuNPs, approximately 5 nm) were prepared in this study. The pure Col and Col-AuNP composites (Col-Au) were characterized by the UV-Vis spectroscopy (UV-Vis), surface-enhanced raman spectroscopy (SERS) and atomic force microscopy (AFM). The interaction between Col and AuNPs was confirmed by infrared (IR) spectra. The effect of AuNPs on the biocompatibility of Col, evaluated by the proliferation and reactive oxygen species (ROS) production of mesenchymal stem cells (MSCs) as well as the activation of monocytes and platelets, was investigated. Results showed that Col-Au had better biocompatibility than Col. Upon stimulation by vascular endothelial growth factor (VEGF) and stromal derived factor-1α (SDF-1α), MSCs expressed the highest levels of αvβ3 integrin/CXCR4, focal adhesion kinase (FAK), matrix metalloproteinase-2 (MMP-2), and Akt/endothelial nitric oxide synthase (eNOS) proteins when grown on the Col-Au (43.5 ppm) nanocomposite. Taken together, Col-Au nanocomposites may promote the proliferation and migration of MSCs and stimulate the endothelial cell differentiation. These results suggest that Col-Au may be used to construct tissue engineering scaffolds for vascular regeneration.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Chih-Hsuan Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Chen-Jung Chang
- Central Taiwan University of Science and Technology, Department of Medical Imaging and Radiological Science, Taichung, Taiwan, R.O.C.
| | - Cheng-Ming Tang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Wei-Chien Kao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, R.O.C.
- China Medical University Beigang Hospital, Yunlin, Taiwan, R.O.C.
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, R.O.C
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.
| | - Mei-Yun Chu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Wei-Shen Sun
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. R.O.C.
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
- Rehabilitation Engineering Research Center, National Taiwan University, Taipei, Taiwan, R.O.C.
- * E-mail:
| |
Collapse
|
4
|
Yang TH, Thoreson AR, Gingery A, An KN, Larson DR, Zhao C, Amadio PC. Collagen gel contraction as a measure of fibroblast function in carpal tunnel syndrome. J Biomed Mater Res A 2014; 103:574-80. [PMID: 24753289 DOI: 10.1002/jbm.a.35200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 11/07/2022]
Abstract
Noninflammatory subsynovial connective tissue (SSCT) fibrosis with nerve compression is a prominent feature of carpal tunnel syndrome (CTS). Studies have shown that SSCT matrix synthesis and material property changes in CTS are associated with increased activity of transforming growth factor (TGF)-β1. The aim of this study were to (1) investigate the ability of SSCT fibroblasts from CTS patients and unaffected individuals to contract a collagen gel ring and (2) determine how the addition of TGF-β1 affects this ability. SSCT fibroblasts from three normal cadavers and three age-matched female patients who had undergone surgery for CTS were used. Results showed patient cell-seeded gels had a significantly higher contraction rate (p < 0.001) than control cells, and fully contracted gel rings possessed a significantly higher tensile strength (p = 0.003) and stiffness (p < 0.001). Furthermore, TGF-β1 significantly intensified contraction rate (p < 0.001), tensile strength (p < 0.001), and stiffness (p < 0.001). In conclusion, SSCT cells from normal donors and CTS patients contract collagen gel rings differently, and this ability is affected by TGF-β1 treatment. This cell-seeded collagen gel model may be useful for developing new methods of stopping or eliminating the effect of TGF-β1 on the SSCT fibroblasts and surrounding matrix, which might aid in the identification of medical treatment for CTS.
Collapse
Affiliation(s)
- Tai-Hua Yang
- Biomechanics & Tendon and Soft Tissue Biology Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905
| | | | | | | | | | | | | |
Collapse
|
5
|
Chen HC, Yang TH, Thoreson AR, Zhao C, Amadio PC, Sun YN, Su FC, An KN. Automatic and Quantitative Measurement of Collagen Gel Contraction Using Model-Guided Segmentation. MEASUREMENT SCIENCE & TECHNOLOGY 2013; 24:85702. [PMID: 24092954 PMCID: PMC3786395 DOI: 10.1088/0957-0233/24/8/085702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behaviors and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model (DCM) which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.
Collapse
Affiliation(s)
- Hsin-Chen Chen
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Neurosurgery, University of Pittsburgh, PA, USA
| | - Tai-Hua Yang
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | - Chunfeng Zhao
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Amadio
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| | - Yung-Nien Sun
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Kai-Nan An
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Fiejdasz S, Szczubiałka K, Lewandowska-Łańcucka J, Osyczka AM, Nowakowska M. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds. Biomed Mater 2013; 8:035013. [DOI: 10.1088/1748-6041/8/3/035013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Mu C, Zhang K, Lin W, Li D. Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. J Biomed Mater Res A 2012; 101:385-93. [PMID: 22847997 DOI: 10.1002/jbm.a.34338] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/06/2012] [Accepted: 06/26/2012] [Indexed: 11/08/2022]
Abstract
Polymeric genipin macromers, prepared by ring-opening polymerization at various pH values, are used as crosslinking agents to fix collagen hydrogels. The results indicate that as the dark color of polymeric genipin itself and the networks formed by long-range intermolecular crosslinking, the genipin-fixed collagen hydrogels displace darker color. The polymeric genipin prepared at higher pH value needs longer time to fully crosslink with collagen molecules. Moreover, polymerization of genipin reduces the yield of genipin-fixed collagen hydrogels due to low extent of crosslinking. Specially, the microscope photographs present the porous networks structures of genipin-fixed collagen hydrogels. The pore size increases with the increase in polymerization degree of genipin. The data of FTIR indicate the likely transition of -NH(2) groups in collagen chains into C=N. Owning to much more number of hydrophilic groups and more porous networks, collagen hydrogels fixed by genipin with higher polymerization degree have higher water absorption capacity. The equilibrium swelling of genipin-fixed collagen hydrogels is pH-responsive, which show "M" type changes with the pH values. The results obtained in the study suggest that the polymeric genipin prepared at various pH values lead to significant influence to the crosslinking characteristics and properties of collagen hydrogels.
Collapse
Affiliation(s)
- Changdao Mu
- Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
8
|
A two-compartment mechanochemical model of the roles of transforming growth factor and tissue tension in dermal wound healing. J Theor Biol 2011; 272:145-59. [DOI: 10.1016/j.jtbi.2010.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 12/30/2022]
|
9
|
Moore SW, Roca-Cusachs P, Sheetz MP. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell 2010; 19:194-206. [PMID: 20708583 DOI: 10.1016/j.devcel.2010.07.018] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/13/2010] [Accepted: 07/16/2010] [Indexed: 01/06/2023]
Abstract
Matrix and tissue rigidity guides many cellular processes, including the differentiation of stem cells and the migration of cells in health and disease. Cells actively and transiently test rigidity using mechanisms limited by inherent physical parameters that include the strength of extracellular attachments, the pulling capacity on these attachments, and the sensitivity of the mechanotransduction system. Here, we focus on rigidity sensing mediated through the integrin family of extracellular matrix receptors and linked proteins and discuss the evidence supporting these proteins as mechanosensors.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
10
|
Chieh HF, Sun Y, Liao JD, Su FC, Zhao C, Amadio PC, An KN. Effects of cell concentration and collagen concentration on contraction kinetics and mechanical properties in a bone marrow stromal cell-collagen construct. J Biomed Mater Res A 2010; 93:1132-9. [PMID: 19768794 DOI: 10.1002/jbm.a.32606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A cell-collagen construct is commonly used to investigate the phenomenon of wound healing and to estimate the variables for tissue engineering. The purpose of this study was to assess the effects of cell concentration and collagen concentration on the contraction kinetics and mechanical properties of bone marrow stromal cell (BMSC) seeded collagen lattices. To investigate the effects of both variables on the contraction kinetics, the construct contraction was monitored up to 13 days. Incremental stress- relaxation tests were carried out after a 2-week incubation to obtain the stress-strain profiles, which were subsequently assessed in a quasilinear viscoelastic (QLV) model. During contraction, aligned BMSCs were observed first in the interior portion of the ring, followed by the middle portion and finally in the exterior portion. Constructs seeded with a higher initial cell concentration (higher than 1 x 10(5) cells/mL) or lower initial collagen concentration (lower than 2 mg/mL) exhibited faster contraction, higher ultimate stress, and superior elasticity and reduced relaxation behavior (p < 0.05). The cell-collagen model was successfully used to yield information regarding the initial cell concentration and the initial collagen concentration on contraction kinetics and mechanical behavior, which may have possible application in tissue engineering.
Collapse
Affiliation(s)
- Hsiao-Feng Chieh
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Evans MC, Barocas VH. The modulus of fibroblast-populated collagen gels is not determined by final collagen and cell concentration: Experiments and an inclusion-based model. J Biomech Eng 2010; 131:101014. [PMID: 19831484 DOI: 10.1115/1.4000064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The fibroblast-populated collagen lattice is an attractive model tissue for in vitro studies of cell behavior and as the basis for bioartificial tissues. In spite of its simplicity-containing only collagen and cells-the system is surprisingly difficult to describe mechanically because of the ability of the cells to remodel the matrix, including compaction at short times and synthesis and/or degradation (and cell proliferation) at longer times. The objectives of this work were to measure the equilibrium modulus of fibroblast-populated gels with different collagen and cell concentrations, and to use that characterization as the basis for a theoretical model that could be used to predict gel mechanics based on conditions. Although many observations were as expected (e.g., the gel compacts more when there are more cells in it, and the gel is stiffer when there is more collagen in it), an unexpected result arose: the final modulus of the gel was not dependent solely on the final composition. Even if it compacted more than a gel that was originally at a high collagen concentration, a gel that started at a low collagen concentration remained less stiff than the higher-concentration gel. In light of these results and experimental studies by others, we propose a model in which the gel compaction is not homogeneous but consists instead of extreme densification near the cells in an otherwise unchanged matrix. By treating the dense regions as spherical inclusions, we used classical composite material theory to develop an expression for the modulus of a compacted gel based on the initial collagen density and the final inclusion (i.e., cell) density. The new model fit the data for moderately compacted gels well but broke down, as expected, for larger volume fractions at which the underlying model assumptions did not apply.
Collapse
Affiliation(s)
- Michael C Evans
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
12
|
Saddiq ZA, Barbenel JC, Grant MH. The mechanical strength of collagen gels containing glycosaminoglycans and populated with fibroblasts. J Biomed Mater Res A 2009; 89:697-706. [DOI: 10.1002/jbm.a.32007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Berry CC, Shelton JC, Lee DA. Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs. J Tissue Eng Regen Med 2009; 3:43-53. [PMID: 19039798 DOI: 10.1002/term.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate the influence of the endogenous forces generated by fibroblast-mediated contraction, using four individual collagen gel models that differed with respect to the ability of the cells to contract the gel. Human neonatal dermal fibroblasts were seeded in type I collagen and the gels were cast in a racetrack-shaped mould containing a removable central island. Two of the models were mechanically stressed (20 mm and 10 mm), as complete contraction was prevented by the presence of a central island. The central island was removed in the third model (released) and the final model was cast in a Petri dish and detached, allowing full multi-axial contraction (SR). Cell viability was maintained in the 10 mm, released and SR models over a 6 day culture period but localized regions of cell death were evident in the 20 mm model. Cell and collagen alignment was developed in the 20 mm and 10 mm models and to a lesser extent in the released model, but was absent in the SR model. Cell proliferation and collagen synthesis was lower in the 20 mm model compared to the other systems and there was evidence of enhanced matrix metalloproteinase production. The mechanical properties of the 20 mm model system were inferior to the 10 mm and released systems. The 10 mm model system induced a high level of cell and matrix orientation and may, therefore, represent the best option for tissue-engineered ligament repair involving an orientated fibroblast-seeded collagen gel.
Collapse
Affiliation(s)
- Catherine C Berry
- IRC in Biomedical Materials, School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | |
Collapse
|
14
|
Chen MY, Sun YL, Zhao C, Zobitz ME, An KN, Moran SL, Amadio PC. Substrate adhesion affects contraction and mechanical properties of fibroblast populated collagen lattices. J Biomed Mater Res B Appl Biomater 2008; 84:218-23. [PMID: 17497686 DOI: 10.1002/jbm.b.30863] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibroblasts can condense a hydrated collagen lattice to a tissue-like structure. The purpose of this study was to evaluate the effect of substrate adhesion on the contraction and mechanical properties of fibroblast populated collagen lattices. Bacteriological grade polystyrene (BGPS) plates and tissue culture polystyrene (TCPS) plates were used as substrates for incubation of fibroblast populated collagen lattices. Hydrophobicity of the polystyrene surfaces was measured by the static sessile contact angle method. Collagen lattice contraction was recorded for 2 weeks, after which the lattices were mechanically tested. The BGPS culture plate had a significantly larger contact angle and was more hydrophobic than the TCPS culture plate. Both hydrophobicity and peripheral detachment of the collagen gel significantly decreased the time lag before initiation of gel contraction and increased the strength of the fibroblast populated collagen lattices. Substrate adhesion affects the contractility and strength of cell seeded collagen gels. This information may be useful in developing tissue engineered tendons and ligaments.
Collapse
Affiliation(s)
- Meng-Yi Chen
- Department of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Delalleau A, Josse G, Lagarde J. A method to individually consider the dermis thickness for skin mechanical analyses. Comput Methods Biomech Biomed Engin 2008. [DOI: 10.1080/10255840802296533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Chen MY, Sun Y, Zhao C, Zobitz ME, An KN, Moran SL, Amadio PC. Factors related to contraction and mechanical strength of collagen gels seeded with canine endotenon cells. J Biomed Mater Res B Appl Biomater 2007; 82:519-25. [PMID: 17279567 DOI: 10.1002/jbm.b.30757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fibroblasts can construct a hydrated collagen lattice to a tissue-like structure that is greatly influenced by initial culture conditions. The purpose of this study was to investigate the effects of cell concentration and collagen concentration on the contraction kinetics and mechanical properties of resultant endotenon-derived fibroblast-seeded collagen lattice. The experiment was designed to evaluate the effect of cell concentration (0, 0.25, 0.5, and 1.0 x10(6) cells/mL) and collagen concentration (0.5, 1.0, 1.5, and 2.0 mg/mL). Collagen lattice contraction was recorded for 42 days, after which time the lattices were mechanically tested. The collagen lattices seeded with higher initial cell concentration had a shorter contraction lag phase (p < 0.01), and exhibited a higher ultimate stress (p < 0.01) and instantaneous and equilibrium modulus (p < 0.01) than those seeded with a lower initial cell concentration. The collagen lattices cultured with a lower initial collagen concentration also had a shorter contraction lag phase, and exhibited greater instantaneous and equilibrium modulus (p < 0.01) than those cultured with higher initial collagen concentration. The collagen lattices of initial 0.5 mg/mL collagen concentration had the highest value of ultimate stress (p < 0.03).
Collapse
Affiliation(s)
- Meng-Yi Chen
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chandran PL, Barocas VH. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J Biomech Eng 2006; 128:259-70. [PMID: 16524339 DOI: 10.1115/1.2165699] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The microstructure of tissues and tissue equivalents (TEs) plays a critical role in determining the mechanical properties thereof. One of the key challenges in constitutive modeling of TEs is incorporating the kinematics at both the macroscopic and the microscopic scale. Models of fibrous microstructure commonly assume fibrils to move homogeneously, that is affine with the macroscopic deformation. While intuitive for situations of fibril-matrix load transfer, the relevance of the affine assumption is less clear when primary load transfer is from fibril to fibril. The microstructure of TEs is a hydrated network of collagen fibrils, making its microstructural kinematics an open question. Numerical simulation of uniaxial extensile behavior in planar TE networks was performed with fibril kinematics dictated by the network model and by the affine model. The average fibril orientation evolved similarly with strain for both models. The individual fibril kinematics, however, were markedly different. There was no correlation between fibril strain and orientation in the network model, and fibril strains were contained by extensive reorientation. As a result, the macroscopic stress given by the network model was roughly threefold lower than the affine model. Also, the network model showed a toe region, where fibril reorientation precluded the development of significant fibril strain. We conclude that network fibril kinematics are not governed by affine principles, an important consideration in the understanding of tissue and TE mechanics, especially when load bearing is primarily by an interconnected fibril network.
Collapse
Affiliation(s)
- Preethi L Chandran
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
18
|
Billiar KL, Throm AM, Frey MT. Biaxial failure properties of planar living tissue equivalents. J Biomed Mater Res A 2005; 73:182-91. [PMID: 15761827 DOI: 10.1002/jbm.a.30282] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quantification of the mechanical properties of living tissue equivalents (LTEs) is essential for assessing their ultimate functionality as tissue substitutes, yet their delicate nature makes failure testing problematic. For this study, we evaluated the validity of using an inflation device for quantifying the biaxial tensile failure properties of extremely delicate fibroblast-populated collagen gels (CGs) and fibrin gels (FGs). Small samples were circularly clamped and then inflated until rupture. Each sample assumed an approximately spherical shape and burst at its center indicating effective clamping. After two weeks in culture, all LTEs tested were fragile, but the FGs were significantly stronger and more extensible than the CGs (ultimate tensile strength 6.0 kPa +/- 2.0 kPa vs. 2.8 kPa +/- 0.7 kPa; failure strain 3.5 +/- 0.9 vs. 0.26 +/- 0.05, n = 4). After an additional 11 days of culture, the strength of the FGs increased significantly (26.5 kPa +/- 12.7 kPa), and the extensibility decreased (1.9 +/- 0.8, n = 3). This study demonstrates that subtle differences in the properties of LTEs can be measured using inflation methods with minimal sample handling and without having to grow the tissues into anchors or cut the specimens.
Collapse
Affiliation(s)
- K L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | |
Collapse
|
19
|
Zamir EA, Taber LA. Material Properties and Residual Stress in the Stage 12 Chick Heart During Cardiac Looping. J Biomech Eng 2005; 126:823-30. [PMID: 15796341 DOI: 10.1115/1.1824129] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During the morphogenetic process of cardiac looping, the initially straight cardiac tube bends and twists into a curved tube. The biophysical mechanisms that drive looping remain unknown, but the process clearly involves mechanical forces. Hence, it is important to determine mechanical properties of the early heart, which is a muscle-wrapped tube consisting primarily of a thin outer layer of myocardium surrounding a thick extracellular matrix compartment known as cardiac jelly. In this work, we used microindentation experiments and finite element modeling, combined with an inverse computational method, to determine constitutive relations for the myocardium and cardiac jelly at the outer curvature of stage 12 chick hearts. Material coefficients for exponential strain-energy density functions were found by fitting force-displacement and surface displacement data near the indenter. Residual stress in the myocardium also was estimated. These results should be useful for computational models of the looping heart.
Collapse
Affiliation(s)
- Evan A Zamir
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
20
|
Gildner CD, Lerner AL, Hocking DC. Fibronectin matrix polymerization increases tensile strength of model tissue. Am J Physiol Heart Circ Physiol 2004; 287:H46-53. [PMID: 15001442 DOI: 10.1152/ajpheart.00859.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The composition and organization of the extracellular matrix (ECM) contribute to the mechanical properties of tissues. The polymerization of fibronectin into the ECM increases actin organization and regulates the composition of the ECM. In this study, we examined the ability of cell-dependent fibronectin matrix polymerization to affect the tensile properties of an established tissue model. Our data indicate that fibronectin polymerization increases the ultimate strength and toughness, but not the stiffness, of collagen biogels. A fragment of fibronectin that stimulates mechanical tension generation by cells, but is not incorporated into ECM fibrils, did not increase the tensile properties, suggesting that changes in actin organization in the absence of fibronectin fibril formation are not sufficient to increase tensile strength. The actin cytoskeleton was needed to initiate the fibronectin-induced increases in the mechanical properties. However, once fibronectin-treated collagen biogels were fully contracted, the actin cytoskeleton no longer contributed to the tensile strength. These data indicate that fibronectin polymerization plays a significant role in determining the mechanical strength of collagen biogels and suggest a novel mechanism by which fibronectin can be used to enhance the mechanical performance of artificial tissue constructs.
Collapse
Affiliation(s)
- Candace D Gildner
- Department of Biomedical, University of Rochester Medical Center, 601 Elmwood Ave., PO Box 711, Rochester, NY 14642, USA
| | | | | |
Collapse
|
21
|
Krishnan L, Weiss JA, Wessman MD, Hoying JB. Design and Application of a Test System for Viscoelastic Characterization of Collagen Gels. ACTA ACUST UNITED AC 2004; 10:241-52. [PMID: 15009949 DOI: 10.1089/107632704322791880] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Characterization and control of the mechanical properties of the extracellular matrix are critical to the interpretation of results of in vitro studies of cultured tissues and cells and for the design of functional engineered constructs. In this work a viscoelastic tensile test system and custom culture chambers were developed and characterized. The system allowed quantification of strain as well as the stresses developed during cyclic viscoelastic material testing. Finite element analysis of the culture chambers indicated that the tensile strains near the actuated ends of the gel were greater than the strains experienced by material in the center of the culture chambers. However, the strain was uniformly distributed over the central substance of the gel, validating the assumption that a homogeneous strain state existed in the central region of the chamber. Viscoelastic testing was performed on collagen gels that were created with three different collagen concentrations. Results demonstrated that there was a significant increase in the dynamic stiffness of the gels with increasing equilibrium strain, collagen concentration, and frequency of applied strain. With increasing strain rate, the phase angle, representing the energy dissipated, dropped initially and then increased at higher rates. Mechanical testing of gels at different time intervals up to 7 days after polymerization demonstrated that the material properties remained stable when appropriate environmental conditions were maintained. The ability to characterize the viscoelastic properties of gels after different periods of culture will allow the quantification of alterations in gel material properties due to changes in cell cytoskeletal organization, cell-matrix interactions, and cellular activity on the matrix. Further, the test device provides a means to apply controlled mechanical loading to growing gel cultures. Finally, the results of this study will provide guidance to the design of further experiments on this substrate.
Collapse
|
22
|
Abstract
Tissue models reconstituted from cells and extracellular matrix (ECM) simulate natural tissues. Cytoskeletal and matrix proteins govern the force exerted by a tissue and its stiffness. Cells regulate cytoskeletal structure and remodel ECM to produce mechanical changes during tissue development and wound healing. Characterization and control of mechanical properties of reconstituted tissues are essential for tissue engineering applications. We have quantitatively characterized mechanical properties of connective tissue models, fibroblast-populated matrices (FPMs), via uniaxial stretch measurements. FPMs resemble natural tissues in their exponential dependence of stress on strain and linear dependence of stiffness on force at a given strain. Activating cellular contractile forces by calf serum and disrupting F-actin by cytochalasin D yield "active" and "passive" components, which respectively emphasize cellular and matrix mechanical contributions. The strain-dependent stress and elastic modulus of the active component were independent of cell density above a threshold density. The same quantities for the passive component increased with cell number due to compression and reorganization of the matrix by the cells.
Collapse
Affiliation(s)
- T Wakatsuki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
23
|
Benkherourou M, Guméry PY, Tranqui L, Tracqui P. Quantification and macroscopic modeling of the nonlinear viscoelastic behavior of strained gels with varying fibrin concentrations. IEEE Trans Biomed Eng 2000; 47:1465-75. [PMID: 11077740 DOI: 10.1109/10.880098] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mechanical properties of fibrin gels under uniaxial strains have been analyzed for low fibrin concentrations using a free-floating gel device. We were able to quantify the viscous and elastic moduli of gels with fibrin concentration ranging from 0.5 to 3 mg/ml, reporting significant differences of biogels moduli and dynamical response according to fibrin concentration. Furthermore, considering sequences of successively imposed step strains has revealed the strain-hardening properties of fibrin gels for strain amplitude below 5%. This nonlinear viscoelastic behavior of the gels has been precisely analyzed through numerical simulations of the overall gel response to the strain steps sequences. Phenomenological power laws relating the instantaneous and relaxed elasticity moduli to fibrin concentration have been validated, with concentration exponent in the order of 1.2 and 1.0, respectively. This continuous description of strain-dependent mechanical moduli was then used to simulate the biogel behavior when continuously time-varying strains are applied. We discuss how this experimental setup and associated macroscopic modeling of fibrin gels enable a further quantification of cell traction forces and mechanotransduction processes induced by biogel compaction or stretching.
Collapse
Affiliation(s)
- M Benkherourou
- Laboratoire des Techniques de l'Imagerie, de la Modélisation et de la Cognition, CNRS UMR 5525, Université Joseph Fourier, Faculté de Médecine, La Tronche, France
| | | | | | | |
Collapse
|
24
|
Cacou C, Palmer D, Lee DA, Bader DL, Shelton JC. A system for monitoring the response of uniaxial strain on cell seeded collagen gels. Med Eng Phys 2000; 22:327-33. [PMID: 11121765 DOI: 10.1016/s1350-4533(00)00040-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The success of cell seeded constructs for the repair of collagenous tissues may be improved by the use of mechanical stimulation in vitro. A mechanical loading apparatus, termed the cell straining system, was developed according to a set of design criteria, to enable cell seeded constructs to be cyclically loaded in tension. A suitable cell seeded collagen gel model system was used to characterise the apparatus. These gels were subjected to a cyclic strain of 10% superimposed on two separate tare loads of 2 and 10 mN, while being maintained in cell culture conditions. The computer controlled apparatus was shown to be capable of monitoring the individual loads on six specimens simultaneously, to an accuracy of 0.02 mN. Results indicated a wide variability between individual specimens. Following cyclic loading, the cell seeded collagen gels exhibited an increase in structural stiffness compared with the unloaded controls. This novel and versatile apparatus will provide a means of enhancing structural and mechanical integrity of tissue engineered repair systems.
Collapse
Affiliation(s)
- C Cacou
- Interdisciplinary Research Centre in Biomedical Materials, Institute of Orthopaedics, University College London Medical School, Brockley Hill, Stanmore HA7 4LP, UK
| | | | | | | | | |
Collapse
|
25
|
Davidson LA, Oster GF, Keller RE, Koehl MA. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Dev Biol 1999; 209:221-38. [PMID: 10328917 DOI: 10.1006/dbio.1999.9249] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Computer simulations showed that the elastic modulus of the cell layer relative to the elastic modulus of the extracellular layers predicted the effectiveness of different force-generating mechanisms for sea urchin primary invagination [L. A. Davidson, M. A. R. Koehl, R. Keller, and G. F. Oster (1995) Development 121, 2005-2018]. Here, we measured the composite elastic modulus of the cellular and extracellular matrix layers in the blastula wall of Strongylocentrotus purpuratus embryos at the mesenchyme blastula stage. Combined, these two layers exhibit a viscoelastic response with an initial stiffness ranging from 600 to 2300 Pa. To identify the cellular structures responsible for this stiffness we disrupted these structures and correlated the resulting lesions to changes in the elastic modulus. We treated embryos with cytochalasin D to disrupt the actin-based cytoskeleton, nocodazole to disrupt the microtubule-based cytoskeleton, and a gentle glycine extraction to disrupt the apical extracellular matrix (ECM). Embryos treated less than 60 min in cytochalasin D showed no change in their time-dependent elastic modulus even though F-actin was severely disrupted. Similarly, nocodazole had no effect on the elastic modulus even as the microtubules were severely disrupted. However, glycine extraction resulted in a 40 to 50% decrease in the elastic modulus along with a dramatic reduction in the hyalin protein at the apical ECM, thus implicating the apical ECM as a major mechanical component of the blastula wall. This finding bears on the mechanical plausibility of several models for primary invagination.
Collapse
Affiliation(s)
- L A Davidson
- Graduate Group in Biophysics, University of California at Berkeley, Berkeley, California, 94720, USA.
| | | | | | | |
Collapse
|
26
|
Benkherourou M, Rochas C, Tracqui P, Tranqui L, Guméry PY. Standardization of a method for characterizing low-concentration biogels: elastic properties of low-concentration agarose gels. J Biomech Eng 1999; 121:184-7. [PMID: 10211452 DOI: 10.1115/1.2835102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Low-concentration biogels, which provide an extracellular matrix for cells in vitro, are involved in a number of important cell biological phenomena, such as cell motility and cell differentiation. In order to characterize soft tissues, which collapse under their own weight, we developed and standardized a new experimental device that enabled us to analyze the mechanical properties of floating biogels with low concentrations, i.e., with values ranging from 2 g/L to 5 g/L. In order to validate this approach, the mechanical responses of free floating agarose gel samples submitted to compression as well as stretching tests were quantified. The values of the Young's moduli, measured in the range of 1000 to 10,000 Pa, are compared to the values obtained from other experimental techniques. Our results showed indeed that the values we obtained with our device closely match those obtained independently by performing compression tests on an Instron device. Thus, the floating gel technique is a useful tool first to characterize and then to model soft tissues that are used in biological science to study the interaction between cell and extracellular matrix.
Collapse
Affiliation(s)
- M Benkherourou
- Laboratoire d'Instrumentation Micro-Informatique et Electronique, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
27
|
Osborne CS, Barbenel JC, Smith D, Savakis M, Grant MH. Investigation into the tensile properties of collagen/chondroitin-6-sulphate gels: the effect of crosslinking agents and diamines. Med Biol Eng Comput 1998; 36:129-34. [PMID: 9614761 DOI: 10.1007/bf02522870] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial skin substitutes based on autologous keratinocytes are being developed for grafting onto burns patients. In order to be used successfully in the clinic, these skin substitutes need to have sufficient strength to allow ease of handling. This may be achieved by crosslinking the collagen substratum on which the cells are cultured. The influence of potential crosslinking agents on the tensile properties of acellular collagen gels has been investigated, including the glycosaminoglycan, chondroitin-6-sulphate (Ch6SO4), the water-soluble carbodiimide crosslinking agents 1-ethyl-3-(3-diaminopropyl) carbodiimide (EDAC), and 1,1-carbonyldiimidazole (CDI), and the polyamines, putrescine and diaminohexane. Values for Young's modulus, maximum load, stress, displacement and percentage strain at maximum load were generated by subjecting the samples to a tear propagation test. Incorporation of 20% Ch6SO4 into collagen gels caused a significant increase in the Young's modulus, maximum load and stress at maximum load. Crosslinking treatment with EDAC, CDI or polyamines had little further benefit, and in many cases resulted in a decrease in particular parameters. In terms of mechanical strength, the best crosslinking combination proved to be the combination of CDI and diaminohexane, with results either improved or maintained when compared with the control no treatment variants. However, previous experience suggests that the use of CDI as a crosslinking reagent may inhibit infiltration and proliferation of fibroblasts in the substratum and it may be necessary to reach a compromise to obtain the best combination of biological and mechanical properties for artificial skin substitutes.
Collapse
Affiliation(s)
- C S Osborne
- Bioengineering Unit, Wolfson Centre, University of Strathclyde, Glasgow, UK
| | | | | | | | | |
Collapse
|
28
|
Lafrance H, Guillot M, Germain L, Auger FA. A method for the evaluation of tensile properties of skin equivalents. Med Eng Phys 1995; 17:537-43. [PMID: 7489127 DOI: 10.1016/1350-4533(95)00012-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In vitro production of anchored skin equivalent is a new therapeutical option for burn patients. A skin equivalent is a combined culture of dermal and epidermal layers. The dermal layer provides important mechanical properties, such as tensile resistance and nonlinear elasticity, to the skin equivalent during its development. Prior to any in vivo human transplantation, the tensile properties of cutaneous equivalents have to be evaluated as a function of its structural components, in view of establishing the culture conditions leading to the best mechanical resistance and stretchability characteristics. However, the handling and clamping of skin equivalents are frequent causes of tearing and lack of repeatability in the measuring of tensile properties. A new indentation method involving a specially designed culture dish has been developed to minimize the risk of damage. Using this new culture dish, cutaneous equivalents were installed on an indentation apparatus. The central loading of a spherical tip was transmitted to the central area of a circular anchored cutaneous equivalent and was recorded with tip position. The tests were achieved at a constant low deflection rate of the tip. This new and accurate method gave repeatability in three central load-deflection characteristics of anchored dermal equivalent: the high-modulus (0.15 g mm-1), the central load of rupture (1.49 g), the rupture deflection (0.470 mm). This indentation test is expected to be an efficient tool in the evaluation of various skin equivalent models tensile properties.
Collapse
Affiliation(s)
- H Lafrance
- Laboratoire d'Organogénèse Expérimentale, Hôpital du Saint-Sacrement, Québec (Québec), Canada
| | | | | | | |
Collapse
|
29
|
Barocas VH, Moon AG, Tranquillo RT. The fibroblast-populated collagen microsphere assay of cell traction force--Part 2: Measurement of the cell traction parameter. J Biomech Eng 1995; 117:161-70. [PMID: 7666653 DOI: 10.1115/1.2795998] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In Part 1 of this work, we formulated and analyzed a mathematical model for our fibroblast-populated collagen microsphere (FPCM) assay of cell traction forces (Moon and Tranquillo, 1993). In this assay, the FPCM diameter decreases with time as the cells compact the gel by exerting traction on collagen fibrils. In Part 1 we demonstrated that the diameter reduction profiles for varied initial cell concentration and varied initial FPCM diameter are qualitatively consistent with the model predictions. We show here in Part 2 how predictions of a model similar to that of Part 1, along with the determination of the growth parameters of the cells and the viscoelastic parameters of the gel, allow us to estimate the magnitude of a cell traction parameter, the desired objective index of cell traction forces. The model is based on a monophasic continuum-mechanical theory of cell-extracellular matrix (ECM) mechanical interactions, with a species conservation equation for cells (1), a mass conservation equation for ECM (2), and a mechanical force balance for the cell/ECM composite (3). Using a constant-stress rheometer and a fluids spectrometer in creep and oscillatory shear modes, respectively, we establish and characterize the linear viscoelastic regime for the reconstituted type 1 collagen gel used in our FPCM traction assay and in other assays of cell-collagen mechanical interactions. Creep tests are performed on collagen gel specimens in a state resembling that in our FPCM traction assay (initially uncompacted, and therefore nearly isotropic and at a relatively low collagen concentration of 2.1 mg/ml), yielding measurements of the zero shear viscosity, mu 0 7.4 x 10(6) Poise), and the steady-state creep compliance, J0e. The shear modulus, G (155 dynes/cm2), is then determined from the inverse of J0e in the linear viscoelastic regime. Oscillatory shear tests are performed in strain sweep mode, indicating linear viscoelastic behavior up to shear strains of approximately 10 percent. We discuss the estimation of Poisson's ratio, v, which along with G and mu 0 specifies the assumed isotropic, linear viscoelastic stress tensor for the cell/collagen gel composite which appears in (3). The proliferation rate of fibroblasts in free floating collagen gel (appearing in (1)) is characterized by direct cell counting, yielding an estimate of the first-order growth rate constant, k (5.3 x 10(-6) s-1). These independently measured and estimated parameter values allow us to estimate that the cell traction parameter, tau 0, defined in the active stress tensor which also appears in (3), is in the range of 0.00007-0.0002 dyne.cm4/mg collagen.cell.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V H Barocas
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|