1
|
Neumann E, Cramer T, Acuña MA, Scheurer L, Beccarini C, Luscher B, Wildner H, Zeilhofer HU. γ1 GABA A Receptors in Spinal Nociceptive Circuits. J Neurosci 2024; 44:e0591242024. [PMID: 39137998 PMCID: PMC11466064 DOI: 10.1523/jneurosci.0591-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
GABAergic neurons and GABAA receptors (GABAARs) are critical elements of almost all neuronal circuits. Most GABAARs of the CNS are heteropentameric ion channels composed of two α, two β, and one γ subunits. These receptors serve as important drug targets for benzodiazepine (BDZ) site agonists, which potentiate the action of GABA at GABAARs. Most GABAAR classifications rely on the heterogeneity of the α subunit (α1-α6) included in the receptor complex. Heterogeneity of the γ subunits (γ1-γ3), which mediate synaptic clustering of GABAARs and contribute, together with α subunits, to the benzodiazepine (BDZ) binding site, has gained less attention, mainly because γ2 subunits greatly outnumber the other γ subunits in most brain regions. Here, we have investigated a potential role of non-γ2 GABAARs in neural circuits of the spinal dorsal horn, a key site of nociceptive processing. Female and male mice were studied. We demonstrate that besides γ2 subunits, γ1 subunits are significantly expressed in the spinal dorsal horn, especially in its superficial layers. Unlike global γ2 subunit deletion, which is lethal, spinal cord-specific loss of γ2 subunits was well tolerated. GABAAR clustering in the superficial dorsal horn remained largely unaffected and antihyperalgesic actions of HZ-166, a nonsedative BDZ site agonist, were partially retained. Our results thus suggest that the superficial dorsal horn harbors functionally relevant amounts of γ1 subunits that support the synaptic clustering of GABAARs in this site. They further suggest that γ1 containing GABAARs contribute to the spinal control of nociceptive information flow.
Collapse
Affiliation(s)
- Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Camilla Beccarini
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bernhard Luscher
- Departments of Biology, Biochemistry and Molecular Biology, and Psychiatry and Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
2
|
Upadhyay A, Gradwell MA, Vajtay TJ, Conner J, Sanyal AA, Azadegan C, Patel KR, Thackray JK, Bohic M, Imai F, Ogundare SO, Yoshida Y, Abdus-Saboor I, Azim E, Abraira VE. The Dorsal Column Nuclei Scale Mechanical Sensitivity in Naive and Neuropathic Pain States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581208. [PMID: 38712022 PMCID: PMC11071288 DOI: 10.1101/2024.02.20.581208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.
Collapse
Affiliation(s)
- Aman Upadhyay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Neuroscience PhD program at Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Mark A Gradwell
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Thomas J Vajtay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - James Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arnab A Sanyal
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chloe Azadegan
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Komal R Patel
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Joshua K Thackray
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Manon Bohic
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Simon O Ogundare
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria E Abraira
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Lead contact
| |
Collapse
|
3
|
Yang YY, Du LX, Zhu JY, Yi T, Yang YC, Qiao Z, Maoying QL, Chu YX, Wang YQ, Mi WL. Antipruritic effects of geraniol on acute and chronic itch via modulating spinal GABA/GRPR signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154969. [PMID: 37516088 DOI: 10.1016/j.phymed.2023.154969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND PURPOSE Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.
Collapse
Affiliation(s)
- Ya-Yue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Xia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Yu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ting Yi
- Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ya-Chen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Maoying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science; Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Rodríguez-Palma EJ, De la Luz-Cuellar YE, Islas-Espinoza AM, Félix-Leyva AE, Shiers SI, García G, Torres-Lopez JE, Delgado-Lezama R, Murbartián J, Price TJ, Granados-Soto V. Activation of α 6 -containing GABA A receptors induces antinociception under physiological and pathological conditions. Pain 2023; 164:948-966. [PMID: 36001074 PMCID: PMC9950299 DOI: 10.1097/j.pain.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The loss of GABAergic inhibition is a mechanism that underlies neuropathic pain. Therefore, rescuing the GABAergic inhibitory tone through the activation of GABA A receptors is a strategy to reduce neuropathic pain. This study was designed to elucidate the function of the spinal α 6 -containing GABA A receptor in physiological conditions and neuropathic pain in female and male rats. Results show that α 6 -containing GABA A receptor blockade or transient α 6 -containing GABA A receptor knockdown induces evoked hypersensitivity and spontaneous pain in naive female rats. The α 6 subunit is expressed in IB4 + and CGRP + primary afferent neurons in the rat spinal dorsal horn and dorsal root ganglia but not astrocytes. Nerve injury reduces α 6 subunit protein expression in the central terminals of the primary afferent neurons and dorsal root ganglia, whereas intrathecal administration of positive allosteric modulators of the α 6 -containing GABA A receptor reduces tactile allodynia and spontaneous nociceptive behaviors in female, but not male, neuropathic rats and mice. Overexpression of the spinal α 6 subunit reduces tactile allodynia and restores α 6 subunit expression in neuropathic rats. Positive allosteric modulators of the α 6 -containing GABA A receptor induces a greater antiallodynic effect in female rats and mice compared with male rats and mice. Finally, α 6 subunit is expressed in humans. This receptor is found in CGRP + and P2X3 + primary afferent fibers but not astrocytes in the human spinal dorsal horn. Our results suggest that the spinal α 6 -containing GABA A receptor has a sex-specific antinociceptive role in neuropathic pain, suggesting that this receptor may represent an interesting target to develop a novel treatment for neuropathic pain.
Collapse
Affiliation(s)
- Erick J. Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Yarim E. De la Luz-Cuellar
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M. Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Adalberto E. Félix-Leyva
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Stephanie I. Shiers
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge E. Torres-Lopez
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
5
|
Komisaruk BR, Rodriguez del Cerro MC. Orgasm and Related Disorders Depend on Neural Inhibition Combined With Neural Excitation. Sex Med Rev 2022; 10:481-492. [PMID: 37051963 DOI: 10.1016/j.sxmr.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Prevalent models of sexual desire, arousal and orgasm postulate that they result from an excitatory process, whereas disorders of sexual desire, arousal and orgasm result from an inhibitory process based on psychosocial, pharmacological, medical, and other factors. But neuronal excitation and active neuronal inhibition normally interact at variable intensities, concurrently and continuously. We propose herein that in conjunction with neuronal excitation, neuronal inhibition enables the generation of the intense, non-aversive pleasure of orgasm. When this interaction breaks down, pathology can result, as in disorders of sexual desire, arousal, and orgasm, and in anhedonia and pain. For perspective, we review some fundamental behavioral and (neuro-) physiological functions of neuronal excitation and inhibition in normal and pathological processes. OBJECTIVES To review evidence that the variable balance between neuronal excitation and active neuronal inhibition at different intensities can account for orgasm and its disorders. METHODS We selected studies from searches on PubMed, Google Scholar, Dialnet, and SciELO for terms including orgasm, neuronal development, Wallerian degeneration, prenatal stress, parental behavior, sensorimotor, neuronal excitation, neuronal inhibition, sensory deprivation, anhedonia, orgasmic disorder, hypoactive sexual desire disorder, persistent genital arousal disorder, sexual pain. RESULTS We provide evidence that the intensity of neuronal inhibition dynamically covaries concurrently with the intensity of neuronal excitation. Differences in these relative intensities can facilitate the understanding of orgasm and disorders of orgasm. CONCLUSION Neuronal excitation and neuronal inhibition are normal, continuously active processes of the nervous system that are necessary for survival of neurons and the organism. The ability of genital sensory stimulation to induce concurrent neuronal inhibition enables the stimulation to attain the pleasurable, non-aversive, high intensity of excitation characteristic of orgasm. Excessive or deficient levels of neuronal inhibition relative to neuronal excitation may account for disorders of sexual desire, arousal and orgasm.
Collapse
|
6
|
Leonardon B, Cathenaut L, Vial-Markiewicz L, Hugel S, Schlichter R, Inquimbert P. Modulation of GABAergic Synaptic Transmission by NMDA Receptors in the Dorsal Horn of the Spinal Cord. Front Mol Neurosci 2022; 15:903087. [PMID: 35860500 PMCID: PMC9289521 DOI: 10.3389/fnmol.2022.903087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
The dorsal horn (DH) of the spinal cord is an important structure involved in the integration of nociceptive messages. Plastic changes in the properties of neuronal networks in the DH underlie the development of analgesia as well as of hyperalgesia and allodynia in acute and chronic pain states. Two key mechanisms are involved in these chronic pain states: increased electrical activities and glutamate release leading to the recruitment of NMDAr and plastic changes in the synaptic inhibition. Although: (1) the balance between excitation and inhibition is known to play a critical role in the spinal network; and (2) plastic changes in spinal excitation and inhibition have been studied separately, the relationship between these two mechanisms has not been investigated in detail. In the present work, we addressed the role of NMDA receptors in the modulation of GABAergic synaptic transmission in the DH network. Using tight-seal whole-cell recordings on adult mice DH neurons, we characterized the effect of NMDAr activation on inhibitory synaptic transmission and more especially on the GABAergic one. Our results show that, in a subset of neurons recorded in lamina II, NMDAr activation facilitates spontaneous and miniature GABAergic synaptic transmission with a target specificity on GABAergic interneurons. In contrast, NMDA reduced the mean amplitude of evoked GABAergic IPSCs. These results show that NMDAr modulate GABAergic transmission by a presynaptic mechanism of action. Using a pharmacological approach, we investigated the composition of NMDAr involved in this modulation of GABAergic synaptic transmission. We found that the NMDA-induced facilitation was mediated by the activation of NMDAr containing GluN2C/D subunits. Altogether, our results bring new insights on nociceptive information processing in the spinal cord network and plastic changes in synaptic inhibition that could underlie the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Benjamin Leonardon
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Lou Cathenaut
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Louise Vial-Markiewicz
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - Rémy Schlichter
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Perrine Inquimbert
- Centre National de la Recherche Scientifique, UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- *Correspondence: Perrine Inquimbert
| |
Collapse
|
7
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
8
|
Delgado‐Lezama R, Bravo‐Hernández M, Franco‐Enzástiga Ú, De la Luz‐Cuellar YE, Alvarado‐Cervantes NS, Raya‐Tafolla G, Martínez‐Zaldivar LA, Vargas‐Parada A, Rodríguez‐Palma EJ, Vidal‐Cantú GC, Guzmán‐Priego CG, Torres‐López JE, Murbartián J, Felix R, Granados‐Soto V. The role of spinal cord extrasynaptic α 5 GABA A receptors in chronic pain. Physiol Rep 2021; 9:e14984. [PMID: 34409771 PMCID: PMC8374381 DOI: 10.14814/phy2.14984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic pain is an incapacitating condition that affects a large population worldwide. Until now, there is no drug treatment to relieve it. The impairment of GABAergic inhibition mediated by GABAA receptors (GABAA R) is considered a relevant factor in mediating chronic pain. Even though both synaptic and extrasynaptic GABAA inhibition are present in neurons that process nociceptive information, the latter is not considered relevant as a target for the development of pain treatments. In particular, the extrasynaptic α5 GABAA Rs are expressed in laminae I-II of the spinal cord neurons, sensory neurons, and motoneurons. In this review, we discuss evidence showing that blockade of the extrasynaptic α5 GABAA Rs reduces mechanical allodynia in various models of chronic pain and restores the associated loss of rate-dependent depression of the Hoffmann reflex. Furthermore, in healthy animals, extrasynaptic α5 GABAA R blockade induces both allodynia and hyperalgesia. These results indicate that this receptor may have an antinociceptive and pronociceptive role in healthy and chronic pain-affected animals, respectively. We propose a hypothesis to explain the relevant role of the extrasynaptic α5 GABAA Rs in the processing of nociceptive information. The data discussed here strongly suggest that this receptor could be a valid pharmacological target to treat chronic pain states.
Collapse
Affiliation(s)
| | - Mariana Bravo‐Hernández
- Neuroregeneration LaboratoryDepartment of AnesthesiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
| | | | | | | | | | | | | | | | | | - Crystell G. Guzmán‐Priego
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
| | - Jorge E. Torres‐López
- Mechanisms of Pain LaboratoryDivisión Académica de Ciencias de la SaludUniversidad Juárez Autónoma de Tabasco, VillahermosaTabascoMexico
- Hospital Regional de Alta Especialidad “Dr. Juan Graham Casasús”, VillahermosaTabascoMexico
| | | | - Ricardo Felix
- Departamento de Biología CelularCinvestavMexico CityMexico
| | - Vinicio Granados‐Soto
- Neurobiology of Pain LaboratoryDepartamento de FarmacobiologíaCinvestavMexico CityMexico
| |
Collapse
|
9
|
Worthington A, Kalteniece A, Ferdousi M, D’Onofrio L, Dhage S, Azmi S, Adamson C, Hamdy S, Malik RA, Calcutt NA, Marshall AG. Optimal Utility of H-Reflex RDD as a Biomarker of Spinal Disinhibition in Painful and Painless Diabetic Neuropathy. Diagnostics (Basel) 2021; 11:1247. [PMID: 34359330 PMCID: PMC8306975 DOI: 10.3390/diagnostics11071247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Impaired rate-dependent depression of the Hoffman reflex (HRDD) is a potential biomarker of impaired spinal inhibition in patients with painful diabetic neuropathy. However, the optimum stimulus-response parameters that identify patients with spinal disinhibition are currently unknown. We systematically compared HRDD, performed using trains of 10 stimuli at five stimulation frequencies (0.3, 0.5, 1, 2 and 3 Hz), in 42 subjects with painful and 62 subjects with painless diabetic neuropathy with comparable neuropathy severity, and 34 healthy controls. HRDD was calculated using individual and mean responses compared to the initial response. At stimulation frequencies of 1, 2 and 3 Hz, HRDD was significantly impaired in patients with painful diabetic neuropathy compared to patients with painless diabetic neuropathy for all parameters and for most parameters when compared to healthy controls. HRDD was significantly enhanced in patients with painless diabetic neuropathy compared to controls for responses towards the end of the 1 Hz stimulation train. Receiver operating characteristic curve analysis in patients with and without pain showed that the area under the curve was greatest for response averages of stimuli 2-4 and 2-5 at 1 Hz, AUC = 0.84 (95%CI 0.76-0.92). Trains of 5 stimuli delivered at 1 Hz can segregate patients with painful diabetic neuropathy and spinal disinhibition, whereas longer stimulus trains are required to segregate patients with painless diabetic neuropathy and enhanced spinal inhibition.
Collapse
Affiliation(s)
- Anne Worthington
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.W.); (S.H.)
| | - Alise Kalteniece
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
| | - Luca D’Onofrio
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Shaishav Dhage
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
| | - Shazli Azmi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
- Diabetes Centre, Manchester University NHS Foundation Trust, Manchester M13 0JE, UK;
| | - Clare Adamson
- Diabetes Centre, Manchester University NHS Foundation Trust, Manchester M13 0JE, UK;
| | - Shaheen Hamdy
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.W.); (S.H.)
| | - Rayaz A. Malik
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (A.K.); (M.F.); (S.D.); (S.A.); (R.A.M.)
- Weill Cornell Medicine-Qatar, Research Division, Qatar Foundation, Education City, Doha 24144, Qatar
| | - Nigel A. Calcutt
- Department of Pathology, University of California, San Diego, CA 92093-0612, USA;
| | - Andrew G. Marshall
- Division of Neuroscience and Experimental Psychology, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
10
|
A subset of spinal dorsal horn interneurons crucial for gating touch-evoked pain-like behavior. Proc Natl Acad Sci U S A 2021; 118:2021220118. [PMID: 33431693 DOI: 10.1073/pnas.2021220118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A cardinal, intractable symptom of neuropathic pain is mechanical allodynia, pain caused by innocuous stimuli via low-threshold mechanoreceptors such as Aβ fibers. However, the mechanism by which Aβ fiber-derived signals are converted to pain remains incompletely understood. Here we identify a subset of inhibitory interneurons in the spinal dorsal horn (SDH) operated by adeno-associated viral vectors incorporating a neuropeptide Y promoter (AAV-NpyP+) and show that specific ablation or silencing of AAV-NpyP+ SDH interneurons converted touch-sensing Aβ fiber-derived signals to morphine-resistant pain-like behavioral responses. AAV-NpyP+ neurons received excitatory inputs from Aβ fibers and transmitted inhibitory GABA signals to lamina I neurons projecting to the brain. In a model of neuropathic pain developed by peripheral nerve injury, AAV-NpyP+ neurons exhibited deeper resting membrane potentials, and their excitation by Aβ fibers was impaired. Conversely, chemogenetic activation of AAV-NpyP+ neurons in nerve-injured rats reversed Aβ fiber-derived neuropathic pain-like behavior that was shown to be morphine-resistant and reduced pathological neuronal activation of superficial SDH including lamina I. These findings suggest that identified inhibitory SDH interneurons that act as a critical brake on conversion of touch-sensing Aβ fiber signals into pain-like behavioral responses. Thus, enhancing activity of these neurons may offer a novel strategy for treating neuropathic allodynia.
Collapse
|
11
|
Marshall A, Alam U, Themistocleous A, Calcutt N, Marshall A. Novel and Emerging Electrophysiological Biomarkers of Diabetic Neuropathy and Painful Diabetic Neuropathy. Clin Ther 2021; 43:1441-1456. [PMID: 33906790 DOI: 10.1016/j.clinthera.2021.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Small and large peripheral nerve fibers can be involved in DPN. Large nerve fiber damage causes paresthesia, sensory loss, and muscle weakness, and small nerve fiber damage is associated with pain, anesthesia, foot ulcer, and autonomic symptoms. Treatments for DPN and painful DPN (pDPN) pose considerable challenges due to the lack of effective therapies. To meet these challenges, there is a major need to develop biomarkers that can reliably diagnose and monitor progression of nerve damage and, for pDPN, facilitate personalized treatment based on underlying pain mechanisms. METHODS This study involved a comprehensive literature review, incorporating article searches in electronic databases (Google Scholar, PubMed, and OVID) and reference lists of relevant articles with the authors' substantial expertise in DPN. This review considered seminal and novel research and summarizes emerging biomarkers of DPN and pDPN that are based on neurophysiological methods. FINDINGS From the evidence gathered from 145 papers, this submission describes emerging clinical neurophysiological methods with potential to act as biomarkers for the diagnosis and monitoring of DPN as well as putative future roles as predictors of response to antineuropathic pain medication in pDPN. Nerve conduction studies only detect large fiber damage and do not capture pathology or dysfunction of small fibers. Because small nerve fiber damage is prominent in DPN, additional biomarkers of small nerve fiber function are needed. Activation of peripheral nociceptor fibers using laser, heat, or targeted electrical stimuli can generate pain-related evoked potentials, which are an objective neurophysiological measure of damage along the small fiber pathways. Assessment of nerve excitability, which provides a surrogate of axonal properties, may detect alterations in function before abnormalities are detected by nerve conduction studies. Microneurography and rate-dependent depression of the Hoffmann-reflex can be used to dissect underlying pain-generating mechanisms arising from the periphery and spinal cord, respectively. Their role in informing mechanistic-based treatment of pDPN as well as facilitating clinical trials design is discussed. IMPLICATIONS The neurophysiological methods discussed, although currently not practical for use in busy outpatient settings, detect small fiber and early large fiber damage in DPN as well as disclosing dominant pain mechanisms in pDPN. They are suited as diagnostic and predictive biomarkers as well as end points in mechanistic clinical trials of DPN and pDPN.
Collapse
Affiliation(s)
- Anne Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Uazman Alam
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Andrew Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Clinical Neurophysiology, The Walton Centre, Liverpool, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
12
|
Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits. Int J Mol Sci 2021; 22:ijms22010414. [PMID: 33401784 PMCID: PMC7795800 DOI: 10.3390/ijms22010414] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.
Collapse
|
13
|
Threshold for copulation-induced analgesia varies according to the ejaculatory endophenotypes in rats. Int J Impot Res 2020; 34:195-202. [PMID: 33328617 DOI: 10.1038/s41443-020-00390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022]
Abstract
Analgesia may be modulated by multiple internal and external factors. In prior studies, copulatory-induced analgesia was demonstrated using the vocalization threshold to tail shock (VTTS) in male and female rats. Three ejaculatory endophenotypes have been characterized in male Wistar rats based upon their ejaculation latency (EL). Since intromissions and ejaculations produce analgesia, and these copulatory patterns are performed with different frequency depending on the male's ejaculatory endophenotype, we hypothesized that copulation-induced analgesia would vary in relation to these endophenotypes. In the present study, we used three groups according to the EL (medians): rapid ejaculators (236 s; n = 21), intermediate ejaculators (663.2 s; n = 20) and sluggish ejaculators (1582.2 s; n = 8). Our aim was to evaluate whether copulation-induced analgesia is related to the ejaculatory endophenotypes during two consecutive ejaculatory series (EJS). In the first EJS, the VTTS of the rapid ejaculators was significantly higher than that of intermediate and sluggish rats. At the onset of the second EJS, the VTTS of the rapid and intermediate ejaculators was significantly higher than that of the sluggish rats. No differences in VTTS were observed during the first or second post-ejaculatory intervals among the three groups. These findings provide evidence that the more intromissions that occurred per unit time, the higher was the level of analgesia.
Collapse
|
14
|
Ferrini F, Perez-Sanchez J, Ferland S, Lorenzo LE, Godin AG, Plasencia-Fernandez I, Cottet M, Castonguay A, Wang F, Salio C, Doyon N, Merighi A, De Koninck Y. Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic metaplasticity and modality-specific sensitization. Nat Commun 2020; 11:3935. [PMID: 32769979 PMCID: PMC7414850 DOI: 10.1038/s41467-020-17824-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
GABAA/glycine-mediated neuronal inhibition critically depends on intracellular chloride (Cl-) concentration which is mainly regulated by the K+-Cl- co-transporter 2 (KCC2) in the adult central nervous system (CNS). KCC2 heterogeneity thus affects information processing across CNS areas. Here, we uncover a gradient in Cl- extrusion capacity across the superficial dorsal horn (SDH) of the spinal cord (laminae I-II: LI-LII), which remains concealed under low Cl- load. Under high Cl- load or heightened synaptic drive, lower Cl- extrusion is unveiled in LI, as expected from the gradient in KCC2 expression found across the SDH. Blocking TrkB receptors increases KCC2 in LI, pointing to differential constitutive TrkB activation across laminae. Higher Cl- lability in LI results in rapidly collapsing inhibition, and a form of activity-dependent synaptic plasticity expressed as a continuous facilitation of excitatory responses. The higher metaplasticity in LI as compared to LII differentially affects sensitization to thermal and mechanical input. Thus, inconspicuous heterogeneity of Cl- extrusion across laminae critically shapes plasticity for selective nociceptive modalities.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
- CERVO Brain Research Centre, Québec, QC, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada.
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada.
| | - Jimena Perez-Sanchez
- CERVO Brain Research Centre, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Samuel Ferland
- CERVO Brain Research Centre, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | | | - Antoine G Godin
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | - Isabel Plasencia-Fernandez
- CERVO Brain Research Centre, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| | | | | | - Feng Wang
- CERVO Brain Research Centre, Québec, QC, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Nicolas Doyon
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Mathematics and Statistics, Université Laval, Québec, QC, Canada
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Graduate program in Neuroscience, Université Laval, Québec, QC, Canada
| |
Collapse
|
15
|
Tudeau L, Acuña MA, Albisetti GW, Neumann E, Ralvenius WT, Scheurer L, Poe M, Cook JM, Johannssen HC, Zeilhofer HU. Mice lacking spinal α2GABA A receptors: Altered GABAergic neurotransmission, diminished GABAergic antihyperalgesia, and potential compensatory mechanisms preventing a hyperalgesic phenotype. Brain Res 2020; 1741:146889. [PMID: 32439345 DOI: 10.1016/j.brainres.2020.146889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Diminished synaptic inhibition in the superficial spinal dorsal horn contributes to exaggerated pain responses that accompany peripheral inflammation and neuropathy. α2GABAA receptors (α2GABAAR) constitute the most abundant GABAAR subtype at this site and are the targets of recently identified antihyperalgesic compounds. Surprisingly, hoxb8-α2-/- mice that lack α2GABAAR from the spinal cord and peripheral sensory neurons exhibit unaltered sensitivity to acute painful stimuli and develop normal inflammatory and neuropathic hyperalgesia. Here, we provide a comprehensive analysis of GABAergic neurotransmission, of behavioral phenotypes and of possible compensatory mechanisms in hoxb8-α2-/- mice. Our results confirm that hoxb8-α2-/- mice show significantly diminished GABAergic inhibitory postsynaptic currents (IPSCs) in the superficial dorsal horn but no hyperalgesic phenotype. We also confirm that the potentiation of dorsal horn GABAergic IPSCs by the α2-preferring GABAAR modulator HZ-166 is reduced in hoxb8-α2-/- mice and that hoxb8-α2-/- mice are resistant to the analgesic effects of HZ-166. Tonic GABAergic currents, glycinergic IPSCs, and sensory afferent-evoked EPSCs did not show significant changes in hoxb8-α2-/- mice rendering a compensatory up-regulation of other GABAAR subtypes or of glycine receptors unlikely. Although expression of serotonin and of the serotonin producing enzyme tryptophan hydroxylase (TPH2) was significantly increased in the dorsal horn of hoxb8-α2-/- mice, ablation of serotonergic terminals from the lumbar spinal cord failed to unmask a nociceptive phenotype. Our results are consistent with an important contribution of α2GABAAR to spinal nociceptive control but their ablation early in development appears to activate yet-to-be identified compensatory mechanisms that protect hoxb8-α2-/- mice from hyperalgesia.
Collapse
Affiliation(s)
- Laetitia Tudeau
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elena Neumann
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - William T Ralvenius
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Alterations in evoked and spontaneous activity of dorsal horn wide dynamic range neurons in pathological pain: a systematic review and analysis. Pain 2019; 160:2199-2209. [DOI: 10.1097/j.pain.0000000000001632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
α5GABAA receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability. Pain 2019; 160:1448-1458. [DOI: 10.1097/j.pain.0000000000001515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Huang YJ, Grau JW. Ionic plasticity and pain: The loss of descending serotonergic fibers after spinal cord injury transforms how GABA affects pain. Exp Neurol 2018; 306:105-116. [PMID: 29729247 PMCID: PMC5994379 DOI: 10.1016/j.expneurol.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Activation of pain (nociceptive) fibers can sensitize neural circuits within the spinal cord, inducing an increase in excitability (central sensitization) that can foster chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. In adult animals, the co-transporter KCC2 maintains a low intracellular concentration of the anion Cl-. As a result, when the GABA-A receptor is engaged, Cl- flows in the neuron which has a hyperpolarizing (inhibitory) effect. Spinal cord injury (SCI) can down-regulate KCC2 and reverse the flow of Cl-. Under these conditions, engaging the GABA-A receptor can have a depolarizing (excitatory) effect that fosters the development of nociceptive sensitization. The present paper explores how SCI alters GABA function and provides evidence that the loss of descending fibers alters pain transmission to the brain. Prior work has shown that, after SCI, administration of a GABA-A antagonist blocks the development of capsaicin-induced nociceptive sensitization, implying that GABA release plays an essential role. This excitatory effect is linked to serotonergic (5HT) fibers that descend through the dorsolateral funiculus (DLF) and impact spinal function via the 5HT-1A receptor. Supporting this, blocking the 5HT-1A receptor, or lesioning the DLF, emulated the effect of SCI. Conversely, spinal application of a 5HT-1A agonist up-regulated KCC2 and reversed the effect of bicuculline treatment. Finally, lesioning the DLF reversed how a GABA-A antagonist affects a capsaicin-induced aversion in a place conditioning task; in sham operated animals, bicuculline enhanced aversion whereas in DLF-lesioned rats biciculline had an antinociceptive effect.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Grau JW, Huang YJ. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Neurobiol Learn Mem 2018; 154:121-135. [PMID: 29635030 DOI: 10.1016/j.nlm.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Evidence is reviewed that behavioral training and neural injury can engage metaplastic processes that regulate adaptive potential. This issue is explored within a model system that examines how training affects the capacity to learn within the lower (lumbosacral) spinal cord. Response-contingent (controllable) stimulation applied caudal to a spinal transection induces a behavioral modification indicative of learning. This behavioral change is not observed in animals that receive stimulation in an uncontrollable manner. Exposure to uncontrollable stimulation also engages a process that disables spinal learning for 24-48 h. Controllable stimulation has the opposite effect; it engages a process that enables learning and prevents/reverses the learning deficit induced by uncontrollable stimulation. These observations suggest that a learning episode can impact the capacity to learn in future situations, providing an example of behavioral metaplasticity. The protective/restorative effect of controllable stimulation has been linked to an up-regulation of brain-derived neurotrophic factor (BDNF). The disruption of learning has been linked to the sensitization of pain (nociceptive) circuits, which is enabled by a reduction in GABA-dependent inhibition. After spinal cord injury (SCI), the co-transporter (KCC2) that regulates the outward flow of Cl- is down-regulated. This causes the intracellular concentration of Cl- to increase, reducing (and potentially reversing) the inward flow of Cl- through the GABA-A receptor. The shift in GABA function (ionic plasticity) increases neural excitability caudal to injury and sets the stage for nociceptive sensitization. The injury-induced shift in KCC2 is related to the loss of descending serotonergic (5HT) fibers that regulate plasticity within the spinal cord dorsal horn through the 5HT-1A receptor. Evidence is presented that these alterations in spinal plasticity impact pain in a brain-dependent task (place conditioning). The findings suggest that ionic plasticity can affect learning potential, shifting a neural circuit from dampened/hard-wired to excitable/plastic.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | - Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA
| |
Collapse
|
20
|
Chopek JW, MacDonell CW, Shepard PC, Gardiner KR, Gardiner PF. Altered transcription of glutamatergic and glycinergic receptors in spinal cord dorsal horn following spinal cord transection is minimally affected by passive exercise of the hindlimbs. Eur J Neurosci 2018; 47:277-283. [PMID: 29356168 DOI: 10.1111/ejn.13823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
Gene expression is altered following a spinal transection (STx) in both motor and sensory systems. Exercise has been shown to influence gene expression in both systems post-STx. Gene expression alterations have also been shown in the dorsal root ganglia and nociceptive laminae of the spinal cord following either an incomplete spinal cord injury (SCI) or a contusive SCI. However, the effect of STx and exercise on gene expression in spinal cord laminae I-III has not fully been examined. Therefore, the purpose of this study was to determine whether gene expression in laminae I-III is altered following STx and determine whether superimposed passive exercise of the hindlimbs would influence gene expression post-STx in laminae I-III. Laser capture microdissection was used to selectively harvest laminae I-III of lumbar spinal cord sections, and quantitative RT-PCR was used to examine relative expression of 23 selected genes in samples collected from control, STx and STx plus exercise rats. We demonstrate that post-STx, gene expression for metabotropic glutamate receptors 1, 5 and 8 were up-regulated, whereas ionotropic glutamatergic receptor (Glur2) and glycinergic subunit GLRA1 expression was down-regulated. Daily exercise attenuated the down-regulation of Glur2 gene expression in laminae I-III. Our results demonstrate that in a STx model, gene expression is altered in laminae I-III and that although passive exercise influences gene expression in both the motor and sensory systems, it had a minimal effect on gene expression in laminae I-III post-STx.
Collapse
Affiliation(s)
- Jeremy W Chopek
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Christopher W MacDonell
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patricia C Shepard
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kalan R Gardiner
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Phillip F Gardiner
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Rady Faculty of Health, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
21
|
Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-Reflex as a Biomarker for Spinal Disinhibition in Painful Diabetic Neuropathy. Curr Diab Rep 2018; 18:1. [PMID: 29362940 PMCID: PMC6876556 DOI: 10.1007/s11892-018-0969-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Neuropathic pain may arise from multiple mechanisms and locations. Efficacy of current treatments for painful diabetic neuropathy is limited to an unpredictable subset of patients, possibly reflecting diversity of pain generator mechanisms, and there is a lack of targeted treatments for individual patients. This review summarizes preclinical evidence supporting a role for spinal disinhibition in painful diabetic neuropathy, the physiology and pharmacology of rate-dependent depression (RDD) of the spinal H-reflex and the translational potential of using RDD as a biomarker of spinally mediated pain. RECENT FINDINGS Impaired RDD occurs in animal models of diabetes and was also detected in diabetic patients with painful vs painless neuropathy. RDD status can be determined using standard neurophysiological equipment. Loss of RDD may provide a clinical biomarker of spinal disinhibition, thereby enabling a personalized medicine approach to selection of current treatment options and enrichment of future clinical trial populations.
Collapse
Affiliation(s)
| | - Andrew G Marshall
- Faculty of Medical and Human Sciences, Institute of Cardiovascular Sciences, University of Manchester and National Institute for Healthy Research/Wellcome Trust Clinical Research Facility, Manchester, UK
- Department of Clinical Neurophysiology, Salford Royal Hospital, National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rayaz A Malik
- Faculty of Medical and Human Sciences, Institute of Cardiovascular Sciences, University of Manchester and National Institute for Healthy Research/Wellcome Trust Clinical Research Facility, Manchester, UK
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and Future Issues in the Development of Spinal Agents for the Management of Pain. Curr Neuropharmacol 2017; 15:232-259. [PMID: 26861470 PMCID: PMC5412694 DOI: 10.2174/1570159x14666160307145542] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.
Collapse
Affiliation(s)
- Tony L. Yaksh
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Casey J. Fisher
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Tyler M. Hockman
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Ashley J. Wiese
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| |
Collapse
|
23
|
Huang YJ, Lee KH, Murphy L, Garraway SM, Grau JW. Acute spinal cord injury (SCI) transforms how GABA affects nociceptive sensitization. Exp Neurol 2016; 285:82-95. [PMID: 27639636 PMCID: PMC5926208 DOI: 10.1016/j.expneurol.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Noxious input can sensitize pain (nociceptive) circuits within the spinal cord, inducing a lasting increase in spinal cord neural excitability (central sensitization) that is thought to contribute to chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. The current study provides evidence that spinal cord injury (SCI) transforms how GABA affects nociceptive transmission within the spinal cord, recapitulating an earlier developmental state wherein GABA has an excitatory effect. In spinally transected rats, noxious electrical stimulation and inflammation induce enhanced mechanical reactivity (EMR), a behavioral index of nociceptive sensitization. Pretreatment with the GABAA receptor antagonist bicuculline blocked these effects. Peripheral application of an irritant (capsaicin) also induced EMR. Both the induction and maintenance of this effect were blocked by bicuculline. Cellular indices of central sensitization [c-fos expression and ERK phosphorylation (pERK)] were also attenuated. In intact (sham operated) rats, bicuculline had the opposite effect. Pretreatment with a GABA agonist (muscimol) attenuated nociceptive sensitization in intact, but not spinally injured, rats. The effect of SCI on GABA function was linked to a reduction in the Cl- transporter, KCC2, leading to a reduction in intracellular Cl- that would attenuate GABA-mediated inhibition. Pharmacologically blocking the KCC2 channel (with i.t. DIOA) in intact rats mimicked the effect of SCI. Conversely, a pharmacological treatment (bumetanide) that should increase intracellular Cl- levels blocked the effect of SCI. The results suggest that GABAergic neurons drive, rather than inhibit, the development of nociceptive sensitization after spinal injury.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Kuan H Lee
- Center for Pain Research, Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lauren Murphy
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Ralvenius WT, Acuña MA, Benke D, Matthey A, Daali Y, Rudolph U, Desmeules J, Zeilhofer HU, Besson M. The clobazam metabolite N-desmethyl clobazam is an α2 preferring benzodiazepine with an improved therapeutic window for antihyperalgesia. Neuropharmacology 2016; 109:366-375. [PMID: 27392635 PMCID: PMC4981430 DOI: 10.1016/j.neuropharm.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/27/2016] [Accepted: 07/04/2016] [Indexed: 12/14/2022]
Abstract
Data from genetically modified mice suggest that benzodiazepine (BDZ)-site agonists with improved selectivity for α2-subtype GABAA receptors (α2GABAAR) are potentially useful for the treatment of neuropathic pain. Subtype-selective compounds available for preclinical tests in rodents support this concept but have not been approved for human use, hindering proof-of-concept studies in patients. We recently proposed that N-desmethyl clobazam (NDMC), the main metabolite of the licensed BDZ clobazam (CBZ), is responsible for most of the antihyperalgesia observed in mice after CBZ administration. In order to assess a potentially favorable pharmacological profile of NDMC, we analyzed differences in the GABAAR subtype specificity of CBZ, NDMC and diazepam (DZP) in recombinant receptors. DZP and CBZ potentiated sedating α1GABAARs and antihyperalgesic α2GABAARs with similar efficacies, whereas NDMC preferred α2GABAARs over α1GABAARs across a wide concentration range. In vivo, DZP and NDMC reduced neuropathic pain at doses between 3 and 30 mg/kg. At these doses, DZP had strong locomotor sedating effects while NDMC caused no or only weak sedation. Sedative effects of NDMC became apparent when the action of NDMC was restricted to α1GABAARs. However, when GABAAR point-mutated mice were studied that allow the analysis of antihyperalgesia and sedation in isolation, we found that, compared to DZP, NDMC had a significantly improved therapeutic window, consistent with its more favorable α2/α1 in vitro activity ratio. Given that NDMC should share the safety profile of its parent compound CBZ, it should be well-suited for proof-of-concept studies in human volunteers or patients.
Collapse
Affiliation(s)
- William T Ralvenius
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Alain Matthey
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA 02215, USA
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 10, CH-8093 Zürich, Switzerland; Drug Discovery Network Zurich (DDNZ), CH-8057 Zurich, Switzerland.
| | - Marie Besson
- Division of Clinical Pharmacology and Toxicology, Multidisciplinary Pain Center, Department of Anesthesiology, Pharmacology and Intensive Care, Geneva University Hospitals, University of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva, Switzerland
| |
Collapse
|
25
|
Pham-Dang N, Descheemaeker A, Dallel R, Artola A. Activation of medullary dorsal horn γ isoform of protein kinase C interneurons is essential to the development of both static and dynamic facial mechanical allodynia. Eur J Neurosci 2016; 43:802-10. [PMID: 26750151 DOI: 10.1111/ejn.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022]
Abstract
The γ isoform of protein kinase C (PKCγ), which is concentrated in a specific class of interneurons within inner lamina II (IIi ) of the spinal dorsal horn and medullary dorsal horn (MDH), is known to be involved in the development of mechanical allodynia, a widespread and intractable symptom of inflammatory or neuropathic pain. However, although genetic and pharmacological impairment of PKCγ were shown to prevent mechanical allodynia in animal models of pain, after nerve injury or reduced inhibition, the functional consequences of PKCγ activation alone on mechanical sensitivity are still unknown. Using behavioural and anatomical approaches in the rat MDH, we tested whether PKCγ activation in naive animals is sufficient for the establishment of mechanical allodynia. Intracisternal injection of the phorbol ester, 12,13-dibutyrate concomitantly induced static as well as dynamic facial mechanical allodynia. Monitoring neuronal activity within the MDH with phospho-extracellular signal-regulated kinases 1 and 2 immunoreactivity revealed that activation of both lamina I-outer lamina II and IIi -outer lamina III neurons, including lamina IIi PKCγ-expressing interneurons, was associated with the manifestation of mechanical allodynia. Phorbol ester, 12,13-dibutyrate-induced mechanical allodynia and associated neuronal activations were all prevented by inhibiting selectively segmental PKCγ with KIG31-1. Our findings suggest that PKCγ activation, without any other experimental manipulation, is sufficient for the development of static and dynamic mechanical allodynia. Lamina IIi PKCγ interneurons have been shown to be directly activated by low-threshold mechanical inputs carried by myelinated afferents. Thus, the level of PKCγ activation within PKCγ interneurons might gate the transmission of innocuous mechanical inputs to lamina I, nociceptive output neurons, thus turning touch into pain.
Collapse
Affiliation(s)
- Nathalie Pham-Dang
- Douleur Trigéminale et Migraine, BP 10448 Neuro-Dol, Faculté de Chirurgie Dentaire, INSERM/UdA U1107, Clermont Université, Université d'Auvergne, 2 rue de Braga, F-63100, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service d'Odontologie, Clermont-Ferrand, France
| | - Amélie Descheemaeker
- Douleur Trigéminale et Migraine, BP 10448 Neuro-Dol, Faculté de Chirurgie Dentaire, INSERM/UdA U1107, Clermont Université, Université d'Auvergne, 2 rue de Braga, F-63100, Clermont-Ferrand, France
| | - Radhouane Dallel
- Douleur Trigéminale et Migraine, BP 10448 Neuro-Dol, Faculté de Chirurgie Dentaire, INSERM/UdA U1107, Clermont Université, Université d'Auvergne, 2 rue de Braga, F-63100, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service d'Odontologie, Clermont-Ferrand, France
| | - Alain Artola
- Douleur Trigéminale et Migraine, BP 10448 Neuro-Dol, Faculté de Chirurgie Dentaire, INSERM/UdA U1107, Clermont Université, Université d'Auvergne, 2 rue de Braga, F-63100, Clermont-Ferrand, France
| |
Collapse
|
26
|
Lee KY, Prescott SA. Chloride dysregulation and inhibitory receptor blockade yield equivalent disinhibition of spinal neurons yet are differentially reversed by carbonic anhydrase blockade. Pain 2015; 156:2431-2437. [PMID: 26186265 DOI: 10.1097/j.pain.0000000000000301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synaptic inhibition plays a key role in processing somatosensory information. Blocking inhibition at the spinal level is sufficient to produce mechanical allodynia, and many neuropathic pain conditions are associated with reduced inhibition. Disinhibition of spinal neurons can arise through decreased GABAA/glycine receptor activation or through dysregulation of intracellular chloride. We hypothesized that these distinct disinhibitory mechanisms, despite all causing allodynia, are differentially susceptible to therapeutic intervention. Specifically, we predicted that reducing bicarbonate efflux by blocking carbonic anhydrase with acetazolamide (ACTZ) would counteract disinhibition caused by chloride dysregulation without affecting normal inhibition or disinhibition caused by GABAA/glycine receptor blockade. To test this, responses to innocuous tactile stimulation were recorded in vivo from rat superficial dorsal horn neurons before and after different forms of pharmacological disinhibition and again after application of ACTZ. Blocking GABAA or glycine receptors caused hyperresponsiveness equivalent to that caused by blocking the potassium chloride cotransporter KCC2, but, consistent with our predictions, only disinhibition caused by KCC2 blockade was counteracted by ACTZ. ACTZ did not alter responses of neurons with intact inhibition. As pathological downregulation of KCC2 is triggered by brain-derived neurotrophic factor, we also confirmed that ACTZ was effective against brain-derived neurotrophic factor-induced hyperresponsiveness. Our results argue that intrathecal ACTZ has antiallodynic effects only if allodynia arises through chloride dysregulation; therefore, behavioral evidence that ACTZ is antiallodynic in nerve-injured animals affirms the contribution of chloride dysregulation as a key pathological mechanism. Although different disinhibitory mechanisms are not mutually exclusive, these results demonstrate that their relative contribution dictates which specific therapies will be effective.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
27
|
Tadavarty R, Hwang J, Rajput P, Soja P, Kumar U, Sastry B. Are presynaptic GABA-Cρ2 receptors involved in anti-nociception? Neurosci Lett 2015; 606:145-50. [DOI: 10.1016/j.neulet.2015.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/24/2022]
|
28
|
Testani E, Le Pera D, Del Percio C, Miliucci R, Brancucci A, Pazzaglia C, De Armas L, Babiloni C, Rossini PM, Valeriani M. Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input. Eur J Neurosci 2015; 42:2407-14. [DOI: 10.1111/ejn.13035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Elisa Testani
- Department of Neurosciences; Catholic University; Rome Italy
| | - Domenica Le Pera
- Department of Neurology; IRCSS S. Raffaele Pisana, Tosinvest-Sanità; Rome Italy
| | | | - Roberto Miliucci
- Neurology Unit; Ospedale Pediatrico Bambino Gesú; IRCCS; Piazza Sant'Onofrio 4 Rome 00165 Italy
| | - Alfredo Brancucci
- Department of Psychological Sciences, Humanities and the Territory; ‘G. d'Annunzio’ University of Chieti and Pescara; Chieti Italy
| | - Costanza Pazzaglia
- Department of Neurology; Don Carlo Gnocchi Onlus Foundation; Milan Italy
| | - Liala De Armas
- Department of Neurology; IRCSS S. Raffaele Pisana, Tosinvest-Sanità; Rome Italy
| | - Claudio Babiloni
- EEG Lab; IRCSS S. Raffaele Pisana, Tosinvest-Sanità; Rome Italy
- Department of Physiology and Pharmacology; University of Rome ‘La Sapienza’; Rome Italy
| | | | - Massimiliano Valeriani
- Neurology Unit; Ospedale Pediatrico Bambino Gesú; IRCCS; Piazza Sant'Onofrio 4 Rome 00165 Italy
- Center for Sensory-Motor Interaction; Aalborg University; Aalborg Denmark
| |
Collapse
|
29
|
Zeilhofer HU, Ralvenius WT, Acuña MA. Restoring the Spinal Pain Gate. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:71-96. [DOI: 10.1016/bs.apha.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Pregabalin role in inhibition of morphine analgesic tolerance and physical dependency in rats. Eur J Pharmacol 2014; 742:113-7. [DOI: 10.1016/j.ejphar.2014.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
|
31
|
Chen JTC, Guo D, Campanelli D, Frattini F, Mayer F, Zhou L, Kuner R, Heppenstall PA, Knipper M, Hu J. Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction. Nat Commun 2014; 5:5331. [PMID: 25354791 PMCID: PMC4220496 DOI: 10.1038/ncomms6331] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023] Open
Abstract
The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. Disinhibition of neural activity in the spinal cord is implicated in neuropathic pain. Chen et al. show that disinhibition of neural activity arises from a shift in reversal potential of GABA and a decrease in the conductance of presynaptic GABA, which are both regulated by brain-derived neurotrophic factor.
Collapse
Affiliation(s)
| | - Da Guo
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| | - Dario Campanelli
- 1] Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany [2] Hearing Research Centre, Elfriede Aulhornstrasse 5, 72076 Tübingen, Germany
| | - Flavia Frattini
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| | - Florian Mayer
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| | - Luming Zhou
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Rohini Kuner
- Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Paul A Heppenstall
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00016 Monterotondo, Italy
| | - Marlies Knipper
- Hearing Research Centre, Elfriede Aulhornstrasse 5, 72076 Tübingen, Germany
| | - Jing Hu
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience 2014; 283:95-106. [PMID: 25255936 DOI: 10.1016/j.neuroscience.2014.09.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022]
Abstract
The gate control theory proposed that the nociceptive sensory information transmitted to the brain relies on an interplay between the inputs from nociceptive and non-nociceptive primary afferent fibers. Both inputs are normally under strong inhibitory control in the spinal cord. Under healthy conditions, presynaptic inhibition activated by non-nociceptive fibers modulates the afferent input from nociceptive fibers onto spinal cord neurons, while postsynaptic inhibition controls the excitability of dorsal horn neurons, and silences the non-nociceptive information flow to nociceptive-specific (NS) projection neurons. However, under pathological conditions, this spinal inhibition may be altered and lead to chronic pain. This review summarizes our knowledge of presynaptic inhibition in pain control, with particular focus on how its alteration after nerve or tissue injury contributes to neuropathic or inflammatory pain syndromes, respectively.
Collapse
Affiliation(s)
- D Guo
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany
| | - J Hu
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany.
| |
Collapse
|
33
|
Grau JW, Huie JR, Lee KH, Hoy KC, Huang YJ, Turtle JD, Strain MM, Baumbauer KM, Miranda RM, Hook MA, Ferguson AR, Garraway SM. Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury. Front Neural Circuits 2014; 8:100. [PMID: 25249941 PMCID: PMC4157609 DOI: 10.3389/fncir.2014.00100] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/31/2014] [Indexed: 12/30/2022] Open
Abstract
Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu) receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA-mediated inhibition.
Collapse
Affiliation(s)
- James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - J Russell Huie
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Kuan H Lee
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Kevin C Hoy
- Department of Neurosciences, MetroHealth Medical Center and Case Western Reserve University Cleveland, OH, USA
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Joel D Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | | | - Rajesh M Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
34
|
Hasanein P, Parviz M. Role of GABAA receptor in modulation of acute thermal pain using a rat model of cholestasis. Pharmacol Biochem Behav 2014; 124:226-30. [DOI: 10.1016/j.pbb.2014.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/07/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
|
35
|
Somatostatin enhances tooth-pulp-evoked cervical dorsal horn neuronal activity in the rat via inhibition of GABAergic interneurons. Brain Res Bull 2014; 100:76-83. [DOI: 10.1016/j.brainresbull.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/30/2022]
|
36
|
Bonin RP, De Koninck Y. Restoring ionotropic inhibition as an analgesic strategy. Neurosci Lett 2013; 557 Pt A:43-51. [PMID: 24080373 DOI: 10.1016/j.neulet.2013.09.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022]
Abstract
Neuronal inhibition in nociceptive relays of the spinal cord is essential for the proper processing of nociceptive information. In the spinal cord dorsal horn, the activity of synaptic and extrasynaptic GABAA and glycine receptors generates rapid, Cl(-)-dependent neuronal inhibition. A loss of this ionotropic inhibition, particularly through the collapse of the inhibitory Cl(-)-gradient, is a key mechanism by which pathological pain conditions develop. This review summarizes the roles of ionotropic inhibition in the regulation of nociception, and explores recent evidence that the potentiation of GABAA or glycine receptor activity or the enhancement of inhibitory drive can reverse pathological pain.
Collapse
Affiliation(s)
- Robert P Bonin
- Unité de neurosciences cellulaires et moléculaire, Centre de recherche de l'institut universitaire en santé mentale de Québec, Québec, Canada
| | | |
Collapse
|
37
|
Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013; 2013:429815. [PMID: 24089642 PMCID: PMC3780625 DOI: 10.1155/2013/429815] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/28/2013] [Indexed: 12/27/2022] Open
Abstract
Microglia-neuron interactions play a crucial role in several neurological disorders characterized by altered neural network excitability, such as epilepsy and neuropathic pain. While a series of potential messengers have been postulated as substrates of the communication between microglia and neurons, including cytokines, purines, prostaglandins, and nitric oxide, the specific links between messengers, microglia, neuronal networks, and diseases have remained elusive. Brain-derived neurotrophic factor (BDNF) released by microglia emerges as an exception in this riddle. Here, we review the current knowledge on the role played by microglial BDNF in controlling neuronal excitability by causing disinhibition. The efforts made by different laboratories during the last decade have collectively provided a robust mechanistic paradigm which elucidates the mechanisms involved in the synthesis and release of BDNF from microglia, the downstream TrkB-mediated signals in neurons, and the biophysical mechanism by which disinhibition occurs, via the downregulation of the K⁺-Cl⁻ cotransporter KCC2, dysrupting Cl⁻ homeostasis, and hence the strength of GABA(A)- and glycine receptor-mediated inhibition. The resulting altered network activity appears to explain several features of the associated pathologies. Targeting the molecular players involved in this canonical signaling pathway may lead to novel therapeutic approach for ameliorating a wide array of neural dysfunctions.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada G1J 2G3
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada G13 7P4
| |
Collapse
|
38
|
Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J Neurosci 2013; 33:7299-307. [PMID: 23616538 DOI: 10.1523/jneurosci.0491-13.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons of the spinal dorsal horn play critical roles in the processing of noxious and innocuous sensory information. They form a family of morphologically and functionally diverse neurons that likely fall into distinct subtypes. Traditional classifications rely mainly on differences in dendritic tree morphology and firing patterns. Although useful, these markers are not comprehensive and cannot be used to drive specific genetic manipulations targeted at defined subsets of neurons. Here, we have used genome-wide expression profiling of spinal dorsal horns of wild-type mice and of two strains of transcription factor-deficient mice (Ptf1a(-/-) and Ascl1/Mash1(-/-) mice) to identify new genetic markers for specific subsets of dorsal horn inhibitory interneurons. Ptf1a(-/-) mice lack all inhibitory interneurons in the dorsal horn, whereas only the late-born inhibitory interneurons are missing in Ascl1(-/-) mice. We found 30 genes that were significantly downregulated in the dorsal horn of Ptf1a(-/-) mice. Twenty-one of those also showed reduced expression in Ascl1(-/-) mice. In situ hybridization analyses of all 30 genes identified four genes with primarily non-overlapping expression patterns in the dorsal horn. Three genes, pDyn coding the neuropeptide dynorphin, Kcnip2 encoding a potassium channel associated protein, and the nuclear receptor encoding gene Rorb, were expressed in Ascl1-dependent subpopulations of the superficial dorsal horn. The fourth gene, Tfap2b, encoding a transcription factor, is expressed mainly in a Ascl1-independent subpopulation of the deep dorsal horn. Functional experiments in isolated spinal cords showed that the Ascl1-dependent inhibitory interneurons are key players of nociceptive reflex plasticity.
Collapse
|
39
|
Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, Macdermott AB. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci 2013; 1279:90-6. [PMID: 23531006 DOI: 10.1111/nyas.12056] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sensory information transmitted to the spinal cord dorsal horn is modulated by a complex network of excitatory and inhibitory interneurons. The two main inhibitory transmitters, GABA and glycine, control the flow of sensory information mainly by regulating the excitability of dorsal horn neurons. A presynaptic action of GABA has also been proposed as an important modulatory mechanism of transmitter release from sensory primary afferent terminals. By inhibiting the release of glutamate from primary afferent terminals, activation of presynaptic GABA receptors could play an important role in nociceptive and tactile sensory coding, while changes in their expression or function could be involved in pathological pain conditions, such as allodynia.
Collapse
Affiliation(s)
- Rita Bardoni
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Paul J, Zeilhofer HU, Fritschy JM. Selective distribution of GABA(A) receptor subtypes in mouse spinal dorsal horn neurons and primary afferents. J Comp Neurol 2013; 520:3895-911. [PMID: 22522945 DOI: 10.1002/cne.23129] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the spinal cord dorsal horn, presynaptic GABA(A) receptors (GABA(A)Rs) in the terminals of nociceptors as well as postsynaptic receptors in spinal neurons regulate the transmission of nociceptive and somatosensory signals from the periphery. GABA(A)Rs are heterogeneous and distinguished functionally and pharmacologically by the type of α subunit variant they contain. This heterogeneity raises the possibility that GABA(A)R subtypes differentially regulate specific pain modalities. Here, we characterized the subcellular distribution of GABA(A)R subtypes in nociceptive circuits by using immunohistochemistry with subunit-specific antibodies combined with markers of primary afferents and dorsal horn neurons. Confocal laser scanning microscopy analysis revealed a distinct, partially overlapping laminar distribution of α1-3 and α5 subunit immunoreactivity in laminae I-V. Likewise, a layer-specific pattern was evident for their distribution among glutamatergic, γ-aminobutyric acid (GABA)ergic, and glycinergic neurons (detected in transgenic mice expressing vesicular glutamate transporter 2-enhanced green fluorescent protein [vGluT2-eGFP], glutamic acid decarboxylase [GAD]67-eGFP, and glycine transporter 2 (GlyT2)-eGFP, respectively). Finally, all four subunits could be detected within primary afferent terminals. C-fibers predominantly contained either α2 or α3 subunit immunoreactivity; terminals from myelinated (Aβ/Aδ) fibers were colabeled in roughly equal proportion with each subunit. The presence of axoaxonic GABAergic synapses was determined by costaining with gephyrin and vesicular inhibitory amino acid transporter to label GABAergic postsynaptic densities and terminals, respectively. Colocalization of the α2 or α3 subunit with these markers was observed in a subset of C-fiber synapses. Furthermore, gephyrin mRNA and protein expression was detected in dorsal root ganglia. Collectively, these results show that differential GABA(A)R distribution in primary afferent terminals and dorsal horn neurons allows for multiple, circuit-specific modes of regulation of nociceptive circuits.
Collapse
Affiliation(s)
- Jolly Paul
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
41
|
Abstract
The somatic sensory system includes a variety of sensory modalities, such as touch, pain, itch, and temperature sensitivity. The coding of these modalities appears to be best explained by the population-coding theory, which is composed of the following features. First, an individual somatic sensory afferent is connected with a specific neural circuit or network (for simplicity, a sensory-labeled line), whose isolated activation is sufficient to generate one specific sensation under normal conditions. Second, labeled lines are interconnected through local excitatory and inhibitory interneurons. As a result, activation of one labeled line could modulate, or provide gate control of, another labeled line. Third, most sensory fibers are polymodal, such that a given stimulus placed onto the skin often activates two or multiple sensory-labeled lines; crosstalk among them is needed to generate one dominant sensation. Fourth and under pathological conditions, a disruption of the antagonistic interaction among labeled lines could open normally masked neuronal pathways, and allow a given sensory stimulus to evoke a new sensation, such as pain evoked by innocuous mechanical or thermal stimuli and itch evoked by painful stimuli. As a result of this, some sensory fibers operate along distinct labeled lines under normal versus pathological conditions. Thus, a better understanding of the neural network underlying labeled line crosstalk may provide new strategies to treat chronic pain and itch.
Collapse
|
42
|
Melin C, Jacquot F, Dallel R, Artola A. Segmental disinhibition suppresses C-fiber inputs to the rat superficial medullary dorsal horn via the activation of GABABreceptors. Eur J Neurosci 2012; 37:417-28. [DOI: 10.1111/ejn.12048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/13/2012] [Accepted: 09/27/2012] [Indexed: 12/17/2022]
Affiliation(s)
| | - Florian Jacquot
- Clermont Université; Université d'Auvergne; Neuro-Dol, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107; F-63001 Clermont-Ferrand; France
| | | | - Alain Artola
- Clermont Université; Université d'Auvergne; Neuro-Dol, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107; F-63001 Clermont-Ferrand; France
| |
Collapse
|
43
|
Zeilhofer HU, Benke D, Yevenes GE. Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu Rev Pharmacol Toxicol 2012; 52:111-33. [PMID: 21854227 DOI: 10.1146/annurev-pharmtox-010611-134636] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Potentially noxious stimuli are sensed by specialized nerve cells named nociceptors, which convey nociceptive signals from peripheral tissues to the central nervous system. The spinal dorsal horn and the trigeminal nucleus serve as first relay stations for incoming nociceptive signals. At these sites, nociceptor terminals contact a local neuronal network consisting of excitatory and inhibitory interneurons as well as of projection neurons. Blockade of neuronal inhibition in this network causes an increased sensitivity to noxious stimuli (hyperalgesia), painful sensations occurring after activation of non-nociceptive fibers (allodynia), and spontaneous pain felt in the absence of any sensory stimulation. It thus mimics the major characteristics of chronic pain states. Diminished inhibitory pain control in the spinal dorsal horn occurs naturally, e.g., through changes in the function of inhibitory neurotransmitter receptors or through altered chloride homeo-stasis in the course of inflammation or nerve damage. This review summarizes our current knowledge about endogenous mechanisms leading to diminished spinal pain control and discusses possible ways that could restore proper inhibition through facilitation of fast inhibitory neurotransmission.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
44
|
Zeilhofer HU, Wildner H, Yévenes GE. Fast synaptic inhibition in spinal sensory processing and pain control. Physiol Rev 2012; 92:193-235. [PMID: 22298656 DOI: 10.1152/physrev.00043.2010] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The two amino acids GABA and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes.
Collapse
|
45
|
Ionov ID, Roslavtseva LA. Coadministration of bicuculline and NMDA induces paraplegia in the rat. Brain Res 2012; 1451:27-33. [PMID: 22445063 DOI: 10.1016/j.brainres.2012.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/27/2012] [Accepted: 03/05/2012] [Indexed: 11/28/2022]
Abstract
Motor neurons (MNs) of an adult rat are normally insensitive to the neurotoxic action of NMDA. Meanwhile, the experiments in non-motor neurons showed that sensitivity to NMDA can be increased by bicuculline, an antagonist at GABA(A) receptors. The aim of the present work was to examine whether bicuculline would produce such an effect in the adult MNs. In adult Wistar rats, intrathecal injection of bicuculline and NMDA individually failed to affect motor activity of the extremities. In contrast, bicuculline-NMDA combination dose-dependently impaired hindlimb functions. At the 9th day after injections of the combination, a paraplegia with persistent bilateral spastic extension developed in all animals. Light microscopic assessment showed that the development of the motor deficit is associated with pathological changes in spinal motor neurons (swelling, accumulation of the Nissl substance near nucleus, hyperchromatosis, shrinkage, and chromatolysis), mainly in the lumbar ventral horns. Additionally, distinct abnormalities were observed in the white matter of the lumbar cords. The bicuculline-NMDA combination induced a loss of spinal cord MNs while sparing the dorsal horn neurons. The effects of the combination were reversed by muscimol, a GABA(A) agonist. Thus, an inhibition of GABA(A)ergic processes can induce NMDA sensitivity in adult MNs. The present data may provide new insights into the mechanism of motor disorders in amyotrophic lateral sclerosis and other states wherein the combination of glutamatergic overstimulation and GABA(A)ergic understimulation takes place.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
46
|
Presynaptic alpha2-GABAA receptors in primary afferent depolarization and spinal pain control. J Neurosci 2011; 31:8134-42. [PMID: 21632935 DOI: 10.1523/jneurosci.6328-10.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal dorsal horn GABA(A) receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of a major subpopulation of GABA(A) receptors (those containing the α2 subunit) to spinal pain control in mice lacking α2-GABA(A) receptors specifically in primary nociceptors (sns-α2(-/-) mice). sns-α2(-/-) mice exhibited GABA(A) receptor currents and dorsal root potentials of normal amplitude in vitro, and normal response thresholds to thermal and mechanical stimulation in vivo, and developed normal inflammatory and neuropathic pain sensitization. However, the positive allosteric GABA(A) receptor modulator diazepam (DZP) had almost completely lost its potentiating effect on PAD and presynaptic inhibition in vitro and a major part of its spinal antihyperalgesic action against inflammatory hyperalgesia in vivo. Our results thus show that part of the antihyperalgesic action of spinally applied DZP occurs through facilitated activation of GABA(A) receptors residing on primary nociceptors.
Collapse
|
47
|
Takazawa T, MacDermott AB. Synaptic pathways and inhibitory gates in the spinal cord dorsal horn. Ann N Y Acad Sci 2010; 1198:153-8. [PMID: 20536929 DOI: 10.1111/j.1749-6632.2010.05501.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disinhibition in the dorsal horn accompanies peripheral nerve injury and causes the development of hypersensitivity to mild stimuli. This demonstrates the critical importance of inhibition in the dorsal horn for maintaining normal sensory signaling. Here we show that disinhibition induces a novel polysynaptic low-threshold input onto lamina I output neurons, suggesting that inhibition normally suppresses a preexisting pathway that probably contributes to abnormal pain sensations such as allodynia. In addition, we show that a significant proportion of superficial dorsal horn inhibitory neurons are activated by low-threshold input. These neurons are well situated to contribute to suppressing low-threshold activation of pain output neurons in lamina I. We further discuss several aspects of inhibition in the dorsal horn that might contribute to suppressing pathological signaling.
Collapse
Affiliation(s)
- Tomonori Takazawa
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | | |
Collapse
|
48
|
Low-threshold primary afferent drive onto GABAergic interneurons in the superficial dorsal horn of the mouse. J Neurosci 2009; 29:686-95. [PMID: 19158295 DOI: 10.1523/jneurosci.5120-08.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition in the spinal cord dorsal horn is crucial for maintaining separation of touch and pain modalities. Disruption of this inhibition results in allodynia, allowing low-threshold drive onto pain and temperature-sensitive projection neurons. This low-threshold (LT) excitatory pathway is normally under strong inhibition. We hypothesized that superficial dorsal horn inhibitory neurons, which would be ideally located to suppress LT drive onto projection neurons in a feedforward manner, are driven by LT input. In addition, because disinhibition-induced allodynia shares some features with the immature dorsal horn such as elevated sensitivity to LT input, we also questioned whether LT drive onto inhibitory neurons changes during postnatal maturation. To investigate these questions, slices were made at different ages from transgenic mice with enhanced green fluorescent protein expression in GABAergic neurons and whole-cell recordings were made from these fluorescent neurons. Evoked synaptic activity was measured in response to electrical stimulation of the dorsal root. We demonstrate that Abeta fibers activate a significant proportion of superficial dorsal horn GABAergic neurons. This occurs with similar excitatory synaptic drive throughout postnatal maturation, but with a greater prevalence at younger ages. These GABAergic neurons are well situated to contribute to suppressing LT activation of output projection neurons. In addition, the majority of these GABAergic neurons also had convergent input from high-threshold fibers, suggesting that this novel subclass of GABAergic neurons is important for gating innocuous as well as noxious information.
Collapse
|
49
|
Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA. Chloride regulation in the pain pathway. BRAIN RESEARCH REVIEWS 2009; 60:149-70. [PMID: 19167425 PMCID: PMC2903433 DOI: 10.1016/j.brainresrev.2008.12.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/18/2022]
Abstract
Melzack and Wall's Gate Control Theory of Pain laid the theoretical groundwork for a role of spinal inhibition in endogenous pain control. While the Gate Control Theory was based on the notion that spinal inhibition is dynamically regulated, mechanisms underlying the regulation of inhibition have turned out to be far more complex than Melzack and Wall could have ever imagined. Recent evidence indicates that an exquisitely sensitive form of regulation involves changes in anion equilibrium potential (E(anion)), which subsequently impacts fast synaptic inhibition mediated by GABA(A), and to a lesser extent, glycine receptor activation, the prototypic ligand gated anion channels. The cation-chloride co-transporters (in particular NKCC1 and KCC2) have emerged as proteins that play a critical role in the dynamic regulation of E(anion) which in turn appears to play a critical role in hyperalgesia and allodynia following peripheral inflammation or nerve injury. This review summarizes the current state of knowledge in this area with particular attention to how such findings relate to endogenous mechanisms of hyperalgesia and allodynia and potential applications for therapeutics based on modulation of intracellular Cl(-) gradients or pharmacological interventions targeting GABA(A) receptors.
Collapse
Affiliation(s)
| | - Fernando Cervero
- McGill University, Department of Anesthesia, McGill Centre for Research on Pain,
| | | | - Donna L Hammond
- University of Iowa, Department of Anesthesia, Department of Pharmacology,
| | | |
Collapse
|
50
|
Miraucourt LS, Moisset X, Dallel R, Voisin DL. Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor- independent mechanical allodynia. J Neurosci 2009; 29:2519-27. [PMID: 19244526 PMCID: PMC6666240 DOI: 10.1523/jneurosci.3923-08.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Revised: 12/22/2008] [Accepted: 01/21/2009] [Indexed: 11/21/2022] Open
Abstract
Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. We recently provided a novel perspective on the mechanisms of this symptom by showing that a simple switch in trigeminal glycine synaptic inhibition can turn touch into pain by unmasking innocuous input to superficial dorsal horn nociceptive specific neurons through a local excitatory, NMDA-dependent neural circuit involving neurons expressing the gamma isoform of protein kinase C. Here, we further investigated the clinical relevance and processing of glycine disinhibition. First, we showed that glycine disinhibition with strychnine selectively induced dynamic but not static mechanical allodynia. The induced allodynia was resistant to morphine. Second, morphine did not prevent the activation of the neural circuit underlying allodynia as shown by study of Fos expression and extracellular-signal regulated kinase phosphorylation in dorsal horn neurons. Third, in contrast to intradermal capsaicin injections, light, dynamic mechanical stimuli applied under disinhibition did not produce neurokinin 1 (NK1) receptor internalization in dorsal horn neurons. Finally, light, dynamic mechanical stimuli applied under disinhibition induced Fos expression only in neurons that did not express NK1 receptor. To summarize, the selectivity and morphine resistance of the glycine-disinhibition paradigm adequately reflect the clinical characteristics of dynamic mechanical allodynia. The present findings thus reveal the involvement of a selective dorsal horn circuit in dynamic mechanical allodynia, which operates through superficial lamina nociceptive-specific neurons that do not bear NK1 receptor and provide an explanation for the differences in the pharmacological sensitivity of neuropathic pain symptoms.
Collapse
Affiliation(s)
- Loïs S. Miraucourt
- INSERM, U929, F-63000 Clermont-Ferrand, France, Université Auvergne-Clermont1, F-63000 Clermont-Ferrand, France, and Centre Hospitalier Universitaire Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Xavier Moisset
- INSERM, U929, F-63000 Clermont-Ferrand, France, Université Auvergne-Clermont1, F-63000 Clermont-Ferrand, France, and Centre Hospitalier Universitaire Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Radhouane Dallel
- INSERM, U929, F-63000 Clermont-Ferrand, France, Université Auvergne-Clermont1, F-63000 Clermont-Ferrand, France, and Centre Hospitalier Universitaire Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Daniel L. Voisin
- INSERM, U929, F-63000 Clermont-Ferrand, France, Université Auvergne-Clermont1, F-63000 Clermont-Ferrand, France, and Centre Hospitalier Universitaire Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|