1
|
Kelly JJ, Bloodworth N, Shao Q, Shabanowitz J, Hunt D, Meiler J, Pires MM. A Chemical Approach to Assess the Impact of Post-translational Modification on MHC Peptide Binding and Effector Cell Engagement. ACS Chem Biol 2024; 19:1991-2001. [PMID: 39150956 PMCID: PMC11420952 DOI: 10.1021/acschembio.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
The human major histocompatibility complex (MHC) plays a pivotal role in the presentation of peptidic fragments from proteins, which can originate from self-proteins or from nonhuman antigens, such as those produced by viruses or bacteria. To prevent cytotoxicity against healthy cells, thymocytes expressing T cell receptors (TCRs) that recognize self-peptides are removed from circulation (negative selection), thus leaving T cells that recognize nonself-peptides. Current understanding suggests that post-translationally modified (PTM) proteins and the resulting peptide fragments they generate following proteolysis are largely excluded from negative selection; this feature means that PTMs can generate nonself-peptides that potentially contribute to the development of autoreactive T cells and subsequent autoimmune diseases. Although it is well-established that PTMs are prevalent in peptides present on MHCs, the precise mechanisms by which PTMs influence the antigen presentation machinery remain poorly understood. In the present work, we introduce chemical modifications mimicking PTMs on synthetic peptides. This is the first systematic study isolating the impact of PTMs on MHC binding and also their impact on TCR recognition. Our findings reveal various ways PTMs alter antigen presentation, which could have implications for tumor neoantigen presentation.
Collapse
Affiliation(s)
- Joey J Kelly
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Nathaniel Bloodworth
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Qianqian Shao
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Donald Hunt
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Jens Meiler
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United States
- Institute of Drug Discovery, Faculty of MedicineUniversity of Leipzig, Leipzig, SAC 04103, Germany
- Center for Structural Biology Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Marcos M Pires
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, Primeau T, Myers N, Vickery TL, Sturmoski M, Hagemann IS, Miller CA, Ellis MJ, Mardis ER, Hansen T, Fleming TP, Goedegebuure SP, Gillanders WE. Breast Cancer Neoantigens Can Induce CD8 + T-Cell Responses and Antitumor Immunity. Cancer Immunol Res 2017; 5:516-523. [PMID: 28619968 DOI: 10.1158/2326-6066.cir-16-0264] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/06/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing technologies have provided insights into the biology and mutational landscape of cancer. Here, we evaluate the relevance of cancer neoantigens in human breast cancers. Using patient-derived xenografts from three patients with advanced breast cancer (xenografts were designated as WHIM30, WHIM35, and WHIM37), we sequenced exomes of tumor and patient-matched normal cells. We identified 2,091 (WHIM30), 354 (WHIM35), and 235 (WHIM37) nonsynonymous somatic mutations. A computational analysis identified and prioritized HLA class I-restricted candidate neoantigens expressed in the dominant tumor clone. Each candidate neoantigen was evaluated using peptide-binding assays, T-cell cultures that measure the ability of CD8+ T cells to recognize candidate neoantigens, and preclinical models in which we measured antitumor immunity. Our results demonstrate that breast cancer neoantigens can be recognized by the immune system, and that human CD8+ T cells enriched for prioritized breast cancer neoantigens were able to protect mice from tumor challenge with autologous patient-derived xenografts. We conclude that next-generation sequencing and epitope-prediction strategies can identify and prioritize candidate neoantigens for immune targeting in breast cancer. Cancer Immunol Res; 5(7); 516-23. ©2017 AACR.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Kim
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - John M Herndon
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Allegra A Petti
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Savas D Soysal
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Mike D McLellan
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Tina Primeau
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nancy Myers
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Tammi L Vickery
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Sturmoski
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Chris A Miller
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew J Ellis
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.,Lester and Sue Smith Breast Care Center, Oncology/Medicine and MCB, Baylor College of Medicine, Houston, Texas
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ted Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy P Fleming
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri. .,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Zhou Z, Lyu X, Wu J, Yang X, Wu S, Zhou J, Gu X, Su Z, Chen S. TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170050. [PMID: 28484631 PMCID: PMC5414268 DOI: 10.1098/rsos.170050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/06/2017] [Indexed: 06/02/2023]
Abstract
Tumour antigens have attracted much attention because of their importance to cancer diagnosis, prognosis and targeted therapy. With the development of cancer genomics, the identification of tumour-specific neoantigens became possible, which is a crucial step for cancer immunotherapy. In this study, we developed software called the tumour-specific neoantigen detector for detecting cancer somatic mutations following the best practices of the genome analysis toolkit and predicting potential tumour-specific neoantigens, which could be either extracellular mutations of membrane proteins or mutated peptides presented by class I major histocompatibility complex molecules. This pipeline was beneficial to the biologist with little programmatic background. We also applied the software to the somatic mutations from the International Cancer Genome Consortium database to predict numerous potential tumour-specific neoantigens. This software is freely available from https://github.com/jiujiezz/tsnad.
Collapse
Affiliation(s)
- Zhan Zhou
- Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xingzheng Lyu
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310013, People's Republic of China
| | - Jingcheng Wu
- Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaoyue Yang
- Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shanshan Wu
- Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Program of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50010, USA
| | - Zhixi Su
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Shuqing Chen
- Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
4
|
Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity. Proc Natl Acad Sci U S A 2015; 113:692-7. [PMID: 26699458 DOI: 10.1073/pnas.1511859113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek's disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC).
Collapse
|
5
|
Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015; 348:803-8. [PMID: 25837513 DOI: 10.1126/science.aaa3828] [Citation(s) in RCA: 995] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Abstract
T cell immunity directed against tumor-encoded amino acid substitutions occurs in some melanoma patients. This implicates missense mutations as a source of patient-specific neoantigens. However, a systematic evaluation of these putative neoantigens as targets of antitumor immunity is lacking. Moreover, it remains unknown whether vaccination can augment such responses. We found that a dendritic cell vaccine led to an increase in naturally occurring neoantigen-specific immunity and revealed previously undetected human leukocyte antigen (HLA) class I-restricted neoantigens in patients with advanced melanoma. The presentation of neoantigens by HLA-A*02:01 in human melanoma was confirmed by mass spectrometry. Vaccination promoted a diverse neoantigen-specific T cell receptor (TCR) repertoire in terms of both TCR-β usage and clonal composition. Our results demonstrate that vaccination directed at tumor-encoded amino acid substitutions broadens the antigenic breadth and clonal diversity of antitumor immunity.
Collapse
Affiliation(s)
- Beatriz M Carreno
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Vincent Magrini
- Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Becker-Hapak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saghar Kaabinejadian
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jasreet Hundal
- Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra A Petti
- Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Ly
- Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | | | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Elaine R Mardis
- Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerald P Linette
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Guo J, Li G, Tang J, Cao XB, Zhou QY, Fan ZJ, Zhu B, Pan XH. HLA-A2-restricted cytotoxic T lymphocyte epitopes from human hepsin as novel targets for prostate cancer immunotherapy. Scand J Immunol 2013; 78:248-57. [PMID: 23721092 DOI: 10.1111/sji.12083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/27/2013] [Indexed: 01/01/2023]
Abstract
Hepsin is a type II transmembrane serine protease that is overexpressed in prostate cancer, and it is associated with prostate cancer cellular migration and invasion. Therefore, HPN is a biomarker for prostate cancer. CD8(+) T cells play an important role in tumour immunity. This study predicted and identified HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in human hepsin protein. HLA-A2-restricted CTL epitopes were identified using the following four-step procedure: (1) a computer program generated predicted epitopes from the amino acid sequence of human hepsin; (2) an HLA-A2-binding assay detected the affinity of the predicted epitopes to the HLA-A2 molecule; (3) the primary T cell response against the predicted epitopes was stimulated in vitro; and (4) the induced CTLs towards different types of hepsin- or HLA-A2-expressing prostate cancer cells were detected. Five candidate peptides were identified. The effectors that were induced by human hepsin epitopes containing residues 229 to 237 (Hpn229; GLQLGVQAV), 268 to 276 (Hpn268; PLTEYIQPV) and 191 to 199 (Hpn199; SLLSGDWVL) effectively lysed LNCaP prostate cancer cells that were hepsin-positive and HLA-A2 matched. These peptide-specific CTLs did not lyse normal liver cells with low hepsin levels. Hpn229, Hpn268 and Hpn199 increased the frequency of IFN-γ-producing T cells compared with the negative peptide. These results suggest that the Hpn229, Hpn268 and Hpn199 epitopes are novel HLA-A2-restricted CTL epitopes that are capable of inducing hepsin-specific CTLs in vitro. Hpn229, Hpn268 and Hpn199 peptide-based vaccines may be useful for immunotherapy in patients with prostate cancer.
Collapse
Affiliation(s)
- J Guo
- The Research Center of Stem Cell, Tissue and Organ Engineering, Kunming General Hospital of PLA, Kunming, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Identification of a cyclin B1-derived CTL epitope eliciting spontaneous responses in both cancer patients and healthy donors. Cancer Immunol Immunother 2010; 60:227-34. [PMID: 20981424 PMCID: PMC3024510 DOI: 10.1007/s00262-010-0933-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 09/18/2010] [Indexed: 11/03/2022]
Abstract
With the aim to identify cyclin B1-derived peptides with high affinity for HLA-A2, we used three in silico prediction algorithms to screen the protein sequence for possible HLA-A2 binders. One peptide scored highest in all three algorithms, and the high HLA-A2-binding affinity of this peptide was verified in an HLA stabilization assay. By stimulation with peptide-loaded dendritic cells a CTL clone was established, which was able to kill two breast cancer cell lines in an HLA-A2-dependent and peptide-specific manner, demonstrating presentation of the peptide on the surface of cancer cells. Furthermore, blood from cancer patients and healthy donors was screened for spontaneous T-cell reactivity against the peptide in IFN-γ ELISPOT assays. Patients with breast cancer, malignant melanoma, or renal cell carcinoma hosted powerful and high-frequency T-cell responses against the peptide. In addition, when blood from healthy donors was tested, similar responses were observed. Ultimately, serum from cancer patients and healthy donors was analyzed for anti-cyclin B1 antibodies. Humoral responses against cyclin B1 were frequently detected in both cancer patients and healthy donors. In conclusion, a high-affinity cyclin B1-derived HLA-A2-restricted CTL epitope was identified, which was presented on the cell surface of cancer cells, and elicited spontaneous T-cell responses in cancer patients and healthy donors.
Collapse
|
8
|
Lundegaard C, Lund O, Buus S, Nielsen M. Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 2010; 130:309-18. [PMID: 20518827 DOI: 10.1111/j.1365-2567.2010.03300.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
SUMMARY Over the last decade, in silico models of the major histocompatibility complex (MHC) class I pathway have developed significantly. Before, peptide binding could only be reliably modelled for a few major human or mouse histocompatibility molecules; now, high-accuracy predictions are available for any human leucocyte antigen (HLA) -A or -B molecule with known protein sequence. Furthermore, peptide binding to MHC molecules from several non-human primates, mouse strains and other mammals can now be predicted. In this review, a number of different prediction methods are briefly explained, highlighting the most useful and historically important. Selected case stories, where these 'reverse immunology' systems have been used in actual epitope discovery, are briefly reviewed. We conclude that this new generation of epitope discovery systems has become a highly efficient tool for epitope discovery, and recommend that the less accurate prediction systems of the past be abandoned, as these are obsolete.
Collapse
Affiliation(s)
- Claus Lundegaard
- Department of Systems Biology, Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | |
Collapse
|
9
|
A modified epitope identified for generation and monitoring of PSA-specific T cells in patients on early phases of PSA-based immunotherapeutic protocols. Vaccine 2009; 27:1557-65. [PMID: 19171173 DOI: 10.1016/j.vaccine.2009.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 12/16/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022]
Abstract
Efficacy of vaccination in cancer patients on immunotherapeutic protocols can be difficult to evaluate. The aim of this study was therefore to identify a single natural or modified epitope in prostate-specific antigen (PSA) with the ability to generate high levels of PSA-specific T cells to facilitate monitoring in patients after vaccination against prostate cancer. To the best of our knowledge, this study describes for the first time the peptide specificity of T cells stimulated by endogenously processed PSA antigen. The peptide specificity of HLA-A*0201-restricted CD8(+) T cells against human and rhesus PSA was investigated both in vivo after DNA vaccination in HLA-A*0201-transgenic mice and in vitro after repetitive stimulation of human T cells with DNA-transfected human dendritic cells (DCs). One of seven native PSA peptides, psa53-61, was able to activate high levels of PSA-specific CD8(+) T cells in HLA-A*0201-transgenic mice after PSA DNA vaccination. Psa53-61 was also the only peptide that induced human T cells to produce IFNgamma after stimulation with PSA transfected DCs, however not in all donors. Therefore, plasmids encoding modified epitopes in predicted HLA-A*0201 sequences were constructed. One of these modified PSA plasmids consistently induced IFNgamma producing CD8(+) T cells to the corresponding modified peptide as well as to the corresponding native peptide, in all murine and human T cell cultures. This study demonstrates a novel concept of introducing a modified epitope within a self-tumor antigen, with the purpose of eliciting a reliable T cell response from the non-tolerized immune repertoire, to facilitate monitoring of vaccine efficacy in cancer patients on immunotherapeutic protocols. The purpose of such a modified epitope is thus not to induce therapeutically relevant T cells but rather to, in case of weak or divergent T cell responses to self antigens/peptides, help answer questions about efficacy of vaccine delivery and about the possibility to induce immune responses in the selected and often immunosuppressed cancer patients.
Collapse
|
10
|
Viatte S, Alves PM, Romero P. Reverse immunology approach for the identification of CD8 T-cell-defined antigens: advantages and hurdles. Immunol Cell Biol 2006; 84:318-30. [PMID: 16681829 DOI: 10.1111/j.1440-1711.2006.01447.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Collapse
Affiliation(s)
- Sebastien Viatte
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne branch, University Hospital, CHUV, and National Center for Competence in Research, NCCR, Molecular Oncology, Lausanne, Switzerland
| | | | | |
Collapse
|
11
|
Wallny HJ, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, Skjødt K, Vainio O, Vilbois F, Wiles MV, Kaufman J. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci U S A 2006; 103:1434-9. [PMID: 16432226 PMCID: PMC1360531 DOI: 10.1073/pnas.0507386103] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 12/08/2005] [Indexed: 12/14/2022] Open
Abstract
Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one cDNA for two MHC haplotypes (B14 and B15) and cDNAs corresponding to two genes for the other six (B2, B4, B6, B12, B19, and B21). Second, we find, for the B4, B12, and B15 haplotypes, that one cDNA is at least 10-fold more abundant than the other. Third, we use 2D gel electrophoresis of class I molecules from pulse-labeled cells to show that there is only one heavy chain spot for the B4 and B15 haplotypes, and one major spot for the B12 haplotype. Fourth, we determine the peptide motifs for B4, B12, and B15 cells in detail, including pool sequences and individual peptides, and show that the motifs are consistent with the peptides binding to models of the class I molecule encoded by the abundant cDNA. Finally, having shown for three haplotypes that there is a single dominantly expressed class I molecule at the level of RNA, protein, and antigenic peptide, we show that the motifs can explain the striking MHC-determined resistance and susceptibility to Rous sarcoma virus. These results are consistent with the concept of a "minimal essential MHC" for chickens, in strong contrast to typical mammals.
Collapse
Affiliation(s)
- Hans-Joachim Wallny
- Basel Institute for Immunology, Grenzacherstrasse 487, CH-4005 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Buchli R, VanGundy RS, Hickman-Miller HD, Giberson CF, Bardet W, Hildebrand WH. Development and validation of a fluorescence polarization-based competitive peptide-binding assay for HLA-A*0201--a new tool for epitope discovery. Biochemistry 2005; 44:12491-507. [PMID: 16156661 DOI: 10.1021/bi050255v] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various approaches are currently proposed to successfully develop therapies for the prevention and treatment of infectious diseases and cancer. One of the most promising approaches is the development of vaccines that elicit cytotoxic T lymphocyte (CTL) responses. Consequently, identification and exact definition of molecular parameters involved in peptide-MHC class-I interactions of putative CTL epitopes are of prime importance for the development of immunomodulating compounds. To better facilitate epitope discovery, we developed and validated a novel state-of-the-art biochemical HLA-A0201 assay, which is comprised of technologically advanced cutting edge reagents. The technique is based on competition and uses a FITC-labeled reference peptide and highly purified soluble HLA-A0201 molecules to quantitatively measure the binding capacity of nonlabeled peptide candidates. Detection by fluorescence polarization allows real-time measurement of binding ratios without separation steps. During standardization, the problem of assay parameter variation is discussed, showing the dramatic influence of HLA and reference peptide concentrations as well as the choice of the reference peptide itself on IC(50) determinations. For validation, a panel of 15 well-defined HLA-A0201 ligands from various sources covering a broad range of binding affinities was tested. Binding data were used to compare against pre-existing quantitative assay systems. The results obtained demonstrated significant correlation among assay procedures, suggesting that the application of fluorescence polarization in combination with recombinant sHLA molecules is highly advantageous for the accurate assessment of peptide binding. Furthermore, the assay also features high-throughput screening capacity, providing uniquely efficient means of identifying and evaluating immune target molecules.
Collapse
Affiliation(s)
- Rico Buchli
- Pure Protein L.L.C., Oklahoma City, Oklahoma 73104-3698, USA.
| | | | | | | | | | | |
Collapse
|
13
|
BenMohamed L, Thomas A, Druilhe P. Long-term multiepitopic cytotoxic-T-lymphocyte responses induced in chimpanzees by combinations of Plasmodium falciparum liver-stage peptides and lipopeptides. Infect Immun 2004; 72:4376-84. [PMID: 15271893 PMCID: PMC470687 DOI: 10.1128/iai.72.8.4376-4384.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preclinical immunogenicity studies of 12 malaria peptides, selected from four Plasmodium falciparum antigens (Ags), namely, LSA1, LSA3, SALSA, and STARP, that are expressed at the pre-erythrocytic (sporozoite and liver) stages of the human parasite were carried out in chimpanzees. To strengthen their immunogenicity, six of these synthetic peptides were modified by the C-terminal addition of a single palmitoyl chain (lipopeptides) and delivered without adjuvant, whereas the remaining six unmodified peptides were emulsified and delivered by using Montanide ISA51 adjuvant. We have previously reported that these peptides and lipopeptides induce high B-cell and CD4(+)-T-helper responses in chimpanzees. In this report, we show their ability to induce multiepitopic and long-lasting antigen-specific CD8(+) cytotoxic-T-lymphocyte (CTL) responses. The magnitude, consistency, and memory of CTL responses generated by LSA3 peptides point to the strong immunogenicity of this liver-stage Ag. These findings support the screening strategy used to select the four P. falciparum pre-erythrocytic Ags and emphasize their valuable immunogenic properties. The successful immunization of nonhuman primates with combinations of corresponding peptides in a mineral oil emulsion (ISA51) and lipopeptides in saline provide a vaccine formulation that can be tested in humans.
Collapse
Affiliation(s)
- Lbachir BenMohamed
- Unité de Parasitologie Bio-Médicale, Institut Pasteur, 75015 Paris, France
| | | | | |
Collapse
|
14
|
Al-Shaibi N, Ghosh SK. A novel phosphoprotein is induced during bone marrow commitment to dendritic cells. Biochem Biophys Res Commun 2004; 321:26-30. [PMID: 15358210 DOI: 10.1016/j.bbrc.2004.06.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Indexed: 11/24/2022]
Abstract
Dendritic cells (DCs) play an important role in vertebrate immunity, but little is known of the molecular events associated with their development from bone marrow (BM). This report describes induction of a signature protein marking BM commitment to DCs. Using a standard procedure, DCs were generated from BM by cultivation in vitro. Appropriate phenotypic monitoring was done primarily by immunofluorescence, and polyclonal antibody reagents were developed against immature DC lysates. Using one specific antibody reagent, we identified, purified, and sequenced a unique cytosolic phosphoprotein DP58 that occurs within 30 min during BM commitment to DCs. Its sequence matches with a computationally predicted Riken cDNA (GenBank Accession No. XP_138799), and a specific anti-DP58 peptide antibody was developed for further characterization. The study suggests that DP58 induction signals distinct pathway(s) leading to early DC progenitors that may be generated and propagated for a short period in vitro.
Collapse
Affiliation(s)
- Nisreen Al-Shaibi
- Department of Life Sciences, Indiana State University, Terre Haute, IN 47809, USA
| | | |
Collapse
|
15
|
Reker S, Becker JC, Svane IM, Ralfkiaer E, Straten PT, Andersen MH. HLA-B35-restricted immune responses against survivin in cancer patients. Int J Cancer 2004; 108:937-41. [PMID: 14712500 DOI: 10.1002/ijc.11634] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two HLA-A2 restricted epitopes have recently been identified from the broadly expressed tumor antigen survivin, and several vaccination trials in cancer patients based on these survivin-derived peptides have been initiated. Consequently, there is a crucial need for the identification of survivin epitopes restricted to other HLA-molecules in order to extend the proportion of patients that can enter these ongoing clinical trials. In the present study, we characterized 2 survivin-derived epitopes, which are restricted to HLA-B35. Specific T-cell reactivity against these survivin-derived epitopes was found in the peripheral blood from patients with different B-cell malignancies and melanoma. Substitution of the C-terminal anchor residue of the survivin-derived peptides improved the recognition by tumor-infiltrating lymphocytes from melanoma patients. Furthermore, we demonstrated spontaneous cytotoxic T-cell responses to survivin in a primary melanoma lesion. The characterization of these epitopes allows more patients can be included in the ongoing peptide-based survivin vaccination trials against cancer.
Collapse
Affiliation(s)
- Sine Reker
- Tumor Immunology Group, Division of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
16
|
Hutchinson SL, Wooldridge L, Tafuro S, Laugel B, Glick M, Boulter JM, Jakobsen BK, Price DA, Sewell AK. The CD8 T cell coreceptor exhibits disproportionate biological activity at extremely low binding affinities. J Biol Chem 2003; 278:24285-93. [PMID: 12697765 DOI: 10.1074/jbc.m300633200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively. Biophysical measurements have determined that equilibrium binding of the TCR with natural agonist peptide-MHC (pMHC) complexes occurs with KD values of 1-50 microm. The pMHCI/CD8 and pMHCII/CD4 interactions are significantly weaker than this (KD >100 microm), and the relative roles of TCR/pMHC and pMHC/coreceptor affinity in T cell activation remain controversial. Here, we engineer mutations in the MHCI heavy chain and beta2-microglobulin that further reduce or abolish the pMHCI/CD8 interaction to probe the significance of pMHC/coreceptor affinity in T cell activation. We demonstrate that the pMHCI/CD8 coreceptor interaction retains the vast majority of its biological activity at affinities that are reduced by over 15-fold (KD > 2 mm). In contrast to previous reports, we observe that the weak interaction between HLA A68 and CD8, which falls within this spectrum of reduced affinities, retains substantial functional activity. These findings are discussed in the context of current concepts of coreceptor dependence and the mechanism by which TCR coreceptors facilitate T cell activation.
Collapse
Affiliation(s)
- Sarah L Hutchinson
- The T Cell Modulation Group, The Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ackerman AL, Cresswell P. Regulation of MHC class I transport in human dendritic cells and the dendritic-like cell line KG-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4178-88. [PMID: 12682250 DOI: 10.4049/jimmunol.170.8.4178] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) progress through distinct maturational phases; immature DCs capture Ag while mature DCs are optimized for Ag presentation. Proper control of immunity requires regulated compartmentalization of MHC class II molecules. We report that DCs also regulate MHC class I trafficking throughout maturation. Although mature human DCs express high levels of surface MHC class I, immature DCs exhibit lower surface levels while retaining MHC class I-peptide complexes in the Golgi. A cell line, KG-1, behaves similarly. We confirm the similarity of KG-1 to DCs by demonstrating its capacity to present exogenous Ags in an MHC class I-restricted fashion to CD8(+) T cell hybridomas, a phenomenon called cross-presentation. Biochemical characterization of MHC class I trafficking throughout maturation showed that, in early KG-1 dendritic-like cells, surface arrival of MHC class I-peptide complexes is delayed by their retention in the Golgi. In mature dendritic-like cells, these complexes relocate to the surface and their stability increases, concomitant with up-regulation of costimulatory molecules. Maturation induces qualitative changes in the MHC class I-associated peptide repertoire demonstrated by increased thermostability. The differential processing of MHC class I throughout maturation may prevent premature immune activation while promoting T cell responses in lymph nodes to Ags acquired at sites of inflammation.
Collapse
Affiliation(s)
- Anne L Ackerman
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
18
|
Otten GR, Chen M, Doe B, zur Megede J, Barnett S, Ulmer J. Quantitative assessment of antigen-specific CD8+ T cells in the mouse: application to vaccine research. Immunol Lett 2003; 85:215-22. [PMID: 12527230 DOI: 10.1016/s0165-2478(02)00237-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An effective HIV vaccine will likely need to induce potent and broad-based immunity, including CD8+ T cell responses. Hence, a quantitative assay to measure such responses in animal models will be important in the evaluation of candidate HIV vaccines. We show here that a single immunization with HIV DNA vaccines, followed by challenge with recombinant vaccinia virus expressing the relevant HIV antigen, allows quantitative assessment of CD8+ T cell responses. These responses can be profound (>30% of total CD8+ T cells) and directly reflect the level of memory CD8+ T cells at the time of challenge. Therefore, this assay will facilitate the selection of promising HIV vaccine candidates for further evaluation.
Collapse
Affiliation(s)
- Gillis R Otten
- Vaccines Research, Chiron Corporation, 4560 Horton Street, Mail Stop 4.3, Emeryville, CA 94608, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Brusic V, Bucci K, Schönbach C, Petrovsky N, Zeleznikow J, Kazura JW. Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. J Mol Graph Model 2002; 19:405-11, 467. [PMID: 11552688 DOI: 10.1016/s1093-3263(00)00099-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peptides that induce and recall T-cell responses are called T-cell epitopes. T-cell epitopes may be useful in a subunit vaccine against malaria. Computer models that simulate peptide binding to MHC are useful for selecting candidate T-cell epitopes since they minimize the number of experiments required for their identification. We applied a combination of computational and immunological strategies to select candidate T-cell epitopes. A total of 86 experimental binding assays were performed in three rounds of identification of HLA-A11 binding peptides from the six preerythrocytic malaria antigens. Thirty-six peptides were experimentally confirmed as binders. We show that the cyclical refinement of the ANN models results in a significant improvement of the efficiency of identifying potential T-cell epitopes.
Collapse
Affiliation(s)
- V Brusic
- BIC-KRDL, Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613.
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Andersen MH, Tan L, Søndergaard I, Zeuthen J, Elliott T, Haurum JS. Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. TISSUE ANTIGENS 2000; 55:519-31. [PMID: 10902608 DOI: 10.1034/j.1399-0039.2000.550603.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Naturally processed peptides presented by class I major histocompatibility complex (MHC) molecules display a characteristic allele specific motif of two or more essential amino acid side chains, the so-called peptide anchor residues, in the context of an 8-10 amino acid long peptide. Knowledge of the peptide binding motif of individual class I MHC molecules permits the selection of potential peptide antigens from proteins of infectious organisms that could induce protective T-cell-mediated immunity. Several methods have been developed for the prediction of potential class I MHC binding peptides. One is based on a simple scanning for the presence of primary peptide anchor residues in the sequence of interest. A more sophisticated technology is the utilization of predictive computer algorithms. Here, we have analyzed the experimental binding of 84 peptides selected on the basis of the presence of peptide binding motifs for individual class I MHC molecules. The actual binding was compared with the results obtained when analyzing the same peptides by two well-known, publicly available computer algorithms. We conclude that there is no strong correlation between actual and predicted binding when using predictive computer algorithms. Furthermore, we found a high number of false-negatives when using a predictive algorithm compared to simple scanning for the presence of primary anchor residues. We conclude that the peptide binding assay remains an important step in the identification of cytotoxic T lymphocyte (CTL) epitopes which can not be substituted by predictive algorithms.
Collapse
Affiliation(s)
- M H Andersen
- Institute of Cancer Biology, Danish Cancer Society, Copenhagen
| | | | | | | | | | | |
Collapse
|
22
|
O'Callaghan CA. Natural killer cell surveillance of intracellular antigen processing pathways mediated by recognition of HLA-E and Qa-1b by CD94/NKG2 receptors. Microbes Infect 2000; 2:371-80. [PMID: 10817639 DOI: 10.1016/s1286-4579(00)00330-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HLA-E binds specifically to MHC class Ia leader peptides in a TAP (transporter associated with antigen processing)-dependent manner. It interacts with CD94/NKG2A receptors on natural killer cells and this inhibits natural killer cell lysis of the cell displaying HLA-E. The crystal structure of HLA-E demonstrates that the specificity of leader peptide binding is a structurally defined intrinsic property of HLA-E.
Collapse
Affiliation(s)
- C A O'Callaghan
- Nuffield Department of Medicine, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
23
|
Berke Z, Andersen MH, Pedersen M, Fugger L, Zeuthen J, Haurum JS. Peptides spanning the junctional region of both the abl/bcr and the bcr/abl fusion proteins bind common HLA class I molecules. Leukemia 2000; 14:419-26. [PMID: 10720136 DOI: 10.1038/sj.leu.2401703] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Philadelphia (Ph) chromosome, resulting from the t(9;22) translocation, is characteristic of chronic myeloid leukemia (CML). As a result of this translocation, two novel chimeric genes are generated and the bcr/abl and abl/bcr fusion proteins expressed. The bcr/abl fusion mRNA is present in all CML patients, whereas the reciprocal abl/bcr fusion mRNA is detectable in about 80% of the Ph+ CML patients. These fusion proteins may undergo enzymatic degradation in the cytosol and give rise to MHC class I restricted peptide epitopes originating from the junctional regions of the translocation products, which thus may serve as novel tumor specific antigens. Previously, other groups have tested peptides corresponding to the junctional region of the bcr/abl protein for their binding capacity to HLA class I molecules and have identified a few candidate epitopes. Peptides originating from the abl/bcr fusion protein have on the other hand so far been neglected, for no apparent reason. We have now extended these studies to include also the reciprocal abl/bcr translocation product by testing a large panel of synthetic peptides corresponding to the junctional regions of both the abl/bcr and the bcr/abl fusion proteins for their ability to stabilize HLA class I molecules. We find that the abl/bcr translocation product may be an even more important source of CML specific peptide antigens and together the junctional sequences of both these proteins contain peptide sequences which bind efficiently to a number of HLA molecules (HLA-A1, -A2, -A3, -A11, -B7, -B27, -B35) and thus may serve as candidate CML specific tumor antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Epitopes/chemistry
- Epitopes/immunology
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/immunology
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- Humans
- Immunotherapy
- Interferon-gamma/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Sequence Data
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/immunology
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding
- RNA, Messenger/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Z Berke
- Institute of Cancer Biology, the Danish Cancer Society, Copenhagen
| | | | | | | | | | | |
Collapse
|
24
|
zur Megede J, Chen MC, Doe B, Schaefer M, Greer CE, Selby M, Otten GR, Barnett SW. Increased expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 gag gene. J Virol 2000; 74:2628-35. [PMID: 10684277 PMCID: PMC111751 DOI: 10.1128/jvi.74.6.2628-2635.2000] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge for the next generation of human immunodeficiency virus (HIV) vaccines is the induction of potent, broad, and durable cellular immune responses. The structural protein Gag is highly conserved among the HIV type 1 (HIV-1) gene products and is believed to be an important target for the host cell-mediated immune control of the virus during natural infection. Expression of Gag proteins for vaccines has been hampered by the fact that its expression is dependent on the HIV Rev protein and the Rev-responsive element, the latter located on the env transcript. Moreover, the HIV genome employs suboptimal codon usage, which further contributes to the low expression efficiency of viral proteins. In order to achieve high-level Rev-independent expression of the Gag protein, the sequences encoding HIV-1(SF2) p55(Gag) were modified extensively. First, the viral codons were changed to conform to the codon usage of highly expressed human genes, and second, the residual inhibitory sequences were removed. The resulting modified gag gene showed increases in p55(Gag) protein expression to levels that ranged from 322- to 966-fold greater than that for the native gene after transient expression of 293 cells. Additional constructs that contained the modified gag in combination with modified protease coding sequences were made, and these showed high-level Rev-independent expression of p55(Gag) and its cleavage products. Density gradient analysis and electron microscopy further demonstrated that the modified gag and gag protease genes efficiently expressed particles with the density and morphology expected for HIV virus-like particles. Mice immunized with DNA plasmids containing the modified gag showed Gag-specific antibody and CD8(+) cytotoxic T-lymphocyte (CTL) responses that were inducible at doses of input DNA 100-fold lower than those associated with plasmids containing the native gag gene. Most importantly, four of four rhesus monkeys that received two or three immunizations with modified gag plasmid DNA demonstrated substantial Gag-specific CTL responses. These results highlight the useful application of modified gag expression cassettes for increasing the potency of DNA and other gene delivery vaccine approaches against HIV.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- COS Cells
- Cell Line, Transformed
- DNA, Viral/immunology
- Female
- Gene Expression
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV Antibodies/blood
- HIV Antibodies/immunology
- HIV Protease/genetics
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Protein Precursors/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Virion
Collapse
Affiliation(s)
- J zur Megede
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Andersen MH, Bonfill JE, Neisig A, Arsequell G, Søndergaard I, Neefjes J, Zeuthen J, Elliott T, Haurum JS. Phosphorylated Peptides Can Be Transported by TAP Molecules, Presented by Class I MHC Molecules, and Recognized by Phosphopeptide-Specific CTL. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
CTL recognize short peptide fragments presented by class I MHC molecules. In this study, we examined the effect of phosphorylation on TAP transport, binding to class I MHC molecules, and recognition by CTL of peptide fragments from known phosphorylated oncogene proteins or virus phosphoproteins. We show that phosphopeptides can be efficiently transported from the cytosol to the endoplasmic reticulum by the TAP. Furthermore, we show that phosphorylation can have a neutral, negative, or even a positive effect on peptide binding to class I MHC. Finally, we have generated phosphopeptide-specific CTL that discriminate between the phosphorylated and the nonphosphorylated versions of the peptide. We conclude that phosphopeptide-specific CTL responses are likely to constitute a subset of the class I MHC-restricted CTL repertoire in vivo.
Collapse
Affiliation(s)
- Mads Hald Andersen
- *Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
- †Department of Biochemistry and Nutrition, Technical University, Lyngby, Denmark
| | - Jordi Espuny Bonfill
- ‡Unit for Glycoconjugate Chemistry, CID-Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| | - Anne Neisig
- §The Netherlands Cancer Institute, Amsterdam, The Netherlands; and
| | - Gemma Arsequell
- ‡Unit for Glycoconjugate Chemistry, CID-Consejo Superior de Investigaciones Cientificas, Barcelona, Spain
| | - Ib Søndergaard
- †Department of Biochemistry and Nutrition, Technical University, Lyngby, Denmark
| | - Jacques Neefjes
- §The Netherlands Cancer Institute, Amsterdam, The Netherlands; and
| | - Jesper Zeuthen
- *Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | - Tim Elliott
- ¶Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - John S. Haurum
- *Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
- ¶Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
26
|
Andersen MH, Søndergaard I, Zeuthen J, Elliott T, Haurum JS. An assay for peptide binding to HLA-Cw*0102. TISSUE ANTIGENS 1999; 54:185-90. [PMID: 10488746 DOI: 10.1034/j.1399-0039.1999.540210.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The assembly assay for peptide binding to class I major histocompatibility complex (MHC) molecules is based on the ability of peptides to stabilize MHC class I molecules synthesized by transporter associated with antigen processing (TAP)-deficient cell. The TAP-deficient cell line T2 has previously been used in the assembly assay to analyze peptide binding to HLA-A*0201 and -B*5101. In this study, we have extended this technique to assay for peptides binding to endogenous HLA-Cw*0102 molecules. We have analyzed the peptide binding of 20 peptides with primary anchor motifs for HLA-Cw*0102. One-third of the peptides analyzed bound with high affinity, half of the peptides examined did not bind, whereas the remaining peptides displayed intermediate binding activity. Interest in HLA-C molecules has increased significantly in recent years, since it has been shown that HLA-C molecules both can present peptides to cytotoxic T lymphocytes (CTL) and in addition are able to inhibit natural killer (NK)-mediated lysis.
Collapse
Affiliation(s)
- M H Andersen
- Department of Tumor Cell Biology, Danish Cancer Society, Copenhagen.
| | | | | | | | | |
Collapse
|
27
|
Shaping the Repertoire of Cytotoxic T-Lymphocyte Responses: Explanation for the Immunodominance Effect Whereby Cytotoxic T Lymphocytes Specific for Immunodominant Antigens Prevent Recognition of Nondominant Antigens. Blood 1999. [DOI: 10.1182/blood.v93.3.952] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
The immunodominance effect, whereby the presence of immunodominant epitopes prevents recognition of nondominant determinants presented on the same antigen-presenting cell (APC) considerably restricts the repertoire of cytotoxic T lymphocyte (CTL) responses. To elucidate the molecular basis of the immunodominance effect, we compared the interactions of a dominant (B6dom1) and a nondominant epitope (H-Y) with their restricting class I molecule (H2-Db), and their ability to trigger cognate CTLs. We found that B6dom1/Db complexes behaved as optimal T-cell receptor (TCR) ligands and triggered a more rapid in vivo expansion of cognate CTLs than H-Y/Db complexes. The superiority of the dominant epitope was explained by its high cell surface density (1,012 copies/cell for B6dom1v 10 copies/cell for H-Y) and its optimal affinity for cognate TCRs. Based on these results, we conclude that dominant class I–associated epitopes are those that have optimal ability to trigger TCR signals in CTLs. We propose that the rapid expansion of CTLs specific for dominant antigens should enable them to compete more successfully than other CTLs for occupancy of the APC surface.
Collapse
|
28
|
Shaping the Repertoire of Cytotoxic T-Lymphocyte Responses: Explanation for the Immunodominance Effect Whereby Cytotoxic T Lymphocytes Specific for Immunodominant Antigens Prevent Recognition of Nondominant Antigens. Blood 1999. [DOI: 10.1182/blood.v93.3.952.403k33_952_962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The immunodominance effect, whereby the presence of immunodominant epitopes prevents recognition of nondominant determinants presented on the same antigen-presenting cell (APC) considerably restricts the repertoire of cytotoxic T lymphocyte (CTL) responses. To elucidate the molecular basis of the immunodominance effect, we compared the interactions of a dominant (B6dom1) and a nondominant epitope (H-Y) with their restricting class I molecule (H2-Db), and their ability to trigger cognate CTLs. We found that B6dom1/Db complexes behaved as optimal T-cell receptor (TCR) ligands and triggered a more rapid in vivo expansion of cognate CTLs than H-Y/Db complexes. The superiority of the dominant epitope was explained by its high cell surface density (1,012 copies/cell for B6dom1v 10 copies/cell for H-Y) and its optimal affinity for cognate TCRs. Based on these results, we conclude that dominant class I–associated epitopes are those that have optimal ability to trigger TCR signals in CTLs. We propose that the rapid expansion of CTLs specific for dominant antigens should enable them to compete more successfully than other CTLs for occupancy of the APC surface.
Collapse
|
29
|
Paliard X, Doe B, Walker CM. The T cell repertoire primed by antiviral vaccination is influenced by self-tolerance. Cell Immunol 1998; 188:73-9. [PMID: 9743560 DOI: 10.1006/cimm.1998.1338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vaccination can elicit CD8(+) cytotoxic T lymphocytes (CTL) that recognize peptides presented by class I MHC molecules. Relatively little is known, however, about the genetic factors that shape the repertoire of T cell clonotypes responding to any given epitope. We report here that H-2(b) mice immunized with a plasmid DNA vaccine or vaccinia virus encoding for HIV-1SF2p55gag elicit CD8(+) CTL against the H-2Db-restricted immunodominant epitope (pgagb). This response involved three different T cell populations based on their recognition of alloantigens: one that cross-reacted with the alloantigen H-2Ld, one that cross-reacted with H-2Kd, and one that did not cross-react with either H-2(d) or H-2(k) molecules. Using the TAP-deficient cell line T2-Ld, we showed that pgagb-specific CTL cross-react with H-2Ld and a yet unidentified self-peptide. In mice expressing H-2(b) and H-2(d) allotypes, we investigated whether tolerance to H-2(d) influenced the HIVp55gag-specific CTL repertoire as a consequence of thymic deletion of the cross-reactive CTL repertoire. In (H-2(dxb))F1 mice heterogygosity at the MHC-I level prevented maturation of some but not all TCR combinations specific for H-2Db+pgagb, illustrating the concept that self-tolerance can influence the repertoire of antiviral T cells.
Collapse
Affiliation(s)
- X Paliard
- Chiron Corporation, 4560 Horton Street, Emeryville, California, 94608, USA
| | | | | |
Collapse
|
30
|
Smyth LA, Williams O, Huby RD, Norton T, Acuto O, Ley SC, Kioussis D. Altered peptide ligands induce quantitatively but not qualitatively different intracellular signals in primary thymocytes. Proc Natl Acad Sci U S A 1998; 95:8193-8. [PMID: 9653163 PMCID: PMC20952 DOI: 10.1073/pnas.95.14.8193] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interaction of the T cell receptor (TCR) with peptide/major histocompatibility complexes (MHC) in the thymus is of critical importance for developing thymocytes. In a previous study, we described an antagonist peptide that inhibited negative selection of transgenic thymocytes induced by an agonist peptide. In this study we show that this antagonist peptide can induce positive selection of CD8(+) thymocytes more efficiently than the agonist or the weak agonist peptides, whereas the opposite is true for their ability to cause negative selection. The intracellular signals induced in thymocytes by such peptides after TCR ligation was examined in CD4(+)8(+) double-positive thymocytes from F5/beta2mo/Rag-1(o) transgenic mice. TCR ligation with either the agonist, weak agonist, or antagonist peptide variants resulted in hyperphosphorylation of CD3zeta, CD3epsilon, ZAP-70, Syk, Vav, SLP-76, and pp36-38. The extent of phosphorylation of these intracellular proteins correlated with the efficiency with which the peptide analogs induced apoptosis of immature thymocytes. Unexpectedly, there was no correlation between the upstream TCR signaling pathways analyzed and the capacity of the different peptides to induce positive selection.
Collapse
Affiliation(s)
- L A Smyth
- Division of Molecular Immunology, The National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Tan L, Andersen MH, Elliott T, Haurum JS. An improved assembly assay for peptide binding to HLA-B*2705 and H-2K(k) class I MHC molecules. J Immunol Methods 1997; 209:25-36. [PMID: 9448031 DOI: 10.1016/s0022-1759(97)00142-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assembly assay for peptide binding to class I major histocompatibility complex (MHC) is based on the ability to stabilise MHC class I molecules from mutant cell lines by the addition of suitable peptides. Such cell lines lack a functional transporter associated with antigen presentation (TAP) and as a result accumulate empty, unstable class I molecules in the ER. These dissociate rapidly in cell lysates unless they are stabilised by the addition of an appropriate binding peptide during lysis. The extent of stabilisation of class I molecules is directly related to the binding affinity of the added peptide. However, some MHC class I molecules, including HLA-B * 2705 and H-2Kk are unusually stable in their peptide-receptive state making them inappropriate for analysis using this assay or assays which depend on the ability of peptides to stabilise MHC class I molecules at the cell surface. Here we present an improved method that permits reliable measurements of peptide binding to such class I MHC molecules that are unusually stable in the absence of peptide. Cells are lysed in the presence of peptide and incubated at 4 degrees C. After 2 h, during which peptide binding to empty MHC molecules occurs, the lysate is heated to a temperature which preferentially destabilises those MHC molecules that remain empty. We have used this technique to assay peptide binding to HLA-B * 2705, as well as to the murine allele H-2Kk which also displays a stable phenotype when transfected into TAP-deficient T2 cells and show that this method represents a marked improvement over previous methods in terms of lower background signal and higher recovery of peptide bound molecules.
Collapse
Affiliation(s)
- L Tan
- The Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|
32
|
Apostolopoulos V, Haurum JS, McKenzie IF. MUC1 peptide epitopes associated with five different H-2 class I molecules. Eur J Immunol 1997; 27:2579-87. [PMID: 9368613 DOI: 10.1002/eji.1830271017] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously described the induction of murine CD8+ major histocompatibility complex (MHC) class I-restricted cytotoxic T cells (CTL) recognizing the 20-amino acid repeat region of the human mucin 1 (MUC1) variable number of tandem repeats region (VNTR), a mucin greatly increased in expression in breast cancer and proposed as a target for immunotherapy. In that study, CTL could detect MUC1 peptides associated with the MHC of all nine strains examined, and we now report the different epitopes presented by five different MHC class I molecules. The epitopes were defined in CTL assays using peptide-pulsed phytohemagglutinin blasts or MHC class I-transfected L cells as targets; in addition, peptide binding assays and T cell proliferation studies were performed. Within the 20-amino acid VNTR, nine potential epitopes could be defined. The epitopes for the four MHC class I molecules [Kb (three epitopes), Dd, Ld and Kk] were closely related, all containing the amino acids PDTRPAP. For Db, three epitopes were identified, all containing APGSTAP. Most of the epitopes did not contain a consensus motif for the particular MHC class I allele, and bound with low 'affinity', compared with known high-affinity peptides. CD8+ T cell proliferation also occurred to the same MHC class I-presented epitopes. Finally, when conventional anchor residues were introduced into the peptides, peptide binding increased, whereas CTL recognition was either retained (Kb) or lost (Db) depending on the epitope.
Collapse
|
33
|
Sewell AK, Harcourt GC, Goulder PJ, Price DA, Phillips RE. Antagonism of cytotoxic T lymphocyte-mediated lysis by natural HIV-1 altered peptide ligands requires simultaneous presentation of agonist and antagonist peptides. Eur J Immunol 1997; 27:2323-9. [PMID: 9341776 DOI: 10.1002/eji.1830270929] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in human immunodeficiency virus (HIV) cluster in cytotoxic T lymphocyte (CTL) epitopes (Phillips, R. E. et al., Nature 1991. 354: 453) and are subject to immune-mediated positive selection (Price, D. A. et al., Proc. Natl. Acad. Sci. USA 1997. 94: 1890). We studied the effects of naturally occurring mutations in the HIV-1 p17 Gag HLA A2 restricted epitope SLYNTVATL on recognition by anti-HIV CTL. Most of these naturally occurring mutants escaped killing by one CTL line and the majority acted as CTL antagonists. We also investigated whether CTL exposed to a strict antagonist peptide restricted by HLA A2 were unresponsive when exposed to targets presenting the wild-type sequence. The results show that antagonism of anti-HIV CTL killing requires the simultaneous presence of agonist and antagonist peptide. We found no evidence that CTL exposed to an antagonist received a functionally negative signal since these CTL retained an unimpaired capacity to lyse targets bearing wild-type peptide.
Collapse
Affiliation(s)
- A K Sewell
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, GB.
| | | | | | | | | |
Collapse
|
34
|
Braud V, Jones EY, McMichael A. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol 1997; 27:1164-9. [PMID: 9174606 DOI: 10.1002/eji.1830270517] [Citation(s) in RCA: 383] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human histocompatibility leukocyte antigen E (HLA-E) and mouse major histocompatibility complex (MHC) class Ib antigen, Qa-1, share the same substitutions at two normally conserved positions 143 and 147, which are likely to affect binding of the C terminus of peptides. Qa-1 is able to bind a peptide derived from the leader sequence of H-2 D and H-2 L molecules. We developed a peptide binding assay in vitro to compare the binding specificity of HLA-E with the mouse MHC class Ib molecule Qa-1. We demonstrate that HLA-E binds, although poorly, the peptide which binds to Qa-1 and that it also binds nonamer signal sequence-derived peptides from human MHC class I molecules. Using alanine and glycine substitutions, we could define primary anchor residues at positions 2 and 9 and secondary anchor residues at position 7 and possibly 3.
Collapse
Affiliation(s)
- V Braud
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, GB.
| | | | | |
Collapse
|
35
|
Pion S, Fontaine P, Desaulniers M, Jutras J, Filep JG, Perreault C. On the mechanisms of immunodominance in cytotoxic T lymphocyte responses to minor histocompatibility antigens. Eur J Immunol 1997; 27:421-30. [PMID: 9045913 DOI: 10.1002/eji.1830270212] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although there are numerous minor histocompatibility antigens (MiHA), T cell responses leading to graft-versus-host (GVH) and graft-versus-tumor effects involve only a small number of immunodominant MiHA. The goal of the present study was to analyze at the cellular and molecular levels the mechanisms responsible for MiHA immunodominance. Cytotoxic T lymphocytes (CTL) generated in eight combinations of H2b strains of mice were tested against syngeneic targets sensitized with HPLC-fractionated peptides eluted from immunizing cells. The number of dominant MiHA was found to range from as little as two up to ten depending on the strain combination used. The nature of dominant MiHA was influenced by both the antigen profile of the antigen-presenting cells (APC) and the repertoire of responding CTL. When C57BL/6 dominant MiHA (B6dom) and H-Y were presented on separate APC, they showed similar immunogenicity. In contrast, when they were presented on the same APC, B6dom MiHA totally dominated H-Y. B6dom MiHA did not suppress anti-H-Y responses by acting as T cell receptor antagonists for anti-H-Y CTL, nor were anti-B6dom CTL precursors more abundant than anti-H-Y CTL precursors. Dominance resulted from competition for the APC surface between anti-B6dom and anti-H-Y CTL; the crucial difference between the dominant and the dominated MiHA appears to depend on the differential avidity of their respective CTL for APC. The only B6dom epitope thus far identified is the nonapeptide AAPDNRETF presented by H2-D(b). We found that compared with other known D(b)-binding peptides, AAPDNRETF is expressed at very high levels on the cell surface, binds to the D(b) molecule with very high affinity, and dissociates very slowly from its presenting class I molecule. These data indicate that one cannot predict which MiHA will be dominant or dominated based simply on their respective immunogenicity when presented on separate APC. Indeed, the avidity of T cell/APC interactions appears to determine which antigen(s) will trigger T cell responses when numerous epitopes are presented by the same APC.
Collapse
Affiliation(s)
- S Pion
- Department of Medicine, University of Montréal, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Zemmour J. Inefficient assembly limits transport and cell surface expression of HLA-Cw4 molecules in C1R. TISSUE ANTIGENS 1996; 48:651-61. [PMID: 9008307 DOI: 10.1111/j.1399-0039.1996.tb02688.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HLA-C antigens are expressed to the cell surface at roughly 10% the level of HLA-B or -A, and their serological definition remains persistently difficult. To characterize the factors limiting surface expression, the processes of assembly and intracellular transport of HLA-Cw4 molecules were investigated in the C1R cell line. When appropriate peptides were added to cultured cells or in cell lysates significant amounts of conformed HLA-C molecules that associate with beta 2-microglobulin (beta 2 m) are detected, but are indeed not sufficient to restore expression to the level observed for HLA-A or -B molecules. Furthermore, a precursor/product relationship exists between the free class I heavy chain and the mature conformation of HLA-Cw4 molecules. Thus, HLA-C assembly promotes the conversion of HC-10-reactive molecules (weakly-beta 2m-associated non-ligand associated free HC form) into the beta 2m-associated class I molecules recognized by W6/32. To further investigate the factors that regulate cell surface expression, intracellular transport of HLA-Cw4 was studied in pulse chase analysis. In contrast to some HLA-A and B, maturation of HLA-Cw4 heavy chains and their export to the medial and trans-Golgi compartments are quite inefficient. After 4 h of chase period, roughly half of the pulse-labeled HLA-Cw4 molecules have transited to the medial-Golgi and acquired complex oligosaccharides characteristic of mature form. In addition, treatment with gamma-interferon does not appear to improve maturation of HLA-Cw4 heavy chains, suggesting that increased supply of peptides does not influence intracellular transport. Moreover, only a small fraction in the pool of HLA-Cw4 molecules was subsequently transported through the trans-Golgi network, as indicated by their acquisition of sialic acids. Taken together these studies show that HLA-Cw4 molecules are inefficiently transported through the Golgi apparatus and presumably retained in the endoplasmic reticulum or cis-Golgi compartment.
Collapse
Affiliation(s)
- J Zemmour
- Institut Cochin de Génétique Moléculaire, INSERM U 445, Hôpital Cochin, Paris, France
| |
Collapse
|
37
|
Sigal LJ, Wylie DE. Role of non-anchor residues of Db-restricted peptides in class I binding and TCR triggering. Mol Immunol 1996; 33:1323-33. [PMID: 9171892 DOI: 10.1016/s0161-5890(96)00099-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand better, the role of non-anchor residues of class I restricted T cell epitopes in class I binding and TCR stimulation, a panel of peptides was synthesized in which each of the non-anchor positions of the Db-restricted influenza peptide, ASNENMETM, was changed to each of the 20 natural amino acids (AAs). The relative affinity of all the peptides for Db was determined and their ability to stimulate anti-ASNENMETM cytotoxic T cell hybridomas was also assessed. The results illustrated that for Db binding, the AAs with the most solvent exposure had the smallest effect on binding. Changes at other positions affected binding to different degrees. Results for the recognition by the T cell hybridomas indicated that a peptide-MHC complex represents a multitude of epitopes, as each hybridoma recognized a different subset of peptides. Most changes in the highly solvent-exposed residues negatively affected recognition by all hybridomas while changes in other positions affected each hybridoma differently, independent of the direction of the side chain of the AA at that position. Furthermore, the use of saturating concentrations of low and high binding peptides showed that, as long as the class I-peptide complex is formed, the T-cell receptor does not differentiate between high and low binding peptides. This indicates that, although the stability of the class I-peptide complex is highly dependent on peptide affinity, the class I MHC conformation induced by low affinity peptides does not necessarily differ significantly from that induced by high affinity peptides. The results of peptide-class I recognition by one ASNENMETM-specific hybridoma was used to construct a peptide that differed from ASNENMETM at four of the nine residues, yet stimulated the hybridoma to a level comparable to ASNENMETM. In addition, peptides bearing the canonical Db-binding motif but unable to bind to the class I molecule with high affinity could be made to bind Db, by changing unfavorable AAs to favourable ones at appropriate positions. The extended motif determined was used to identify more accurately the peptides derived from Coxsakie b3 virus that would bind Db. It was also shown that some of the canonical characteristics of the peptide motif could be obviated and still obtain high affinity binding, provided optimal AAs, were present at secondary anchor positions.
Collapse
Affiliation(s)
- L J Sigal
- School of Biological Sciences, University of Nebraska 68588-0118, USA
| | | |
Collapse
|
38
|
Lewis JW, Neisig A, Neefjes J, Elliott T. Point mutations in the alpha 2 domain of HLA-A2.1 define a functionally relevant interaction with TAP. Curr Biol 1996; 6:873-83. [PMID: 8805302 DOI: 10.1016/s0960-9822(02)00611-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glycoproteins encoded by the major histocompatibility complex class I region (MHC class I) present peptide antigens to cytotoxic T cells (CTLs). Peptides are delivered to the site of MHC class I assembly by the transporter associated with antigen processing (TAP), and cell lines that lack this transporter are unable to present endogenous antigens to CTLs. Although it has been shown that a fraction of newly synthesized class I molecules are in physical association with TAP, it is not known whether this interaction is functionally relevant, or where on the class I molecule the TAP binding site might be. RESULTS C1R cells transfected with a mutant HLA-A2.1 heavy chain (HC), where threonine at position 134 in the alpha 2 domain is changed to lysine (T134K), are unable to present endogenous antigens to CTLs. We have studied the biochemistry of this mutant in C1R cells, and found that a large pool of unstable empty class I HC-beta 2m (beta-2 microglobulin) heterodimers exist that are rapidly transported to the cell surface. The T134K mutant seemed to bind peptide antigens and assemble with beta 2m as efficiently as wild-type HLA-A2.1. However, we show here that the inefficiency with which T134K presents intracellular antigen is associated with its inability to interact with the TAP heterodimer. CONCLUSIONS These experiments establish that the class I-TAP interaction is obligatory for the presentation of peptide epitopes delivered to the endoplasmic reticulum (ER) by TAP. Wild-type HLA-A2.1 molecules in TAP-deficient cells are retained in the ER, whereas T134K is rapidly released to the cell surface, but is unstable, suggesting a role for the TAP complex as an intracellular checkpoint that only affects the release of class I molecules with stably bound peptide ligands.
Collapse
Affiliation(s)
- J W Lewis
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | |
Collapse
|
39
|
Williams O, Tanaka Y, Bix M, Murdjeva M, Littman DR, Kioussis D. Inhibition of thymocyte negative selection by T cell receptor antagonist peptides. Eur J Immunol 1996; 26:532-8. [PMID: 8605917 DOI: 10.1002/eji.1830260305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The T cell receptor (TCR) recognizes antigenic peptide presented by major histocompatibility complex (MHC) molecules. Analogs of antigenic peptides have been shown to inhibit antigen-specific T cell responses, a phenomenon described as TCR antagonism. We have examined the effect of a natural variant of an antigenic peptide and a synthetic peptide analog, on the responses of mature T cells and immature thymocytes from an alpha-beta TCR-transgenic mouse (F5), the TCR of which recognizes a nonamer peptide from the nucleoprotein (NP) of influenza virus in the context of the H-2Db MHC molecule. Both peptides were shown to antagonize specifically the T cells cytolytic response without being able directly to stimulate mature T cells from these transgenic mice. Furthermore, a negative selection assay in vitro was used to demonstrate for the first time that antagonistic peptides are capable of antagonizing thymocyte deletion induced by antigenic peptides. These data suggest that the final selection of a T cell could be the result of a balance between the positive and negative influences of endogenous peptide ligands.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/immunology
- Cell Line
- Cytotoxicity, Immunologic
- Influenza A virus/immunology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Peptides/immunology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/drug effects
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Thymus Gland/cytology
- Viral Proteins/immunology
Collapse
Affiliation(s)
- O Williams
- Division of Molecular Immunology, National Institute for Medical Research, London, GB
| | | | | | | | | | | |
Collapse
|
40
|
Haurum JS, Tan L, Arsequell G, Frodsham P, Lellouch AC, Moss PA, Dwek RA, McMichael AJ, Elliott T. Peptide anchor residue glycosylation: effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur J Immunol 1995; 25:3270-6. [PMID: 8566011 DOI: 10.1002/eji.1830251211] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study extends our previous observation that glycopeptides bind to class I major histocompatibility complex (MHC) molecules and elicit carbohydrate-specific CTL responses. The Sendai virus nucleoprotein wild-type (WT) peptide (FAPGNYPAL) binds H-2Db using the P5-Asn as an anchor. The peptide K2 carrying a P5 serine substitution did not bind Db. Surprisingly, glycosylation of the serine (K2-O-GlcNAc) with N-acetylglucosamine (GlcNAc), a novel cytosolic O-linked glycosylation, partially restored peptide binding to Db. We argue that the N-acetyl group of GlcNAc may fulfil the hydrogen bonding requirements of the Db pocket which normally accomodates P5-Asn. Glycosylation of the P5-Asn residue itself abrogated binding similar to K2, probably for steric reasons. The peptide K2-O-GlcNAc readily elicited Db-restricted cytotoxic T lymphocytes (CTL), which did not cross-react with K2 or WT. However, all Db-restricted CTL raised against K2-O-GlcNAc cross-reacted strongly with another glycopeptide, K3-O-GlcNAc, where the GlcNAc substitution is on a neighboring P4-Ser. Furthermore, Db-restricted CTL clones raised against K2-O-GlcNAc or K3-O-GlcNAc displayed a striking TCR conservation. Our interpretation is that the carbohydrate of K2-O-GlcNAc not only mediates binding to Db, but also interacts with the TCR in such a way as to mimic K3-O-GlcNAc. This unusual example of molecular mimicry extends the known effects of peptide glycosylation from what we and others have previously reported: glycosylation may create a T cell neo-epitope, or, conversely, abrogate recognition. Alternatively, glycosylation may block peptide binding to MHC class I and finally, as reported here, restore binding, presumably through direct interaction of the carbohydrate with the MHC molecule.
Collapse
Affiliation(s)
- J S Haurum
- Institute of Molecular Medicine, John Radcliffe Hospital, Oxford
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Collins AR. Interferon gamma potentiates human coronavirus OC43 infection of neuronal cells by modulation of HLA class I expression. Immunol Invest 1995; 24:977-86. [PMID: 8575842 DOI: 10.3109/08820139509060722] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HCN-1A, a human cerebral cortical neuron cell line, was examined for its susceptibility to human coronaviruses. The 229e strain replicated efficiently, but the OC43 strain did not replicate well, if at all. Treatment of the cells with interferon gamma at 20U/ml for 48 hr markedly increased the susceptibility of the cells to infection with OC43 virus as shown by a 100-fold increase in secretion of infectious virus over a four day period as compared to untreated controls. The increased susceptibility was shown to be due to membrane expression of HLA class I by receptor-blockade with a monoclonal antibody specific for HLA molecules.
Collapse
Affiliation(s)
- A R Collins
- Department of Microbiology, School of Medicine, State University of New York at Buffalo 14214, USA
| |
Collapse
|
42
|
Hudrisier D, Mazarguil H, Oldstone MB, Gairin JE. Relative implication of peptide residues in binding to major histocompatibility complex class I H-2Db: application to the design of high-affinity, allele-specific peptides. Mol Immunol 1995; 32:895-907. [PMID: 7565816 DOI: 10.1016/0161-5890(95)00043-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The H-2Db peptide sequence SMIENLEYM was manipulated (N- and C-terminus truncation and alanine substitution) to determine the role of structural elements (peptide ends and residue side chains) in binding to H-2Db. We found that good binding affinity could be obtained by compensating the minimal binding condition for one element by the optimal condition of the other element. In particular, we showed, that although the minimal binding sequence could be as short as a heptamer (deletion of positions 1 and 2), it needed the presence of optimal amino acids at other positions (IENLEYM). Conversely, the structurally minimal peptide would accept multiple alanine residues, but required the optimal nonameric length (AAAENAEAA). Positions 1, 2, 3, 4, 5, 7 and 9, but not 6 and 8, were involved in the H-2Db-peptide interaction. Most residues interacted directly with the MHC molecule via their main chain (amino and carboxyl) atoms (positions 1 and 2), their side chains (positions 3 and 5), or both (position 9). Positions 4 and 7 were found to play an indirect role, probably by influencing the secondary structure. At the C-terminus, the presence of a residue at position 9, but not the hydrophobic nature of its side chain, was mandatory for binding. At the N-terminus, the role of the residue at position 1 was of either minor or critical importance depending on the presence or not of a strong auxiliary anchor at position 3. The indirect contribution of residue side chains at positions 4 and 7 reflected the importance of dynamic components in the binding process. Based on these results, we designed a series of high-affinity, H-2Db selective peptides derived from the sequence X1 AIX4NAEAL, where X1 = Y or K and X4 = E or K. After radioiodination or fluorescent (FITC) labelling, these peptides bound strongly and specifically to the surface of viable H-2Db-expressing cells. Rationally designed synthetic peptides, either alone or in a stable complex with MHC, might be of value for controlling CTL activity.
Collapse
Affiliation(s)
- D Hudrisier
- Laboratoire de Pharmacologie et Toxicologie Fondamentales, CNRS, Toulouse, France
| | | | | | | |
Collapse
|
43
|
Sigal LJ, Goebel P, Wylie DE. Db-binding peptides from influenza virus: effect of non-anchor residues on stability and immunodominance. Mol Immunol 1995; 32:623-32. [PMID: 7643854 DOI: 10.1016/0161-5890(95)00031-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Relative affinities were determined for the interaction of H-2Db with all the peptides from the A/PR/8/34 strain of influenza virus that contained the Db-binding motif. The results indicated that, even though 23 peptides with the appropriate motif were identified and analysed, binding of only five of them could be detected at peptide concentrations lower than 10(-7) M. Of these five, only one, TGICNQNII, bound with better affinity than the nucleoprotein-derived natural epitope, ASNENMETM. The origin of the higher binding peptide was the influenza neuraminidase, a protein for which little cytosolic processing would be expected since it is a surface glycoprotein. To establish why many of the influenza-derived peptides did not bind, the role of non-anchor residues on Db-peptide interactions was analysed, using a scheme where QDIENEEKI, a non-binding peptide from the influenza virus polymerase 1, was sequentially converted to ASNENMETI, which binds to Db with an affinity similar to that of ASNENMETM. Although all positions examined influenced peptide binding, peptide residue no. 2 (P2) was of particular importance. Therefore, each of the 20 naturally occurring amino acids were inserted at this position to investigate their effects on peptide-MHC interaction. The results indicated that amino acids having side chains with charged or ring structures were deleterious, while non-polar and polar residues were either neutral or facilitated binding to different degrees. Our data also indicated that every residue of the peptide contributes to the stability of the MHC-peptide complex, and the final affinity is dependent on the nature of the amino acids at each position, not just on those at a small number of anchor positions. The results also suggested that increased stability, as indicated by the half-life of the peptide-MHC class I complex, might play an important role in selecting the immunodominant epitope.
Collapse
Affiliation(s)
- L J Sigal
- School of Biological Sciences, University of Nebraska, Lincoln 68588, USA
| | | | | |
Collapse
|
44
|
Drijfhout JW, Brandt RM, D'Amaro J, Kast WM, Melief CJ. Detailed motifs for peptide binding to HLA-A*0201 derived from large random sets of peptides using a cellular binding assay. Hum Immunol 1995; 43:1-12. [PMID: 7558923 DOI: 10.1016/0198-8859(94)00151-f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Extensive sets of in total about 2000 synthetic peptides were investigated for their binding affinities to HLA-A*0201. Comparisons of the amino acid compositions of binding to nonbinding sets of peptides provided new information concerning the rules for 9-, 10-, and 11-mer peptide binding at the amino acid level. Preferred primary anchors were shown to depend on peptide length, longer peptides being more demanding in this respect. A clear preference exists for certain amino acids at several nonanchor positions. In addition, the presence of particular amino acids at those positions almost completely precludes peptide binding. We found no evidence for preferred anchor pairs. From these results new and detailed HLA-A*0201 peptide-binding motifs for 9-, 10-, and 11-mer peptide binding were deduced. The motifs are in accordance with earlier reports but include new findings, including C as a C-terminal anchor, the importance of D at positions 4 for binding, and the deleterious effect of R at position 5 (in 9-mers). The motifs are presented in such a way that they can be used to predict peptide binding to HLA-A*0201 by computer analysis (see accompanying paper [56]).
Collapse
Affiliation(s)
- J W Drijfhout
- Department of Immunohematology and Blood Bank, University Hospital Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Ellis JR, Keating PJ, Baird J, Hounsell EF, Renouf DV, Rowe M, Hopkins D, Duggan-Keen MF, Bartholomew JS, Young LS. The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nat Med 1995; 1:464-70. [PMID: 7585096 DOI: 10.1038/nm0595-464] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
HLA-restricted cytotoxic T-lymphocyte (CTL) recognition of human papillomavirus (HPV) oncogene products may be important in the control of the HPV infections associated with the development of cervical cancer. We have identified, in HLA-B7 individuals, a consistent variation in the HPV16 E6 oncoprotein sequence, which alters an HLA-B7 peptide binding epitope in a way likely to influence immune recognition by CTLs. These results illustrate a biologically relevant mechanism for escape from immune surveillance of HPV16 in HLA-B7 individuals. Thus, both HLA type and HPV16 strain variation need to be considered in the screening of at-risk individuals and for the rational design of anti-HPV vaccines.
Collapse
Affiliation(s)
- J R Ellis
- University of Birmingham CRC Institute for Cancer Studies, University of Birmingham Medical School, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Parker KC, Shields M, DiBrino M, Brooks A, Coligan JE. Peptide binding to MHC class I molecules: implications for antigenic peptide prediction. Immunol Res 1995; 14:34-57. [PMID: 7561340 DOI: 10.1007/bf02918496] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human mayor histocompatibility complex class I molecule HLA-A2 preferentially binds peptides that contain Leu at P2 and Val or Leu at the C terminus. The other amino acids in the peptide also contribute to binding positively or negatively. It is possible to estimate the binding stability of HLA-A2 complexes containing particular peptides by applying coefficients, deduced from a large amount of binding data, that quantify the relative contribution of each amino acid at each position. In this review, we describe the molecular basis for these coefficients and demonstrate that estimates of binding stability based on the coefficients are generally concordant with experimental measurements of binding affinities. Peptides that contained cysteine were predicted less well, possibly because of complications resulting from peptide dimerization and oxidation. Apparently, peptide binding affinity is largely controlled by the rate of dissociation of the HLA/peptide/beta 2-microglobulin complex, whereas the rate of formation of the complex has less impact on peptide affinity. Although peptides that bind tightly to HLA-A2, including many antigenic peptides bind much more weakly. Therefore, a full understanding of why certain peptides are immunodominant will require further research.
Collapse
Affiliation(s)
- K C Parker
- Laboratory of Molecular Structure, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md 20852-1727, USA
| | | | | | | | | |
Collapse
|
47
|
Sigal LJ, Berens S, Wylie D. A lactate dehydrogenase (LDH)-based immunoassay for detection of cell surface antigens and its application to the study of MHC class I-binding peptides. J Immunol Methods 1994; 177:261-8. [PMID: 7822833 DOI: 10.1016/0022-1759(94)90164-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A lactate dehydrogenase (LDH)-based immunoassay, referred to as CPEIA (cell panning enzyme immunoassay), has been developed for the detection of cell-surface antigens. CPEIA is similar to a panning assay, in that it is based on the capture of cells bearing an antigen of interest by means of an antibody immobilized to a 96-well microtiter plate. Attachment of the cells is then measured by addition of a substrate for the intracellular enzyme lactate dehydrogenase. The substrate solution also contains the nonionic detergent Triton X-100 to lyse the cells and release LDH, which converts the substrate p-iodonitrotetrazolium violet (INT) from yellow to red. The intensity of the color resulting from the LDH-catalyzed reaction is proportional to the number of cells bound to the plate. The procedure does not require fixation of the cells, centrifugation, and blocking steps, resulting in a more convenient assay. CPEIA has been used for the detection of MHC class I antigens and other molecules on the surfaces of mouse cell lines and concanavalin A (ConA)-stimulated T lymphocytes. In addition, the assay has been used to detect peptide binding to Db and Kb MHC class I molecules on the surface of the mutant cell line RMA-S. The half-maximal responses for peptide-MHC class I interactions at different peptide concentrations can be determined with the assay, allowing the apparent dissociation constants to be calculated.
Collapse
Affiliation(s)
- L J Sigal
- University of Nebraska, Lincoln 68588
| | | | | |
Collapse
|
48
|
van der Bruggen P, Bastin J, Gajewski T, Coulie PG, Boël P, De Smet C, Traversari C, Townsend A, Boon T. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 1994; 24:3038-43. [PMID: 7805731 DOI: 10.1002/eji.1830241218] [Citation(s) in RCA: 270] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human MAGE-3 gene is expressed in many tumors of several histological types but it is silent in normal tissues, with the exception of testis. Antigens encoded by MAGE-3 may, therefore, be useful targets for specific anti-tumor immunization of cancer patients. We reported previously that MAGE-3 codes for an antigenic peptide recognized on a melanoma cell line by autologous cytolytic T lymphocytes (CTL) restricted by HLA-A1. Here we report that the MAGE-3 gene also codes for another antigenic peptide that is recognized by CTL restricted by HLA-A2. MAGE-3 peptides bearing consensus anchor residues for HLA-A2 were synthesized and tested for binding. T lymphocytes from normal individuals were stimulated with autologous irradiated lymphoblasts pulsed with each of three peptides that showed strong binding to HLA-A2. Peptide FLWGPRALV was able to induce CTL. We obtained CTL clones that recognized not only HLA-A2 cells pulsed with this peptide but also HLA-A2 tumor cell lines expressing the MAGE-3 gene. The proportion of melanoma tumors expressing this antigen should be approximately 32% in Caucasian populations, since 49% of individuals carry the HLA-A2 allele and 65% of melanomas express MAGE-3.
Collapse
Affiliation(s)
- P van der Bruggen
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sugita M, Brenner MB. An unstable beta 2-microglobulin: major histocompatibility complex class I heavy chain intermediate dissociates from calnexin and then is stabilized by binding peptide. J Exp Med 1994; 180:2163-71. [PMID: 7964491 PMCID: PMC2191763 DOI: 10.1084/jem.180.6.2163] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proper assembly of the class I heavy chain (HC), beta 2-microglobulin (beta 2m), and peptide must occur in the endoplasmic reticulum (ER) in order for MHC class I molecules to be expressed on the cell surface. Newly synthesized class I HC bind calnexin, an ER resident chaperone. These calnexin-associated class I HC appeared to lack the stable association with beta 2m in peptide transporter-deficient T2 cells since beta 2m-unassociated class I HC-specific HC10 antibody, but not beta 2m-associated class I HC-specific W6/32 antibody, coimmunoprecipitated calnexin. To determine the precursor-product relationship of the pool of HC that bind peptide, class I-restricted peptides were added to lysates of T2 cells in vitro. These peptides stabilized preexisting beta 2m-associated HC complexes (beta 2m+:HC:pep-), but had no significant effect on the preexisting pool of calnexin-associated HC that lack beta 2m. Release of HC from calnexin appeared to be controlled by the binding of beta 2m, since beta 2m-deficient FO-1 cells showed a prolonged association of class I HC with calnexin, while beta 2m-transfected FO-1 cells displayed a more rapid dissociation of class I HC from calnexin. Consistent with this result, the dissociation of class I HC from calnexin did not appear to be dependent on peptide binding since the dissociation rates were similar in peptide transporter-deficient T2 cells and in wild-type T1 cells. From these observations, we speculate that in the stepwise assembly of class I molecules, calnexin may mediate dimerization of class I HC with beta 2m, and that the unstable beta 2m+:HC:pep- complexes, after dissociation from calnexin, subsequently bind peptide to complete the assembly.
Collapse
Affiliation(s)
- M Sugita
- Department of Rheumatology and Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
50
|
Gavin MA, Dere B, Grandea AG, Hogquist KA, Bevan MJ. Major histocompatibility complex class I allele-specific peptide libraries: identification of peptides that mimic an H-Y T cell epitope. Eur J Immunol 1994; 24:2124-33. [PMID: 7522161 DOI: 10.1002/eji.1830240929] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We describe a novel method for screening large libraries of random peptides for T cell antigens. Two libraries were constructed, containing fixed amino acids representing the major histocompatibility complex (MHC) class I anchor residues for H-2Kb-restricted octamers and H-2Db-restricted nonamers. Peptides from the Kb-restricted library (KbL: SXIXFXXL) and the Db-restricted library (DbL: XXXXNXXXIM) specifically stabilize empty Kb and Db molecules, respectively. The libraries contain peptides that mimic several H-2b-restricted cytotoxic T lymphocyte epitopes, and 21 mimotopes for a Db-restricted H-Y epitope were isolated. A degenerate synthetic peptide of limited complexity containing the identified H-Y sequence motif was found to be similar to the natural H-Y epitope by reverse-phase high performance liquid chromatography analysis. This peptide is also capable of immunizing female mice against male splenocytes. Several applications for MHC-restricted peptide libraries are discussed.
Collapse
Affiliation(s)
- M A Gavin
- Department of Immunology, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|