1
|
Ley-Ngardigal S, Bertolin G. Approaches to monitor ATP levels in living cells: where do we stand? FEBS J 2022; 289:7940-7969. [PMID: 34437768 DOI: 10.1111/febs.16169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
ATP is the most universal and essential energy molecule in cells. This is due to its ability to store cellular energy in form of high-energy phosphate bonds, which are extremely stable and readily usable by the cell. This energy is key for a variety of biological functions such as cell growth and division, metabolism, and signaling, and for the turnover of biomolecules. Understanding how ATP is produced and hydrolyzed with a spatiotemporal resolution is necessary to understand its functions both in physiological and in pathological contexts. In this review, first we will describe the organization of the electron transport chain and ATP synthase, the main molecular motor for ATP production in mitochondria. Second, we will review the biochemical assays currently available to estimate ATP quantities in cells, and we will compare their readouts, strengths, and weaknesses. Finally, we will explore the palette of genetically encoded biosensors designed for microscopy-based approaches, and show how their spatiotemporal resolution opened up the possibility to follow ATP levels in living cells.
Collapse
Affiliation(s)
- Seyta Ley-Ngardigal
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France.,LVMH Research Perfumes and Cosmetics, Saint-Jean-de-Braye, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Genetics and Development Institute of Rennes), Rennes, France
| |
Collapse
|
2
|
Abstract
ATP is released in the body from several cells under various physiological and pathological conditions. A number of authors have postulated a role for extracellular ATP (ATPo) as a neurotransmitter, a secretagogue or an inflammatory mediator. Here, we propose an additional role for ATPo, as a cytotoxic factor, and discuss in vitro experiments showing that this nucleotide causes cell death by two mechanisms: colloido-osmotic lysis and apoptosis.
Collapse
|
3
|
Burnstock G. Short- and long-term (trophic) purinergic signalling. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150422. [PMID: 27377731 PMCID: PMC4938022 DOI: 10.1098/rstb.2015.0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 12/26/2022] Open
Abstract
There is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body, in addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion. It is not always easy to distinguish between short- and long-term signalling. For example, adenosine triphosphate (ATP) can sometimes act as a short-term trigger for long-term trophic events that become evident days or even weeks after the original challenge. Examples of short-term purinergic signalling during sympathetic, parasympathetic and enteric neuromuscular transmission and in synaptic transmission in ganglia and in the central nervous system are described, as well as in neuromodulation and secretion. Long-term trophic signalling is described in the immune/defence system, stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption and in cancer. It is likely that the increase in intracellular Ca(2+) in response to both P2X and P2Y purinoceptor activation participates in many short- and long-term physiological effects.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy. Talanta 2015; 150:485-92. [PMID: 26838434 DOI: 10.1016/j.talanta.2015.12.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/06/2023]
Abstract
ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75 mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR).
Collapse
|
5
|
Öhman J, Erlinge D. The touching story of purinergic signaling in epithelial and endothelial cells. Purinergic Signal 2012; 8:599-608. [PMID: 22528685 DOI: 10.1007/s11302-012-9316-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jenny Öhman
- Faculty of Medicine, Lund University, Box 117, 221 00, Lund, Sweden.
| | | |
Collapse
|
6
|
Pilla C, Emanuelli T, Frassetto SS, Battastini AMO, Dias RD, Sarkis JJF. ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in human blood platelets. Platelets 2009; 7:225-30. [DOI: 10.3109/09537109609023582] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Akkaya C, Shumilina E, Bobballa D, Brand VB, Mahmud H, Lang F, Huber SM. The Plasmodium falciparum-induced anion channel of human erythrocytes is an ATP-release pathway. Pflugers Arch 2008; 457:1035-47. [PMID: 18696103 DOI: 10.1007/s00424-008-0572-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023]
Abstract
Infection with the malaria parasite Plasmodium falciparum induces osmolyte and anion channels in the host erythrocyte membrane involving ATP release and autocrine purinergic signaling. P. falciparum-parasitized but not unstimulated uninfected erythrocytes released ATP in a 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB; 7 microM)-sensitive and serum album (SA; 0.5% w/v)-stimulated manner. Since Plasmodium infection of human erythrocytes induces SA-dependent outwardly (OR) and SA-independent inwardly rectifying (IR) anion conductances, we tested whether the infection-induced OR channels directly generate an ATP release pathway. P. falciparum-parasitized erythrocytes were recorded in whole-cell mode with either Cl(-) or ATP as the only anion in the bath or pipette. In parasitized cells with predominant OR activity, replacement of bath NaCl by Na-ATP (NMDG-Cl pipette solution) shifted the current reversal potential (V (rev)) from -2 +/- 1 to +51 +/- 3 mV (n = 15). In cells with predominant IR activity, in contrast, the same maneuver induced a shift of V (rev) to significantly larger (p < or = 0.05, two-tailed t test) values (from -3 +/- 1 to +66 +/- 8 mV; n = 5) and an almost complete inhibition of outward current. The anion channel blocker NPPB reversibly decreased the ATP-generated OR currents from 1.1 +/- 0.1 nS to 0.2 +/- 0.05 nS and further shifted V (rev) to +87 +/- 7 mV (n = 12). The NPPB-sensitive fraction of the OR reversed at +48 +/- 4 mV suggesting a relative permeability of P (ATP)/P (Cl) approximately 0.01. Together, these data raise the possibility that the OR might be the electrophysiological correlate of an erythrocyte ATP release pathway.
Collapse
Affiliation(s)
- Canan Akkaya
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Shabbir M, Thompson C, Jarmulowiczc M, Mikhailidis D, Burnstock G. Effect of extracellular ATP on the growth of hormone-refractory prostate cancer in vivo. BJU Int 2008; 102:108-12. [PMID: 18325054 DOI: 10.1111/j.1464-410x.2008.07578.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate whether the antineoplastic action of ATP on hormone-refractory prostate carcinoma (HRPC) cells in vitro also occurs in vivo, by examining the effect of ATP in vivo on tumours resulting from implanted HRPC cells in mice. MATERIALS AND METHODS HRPC tumour cells DU145 and PC-3 were implanted into male nude athymic mice. The effect of daily intraperitoneal (i.p.) injections of ATP (25 mm) on the growth of freshly implanted and established HRPC tumours was assessed. Histological examination using light and electron microscopy was used to confirm retention of the original ultrastructure of the implanted tumours. RESULTS Daily i.p. injections of ATP significantly reduced the growth of freshly implanted DU145 tumour by 57.8% (P = 0.003), and reduced the rate of growth of established DU145 tumour by 69.0% (P = 0.006). ATP also significantly reduced the growth of freshly implanted PC-3 tumour by 68.9% (P < 0.001). ATP treatment had no adverse effects on the host mice. CONCLUSION Our results show, for the first time, that ATP effectively reduces the growth of advanced HRPC tumours in vivo. This may represent a step in establishing ATP as an effective agent for HRPC treatment.
Collapse
Affiliation(s)
- Majid Shabbir
- Department of Urology, Royal Free and University College Medical School, London, UK
| | | | | | | | | |
Collapse
|
9
|
Erlinge D, Burnstock G. P2 receptors in cardiovascular regulation and disease. Purinergic Signal 2007; 4:1-20. [PMID: 18368530 PMCID: PMC2245998 DOI: 10.1007/s11302-007-9078-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/22/2007] [Indexed: 12/11/2022] Open
Abstract
The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development.
Collapse
Affiliation(s)
- David Erlinge
- Department of Cardiology, Lund University Hospital, 22185, Lund, Sweden,
| | | |
Collapse
|
10
|
Kerkweg U, de Groot H. ATP-induced calcium increase as a potential first signal in mechanical tissue trauma. A laser scanning microscopic study on cultured mouse skeletal myocytes. Shock 2006; 24:440-6. [PMID: 16247330 DOI: 10.1097/01.shk.0000176185.89793.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is known that after major tissue trauma, local incidents in the mechanically destroyed muscle tissue form the basis of subsequently occurring severe inflammatory reactions, the very first events taking place immediately after myocyte destruction have not been studied on the single cell level thus far. Therefore, in this study, the reaction of cultured C2C12 mouse skeletal myocytes to lethal injury was examined using laser scanning microscopy. Mechanical rupture of one single myocyte induced an immediate accumulation of calcium in its cytosol and nuclei, as detected by an increase in the fluorescence intensity of the intracellular calcium-sensitive dye Fluo-3. The intracellular calcium elevation propagated further to the adjacent, noninjured myocytes in a wave-like fashion within seconds. The calcium increase detected in these neighboring cells was higher and up to 1000 times more extended than the physiological calcium spike that induces C2C12 myocyte contraction. Wave propagation did not depend on gap junctional communication but occurred via liberation of nucleotides, mainly ATP, but presumably also UTP and others, from the destroyed cell and subsequent calcium release from the sarcoplasmic reticulum via a purinoceptor-mediated mechanism in the adjacent cells. These findings suggest a decisive role of ATP and related nucleotides in the pathogenesis of tissue trauma because they appear to initiate the signaling mechanism from injured myocytes to the surrounding tissue and potentially to the whole body.
Collapse
Affiliation(s)
- Uta Kerkweg
- Institut für Physiologische Chemie, Universitätsklinikum Essen, 45122 Essen, Germany
| | | |
Collapse
|
11
|
Tanneur V, Duranton C, Brand VB, Sandu CD, Akkaya C, Kasinathan RS, Gachet C, Sluyter R, Barden JA, Wiley JS, Lang F, Huber SM. Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. FASEB J 2005; 20:133-5. [PMID: 16267125 DOI: 10.1096/fj.04-3371fje] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In human erythrocytes, infection by the malaria parasite Plasmodium falciparum or oxidative stress induces a new organic osmolyte and anion permeability. To examine a role for autocrine purinoceptor signaling during this induction process, erythrocytic purinoceptor expression, and ATP release were determined. Furthermore, using pharmacological and genetic approaches the dependence on purinoceptor signaling of osmolyte permeability and Plasmodium development, both in vitro and in vivo, were assessed. Extracellular ATP did not induce an osmolyte permeability in non-infected or non-oxidized erythrocytes. ATP and other purinoceptor agonists increased the induction of osmolyte permeability during infection or oxidation as measured by isosmotic hemolysis and patch-clamp recording. Purinoceptor antagonists and apyrase decreased the induced permeability. The observed pharmacology suggested the involvement of P2Y purinoceptors. Accordingly, human erythrocytes expressed P2Y1 protein. Moreover, P2Y1-deficient mouse erythrocytes exhibited a delayed appearance of the osmolyte permeability during P. berghei infection- or oxidation compared with wild-type erythrocytes. Furthermore, the nonspecific purinoceptor antagonist suramin decreased in vitro growth and DNA/RNA amplification of P. falciparum in human erythrocytes and decreased in vivo growth of P. berghei. P. berghei developed slower in P2Y1-deficient mice in vivo compared with wild-type animals. In conclusion, induction of the osmolyte permeability in Plasmodium-infected erythrocytes involves autocrine purinoceptor signaling.
Collapse
Affiliation(s)
- Valérie Tanneur
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Heptinstall S, Johnson A, Glenn JR, White AE. Adenine nucleotide metabolism in human blood--important roles for leukocytes and erythrocytes. J Thromb Haemost 2005; 3:2331-9. [PMID: 16150046 DOI: 10.1111/j.1538-7836.2005.01489.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine diphosphate (ADP) released into blood induces platelet aggregation and contributes to hemostasis and thrombosis. Released ATP can also induce platelet aggregation and there is evidence that blood leukocytes and also erythrocytes play important roles in this. Rapid metabolism of ADP and ATP by endothelial cells is important in protecting platelets from their effects. Here we have performed a systematic investigation of adenine nucleotide metabolism in human blood and the involvement of blood cells. Conversion of ATP to ADP in blood was due almost exclusively to the presence of leukocytes; plasma, platelets and erythrocytes made little or no contribution. Mononuclear leukocytes (MNLs) and polymorphonuclear leukocytes (PMNLs) were equally effective. Conversion of ADP to AMP was also promoted by leukocytes, with no involvement of platelets or erythrocytes. Some ADP was also converted to ATP in blood, apparently via an enzyme present in plasma, but ATP was then rapidly removed by the leukocytes. Conversion of AMP to adenosine occurred via a plasma enzyme with little or no contribution from any cellular element. As expected, in blood the adenosine produced was removed very rapidly by erythrocytes and then converted to inosine and then hypoxanthine. In the absence of erythrocytes plasma supported only a slow conversion of adenosine to inosine and hypoxanthine, which was not influenced by platelets or leukocytes. This study has demonstrated that leukocytes and erythrocytes play a major role in adenine nucleotide metabolism in blood and that these cells, as well as endothelial cells, may be important determinants of the effects of ATP and ADP on platelets.
Collapse
Affiliation(s)
- S Heptinstall
- Centre for Integrated Systems Biology and Medicine, Institute of Clinical Research, University of Nottingham, UK.
| | | | | | | |
Collapse
|
13
|
Skrabanja ATP, Bouman EAC, Dagnelie PC. Potential value of adenosine 5'-triphosphate (ATP) and adenosine in anaesthesia and intensive care medicine. Br J Anaesth 2005; 94:556-62. [PMID: 15722385 DOI: 10.1093/bja/aei093] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extracellular adenosine and adenosine triphosphate (ATP) are involved in biological processes including neurotransmission, muscle contraction, cardiac function, platelet function, vasodilatation, signal transduction and secretion in a variety of cell types. They are released from the cytoplasm of several cell types and interact with specific purinergic receptors which are present on the surface of many cells. This review summarizes the evidence on the potential value and applicability of ATP (not restricted to ATP-MgCl(2)) and adenosine in the field of anaesthesia and intensive care medicine. It focuses, in particular, on evidence and roles in treatment of acute and chronic pain and in sepsis. Based on the evidence from animal and clinical studies performed during the last 20 years, ATP could provide a valuable addition to the therapeutic options in anaesthesia and intensive care medicine. It may have particular roles in pain management, modulation of haemodynamics and treatment of shock.
Collapse
Affiliation(s)
- A T P Skrabanja
- Department of Epidemiology, NUTRIM, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
14
|
Huber SM, Duranton C, Lang F. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:59-134. [PMID: 16164967 DOI: 10.1016/s0074-7696(05)46003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Physiology, Eberhard-Karls-University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
15
|
Wang L, Olivecrona G, Götberg M, Olsson ML, Winzell MS, Erlinge D. ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 2004; 96:189-96. [PMID: 15604418 DOI: 10.1161/01.res.0000153670.07559.e4] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Red blood cells may regulate tissue circulation and O2 delivery by releasing the vasodilator ATP in response to hypoxia. When released extracellularly, ATP is rapidly degraded to ADP in the circulation by ectonucleotidases. In this study, we show that ADP acting on P2Y13 receptors on red blood cells serves as a negative feedback pathway for the inhibition of ATP release. mRNA of the ADP receptor P2Y13 was highly expressed in human red blood cells and reticulocytes. The stable ADP analogue 2-MeSADP decreased ATP release from red blood cells by inhibition of cAMP. The P2Y12 and P2Y13 receptor antagonist AR-C67085 (30 micromol/L), but not the P2Y1 blocker MRS2179, inhibited the effects of 2-MeSADP. At doses where AR-C67085 only blocks P2Y12 (100 nmol/L), it had no effect. AR-C67085 and the nucleotidase apyrase increased cAMP per se, indicating a constant cAMP inhibitory effect of endogenous extracellular ADP. 2-MeSADP reduced plasma ATP concentrations in an in vivo pig model. Our results indicate that the ATP degradation product ADP inhibits ATP release by acting on the red blood cell P2Y13 receptor. This negative feedback system could be important in the control of plasma ATP levels and tissue circulation.
Collapse
Affiliation(s)
- Lingwei Wang
- Department of Cardiology, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Hoffman JF, Dodson A, Wickrema A, Dib-Hajj SD. Tetrodotoxin-sensitive Na+ channels and muscarinic and purinergic receptors identified in human erythroid progenitor cells and red blood cell ghosts. Proc Natl Acad Sci U S A 2004; 101:12370-4. [PMID: 15292511 PMCID: PMC514482 DOI: 10.1073/pnas.0404228101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article concerns the identification of different types of voltage-gated Na(+) channels and of muscarinic and purinergic receptors that are expressed in human erythroid precursor cells and red cell ghosts. We analyzed, by RT-PCR, RNA that was extracted from purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes in 7 to 14 days. These extracts were free of white cell and platelet contamination. Two types of voltage-gated, tetrodotoxin-sensitive Na(+) channels were found. These were Na(v)1.4 and Na(v)1.7, the former known to be present in skeletal muscle and the latter in peripheral nerve. By using a pan Na(+) channel antibody and Western blotting, an immunoreactive channel was detected in ghosts of human red blood cells, consistent with the expression of these two channels. The transcripts for four of the five known subtypes of muscarinic receptors were also identified, including subtypes M2, M3, M4, and M5, whereas subtype M1 was not found. Expression was also detected for the purinergic type receptors P2X(1), P2X(4), P2X(7), and P2Y(1) whereas types P2Y(2), P2Y(4), and P2Y(6) were not found. We also searched for but did not find transcripts for hBNP-1, a type 1b human brain sodium phosphate cotransporter, and cystic fibrosis transmembrane conductance regulator (CFTR). Implications regarding the presence of these different types of channels and receptors in human red blood cells and their functional significance are discussed.
Collapse
Affiliation(s)
- Joseph F Hoffman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
17
|
Sakama R, Hiruma H, Kawakami T. Effects of extracellular atp on axonal transport in cultured mouse dorsal root ganglion neurons. Neuroscience 2004; 121:531-5. [PMID: 14568014 DOI: 10.1016/s0306-4522(03)00463-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In primary sensory neurons, extracellular ATP plays important roles in nociception and afferent neurotransmission. Here we investigated the effects of ATP on axonal transport in cultured adult mouse dorsal root ganglion neurons using video-enhanced microscopy. Continuous application (26 min) of ATP (100 microM) significantly increased axonal transport of membrane-bound organelles in anterograde and retrograde directions. All neurons tested (n=5) responded to ATP. The number of transported organelles per min began to increase within 2 min and peaked at 11-14 min after the start of ATP application, and thereafter gradually declined. The peak values in both directions were approximately 140% of the initial values before application. The P2 receptor antagonist suramin (1 mM) completely blocked the effect of ATP. Uridine 5'-triphosphate (UTP; 100 microM) produced a similar effect to ATP, with peak values at 11 min reaching 140% in both directions (n=6). ADP (100 microM; n=5), alpha,beta-methylene ATP (100 microM; n=6), or 2-methylthio ATP (100 microM; n=5) had no effect on axonal transport. Our findings indicate that extracellular ATP is able to increase axonal transport in primary sensory neurons. The equal potency of ATP and UTP with no detectable response to ADP, alpha,beta-methylene ATP, or 2-methylthio ATP suggests the possible involvement of P2Y(2) receptors. Extracellular ATP may play an important role in the modulation of axonal transport in sensory neurons.
Collapse
Affiliation(s)
- R Sakama
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | |
Collapse
|
18
|
Fu LW, Longhurst JC. Activated platelets contribute to stimulation of cardiac afferents during ischaemia in cats: role of 5-HT(3) receptors. J Physiol 2002; 544:897-912. [PMID: 12411532 PMCID: PMC2290632 DOI: 10.1113/jphysiol.2002.023374] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Myocardial ischaemia activates blood platelets and cardiac sympathetic afferents, which mediate chest pain and cardiovascular reflex responses. We have demonstrated that activated platelets stimulate ischaemically sensitive cardiac sympathetic afferents. Platelets absorb and release 5-hydroxytryptamine (5-HT) when they are activated. In the present study we hypothesized that, by releasing 5-HT, activated platelets stimulate cardiac afferents during ischaemia through a 5-HT(3) receptor mechanism. Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) were obtained from cats. Activation of platelets in PRP was induced by thrombin (5 units ml(-1)) or collagen (2 mg kg(-1)). Using high-performance liquid chromatography, we observed that the concentration of 5-HT was increased significantly in suspensions of platelets activated with thrombin (PRP+thrombin, 28 +/- 1.7 microM) or collagen (PRP+collagen, 27 +/- 2.5 microM) compared with suspensions of unactivated platelets (PRP+saline, 2.3 +/- 0.8 microM) and PPP. During myocardial ischaemia and reperfusion, tirofiban, a specific inhibitor of platelet glycoprotein (GP) IIb-IIIa receptors (100 microg kg(-1), I.V., followed by 5 microg kg(-1) min(-1)), significantly reduced the increase in the concentration of 5-HT in cardiac venous plasma from ischaemic region. Nerve activity of single-unit cardiac afferents was recorded from the left sympathetic chain (T2-T5) in anaesthetized cats. Eighty ischaemically sensitive and seven ischaemically insensitive cardiac afferents were identified. Tirofiban reduced the ischaemia-related increase in activity of seven cardiac sympathetic afferents by 50 %. Injection of 1.5 ml of PRP+collagen or PRP+thrombin into the left atrium (LA) increased activity of 16 cardiac afferents. Tropisetron (300 microg kg(-1), I.V.), a selective 5-HT(3) receptor antagonist, eliminated the afferent's responses to platelets activated with collagen or thrombin. Moreover, LA injection of 5-HT (20-40 microg kg(-1)) and PBG (100 microg kg(-1)), a 5-HT(3) receptor agonist, stimulated nine ischaemically sensitive cardiac sympathetic afferents, significantly increasing the activity of these afferents. However, injection of alpha-M-5-HT (100 microg kg(-1), LA), a 5-HT(2) receptor agonist, stimulated only two of the nine ischaemically sensitive cardiac afferents, and thus did not significantly alter impulse activity of this group of afferents. Both the 5-HT(1) (5-CT, 100 microg kg(-1), LA) and 5-HT(4) receptor agonists (SC53116, 100 microg kg(-1), LA) did not stimulate any of the nine afferents tested. Tropisetron (300 microg kg(-1), I.V.) also eliminated the response of seven ischaemically sensitive cardiac afferents to exogenous 5-HT and attenuated the ischaemia-related increase in activity of nine cardiac sympathetic afferents by 41 %. Conversely, LA injection of 5-HT (40 microg kg(-1)) did not stimulate any of seven ischaemically insensitive cardiac afferents, although this group of afferents consistently responded to bradykinin (3 microg, LA). These data indicate that during myocardial ischaemia the activated platelets stimulate cardiac sympathetic afferents, at least in part, through a 5-HT(3) receptor mechanism.
Collapse
Affiliation(s)
- Liang-Wu Fu
- Department of Medicine, University of California, Irvine 92697, USA.
| | | |
Collapse
|
19
|
Villa RF, Gorini A, Hoyer S. ATPases of synaptic plasma membranes from hippocampus after ischemia and recovery during ageing. Neurochem Res 2002; 27:861-70. [PMID: 12396096 DOI: 10.1023/a:1020381829107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasticity and relationships between individual ATPases linked to energy-utilizing systems of hippocampus, a very sensitive functional area to both age and ischemia, were studied during ageing on synaptic plasma membranes of 1-year-old "adult" and 2-year-old "aged" rats after 15 min of complete cerebral ischemia and different reperfusion times (01, 24, 48, 72, and 96 h). Activities of Na+, K+, Mg(2+)-ATPase, Mg(2+)-ATPase ouabain insensitive, Na+, K(+)-ATPase, "direct" or "basal" Mg(2+)-ATPase, and acetylcholinesterase (AChE) were evaluated in synaptic plasma membranes, where they play the major role in the regulation of presynaptic nerve ending homeostasis. This in vivo study of recovery time-course from 15 mins of cerebral ischemia indicated specific biochemical assessments of functional meaning: (a) Na+K(+)-ATPase of synaptic plasma membranes in adult and aged animals is stimulated by ischemia; (b) this "hyperactivity" is more markedly related to adult than to aged animals; (c) these abnormalities still persist after 72 and 96 h during the recirculation times, indicating the delayed postischemic suffering of the brain; (d) specific Mg(2+)-ATPase enzyme system possess a lower catalytic power in aged animals than in adult ones, but remained unaltered in adult animals by ischemia and reperfusion; (e) Mg(2+)-ATPase is stimulated in aged animals by ischemia, further increasing during reperfusion up to 72-96 h, indicating the delayed hyperactivity of hippocampus; (f) the increased metabolic activity of hippocampus is indicated by the increased activity of cholinergic system; (g) integrity of synaptic plasma membranes seems not to be altered by 15 min ischemia to a critical extent to compromise their catalytic functionality during reperfusion; (h) AChE activity increases in both adult and aged at some survival times. There are logical reasons for the hypothesis that the modifications in ATPase's catalytic activities in synaptic plasma membranes, which have been modified by ischemia in presynaptic terminals, may play important functional role during recovery time in cerebral tissue in vivo, especially as regards its responsiveness to noxious stimuli, particularly during the recirculation period from acute (or chronic) brain injury.
Collapse
Affiliation(s)
- R F Villa
- Department of Physiological-Pharmacological Cellular-Molecular Sciences, University of Pavia, Italy.
| | | | | |
Collapse
|
20
|
James G, Butt AM. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 2002; 447:247-60. [PMID: 12151016 DOI: 10.1016/s0014-2999(02)01756-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Activation of purinoceptors by extracellular ATP is an important component of the glial response to injury in the central nervous system (CNS). ATP has been shown to evoke raised cytosolic [Ca(2+)] in astrocytes, oligodendrocytes, and microglia, the three major glial cell types in the CNS. Glial cells express a heterogenous collection of metabotropic P2Y and ionotropic P2X purinoceptors, which respectively mobilise Ca(2+) from intracellular stores and trigger Ca(2+) influx across the plasmalemma. It is likely that different receptors have distinct roles in glial cell physiology and pathology. Our studies on optic nerve glia in situ indicate that P2Y(1) and P2Y(2/4) receptors are activated at low ATP concentrations, suggesting they are the predominant purinoceptors mediating physiological Ca(2+) signalling. Glia also express P2X(1) and P2X(3) purinoceptors, which mediate fast, rapidly desensitising current and may also be important in signalling. At high concentrations, such as occur in CNS injury, ATP induces large and prolonged increases in glial [Ca(2+)](i) with a primary role for P2Y purinoceptors and inositol trisphosphate (IP(3))-dependent release of Ca(2+) from intracellular stores. In addition, we found that high concentrations of ATP activated a significant P2X component that did not desensitise or saturate and was dependent on extracellular Ca(2+). These are characteristic properties of the P2X(7) subtype, and we provide in situ evidence that application of the P2X(7) receptor agonist benzoyl-benzoyl ATP (BzATP) evokes raised [Ca(2+)](i) in optic nerve glia, and that the dye YO-PRO-1, which passes through pore-forming P2X(7) receptors, is taken up by astrocytes, oligodendrocytes and microglia. Glia also express P2X(2) and P2X(4) receptors that are also pore-forming in the presence of sustained high ATP concentrations and which may also be important in the glial injury response. There is evidence that activation of P2 purinoceptors is a key step in triggering reactive changes in glial cells, including expression of immediate early genes, induction of extracellular signal regulated kinase and cyclooxygenase-2, synthesis of phospholipase A(2), release of arachidonic acid, production of prostaglandins and release of interleukins. We show that the ATP-mediated increase in glial [Ca(2+)](i) is potentiated by arachidonic acid and reduced by the inhibition of phospholipase A(2) inhibition. Together, the results implicate ATP as a primary signalling molecule in glial cells and indicate specific roles for P2Y and P2X purinoceptors in glial cell pathology.
Collapse
Affiliation(s)
- Greg James
- Centre for Neuroscience Research, GKT Guy's Campus, King's College London, Hodgkin Building, SE1 1UL, London, UK
| | | |
Collapse
|
21
|
Hilliges M, Weidner C, Schmelz M, Schmidt R, Ørstavik K, Torebjörk E, Handwerker H. ATP responses in human C nociceptors. Pain 2002; 98:59-68. [PMID: 12098617 DOI: 10.1016/s0304-3959(01)00469-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microelectrode recordings of impulse activity in nociceptive C fibres were performed in cutaneous fascicles of the peroneal nerve at the knee level in healthy human subjects. Mechano-heat responsive C units (CMH), mechano-insensitive but heat-responsive (CH) as well as mechano-insensitive and heat-insensitive C units (CM(i)H(i)) were identified. A subgroup of the mechano-insensitive units was readily activated by histamine. We studied the responsiveness of these nociceptor classes to injection of 20 microl 5 mM adenosintriphosphate (ATP) using saline injections as control. Because of mechanical distension during injection, which typically activates mechano-responsive C fibres, interest was focused on responsiveness to ATP after withdrawal of the injection needle. Post-injection responses were observed in 17/27 (63%) mechano-responsive units and in 14/22 (64%) mechano-insensitive units. Excitation by ATP occurred in 9/11 CH units and in 5/11 CM(i)H(i) units. ATP responsive units were found both within the histamine-responsive and the histamine-insensitive group of mechano-insensitive fibres. ATP responses appeared with a delay of 0-180 s after completion of injection; responses were most pronounced during the first 1-3 min of activation, and irregular ongoing activity was observed for up to 10 or even 20 min. ATP responses were dose-dependent, concentrations lower than 5 mM gave weaker responses. No heat or mechanical sensitisation was observed in any of the major fibre classes. In conclusion, we have shown that ATP injections at high concentrations activate C-nociceptors in healthy human skin, without preference for mechano-responsive or mechano-insensitive units. ATP did not sensitise human C fibres for mechanical or heat stimuli. We discuss how various mechanisms might contribute to the observed responses to ATP.
Collapse
Affiliation(s)
- Marita Hilliges
- Department of Clinical Neurophysiology, University of Uppsala, S-75185 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Adenosine triphosphate (ATP) has a fundamental intracellular role as the universal source of energy for all living cells. The demonstration of its release into the extracellular space and the identification and localisation of specific receptors on target cells have been essential in establishing, after considerable resistance, its extracellular physiological roles. It is now generally accepted that ATP is a genuine neurotransmitter both in the central and peripheral nervous systems. As such, there are numerous arguments which prove that the release of ATP by nerve terminals is by exocytosis. In some non-neuronal cells, however, recent evidence suggests that ATP release could also be carrier-mediated and would involve ATP-binding cassette proteins (ABC), an ubiquitous family of transport ATPases.
Collapse
Affiliation(s)
- P Bodin
- Autonomic Neuroscience Institute, Royal Free and University College School of Medicine, University College London, UK
| | | |
Collapse
|
23
|
Abstract
ATP, besides an intracellular energy source, is an agonist when applied to a variety of different cells including cardiomyocytes. Sources of ATP in the extracellular milieu are multiple. Extracellular ATP is rapidly degraded by ectonucleotidases. Today ionotropic P2X(1--7) receptors and metabotropic P2Y(1,2,4,6,11) receptors have been cloned and their mRNA found in cardiomyocytes. On a single cardiomyocyte, micromolar ATP induces nonspecific cationic and Cl(-) currents that depolarize the cells. ATP both increases directly via a G(s) protein and decreases Ca(2+) current. ATP activates the inward-rectifying currents (ACh- and ATP-activated K(+) currents) and outward K(+) currents. P2-purinergic stimulation increases cAMP by activating adenylyl cyclase isoform V. It also involves tyrosine kinases to activate phospholipase C-gamma to produce inositol 1,4,5-trisphosphate and Cl(-)/HCO(3)(-) exchange to induce a large transient acidosis. No clear correlation is presently possible between an effect and the activation of a given P2-receptor subtype in cardiomyocytes. ATP itself is generally a positive inotropic agent. Upon rapid application to cells, ATP induces various forms of arrhythmia. At the tissue level, arrhythmia could be due to slowing of electrical spread after both Na(+) current decrease and cell-to-cell uncoupling as well as cell depolarization and Ca(2+) current increase. In as much as the information is available, this review also reports analog effects of UTP and diadenosine polyphosphates.
Collapse
Affiliation(s)
- G Vassort
- Institut National de la Santé et de la Recherche Médicale U. 390, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France.
| |
Collapse
|
24
|
Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 2001; 97:587-600. [PMID: 11157473 DOI: 10.1182/blood.v97.3.587] [Citation(s) in RCA: 573] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleotides are emerging as an ubiquitous family of extracellular signaling molecules. It has been known for many years that adenosine diphosphate is a potent platelet aggregating factor, but it is now clear that virtually every circulating cell is responsive to nucleotides. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular adenosine triphosphate (ATP). These effects are mediated through a specific class of plasma membrane receptors called purinergic P2 receptors that, according to the molecular structure, are further subdivided into 2 subfamilies: P2Y and P2X. ATP and possibly other nucleotides are released from damaged cells or secreted via nonlytic mechanisms. Thus, during inflammation or vascular damage, nucleotides may provide an important mechanism involved in the activation of leukocytes and platelets. However, the cell physiology of these receptors is still at its dawn, and the precise function of the multiple P2X and P2Y receptor subtypes remains to be understood.
Collapse
Affiliation(s)
- F Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Medical Genetics, and Center of Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Di Virgilio F. Dr. Jekyll/Mr. Hyde: the dual role of extracellular ATP. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:59-63. [PMID: 10869701 DOI: 10.1016/s0165-1838(00)00114-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- F Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Biotechnology Center, University of Ferrara, Via Borsari 46, I-44100, Ferrara, Italy.
| |
Collapse
|
26
|
Agteresch HJ, Dagnelie PC, van den Berg JW, Wilson JH. Adenosine triphosphate: established and potential clinical applications. Drugs 1999; 58:211-32. [PMID: 10473017 DOI: 10.2165/00003495-199958020-00002] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is a purine nucleotide found in every cell of the human body. In addition to its well established role in cellular metabolism, extracellular ATP and its breakdown product adenosine, exert pronounced effects in a variety of biological processes including neurotransmission, muscle contraction, cardiac function, platelet function, vasodilatation and liver glycogen metabolism. These effects are mediated by both P1 and P2 receptors. A cascade of ectonucleotidases plays a role in the effective regulation of these processes and may also have a protective function by keeping extracellular ATP and adenosine levels within physiological limits. In recent years several clinical applications of ATP and adenosine have been reported. In anaesthesia, low dose adenosine reduced neuropathic pain, hyperalgesia and ischaemic pain to a similar degree as morphine or ketamine. Postoperative opioid use was reduced. During surgery, ATP and adenosine have been used to induce hypotension. In patients with haemorrhagic shock, increased survival was observed after ATP treatment. In cardiology, ATP has been shown to be a well tolerated and effective pulmonary vasodilator in patients with pulmonary hypertension. Bolus injections of ATP and adenosine are useful in the diagnosis and treatment of paroxysmal supraventricular tachycardias. Adenosine also allowed highly accurate diagnosis of coronary artery disease. In pulmonology, nucleotides in combination with a sodium channel blocker improved mucociliary clearance from the airways to near normal in patients with cystic fibrosis. In oncology, there are indications that ATP may inhibit weight loss and tumour growth in patients with advanced lung cancer. There are also indications of potentiating effects of cytostatics and protective effects against radiation tissue damage. Further controlled clinical trials are warranted to determine the full beneficial potential of ATP, adenosine and uridine 5'-triphosphate.
Collapse
Affiliation(s)
- H J Agteresch
- Department of Internal Medicine II, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
27
|
Haskell CM, Mendoza E, Pisters KM, Fossella FV, Figlin RA. Phase II study of intravenous adenosine 5'-triphosphate in patients with previously untreated stage IIIB and stage IV non-small cell lung cancer. Invest New Drugs 1998; 16:81-5. [PMID: 9740548 DOI: 10.1023/a:1006018610986] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fifteen patients with Stage IIIB or IV non-small cell lung cancer gave informed consent to receive three or more 96-hour infusions of ATP at a dose of 50 mcg/kg/min or higher to determine whether ATP has antineoplastic activity against this tumor type and to better define the spectrum of toxicity for ATP given as a single agent. There were no objective complete or partial responses observed. The median survival of the overall group was 187 days and the median time to tumor progression was 113 days. The major toxic side effects were chest pain and dyspnea, leading to the cessation of treatment in 5 patients. We conclude that ATP at this dose and schedule of administration is an inactive agent in patients with advanced non-small cell lung cancer.
Collapse
Affiliation(s)
- C M Haskell
- Cancer Center and Department of Medicine, West Los Angeles VA Medical Center (111-N), CA 90073, USA
| | | | | | | | | |
Collapse
|
28
|
Stracke ML, Clair T, Liotta LA. Autotaxin, tumor motility-stimulating exophosphodiesterase. ADVANCES IN ENZYME REGULATION 1997; 37:135-44. [PMID: 9381968 DOI: 10.1016/s0065-2571(96)00017-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While nucleotides have a well-established role in intracellular metabolism, ATP and other nucleotides also have important extracellular roles in receptor-mediated signal transduction (34, 35). Extracellular or cell surface proteins capable of binding ATP and hydrolyzing phosphoester bonds of nucleotides are known to exist but their function has remained obscure. Our recent data point to a structure-function correlation between PDE activity and motility stimulation by ATX, indicating a biologically important functional role for the ecto/exophosdiesterases in the stimulation of cellular motility. Data from studies with PC-1 and gp130RB13-6 have suggested that cell surface PDE's may also play roles in cellular differentiation. Extracellular PDE activities, in combination with other nucleotidases, may result in ecto-nucleotidase cascades (36-38). These data suggest that ecto-/exo-enzymes may catalyze extracellular biochemical reactions that are important in the regulation of cell behavior.
Collapse
Affiliation(s)
- M L Stracke
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
29
|
Clair T, Lee HY, Liotta LA, Stracke ML. Autotaxin is an exoenzyme possessing 5'-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem 1997; 272:996-1001. [PMID: 8995394 DOI: 10.1074/jbc.272.2.996] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autotaxin (ATX) is an extracellular enzyme and an autocrine motility factor that stimulates pertussis toxin-sensitive chemotaxis in human melanoma cells at picomolar to nanomolar concentrations. This 125-kDa glycoprotein contains a peptide sequence identified as the catalytic site in type I alkaline phosphodiesterases (PDEs), and it possesses 5'-nucleotide PDE (EC 3.1.4.1) activity (Stracke, M. L., Krutzsch, H. C., Unsworth, E. J., Arestad, A., Cioce, V., Schiffmann, E., and Liotta, L. (1992) J. Biol. Chem. 267, 2524-2529; Murata, J., Lee, H. Y., Clair, T., Krutsch, H. C., Arestad, A. A., Sobel, M. E., Liotta, L. A., and Stracke, M. L. (1994) J. Biol. Chem. 269, 30479-30484). ATX binds ATP and is phosphorylated only on threonine. Thr210 at the PDE active site of ATX is required for phosphorylation, 5'-nucleotide PDE, and motility-stimulating activities (Lee, H. Y., Clair, T., Mulvaney, P. T., Woodhouse, E. C., Aznavoorian, S., Liotta, L. A., and Stracke, M. L. (1996) J. Biol. Chem. 271, 24408-24412). In this article we report that the phosphorylation of ATX is a transient event, being stable at 0 degrees C but unstable at 37 degrees C, and that ATX has adenosine-5'-triphosphatase (ATPase; EC 3.6.1.3) and ATP pyrophosphatase (EC 3.6.1.8) activities. Thus ATX catalyzes the hydrolysis of the phosphodiester bond on either side of the beta-phosphate of ATP. ATX also catalyzes the hydrolysis of GTP to GDP and GMP, of either AMP or PPi to Pi, and the hydrolysis of NAD to AMP, and each of these substrates can serve as a phosphate donor in the phosphorylation of ATX. ATX possesses no detectable protein kinase activity toward histone, myelin basic protein, or casein. These results lead to the proposal that ATX is capable of at least two alternative reaction mechanisms, threonine (T-type) ATPase and 5'-nucleotide PDE/ATP pyrophosphatase, with a common site (Thr210) for the formation of covalently bound reaction intermediates threonine phosphate and threonine adenylate, respectively.
Collapse
Affiliation(s)
- T Clair
- Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
30
|
Burnstock G, Wood JN. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol 1996; 6:526-32. [PMID: 8794102 DOI: 10.1016/s0959-4388(96)80060-2] [Citation(s) in RCA: 293] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The recent discovery of a P2X purinoceptor (a ligand-gated ion channel triggered by ATP) that is selectively expressed by small-diameter sensory neurons has led to the exploration of the sources of ATP involved in the initiation of different types of nociception and pain, including sympathetic nerves, endothelial cells and tumour cells. In addition, the anti-nociceptive actions of adenosine via prejunctional P1(A1) purinoceptors in the spinal cord and the pain-enhancing actions of adenosine via P1(A2) purinoceptors in the periphery have generated great interest in the development of P1 agonists and antagonists, as well as P2X antagonists as potential analgesic drugs.
Collapse
Affiliation(s)
- G Burnstock
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
31
|
Abstract
There have been hints over the years about the involvement of purines in pain, and we now have direct evidence with the cloning and characterisation of extracellular receptors for ATP (P2X-purinoceptors) on nociceptive sensory neurons. In this article, a hypothesis is put forward about the sources of ATP released to activate these receptors in three different pain conditions--as a cotransmitter from sympathetic nerves in causalgia and reflex sympathetic dystrophy; from endothelial cells in vascular pain, including migraine and angina; and from tumour cells in cancer. These findings are leading to an active search for selective P2-purinoceptor antagonists to alleviate pain.
Collapse
Affiliation(s)
- G Burnstock
- Department of Anatomy and Developmental Biology, University College London, UK
| |
Collapse
|
32
|
Abstract
We investigated the effects of several concentrations of extracellular ATP on the release of intracellular ATP by human umbilical vein endothelial cells (HUVEC) in primary cultures. When ATP is added to the medium of cultured EC at a concentration of 1 microM, it is readily degraded by extracellular enzymes; 10 microM ATP added to the culture medium provokes a transient but significant increase, followed by a decrease in the concentration of extracellular ATP. At a concentration of 100 microM, there was a significant release of ATP and its level was maintained in the culture medium throughout the experiment. Our results show that extracellular ATP leads to a sustained release of intracellular ATP by HUVEC. Such sustained self-perpetuating release of ATP is likely to play an important part in physiological and pathological local vascular control mechanisms.
Collapse
Affiliation(s)
- P Bodin
- Department of Anatomy and Developmental Biology, University College London, U.K
| | | |
Collapse
|
33
|
Prat AG, Reisin IL, Ausiello DA, Cantiello HF. Cellular ATP release by the cystic fibrosis transmembrane conductance regulator. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C538-45. [PMID: 8779917 DOI: 10.1152/ajpcell.1996.270.2.c538] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies from our laboratory indicate that members of the ATP-binding cassette (ABC) family of transporters, including P-glycoprotein and cystic fibrosis transmembrane conductance regulator (CFTR), are ATP-permeable channels. The physiological relevance of this novel transport mechanism is largely unknown. In the present study, intra- and extracellular ATP content, cellular ATP release, and O2 consumption before and after adenosine 3',5'-cyclic monophosphate (cAMP) stimulation were determined to assess the role of CFTR in the transport of ATP under physiological conditions. The functional expression of CFTR by the stable transfection of mouse mammary carcinoma cells, C1271, with human epithelial CFTR cDNA resulted in a stimulated metabolism, since both basal and cAMP-inducible O2 consumption were increased compared with mock-transfected cells. The stimulated (but not basal) O2 consumption was inhibited by diphenyl-2-carboxylic acid (DPC), a known inhibitor of CFTR. CFTR expression was also associated with the cAMP-activated and DPC-inhibitable release of intracellular ATP. The recovery of intracellular ATP from complete depletion after metabolic poisoning was also assessed under basal and cAMP-stimulated conditions. The various maneuvers indicate that CFTR may be an important contributor to the release of cellular ATP, which may help modify signal transduction pathways associated with secretory Cl- movement or other related processes. Changes in the CFTR-mediated delivery of nucleotides to the extracellular compartment may play an important role in the onset and reversal of the cystic fibrosis phenotype.
Collapse
Affiliation(s)
- A G Prat
- Renal Unit, Massachusetts General Hospital East, Charlestown 02129, USA
| | | | | | | |
Collapse
|
34
|
Benzi G, Gorini A, Ghigini B, Moretti A, Dagani F, Villa RF. Is the Mg(2+)-ATP-dependent proton pumping activity of the synaptic vesicles a factor involved in the cerebral hypoxia? Neurochem Res 1996; 21:7-18. [PMID: 8833218 DOI: 10.1007/bf02527666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The changes in the Mg(2+)-dependent V-type ATPase activity and the Mg(2+)-ATP-dependent H+ pumping activity of the synaptic vesicles from the cerebral cortex of rats submitted to intermittent chronic (4 weeks) mild or severe hypoxia were evaluated. The adaptation to the chronic severe hypoxia increases both the ATPase and the H+ pumping activities which are inhibited by NEM with an exponential relationship between the IC(50) values and the in vivo O2 concentration. The Mg(2+)-dependent increase in H+ pumping activity of synaptic vesicles from the rats subjected to in vivo chronic hypoxia may be antagonized by nigericin (dissipating delta pH) and by FCCP (dissipating delta pH and delta psi SV). In contrast, valinomycin (dissipating the delta psi SV) and facilitating an enhancement in delta pH) increases in vitro the H+ pumping activity that is inhibited by the addition of high concentration of K gluconate (reducing the rate of K+ efflux). The preincubation of vesicles from hypoxic rats with FCCP, but not with nigericin, inhibits the valinomycin-increased H+ pumping activity. L-glutamate increases the H+ pumping activity in synaptic vesicles from the cerebral cortex of chronic hypoxic rats, whereas other amino acids (i.e., L-aspartate and L-homocysteate) and glutamate analogs (i.e., quisqualate and ibotenate) are ineffective. The adaptation to both chronic intermittent severe hypoxia and in vivo treatment with posatireline causes a decrease in the Mg(2+)-ATPase activity consistent with the decrease in the H+ pumping one of the synaptic vesicles. The addition of nigericin into incubation medium magnifies the decrease in the H+ pumping activity, while the addition of FCCP is ineffective, suggesting that the treatment with posatireline interferes with the delta psi SV component in the delta mu H+ of the synaptic vesicles from rats submitted to chronic hypoxia. The results of the in vivo and in vitro experiments suggest that in the synaptic vesicles from hypoxic rats the delta psi SV component in delta mu H+ may be most effective in increasing the Mg(2+)-ATP-dependent H+ pumping activity.
Collapse
Affiliation(s)
- G Benzi
- Istituto di Farmacologia, Università di Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Skiba-Lahiani M, Auger J, Terribile J, Fattal E, Delattre J, Puisieux F, Jouannet P. Stimulation of movement and acrosome reaction of human spermatozoa by PC12 liposomes encapsulating ATP. INTERNATIONAL JOURNAL OF ANDROLOGY 1995; 18:287-94. [PMID: 8719844 DOI: 10.1111/j.1365-2605.1995.tb00564.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of co-incubating human spermatozoa with 8 mmol/L dilauroylphosphatidylcholine (PC12) liposomes containing 6 mmol/L adenosine 5'-triphosphate (LATP) was assessed by CASA and compared to that obtained with blank PC12 liposomes (LB). The aim of this study was to investigate if such treatments can improve sperm movement and sustain sperm motility over time. Significant and similar increases in straight-line velocity and linearity of sperm movement in B2 capacitating medium (both p < 0.01) were obtained with LB and LATP treatments (final concentration: 0.38 mmol/L PC12 and 0.5 mmol/L ATP) while in Tyrode's medium supplemented with 10 mg/mL BSA, these movement parameters were increased significantly only in sperm aliquots treated with LATP. Furthermore, after incubation for 0.5 h in Tyrode's, a bioluminescence assay of intracellular ATP indicated no significant change in ATP concentration for LATP-treated spermatozoa while the ATP content of control and LB-treated spermatozoa decreased significantly during the same period (both p < 0.05). The effect of liposomes on the acrosome reaction was also investigated jointly with CASA. These experiments were performed by fluorescence microscopy, using PSA-FITC and the supravital stain Hoechst 33258. After a precapacitation period of 3 h in BWW medium the spermatozoa were incubated for 1 h with LATP, LB, LB+free ATP and free ATP alone (final concentration 0.5 mmol/L ATP). Under these conditions the percentage of acrosome-reacted spermatozoa was increased similarly after LATP and LB treatments compared to control (respectively from 4.9 to 12%, p < 0.01 and 4.9 to 11.3%, p < 0.05) but the percentage of true acrosome-reacted spermatozoa, and the values for all movement characteristics (except percentage motility) were increased significantly only with LATP treatment. The results indicate the potential of PC12 vesicles for introducing highly hydrophilic compounds into spermatozoa, as well as for modulating membrane structures and functions required for fertilization.
Collapse
|
36
|
SKIBA-LAHIANI M, AUGER J, TERRIBILE J, FATTAL E, DELATTRE J, PUISIEUX F, JOUANNET P. Stimulation of movement and acrosome reaction of human spermatozoa by PC12 liposomes encapsulating ATP. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1365-2605.1995.tb00419.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Humphries RG, Tomlinson W, Clegg JA, Ingall AH, Kindon ND, Leff P. Pharmacological profile of the novel P2T-purinoceptor antagonist, FPL 67085 in vitro and in the anaesthetized rat in vivo. Br J Pharmacol 1995; 115:1110-6. [PMID: 7582510 PMCID: PMC1909008 DOI: 10.1111/j.1476-5381.1995.tb15925.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The role of endogenous ADP in platelet aggregation in vivo remains unclear due to the lack of suitable P2T-antagonist probes. This paper describes the potency, selectivity and specificity of the novel P 2T-purinoceptor antagonist, FPL 67085 (2-propylthio-D-beta,gamma-dichloromethylene ATP) both in vitro and in the anaesthetized rat in vivo. 2. FPL 67085 (3-30 nM) produced concentration-dependent rightward displacement of the concentration-effect (E/[A]) curve for ADP-induced aggregation of human washed platelets with no effect on ADP-independent aggregation at < or = 10 microM. 3. Logistic fitting of ADP E/[A] data indicated that the antagonist effect of FPL 67085 did not consistently accord with simple competition: in some preparations depression of the asymptote was seen. Schild analysis of data combined from all preparations, regardless of the antagonist profile observed, gave an apparent pKB of 8.9 (slope parameter 0.90). 4. The potency of FPL 67085 was unaffected by the P1-purinoceptor antagonist, 8-sulphophenyltheophylline, was similar (IC50 0.6-3.8 nM) in human and rat washed platelets or whole blood and, in rat blood, did not change following 2-30 min incubation at 37 degrees C. 5. FPL 67085 was a weak (pA50 approximately 4.2) partial agonist in tissues containing P2X- or P2Y-purinoceptors, indicating some 30,000 fold selectivity for the P2T-subtype. 6. In anaesthetized rats, intravenous infusion of FPL 67085 produced rapidly-reversible, dose-related inhibition of ADP-induced platelet aggregation measured ex vivo (ID50 1.3 micrograms kg-1 min-1) with no significant effect on haemodynamics or circulating cell counts. 7. Thus, FPL 67085 is a potent, specific and selective inhibitor of ADP-induced platelet aggregation both in vitro and in vivo. As such, it represents a novel pharmacological tool to define the role of endogenous ADP in thrombosis and the potential of P2T-purinoceptor antagonists as a novel class of infusible anti-thrombotic agents for acute use in man.
Collapse
Affiliation(s)
- R G Humphries
- Department of Pharmacology, Research & Development Laboratories, Loughborough, Leics
| | | | | | | | | | | |
Collapse
|
38
|
Reisin I, Prat A, Abraham E, Amara J, Gregory R, Ausiello D, Cantiello H. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32033-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa RF. Age-related changes by hypoxia and TRH analogue on synaptic ATPase activities. Neurobiol Aging 1994; 15:409-17. [PMID: 7969717 DOI: 10.1016/0197-4580(94)90072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Some synaptosomal energy-requiring ATPases were evaluated in the cerebral cortex from 3- and 24-month-old normoxic rats and rats submitted to either mild or severe chronic (4 weeks) intermittent normobaric hypoxia. Furthermore, 4-week treatment with saline or TRH analogue posatireline was performed. The activities of Na+,K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, and Ca2+,Mg(2+)-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. With the exception of the high-affinity Ca(2+)-ATPase, aging induced a decrease in the ATPase activities from normoxic rats. The adaptation to chronic intermittent mild hypoxia was characterized by an increase in the activity of Mg(2+)-ATPase in 3-month-old rats, concomitant with a decrease in the activities of: a) Na+,K(+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and b) Ca2+,Mg(2+)-ATPase in 3-month-old ones. The TRH analogue posatireline increased the high-affinity Ca(2+)-ATPase in both 3- and 24-month-old hypoxic rats, concomitant with an increase in Mg(2+)-ATPase activity in 24-month-old ones. The adaptation to chronic intermittent severe hypoxia was characterized by a decrease in the activities of: a) Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and b) low-affinity Ca(2+)-ATPase only in 24-month-old ones. The effect on Mg(2+)-ATPase activity was characterized by a decrease in the enzymatic form located in the synaptic plasma membranes, concomitant with an increase in the form located in the synaptic vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
40
|
Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa RF. Synaptosomal non-mitochondrial ATPase activities: age-related alterations by chronic normobaric intermittent hypoxia. Neurochem Int 1994; 25:61-7. [PMID: 7950972 DOI: 10.1016/0197-0186(94)90054-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In synaptosomes and synaptosomal subfractions (namely, synaptosomal plasma membranes and synaptic vesicles) the age-related alteration in the plasticity of synaptic energy-requiring ATPases (Na+, K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase and Ca2+, Mg(2+)-ATPase) were assayed in the cerebral cortex from 3- and 24-month-old normoxic rats and rats subjected to either mild or severe chronic (4 weeks) intermittent normobaric hypoxia. With the exception of the high-affinity Ca(2+)-ATPase, aging induced a decrease in the ATPase activities from normoxic rats. The adaptation to mild hypoxia was characterized by an increase in the activity of Mg(2+)-ATPase in 3-month-old rats, concomitant with a decrease in the activities of: (i) Na+,K(+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats; and (ii) Ca2+,Mg(2+)-ATPase in 3-month-old ones. The adaptation to chronic intermittent severe hypoxia was characterized by a decrease in the activities of: (i) Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats and (ii) low-affinity Ca(2+)-ATPase only in 24-month-old ones. The effect on Mg(2+)-ATPase activity was characterized by a decrease in the activity of the enzymatic form located in the synaptic plasma membranes (involved in ATP hydrolysis to adenosine production), concomitant with an increase in the activity of the form located in the synaptic vesicles (involved in the turnover of transmitters, e.g., glutamate).
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
41
|
MacFarlane GD, Sampson DE, Clawson DJ, Clawson CC, Kelly KL, Herzberg MC. Evidence for an ecto-ATPase on the cell wall of Streptococcus sanguis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1994; 9:180-5. [PMID: 7936725 DOI: 10.1111/j.1399-302x.1994.tb00056.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Certain strains of viridans streptococci bind platelets, which release ATP from dense granules and then aggregate. By hydrolyzing the released ATP to the platelet agonist, ADP, cell wall-associated ATPase activity of Streptococcus sanguis may amplify the aggregation of platelets. To identify and characterize this ecto-ATPase activity, whole cells were incubated with [14C]-ATP. The cell-free nucleotides were separated by thin-layer chromatography and quantified by liquid scintillation counting. Whole-cell activity showed temperature and pH optima in the physiological range. To isolate a soluble fraction with ATPase activity from the cell wall, whole cells were digested under osmotically stable conditions to produce protoplasts. Protoplasts and cells were separated from soluble cell wall materials by centrifugation. ATPase activity in cell fractions was identified by zymograms of native 8% polyacrylamide gels after electrophoresis. The ecto-ATPase preparation, membrane and cytoplasmic ATPase in lysed protoplasts showed different zymograms and sensitivity to inhibition by DCCD, ouabain vanadate, azide and NEM. In electron micrographs of ultrathin sections of cells of S. sanguis, ATPase activity was localized to the cell wall. Since the pattern of localization to the wall changed with the phase of growth, the ecto-ATPase of S. sanguis may be associated with the development and maintenance of the cell wall.
Collapse
Affiliation(s)
- G D MacFarlane
- Department of Preventive Sciences, School of Dentistry, University of Minnesota, Minneapolis
| | | | | | | | | | | |
Collapse
|
42
|
Benzi G, Gorini A, Ghigini B, Arnaboldi R, Villa RF. Modifications by hypoxia and drug treatment of cerebral ATPase plasticity. Neurochem Res 1994; 19:517-24. [PMID: 8065506 DOI: 10.1007/bf00967332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The plasticity of synaptosomal non-mitochondrial ATPases was evaluated in cerebral cortex from 3-month-old normoxic rats and rats subjected to either mild or severe intermittent normobaric hypoxia [12 hr daily exposure to N2:O2 (90:10 or 91.5:8.5) for four weeks]. The activities of Na+, K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase, and Ca2+,Mg(2+)-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The evaluations were performed after a 4-week treatment with saline (controls) or alpha-adrenergic agents (delta-yohimbine, clonidine), a vasodilator compound (papaverine), and an oxygen-partial pressure increasing agent (almitrine). These treatments differently changed the adaptation to chronic intermittent hypoxia characterized by a decrease in the activity of Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase, and high-affinity Ca(2+)-ATPase, concomitant with a modification in the activity of Mg(2+)-ATPase supported in a different way by the enzymatic forms located into the synaptosomal plasma membranes and synaptic vesicles.
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology-State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
43
|
Lasso de la Vega MC, Terradez P, Obrador E, Navarro J, Pellicer JA, Estrela JM. Inhibition of cancer growth and selective glutathione depletion in Ehrlich tumour cells in vivo by extracellular ATP. Biochem J 1994; 298 ( Pt 1):99-105. [PMID: 8129737 PMCID: PMC1137988 DOI: 10.1042/bj2980099] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the effect of extracellular ATP on tumour-cell proliferation and GSH levels in Ehrlich-ascites-tumour-bearing mice. After daily administration of exogenous ATP (1 mmol/kg) during 7 days, we found a 56% inhibition of tumour growth, precisely when controls show the highest rates of cell proliferation and the highest levels of GSH. This effect is accompanied by a decrease in GSH content in the tumour, but not in normal tissues. The decrease in GSH concentration within the cancer cells is associated with a decrease in gamma-glutamylcysteine synthetase activity and in protein synthesis. Growth inhibition is mediated by generation of extracellular adenosine, which subsequently increases intracellular levels of ATP and decreases intracellular levels of UTP in the cancer cells. Our results suggest that inhibition of tumour growth by ATP is due to an adenosine-dependent pyrimidine starvation effect.
Collapse
|
44
|
Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa RF. Age-related alterations by chronic intermittent hypoxia on cerebral synaptosomal ATPase activities. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:159-71. [PMID: 7897388 DOI: 10.1007/978-3-7091-9350-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The age-related alterations in the plasticity of synaptic energy-requiring ATPases [Na+,K(+)-ATPase, low- and high-affinity Ca(2+)-ATPase, Mg(2+)-ATPase, and Ca2+,Mg(2+)-ATPase] were assayed in synaptosomes and synaptosomal subfractions [namely, synaptosomal plasma membranes and synaptic vesicles] in the cerebral cortex from 3- and 24-month-old normoxic rats and rats subjected to either mild or severe chronic (four weeks) intermittent normobaric hypoxia. With the exception of the high-affinity Ca(2+)-ATPase, aging induced a decrease in the ATPase activities from normoxic rats. The adaptation to mild hypoxia was characterized by an increase in the activity of Mg(2+)-ATPase in 3-month-old rats, concomitant with a decrease in the activities of: (i) Na+,K(+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and (ii) Ca2+,Mg(2+)-ATPase in 3-month-old ones. The adaptation to chronic intermittent severe hypoxia was characterized by a decrease in the activities of: (i) Na+,K(+)-ATPase, Ca2+,Mg(2+)-ATPase and high-affinity Ca(2+)-ATPase in both 3- and 24-month-old rats, and (ii) low-affinity Ca(2+)-ATPase only in 24-month-old ones. The effect on Mg(2+)-ATPase activity was characterized by a decrease in the activity of the enzymatic form located in the synaptic plasma membranes [involved in ATP hydrolysis to adenosine production], concomitant with an increase in the activity of the form located in the synaptic vesicles [involved in the turnover of transmitters, e.g., glutamate].
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, State University of Pavia, Italy
| | | | | | | | | |
Collapse
|
45
|
Frassetto SS, Dias RD, Sarkis JJ. Characterization of an ATP diphosphohydrolase activity (APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 1993; 129:47-55. [PMID: 8177226 DOI: 10.1007/bf00926575] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the present report we describe an apyrase (ATP diphosphohydrolase, EC 3.6.1.5) in rat blood platelets. The enzyme hydrolyses almost identically quite different nucleoside di- and triphosphates. The calcium dependence and pH requirement were the same for the hydrolysis of ATP and ADP and the apparent Km values were similar for both Ca(2+)-ATP and Ca(2+)-ADP as substrates. Ca(2+)-ATP and Ca(2+)-ADP hydrolysis could not be attributed to the combined action of different enzymes because adenylate kinase, inorganic pyrophosphatase and nonspecific phosphatases were not detected under our assay conditions. The Ca(2+)-ATPase and Ca(2+)-ADPase activity was insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors, thus excluding these enzymes as contaminants. The results demonstrate that rat blood platelets contain an ATP diphosphohydrolase involved in the hydrolysis of ATP and ADP which are vasoactive and platelet active adenine nucleotides.
Collapse
Affiliation(s)
- S S Frassetto
- Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porto Alegre, Brasil
| | | | | |
Collapse
|
46
|
Benzi G, Gorini A, Ghigini B, Arnaboldi R, Villa RF. Synaptosomal non-mitochondrial ATPase activities and drug treatment. Neurochem Res 1993; 18:719-26. [PMID: 8099718 DOI: 10.1007/bf00966787] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Energy-using non-mitochondrial ATPases were assayed in rat cerebral cortex synaptosomes and synaptosomal subfractions, namely synaptosomal plasma membranes and synaptic vesicles. The following enzyme activities were evaluated: Na+, K+ -ATPase; high- and low-affinity Ca2+ -ATPase; basal Mg(2+)-ATPase; Ca2+, Mg(2+)-ATPase. The evaluations were performed after four week-treatment with saline [controls] or alpha-adrenergic agents (delta-yohimbine, clonidine), energy-metabolism interfering compound (theniloxazine), and oxygen-partial pressure increasing agent (almitrine), in order to define the plasticity and the selective changes in individual ATPases. In rat cerebral cortex, the enzyme adaptation to four-week-treatment with delta-yohimbine or clonidine was characterized by increase in both high- and low-affinity Ca2+ -ATPase activities. The action involves the enzyme form located in the synaptic plasma membranes. The enzyme adaptation to the subchronic treatments with theniloxazine or almitrine was characterized by increase in Na+, K(+)-ATPase or Mg(2+)-ATPase activities, respectively. The action involves the enzymatic forms located in the synaptic plasma membranes. Thus, the pharmacodynamic effects of the agents tested should also be related to the changes induced in the activity of some specific synaptosomal non-mitochondrial ATPases.
Collapse
Affiliation(s)
- G Benzi
- Istituto di Farmacologia, Università di Pavia, Italia
| | | | | | | | | |
Collapse
|
47
|
Benzi G, Gorini A, Arnaboldi R, Ghigini B, Villa R. Effect of intermittent mild hypoxia and drug treatment on synaptosomal nonmitochondrial ATPase activities. J Neurosci Res 1993; 34:654-63. [PMID: 8315664 DOI: 10.1002/jnr.490340609] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synaptosomal nonmitochondrial ATPases linked to the energy-utilizing systems were evaluated in cerebral cortex from normoxic rats and rats submitted to mild intermittent normobaric hypoxia [12 hr daily exposure to N2:O2 (90:10) mixture for 4 weeks]. The activities of Na+,K(+)-ATPase; high- and low-affinity Ca(2+)-ATPase; basal Mg(2+)-ATPase; and Ca2+, Mg(2+)-ATPase were assayed in synaptosomes and synaptosomal subfractions, namely, synaptosomal plasma membranes and synaptic vesicles. The evaluations were performed either in normoxic rats or in hypoxic rats submitted to 4-week treatment with saline (controls) or a vasodilator agent (papaverine), an energy-metabolism interfering agent (theniloxazine), a calcium blocker (nicardipine), and a lipid-metabolism interfering agent (phosphatidylcholine) in order to define the plasticity and the selective changes in individual ATPases. In synaptosomes from rat cerebral cortex, the enzyme adaptation to the daily mild intermittent hypoxia for 4 weeks was characterized by an increase in the activity of Mg(2+)-ATPase, concomitant with a decrease in the activities of Na+,K(+)-ATPase, high-affinity Ca(2+)-ATPase, and Ca2+, Mg(2+)-ATPase. In hypoxic rats the enzyme adaptation to the 4-week treatment with phosphatidylcholine was characterized by an increase in Ca2+, Mg(2+)-ATPase activity and a decrease in Mg(2+)-ATPase activity. The action involves the enzymatic form located in the synaptic plasma membranes. In hypoxic rats the adaptation to the 4 week treatment with nicardipine was characterized by an increase in high-affinity Ca(2+)-ATPase activity, while the 4-week-treatment with theniloxazine induced an increase in Na+,K(+)-ATPase activity. The actions of both nicardipine and theniloxazine were related to the enzymatic forms located in the synaptic plasma membranes. The effects on the biophase induced by the sequential cycles of hypoxia/normoxia and the treatment with the various agents tested should also be related to the changes induced in the activity of some synaptosomal ATPases.
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology University of Pavia, Italy
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- H Zimmermann
- AK Neurochemie, Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| |
Collapse
|
49
|
Matsui T. Biphasic rise caused by extracellular ATP in intracellular calcium concentration in bovine adrenocortical fasciculata cells. Biochem Biophys Res Commun 1991; 178:1266-72. [PMID: 1908234 DOI: 10.1016/0006-291x(91)91030-g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We examined the effect of extracellular ATP on intracellular calcium concentration ([Ca2+]i) in bovine adrenocortical fasciculata cells. The suspended cells and the monolayer cells on coverslips were loaded with fura2. We found that ATP caused a rapid transient rise [Ca2+]i in dose-dependent manner in the presence of extracellular Ca2+ and that the rise in [Ca2+]i caused by ATP was biphasic. We did not observe the second phase in the absence of extracellular Ca2+. These results suggest that the first rise in [Ca2+]i caused by ATP is due to Ca2+ release from intracellular Ca2+ stores and subsequent rise due to Ca2+ influx across the plasma membrane. Furthermore, we found that the first phase of the monolayer cells consisted of two peaks. So it is possible that Ca2+ release from intracellular Ca2+ stores caused by ATP is induced by two different manners in adrenocortical fasciculata cells. In addition, monolayer cells are more useful than suspended ones in the examination of Ca2+ mobilization in adrenocortical fasciculata cells.
Collapse
Affiliation(s)
- T Matsui
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Pizzo P, Zanovello P, Bronte V, Di Virgilio F. Extracellular ATP causes lysis of mouse thymocytes and activates a plasma membrane ion channel. Biochem J 1991; 274 ( Pt 1):139-44. [PMID: 1705798 PMCID: PMC1149931 DOI: 10.1042/bj2740139] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extracellular ATP (ATPo) caused a concentration-dependent lysis of mouse thymocytes. Lysis, as judged by release of the cytosolic enzyme lactate dehydrogenase, was preceded by depolarization of the plasma membrane and by Ca2+ influx. Both Na+ uptake (which sustained plasma membrane depolarization) and Ca2+ influx showed (1) the same dependence on the ATPo concentration; (2) the same nucleotide specificity; and (3) the same Hill coefficient. However, whereas the rise in the cytosolic free Ca2+ concentration ([Ca2+]i) was fully inhibited by the known Ca2+ blocker verapamil, plasma membrane depolarization was enhanced under these conditions. Plasma membrane depolarization was greater and was shifted to lower ATPo concentrations in the absence of extracellular Ca2+ (Ca2+o), whereas the rise in [Ca2+]i was greater in Na(+)-free media. Plasma membrane depolarization also occurred in Na(+)-free choline- or methylglucamine-containing media, and was potentiated by chelation of free divalent ions with EDTA, supporting previous reports pointing to ATP4-as the active species. Among a number of purine and pyrimidine nucleotides, only adenosine 5'-[gamma-thio]triphosphate and ADP were partially effective. Furthermore, ethidium bromide (Mr 380), Lucifer Yellow (Mr 463) and Eosin Yellowish (Mr 692) did not permeate through the ATPo-activated channel. These findings suggest that lytic effects of ATPo in mouse thymocytes depend on the activation of a membrane channel with low selectivity for cations and an Mr cut-off of 200.
Collapse
Affiliation(s)
- P Pizzo
- National Research Council Unit for the Study of the Physiology of Mitochondria, University of Padova, Italy
| | | | | | | |
Collapse
|