1
|
Sammi MK, Fryman A, Baker E, Moloney B, Powers K, West R, Bittner F, Lane M, Martin K, Pepelyayeva Y, Anderson VC, Rooney WD, Yadav V. Vascular disease risk factors in multiple sclerosis: Effect on metabolism and brain volumes. Mult Scler Relat Disord 2023; 74:104675. [PMID: 37121104 PMCID: PMC10560072 DOI: 10.1016/j.msard.2023.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Vascular disease risk factors (VDRF) such as hypertension, hyperlipidemia, obesity, diabetes and heart disease likely play a role in disease progression in people with multiple sclerosis (PwMS) (Marrie, Rudick et al. 2010). Studies exploring the mechanistic connection between vascular disease and MS disease progression are scant. We hypothesized that phosphate energy metabolism impairment in PwMS with VDRFs (VDRF+) will be greater compared to PwMS without VDRFs (VDRF-) and is related to increased brain atrophy in VDRF+. To test this hypothesis, we planned to study the differences in the high energy phosphate (HEP) metabolites in cerebral gray matter as assessed by 31P magnetic resonance spectroscopic imaging (MRSI) and MRI brain volumetric in the VDRF+ and VDRF- PwMS at four different timepoints over a 3 yearlong period using a 7T MR system. We present here the results from the cross-sectional evaluation of HEP metabolites and brain volumes. We also evaluated the differences in clinical impairment, blood metabolic biomarkers and quality of life in VDRF+ and VDRF- PwMS in this cohort. METHODS Group differences in high energy phosphate metabolites were assessed from a volume of interest in the occipital region using linear mixed models. Brain parenchymal and white matter lesion volumes were determined from MR anatomic images. We present here the cross-sectional analysis of the baseline data collected as part of a longitudinal 3 yearlong study where we obtained baseline and subsequent 6-monthly clinical and laboratory data and annual 7T MRI volumetric and 31P MR spectroscopic imaging (MRSI) data on 52 PwMS with and without VDRF. Key clinical and laboratory outcomes included: body mass index (BMI), waist and thigh circumferences and disability [Expanded Disability Status Scale (EDSS)], safety (complete blood count with differential, complete metabolic), lipid panel including total cholesterol and HbA1C. We analyzed clinical and laboratory data for the group differences using student's t or χ2 test. We investigated relationship between phosphate metabolites and VDRF using mixed effect linear regression. RESULTS Complete MRI data were available for 29 VDRF+, age 56.3 (6.8) years [mean (SD)] (83% female), and 23 VDRF-, age 52.5 (7.5) years (57% female) individuals with MS. The mean value of normalized adenosine triphosphate (ATP) (calculated as the ratio of ATP to total phosphate signal in a voxel) was decreased by 4.5% (p < .05) in VDRF+ compared to VDRF- MS group. White matter lesion (WML) volume fraction in VDRF+ individuals {0.007 (0.007)} was more than doubled compared to VDRF- participants {0.003 (0.006), p= .02}. CONCLUSIONS We found significantly lower brain ATP and higher inorganic phosphate (Pi) in those PwMS with VDRFs compared to those without. ATP depletion may reflect mitochondrial dysfunction. Ongoing longitudinal data analysis from this study, not presented here, will evaluate the relationship of phosphate metabolites, brain atrophy and disease progression in PwMS with and without vascular disease.
Collapse
Affiliation(s)
- Manoj K Sammi
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Allison Fryman
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA
| | - Eric Baker
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Brendan Moloney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Katherine Powers
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Randy West
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Frank Bittner
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Michael Lane
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA
| | - Kayla Martin
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA
| | - Yuliya Pepelyayeva
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Valerie C Anderson
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Vijayshree Yadav
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Veterans Affairs MS Center of Excellence-West, Portland, OR, USA.
| |
Collapse
|
2
|
Thapa B, Mareyam A, Stockmann J, Strasser B, Keil B, Hoecht P, Carp S, Li X, Wang Z, Chang YV, Dietrich J, Uhlmann E, Cahill DP, Batchelor T, Wald L, Andronesi OC. In Vivo Absolute Metabolite Quantification Using a Multiplexed ERETIC-RX Array Coil for Whole-Brain MR Spectroscopic Imaging. J Magn Reson Imaging 2021; 56:121-133. [PMID: 34958166 DOI: 10.1002/jmri.28028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Absolute quantification of metabolites in MR spectroscopic imaging (MRSI) requires a stable reference signal of known concentration. The Electronic REference To access In vivo Concentrations (ERETIC) has shown great promise but has not been applied in patients and 3D MRSI. ERETIC hardware has not been integrated with receive arrays due to technical challenges, such as coil combination and unwanted coupling between multiple ERETIC and receive channels, for which we developed mitigation strategies. PURPOSE To develop absolute quantification for whole-brain MRSI in glioma patients. STUDY TYPE Prospective. POPULATION Five healthy volunteers and three patients with isocitrate dehydrogenase mutant glioma (27% female). Calibration and coil loading phantoms. FIELD STRENGTH/SEQUENCE A 3 T; Adiabatic spin-echo spiral 3D MRSI with real-time motion correction, Fluid Attenuated Inversion Recovery (FLAIR), Gradient Recalled Echo (GRE), Multi-echo Magnetization Prepared Rapid Acquisition of Gradient Echo (MEMPRAGE). ASSESSMENT Absolute quantification was performed for five brain metabolites (total N-acetyl-aspartate [NAA]/creatine/choline, glutamine + glutamate, myo-inositol) and the oncometabolite 2-hydroxyglutarate using a custom-built 4x-ERETIC/8x-receive array coil. Metabolite quantification was performed with both EREIC and internal water reference methods. ERETIC signal was transmitted via optical link and used to correct coil loading. Inductive and radiative coupling between ERETIC and receive channels were measured. STATISTICAL TESTS ERETIC and internal water methods for metabolite quantification were compared using Bland-Altman (BA) analysis and the nonparametric Mann-Whitney test. P < 0.05 was considered statistically significant. RESULTS ERETIC could be integrated in receive arrays and inductive coupling dominated (5-886 times) radiative coupling. Phantoms show proportional scaling of the ERETIC signal with coil loading. The BA analysis demonstrated very good agreement (3.3% ± 1.6%) in healthy volunteers, while there was a large difference (36.1% ± 3.8%) in glioma tumors between metabolite concentrations by ERETIC and internal water quantification. CONCLUSION Our results indicate that ERETIC integrated with receive arrays and whole-brain MRSI is feasible for brain metabolites quantification. Further validation is required to probe that ERETIC provides more accurate metabolite concentration in glioma patients. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Bijaya Thapa
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Azma Mareyam
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jason Stockmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Bernhard Strasser
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | | | - Stefan Carp
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Xianqi Li
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Zhe Wang
- Siemens Medical Solutions USA, Boston, Massachusetts, USA
| | - Yulin V Chang
- Siemens Medical Solutions USA, Boston, Massachusetts, USA
| | - Jorg Dietrich
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erik Uhlmann
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tracy Batchelor
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Brigham's and Women Hospital, Boston, Massachusetts, USA.,Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lawrence Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ovidiu C Andronesi
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Peeters TH, van Uden MJ, Rijpma A, Scheenen TW, Heerschap A. 3D 31 P MR spectroscopic imaging of the human brain at 3 T with a 31 P receive array: An assessment of 1 H decoupling, T 1 relaxation times, 1 H- 31 P nuclear Overhauser effects and NAD . NMR IN BIOMEDICINE 2021; 34:e4169. [PMID: 31518036 PMCID: PMC8244063 DOI: 10.1002/nbm.4169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 05/02/2023]
Abstract
31 P MR spectroscopic imaging (MRSI) is a versatile technique to study phospholipid precursors and energy metabolism in the healthy and diseased human brain. However, mainly due to its low sensitivity, 31 P MRSI is currently limited to research purposes. To obtain 3D 31 P MRSI spectra with improved signal-to-noise ratio on clinical 3 T MR systems, we used a coil combination consisting of a dual-tuned birdcage transmit coil and a 31 P eight-channel phased-array receive insert. To further increase resolution and sensitivity we applied WALTZ4 1 H decoupling and continuous wave nuclear Overhauser effect (NOE) enhancement and acquired high-quality MRSI spectra with nominal voxel volumes of ~ 17.6 cm3 (effective voxel volume ~ 51 cm3 ) in a clinically relevant measurement time of ~ 13 minutes, without exceeding SAR limits. Steady-state NOE enhancements ranged from 15 ± 9% (γ-ATP) and 33 ± 3% (phosphocreatine) to 48 ± 11% (phosphoethanolamine). Because of these improvements, we resolved and detected all 31 P signals of metabolites that have also been reported for ultrahigh field strengths, including resonances for NAD+ , NADH and extracellular inorganic phosphate. T1 times of extracellular inorganic phosphate were longer than for intracellular inorganic phosphate (3.8 ± 1.4s vs 1.8 ± 0.65 seconds). A comparison of measured T1 relaxation times and NOE enhancements at 3 T with published values between 1.5 and 9.4 T indicates that T1 relaxation of 31 P metabolite spins in the human brain is dominated by dipolar relaxation for this field strength range. Even although intrinsic sensitivity is higher at ultrahigh fields, we demonstrate that at a clinical field strength of 3 T, similar 31 P MRSI information content can be obtained using a sophisticated coil design combined with 1 H decoupling and NOE enhancement.
Collapse
Affiliation(s)
- Tom H. Peeters
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Mark J. van Uden
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Anne Rijpma
- Department of Geriatric MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Tom W.J. Scheenen
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Erwin L. Hahn InstituteUniversity Hospital Duisburg‐EssenEssenGermany
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
4
|
Ripley EM, Clarke GD, Hamidi V, Martinez RA, Settles FD, Solis C, Deng S, Abdul-Ghani M, Tripathy D, DeFronzo RA. Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study. Am J Physiol Endocrinol Metab 2018; 315:E229-E239. [PMID: 29509433 PMCID: PMC6139498 DOI: 10.1152/ajpendo.00426.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial function has been examined in insulin-resistant (IR) states including type 2 diabetes mellitus (T2DM). Previous studies using phosphorus-31 magnetic resonance spectroscopy (31P-MRS) in T2DM reported results as relative concentrations of metabolite ratios, which could obscure differences in phosphocreatine ([PCr]) and adenosine triphosphate concentrations ([ATP]) between T2DM and normal glucose tolerance (NGT) individuals. We used an image-guided 31P-MRS method to quantitate [PCr], inorganic phosphate [Pi], phosphodiester [PDE], and [ATP] in vastus lateralis (VL) muscle in 11 T2DM and 14 NGT subjects. Subjects also received oral glucose tolerance test, euglycemic insulin clamp, 1H-MRS to measure intramyocellular lipids [IMCL], and VL muscle biopsy to evaluate mitochondrial density. T2DM subjects had lower absolute [PCr] and [ATP] than NGT subjects (PCr 28.6 ± 3.2 vs. 24.6 ± 2.4, P < 0.002, and ATP 7.18 ± 0.6 vs. 6.37 ± 1.1, P < 0.02) while [PDE] was higher, but not significantly. [PCr], obtained using the traditional ratio method, showed no significant difference between groups. [PCr] was negatively correlated with HbA1c ( r = -0.63, P < 0.01) and fasting plasma glucose ( r = -0.51, P = 0.01). [PDE] was negatively correlated with Matsuda index ( r = -0.43, P = 0.03) and M/I ( r = -0.46, P = 0.04), but was positively correlated with [IMCL] ( r = 0.64, P < 0.005), HbA1c, and FPG ( r = 0.60, P = 0.001). To summarize, using a modified, in vivo quantitative 31P-MRS method, skeletal muscle [PCr] and [ATP] are reduced in T2DM, while this difference was not observed with the traditional ratio method. The strong inverse correlation between [PCr] vs. HbA1c, FPG, and insulin sensitivity supports the concept that lower baseline skeletal muscle [PCr] is related to key determinants of glucose homeostasis.
Collapse
Affiliation(s)
- Erika M Ripley
- Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
- Diabetes Division, University of Texas Health Science Center at San Antonio , San Antonio, Texas
- Research Imaging Institute, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Vala Hamidi
- Diabetes Division, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Robert A Martinez
- Diabetes Division, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Floyd D Settles
- Department of Radiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Carolina Solis
- Diabetes Division, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Shengwen Deng
- Research Imaging Institute, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Muhammad Abdul-Ghani
- Diabetes Division, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Devjit Tripathy
- Diabetes Division, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
5
|
Aime S, Baroni S, Delli Castelli D, Brücher E, Fábián I, Serra SC, Fringuello Mingo A, Napolitano R, Lattuada L, Tedoldi F, Baranyai Z. Exploiting the Proton Exchange as an Additional Route to Enhance the Relaxivity of Paramagnetic MRI Contrast Agents. Inorg Chem 2018; 57:5567-5574. [DOI: 10.1021/acs.inorgchem.8b00521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simona Baroni
- Department of Molecular Biotechnologies and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Daniela Delli Castelli
- Department of Molecular Biotechnologies and Health Sciences, Molecular Imaging Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | | | | | - Sonia Colombo Serra
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | | | - Roberta Napolitano
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - Fabio Tedoldi
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa (TO), Italy
| |
Collapse
|
6
|
Jansen JFA, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 2006; 240:318-32. [PMID: 16864664 DOI: 10.1148/radiol.2402050314] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen 1 (1H) magnetic resonance (MR) spectroscopy enables noninvasive in vivo quantification of metabolite concentrations in the brain. Currently, metabolite concentrations are most often presented as ratios (eg, relative to creatine) rather than as absolute concentrations. Despite the success of this approach, it has recently been suggested that relative quantification may introduce substantial errors and can lead to misinterpretation of spectral data and to erroneous metabolite values. The present review discusses relevant methods to obtain absolute metabolite concentrations with a clinical MR system by using single-voxel spectroscopy or chemical shift imaging. Important methodological aspects in an absolute quantification strategy are addressed, including radiofrequency coil properties, calibration procedures, spectral fitting methods, cerebrospinal fluid content correction, macromolecule suppression, and spectral editing. Techniques to obtain absolute concentrations are now available and can be successfully applied in clinical practice. Although the present review is focused on 1H MR spectroscopy of the brain, a large part of the methodology described can be applied to other tissues as well.
Collapse
Affiliation(s)
- Jacobus F A Jansen
- Department of Radiology, Maastricht University Hospital, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Corbin IR, Ryner LN, Singh H, Minuk GY. Quantitative hepatic phosphorus-31 magnetic resonance spectroscopy in compensated and decompensated cirrhosis. Am J Physiol Gastrointest Liver Physiol 2004; 287:G379-84. [PMID: 15191882 DOI: 10.1152/ajpgi.00418.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Few studies have examined the physiological/biochemical status of hepatocytes in patients with compensated and decompensated cirrhosis in situ. Phosphorus-31 magnetic resonance spectroscopy ((31)P MRS) is a noninvasive technique that permits direct assessments of tissue bioenergetics and phospholipid metabolism. Quantitative (31)P MRS was employed to document differences in the hepatic metabolite concentrations among patients with compensated and decompensated cirrhosis as well as healthy controls. All MRS examinations were performed on a 1.5-T General Electric Signa whole body scanner. The concentration of hepatic phosphorylated metabolites among patients with compensated cirrhosis (n = 7) was similar to that among healthy controls (n = 8). However, patients with decompensated cirrhosis (n = 6) had significantly lower levels of hepatic ATP compared with patients with compensated cirrhosis and healthy controls (P < 0.02 and P < 0.009, respectively) and a higher phosphomonoester/phosphodiester ratio than controls (P < 0.003). The results of this study indicate that metabolic disturbances in hepatic energy and phospholipid metabolism exist in patients with decompensated cirrhosis that are not present in patients with compensated cirrhosis or healthy controls. These findings provide new insights into the pathophysiology of hepatic decompensation.
Collapse
Affiliation(s)
- I R Corbin
- John Buhler Research Centre, 803F-715 McDermot Ave., Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
8
|
Shirayama Y, Yano T, Takahashi K, Takahashi S, Ogino T. In vivo31P NMR spectroscopy shows an increase in glycerophosphorylcholine concentration without alterations in mitochondrial function in the prefrontal cortex of medicated schizophrenic patients at rest. Eur J Neurosci 2004; 20:749-56. [PMID: 15255985 DOI: 10.1111/j.1460-9568.2004.03524.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The (31)P NMR localised method was used to study the metabolism of phospholipid and high energy phosphate in the prefrontal cortex. The spectra were taken from patients with schizophrenia (11 males) receiving neuroleptic medication, and were compared to normal controls (15 males). Their spectral intensities were analysed using a non-linear least-squares method with a prior knowledge of the fixed chemical shifts and linewidths, leading to further resolution into resonances of glycerophosphorylethanolamine (GPE), glycerophosphorylcholine (GPC), phosphorylethanolamine (PE) and phosphorylcholine (PC). The metabolite concentrations were calculated referring to the spectral intensities of phosphate phantoms with known concentrations. T1 values of phantom and cerebrum were estimated from a series of localised inversion recovery spectra to correct for the signal saturation effects. The schizophrenic patients showed an increased concentration of GPC but not GPE, PE or PC. Furthermore, no difference was observed regarding the concentration of high-energy phosphates such as phosphocreatine, inorganic phosphate and ATP. The patients did not show any differences in mitochondrial function such as phosphorylation potential and the ratio of the rate of ATP synthesis. Thus, an increase in GPC concentration in the prefrontal cortex could be characteristic of the pathophysiology of schizophrenia with mild negative symptoms.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, National Center Hospital for Mental, Nervous and Muscular Disorders, and Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
9
|
Jensen JE, Drost DJ, Menon RS, Williamson PC. In vivo brain (31)P-MRS: measuring the phospholipid resonances at 4 Tesla from small voxels. NMR IN BIOMEDICINE 2002; 15:338-347. [PMID: 12203225 DOI: 10.1002/nbm.776] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An optimized phosphorous ((31)P) three-dimensional chemical-shift imaging (3D-CSI) protocol was developed at 4 T to study the phospholipid metabolism from discrete regions in the human brain without the need for (1)H-decoupling or nuclear Overhauser enhancement (NOE). In this study, a spherically bound, weighted average, random point omission 3D-CSI technique was developed and tested, based on methods proposed in the literature. The technique yields a significant (p < 0.001, two-tailed, 5% confidence level) increase in signal-to-noise (SNR) efficiency over conventional 3D-CSI (phantom 32%), without an increase in voxel bleedthrough. An automated time-domain fitting procedure utilizing prior spectral knowledge quantified the individual brain phospholipid metabolites from 15 cm(3) effective (8.0 cm(3) nominal) volumes from the left/right-parieto-occipital cortex and left/right thalamus in 10 normal volunteers. Individual constituents from the phosphomonoester (PME) region; phosphoethanolamine (PEth), phosphocholine (PCh) and the phosphodiester (PDE) region; glycerophosphoethanolamine (GPEth), glycerophosphocholine (GPCh) and membrane phospholipids (MP) were separately quantified to assess the precision of our method at 4 T against previous (1)H-decoupled (31)P-MRS brain studies at lower fields and much larger voxels. Derived concentrations (mM/l tissue) for PEth, PCh, GPEth, GPCh and MP in the left-parieto-occipital cortex were 0.81 +/- 0.21, 0.46 +/- 0.14, 0.74 +/- 0.30, 1.15 +/- 0.43 and 1.54 +/- 0.95 mM, respectively, and 0.94 +/- 0.16, 0.46 +/- 0.17, 0.83 +/- 0.22, 1.14 +/- 0.40 and 1.26 +/- 0.78 mM for the right parieto-occipital cortex. Derived concentrations (mM/l tissue) for PEth, PCh, GPEth, GPCh and MP in the left-thalamus were 0.69 +/- 0.18, 0.42 +/- 0.16, 0.63 +/- 0.20, 1.05 +/- 0.42 and 0.93 +/- 0.56 mM, respectively, and 0.68 +/- 0.24, 0.34 +/- 0.18, 0.60 +/- 0.23, 1.09 +/- 0.36 and 0.74 +/- 0.48 mM for the right-thalamus. This is the first study to our knowledge that has been able to quantify each of these individual phospholipid metabolites from such small voxels in the brain within a clinically reasonable scan time and without (1)H-decoupling or NOE.
Collapse
Affiliation(s)
- J Eric Jensen
- Department of Nuclear Medicine and Magnetic Resonance, St Joseph's Health Center, London, Ontario, Canada.
| | | | | | | |
Collapse
|
10
|
Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ. Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR IN BIOMEDICINE 2002; 15:18-27. [PMID: 11840549 DOI: 10.1002/nbm.735] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Localized phosphorus-31 MR spectra were obtained in vivo in a large series of normal human brain tissue specimens of healthy volunteers (n=36) and various brain tumours (n=52). Tumour types examined included grade II and grade III gliomas (n=15 and n=1, respectively), glioblastomas (n=16) and meningeomas (n=12). An additional eight tumours were analysed during chemo- or radiotherapy. Spectra were acquired using a modified ISIS pulse sequence with a repetition time of 3 s. Voxel sizes ranged from 56 to 129 ml. The spectra were evaluated using a least-square variable projection (VARPRO) fitting procedure in the time domain, which allows semi-quantitative determination of relative metabolite concentrations. The measurements in normal cerebrum of healthy volunteers revealed the following results of metabolite signal intensity ratios: pH 7.04 (+/- 0.01), PCr/alpha-ATP 0.51 (+/- 0.03), P(i)/alpha-ATP 0.17 (+/-0.02), PCr/P(i) 2.09 (+/-0.12), PDE/alpha-ATP 3.65 (+/-0.13) and PME/alpha-ATP 0.41 (+/-0.04). Meningiomas showed the most obvious changes when compared with normal brain tissue. They are characterized by an alkaline environment (pH 7.16 +/- 0.03; p<0.005), a decrease in the phosphocreatine peak (p<0.0001) and significantly decreased phosphodiesters (p<0.0001). Glioblastomas also showed alkalization (pH 7.12 +/- 0.02; p<0.001) and a decrease in PDE/alpha-NTP (p<0.05), but no significant changes in PCr/alpha-NTP or PCr/Pi. In gliomas with low malignancy, less distinct changes could be detected with slight alkalization (pH 7.09 +/- 0.02; p<0.05) and more than a two-fold reduction in the PDE/alpha-NTP ratio (p<0.05). The spectra of brain tumours during chemo- and radiotherapy indicated clear but inconsistent influence of the therapy.
Collapse
Affiliation(s)
- David Maintz
- Department of Diagnostic Radiology, University of Cologne Medical School, Cologne, Germany.
| | | | | | | | | |
Collapse
|
11
|
Keevil SF, Porter DA, Smith MA. A method for characterising localisation techniques in volume selected nuclear magnetic resonance spectroscopy. Phys Med Biol 2000. [DOI: 10.1088/0031-9155/35/7/002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Doyle VL, Payne GS, Collins DJ, Verrill MW, Leach MO. Quantification of phosphorus metabolites in human calf muscle and soft-tissue tumours from localized MR spectra acquired using surface coils. Phys Med Biol 1997; 42:691-706. [PMID: 9127445 DOI: 10.1088/0031-9155/42/4/006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metabolite concentrations determined from MR spectra provide more specific information than peak area ratios. This paper presents a method of quantification that allows metabolite concentrations to be determined from in vivo 31P MR spectra acquired using a surface coil and ISIS localization. Corrections for the effects of B1 field inhomogeneity produced by surface coils are based on a measured and calibrated spatial sensitivity field map for the coil. Account is taken of imperfections in pulse performance, coil loading effects and relaxation effects, the latter making use of published metabolite relaxation times. The technique is demonstrated on model solutions. The concentrations of the main 31P metabolites in normal human calf muscle measured using this method are [PCr] = 26.9 +/- 4.1 mM; [Pi] = 3.6 +/- 1.2 mM; [NTP] = 6.8 +/- 1.8 mM. Quantification of spectra acquired from soft-tissue tumours in patients both pre- and post-treatment showed that changes in metabolite concentrations are more sensitive to metabolic changes than changes in peak area ratios.
Collapse
Affiliation(s)
- V L Doyle
- CRC Clinical Magnetic Resonance Research Group, Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey, UK
| | | | | | | | | |
Collapse
|
13
|
Meyerhoff DJ, MacKay S, Sappey-Marinier D, Deicken R, Calabrese G, Dillon WP, Weiner MW, Fein G. Effects of chronic alcohol abuse and HIV infection on brain phosphorus metabolites. Alcohol Clin Exp Res 1995; 19:685-92. [PMID: 7573794 DOI: 10.1111/j.1530-0277.1995.tb01568.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We examined the effects of human immunodeficiency virus (HIV) infection and chronic alcohol consumption on cerebral phosphorus metabolites to determine if chronic alcohol abuse is a risk factor for the progression of neurological effects of HIV infection. We studied 15 HIV- alcoholics, 8 HIV- light/nondrinkers, 32 HIV+ alcoholics, and 41 HIV+ light/nondrinking men, with both HIV+ groups having similar CD4 lymphocyte counts. We used localized 31-phosphorus magnetic resonance spectroscopy after magnetic resonance imaging to examine two brain volumes in superior white matter and subcortical gray matter. Chronic alcohol consumption was associated with reduced white matter concentrations of phosphodiester (PDE) and phosphocreatine (PCr). Also in the white matter, acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC) were associated with reduced concentrations of PDE and PCr, compared with both HIV- and clinically asymptomatic HIV+ subjects. Because no alcohol-by-HIV interactions were detected, the effects of HIV infection and alcohol abuse were cumulative. This is reflected in a successive decrease of white matter PDE and PCr concentrations in the order HIV- light/nondrinkers/HIV- alcoholics/HIV+ light/nondrinkers/HIV+ alcoholics. Subcortical gray matter PDE concentrations were lower in ARC/AIDS alcoholics than in HIV- light/nondrinking individuals. These findings suggest altered brain phospholipid metabolites and energy metabolites with alcohol abuse and HIV infection. They demonstrate that the adverse metabolic effects of HIV on the brain are augmented by chronic alcohol abuse.
Collapse
Affiliation(s)
- D J Meyerhoff
- Department of Veterans Affairs Medical Center, Magnetic Resonance Spectroscopy Unit, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Buchli R, Boesiger P. Comparison of methods for the determination of absolute metabolite concentrations in human muscles by 31P MRS. Magn Reson Med 1993; 30:552-8. [PMID: 8259055 DOI: 10.1002/mrm.1910300505] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to determine metabolite concentrations in human skeletal muscles by in vivo 31P MRS, different quantification methods were analyzed with regard to the accuracy and reproducibility of results and the simplicity of handling. Each quantification method comprised a calibration strategy and a localization technique. Extensive in vivo and in vitro tests showed that homonuclear phantom-based calibration strategies yielded significantly more accurate (lower systematic errors) and more reproducible (lower statistical errors) concentration estimates than heteronuclear strategies using internal water as a concentration standard. Additionally, the former strategies are easier to handle than the latter. Localization with the volume-selective sequence ISIS yielded slightly more reproducible results than localization by surface coil. We conclude that phosphorus metabolite concentrations are determined most accurately with phantom-based calibration strategies in combination with ISIS localization (measurement errors approximately 5-7%).
Collapse
Affiliation(s)
- R Buchli
- Institute of Biomedical Engineering and Medical Informatics, University, Zurich, Switzerland
| | | |
Collapse
|
15
|
How to perform automated curve fitting toin vivo 31P magnetic resonance spectroscopic data. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 1993. [DOI: 10.1007/bf01760402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Degroot M, Massie BM, Boska M, Gober J, Miller RG, Weiner MW. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle Nerve 1993; 16:91-8. [PMID: 8423837 DOI: 10.1002/mus.880160115] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previous in vivo studies of skeletal muscle fatigue have demonstrated significant relationships between the decline of muscular force and changes in muscle metabolism. However, these studies performed measurements over relatively long time intervals or during steady state exercise, thereby obscuring rapid metabolic changes occurring at the onset of exercise and recovery. To overcome these limitations, fatigue of human calf musculature during sustained isometric foot plantar flexion was quantified continuously as the decline in maximal voluntary contraction force (MVC), while concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), intracellular free hydrogen ion (H+), and monovalent phosphate (H2PO4-) were simultaneously measured at 2-second intervals by 31P nuclear magnetic resonance. The first major finding was that [H+], which has been thought to be a mediator of muscle fatigue, actually declined during the first 10 seconds of exercise when force was declining and rose immediately postexercise, when force partially recovered. Second, the correlations of [H+], [H2PO4-] and Pi with MVC during the first minute of exercise were determined to be curvilinear and not linear as previously suggested. Furthermore, using either a linear or curvilinear regression model, [H2PO4-] and Pi demonstrated a closer correlation to MVC than [H+] during the first minute of exercise. Thus, these results reveal nuances in the relationships of MVC to metabolites previously undetected by low time-resolution measurements. These findings suggest that during sustained isometric exercise, rising [H+] is not likely to be the sole mechanism of muscle fatigue and are consistent with the view that a rise of Pi or [H2PO4-] is a major causation factor in force reduction.
Collapse
Affiliation(s)
- M Degroot
- Magnetic Resonance Unit, Veterans Administrative Medical Center, San Francisco, CA 94121
| | | | | | | | | | | |
Collapse
|
17
|
Laxer KD, Hubesch B, Sappey-Marinier D, Weiner MW. Increased pH and inorganic phosphate in temporal seizure foci demonstrated by [31P]MRS. Epilepsia 1992; 33:618-23. [PMID: 1628574 DOI: 10.1111/j.1528-1157.1992.tb02337.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To investigate alterations of brain metabolism associated with temporal lobe epilepsy, [31P]MRS studies were performed on the anterotemporal lobes of patients with medically refractory complex partial seizures. Interictally, the pH was significantly more alkaline in the temporal lobe ipsilateral to the seizure focus (7.25 vs. 7.08, p less than 0.05), and the inorganic phosphorous concentration was greater on the side of the epileptogenic focus (1.9 vs. 1.1 mM, p less than 0.05). These changes in pH and inorganic phosphate may represent metabolic alterations secondary to seizures. Alternatively, because alkalosis enhances neural excitability and may enhance seizure activity, the increased pH of the seizure focus may provide insight into the pathophysiologic mechanism of epileptic seizures.
Collapse
Affiliation(s)
- K D Laxer
- Department of Neurology, University of California, San Francisco
| | | | | | | |
Collapse
|
18
|
In Vivo Phosphorus-31 NMR: Potential and Limitations. IN-VIVO MAGNETIC RESONANCE SPECTROSCOPY III: IN-VIVO MR SPECTROSCOPY: POTENTIAL AND LIMITATIONS 1992. [DOI: 10.1007/978-3-642-77218-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
|