1
|
Roth BL, Krumm BE. Molecular glues as potential GPCR therapeutics. Biochem Pharmacol 2024; 228:116402. [PMID: 38945274 DOI: 10.1016/j.bcp.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
"Molecular Glues" are defined as small molecules that can either be endogenous or synthetic which promote interactions between proteins at their interface. Allosteric modulators, specifically GPCR allosteric modulators, can promote both the association and the dissociation of a given receptor's transducer but accomplishes this "at a distance" from the interface. However, recent structures of GPCR G protein complexes in the presence of allosteric modulators indicate that some GPCR allosteric modulators can act as "molecular glues" interacting with both the receptor and the transducer at the interface biasing transducer signaling in both a positive and negative manner depending on the transducer. Given these phenomena we discuss the implications for this class of allosteric modulators to be used as molecular tools and for future drug development.
Collapse
Affiliation(s)
- Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Brian E Krumm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Zhong X, Li Q, Polacco BJ, Patil T, Marley A, Foussard H, Khare P, Vartak R, Xu J, DiBerto JF, Roth BL, Eckhardt M, von Zastrow M, Krogan NJ, Hüttenhain R. A proximity proteomics pipeline with improved reproducibility and throughput. Mol Syst Biol 2024; 20:952-971. [PMID: 38951684 PMCID: PMC11297269 DOI: 10.1038/s44320-024-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Proximity labeling (PL) via biotinylation coupled with mass spectrometry (MS) captures spatial proteomes in cells. Large-scale processing requires a workflow minimizing hands-on time and enhancing quantitative reproducibility. We introduced a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. Combining this with optimized quantitative MS based on data-independent acquisition (DIA), we increased sample throughput and improved protein identification and quantification reproducibility. We applied this pipeline to delineate subcellular proteomes across various compartments. Using the 5HT2A serotonin receptor as a model, we studied temporal changes of proximal interaction networks induced by receptor activation. In addition, we modified the pipeline for reduced sample input to accommodate CRISPR-based gene knockout, assessing dynamics of the 5HT2A network in response to perturbation of selected interactors. This PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, enhancing throughput and reproducibility of standard protocols.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Trupti Patil
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Aaron Marley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Rasika Vartak
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mark von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, 94158, USA.
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Kenakin T. Bias translation: The final frontier? Br J Pharmacol 2024; 181:1345-1360. [PMID: 38424747 DOI: 10.1111/bph.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024] Open
Abstract
Biased signalling is a natural result of GPCR allosteric function and should be expected from any and all synthetic and natural agonists. Therefore, it may be encountered in all agonist discovery projects and must be considered as a beneficial (or possible detrimental) feature of new candidate molecules. While bias is detected easily, the synoptic nature of GPCR signalling makes translation of simple in vitro bias to complex in vivo systems problematic. The practical outcome of this is a difficulty in predicting the therapeutic value of biased signalling due to the failure of translation of identified biased signalling to in vivo agonism. This is discussed in this review as well as some new ways forward to improve this translation process and better exploit this powerful pharmacologic mechanism.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Zhong X, Li Q, Polacco BJ, Patil T, Marley A, Foussard H, Khare P, Vartak R, Xu J, DiBerto JF, Roth BL, Eckhardt M, Zastrow MV, Krogan NJ, Hüttenhain R. A proximity proteomics pipeline with improved reproducibility and throughput. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.11.536358. [PMID: 37090610 PMCID: PMC10120663 DOI: 10.1101/2023.04.11.536358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Proximity labeling (PL) through biotinylation coupled with mass spectrometry (MS) has emerged as a powerful technique for capturing spatial proteomes within living cells. Large-scale sample processing for proximity proteomics requires a workflow that minimizes hands-on time while enhancing quantitative reproducibility. Here, we present a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. By combining this pipeline with an optimized quantitative MS acquisition method based on data-independent acquisition (DIA), we not only significantly increased sample throughput but also improved the reproducibility of protein identification and quantification. We applied this pipeline to delineate subcellular proteomes across various cellular compartments, including endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, employing 5HT2A serotonin receptor as a model, we investigated temporal changes of proximal interaction networks induced by the receptor's activation with serotonin. Finally, to demonstrate the applicability of our PL pipeline across multiple experimental conditions, we further modified the PL pipeline for reduced sample input amounts to accommodate CRISPR-based gene knockout, and assessed the dynamics of the 5HT2A network in response to the perturbation of selected proximal interactors. Importantly, the presented PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trupti Patil
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron Marley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rasika Vartak
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark Von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Gooding SW, Whistler JL. A Balancing Act: Learning from the Past to Build a Future-Focused Opioid Strategy. Annu Rev Physiol 2024; 86:1-25. [PMID: 38029388 PMCID: PMC10987332 DOI: 10.1146/annurev-physiol-042022-015914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.
Collapse
Affiliation(s)
| | - Jennifer L Whistler
- Center for Neuroscience, University of California, Davis, California, USA;
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
6
|
Alabdali R, Franchini L, Orlandi C. G α Protein Signaling Bias at Serotonin 1A Receptor. Mol Pharmacol 2023; 104:230-238. [PMID: 37567783 PMCID: PMC10586511 DOI: 10.1124/molpharm.123.000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Serotonin 1A receptor (5-HT1AR) is a clinically relevant target because of its involvement in several central and peripheral functions, including sleep, temperature homeostasis, processing of emotions, and response to stress. As a G protein coupled receptor (GPCR) activating numerous Gα i/o/z family members, 5-HT1AR can potentially modulate multiple intracellular signaling pathways in response to different therapeutics. Here, we applied a cell-based bioluminescence resonance energy transfer assay to quantify how ten structurally diverse 5-HT1AR agonists exert biased signaling by differentially stimulating Gα i/o/z family members. Our concentration-response analysis of the activation of each Gα i/o/z protein revealed unique potency and efficacy profiles of selected agonists when compared with the reference 5-hydroxytryptamine, serotonin. Overall, our analysis of signaling bias identified groups of ligands sharing comparable G protein activation selectivity and also drugs with unique selectivity profiles. We observed, for example, a strong bias of F-15599 toward the activation of Gα i3 that was unique among the agonists tested: we found a biased factor of +2.19 when comparing the activation of Gα i3 versus Gα i2 by F-15599, while it was -0.29 for 8-hydroxy-2-(di-n-propylamino) tetralin. Similarly, vortioxetine showed a biased factor of +1.06 for Gα z versus Gα oA, while it was -1.38 for vilazodone. Considering that alternative signaling pathways are regulated downstream of each Gα protein, our data suggest that the unique pharmacological properties of the tested agonists could result in multiple unrelated cellular outcomes. Further investigation is needed to reveal how this type of ligand bias could affect cellular responses and to illuminate the molecular mechanisms underlying therapeutic profile and side effects of each drug. SIGNIFICANCE STATEMENT: Serotonin 1a receptor (5-HT1AR) activates several members of the Gi/o/z protein family. Here, we examined ten structurally diverse and clinically relevant agonists acting on 5-HT1AR and identified distinctive bias patterns among G proteins. Considering the diversity of their intracellular effectors and signaling properties, this data reveal novel mechanisms underlying both therapeutic and undesirable effects.
Collapse
Affiliation(s)
- Rana Alabdali
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
7
|
Pogorelov VM, Rodriguiz RM, Roth BL, Wetsel WC. The G protein biased serotonin 5-HT2A receptor agonist lisuride exerts anti-depressant drug-like activities in mice. Front Mol Biosci 2023; 10:1233743. [PMID: 37900918 PMCID: PMC10603247 DOI: 10.3389/fmolb.2023.1233743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
There is now evidence from multiple Phase II clinical trials that psychedelic drugs can exert long-lasting anxiolytic, anti-depressant, and anti-drug abuse (nicotine and ethanol) effects in patients. Despite these benefits, the hallucinogenic actions of these drugs at the serotonin 2A receptor (5-HT2AR) limit their clinical use in diverse settings. Activation of the 5-HT2AR can stimulate both G protein and β-arrestin (βArr) -mediated signaling. Lisuride is a G protein biased agonist at the 5-HT2AR and, unlike the structurally-related lysergic acid diethylamide (LSD), the drug does not typically produce hallucinations in normal subjects at routine doses. Here, we examined behavioral responses to lisuride, in wild-type (WT), βArr1-knockout (KO), and βArr2-KO mice. In the open field, lisuride reduced locomotor and rearing activities, but produced a U-shaped function for stereotypies in both βArr lines of mice. Locomotion was decreased overall in βArr1-KOs and βArr2-KOs relative to wild-type controls. Incidences of head twitches and retrograde walking to lisuride were low in all genotypes. Grooming was decreased in βArr1 mice, but was increased then decreased in βArr2 animals with lisuride. Serotonin syndrome-associated responses were present at all lisuride doses in WTs, but they were reduced especially in βArr2-KO mice. Prepulse inhibition (PPI) was unaffected in βArr2 mice, whereas 0.5 mg/kg lisuride disrupted PPI in βArr1 animals. The 5-HT2AR antagonist MDL100907 failed to restore PPI in βArr1 mice, whereas the dopamine D2/D3 antagonist raclopride normalized PPI in WTs but not in βArr1-KOs. Clozapine, SCH23390, and GR127935 restored PPI in both βArr1 genotypes. Using vesicular monoamine transporter 2 mice, lisuride reduced immobility times in tail suspension and promoted a preference for sucrose that lasted up to 2 days. Together, it appears βArr1 and βArr2 play minor roles in lisuride's actions on many behaviors, while this drug exerts anti-depressant drug-like responses without hallucinogenic-like activities.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
8
|
Pottie E, Poulie CBM, Simon IA, Harpsøe K, D’Andrea L, Komarov IV, Gloriam DE, Jensen AA, Kristensen JL, Stove CP. Structure-Activity Assessment and In-Depth Analysis of Biased Agonism in a Set of Phenylalkylamine 5-HT 2A Receptor Agonists. ACS Chem Neurosci 2023; 14:2727-2742. [PMID: 37474114 PMCID: PMC10401645 DOI: 10.1021/acschemneuro.3c00267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of β-arrestin2 (βarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the βarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - Christian B. M. Poulie
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Icaro A. Simon
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laura D’Andrea
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - David E. Gloriam
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
9
|
Pogorelov VM, Rodriguiz RM, Roth BL, Wetsel WC. The G protein biased serotonin 5-HT 2A receptor agonist lisuride exerts anti-depressant drug-like activities in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543310. [PMID: 37333376 PMCID: PMC10274653 DOI: 10.1101/2023.06.01.543310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
There is now evidence from multiple Phase II clinical trials that psychedelic drugs can exert longlasting anxiolytic, anti-depressant, and anti-drug abuse (nicotine and ethanol) effects in patients. Despite these benefits, the hallucinogenic actions of these drugs at the serotonin 2A receptor (5-HT2AR) limit their clinical use in diverse settings. Activation of the 5-HT2AR can stimulate both G protein and β-arrestin (βArr) -mediated signaling. Lisuride is a G protein biased agonist at the 5-HT2AR and, unlike the structurally-related LSD, the drug does not typically produce hallucinations in normal subjects at routine doses. Here, we examined behavioral responses to lisuride, in wild-type (WT), βArr1-KO, and βArr2-KO mice. In the open field, lisuride reduced locomotor and rearing activities, but produced a U-shaped function for stereotypies in both βArr lines of mice. Locomotion was decreased overall in βArr1-KOs and βArr2-KOs, relative to WT controls. Incidences of head twitches and retrograde walking to lisuride were low in all genotypes. Grooming was depressed in βArr1 mice, but was increased then decreased in βArr2 animals with lisuride. Prepulse inhibition (PPI) was unaffected in βArr2 mice, whereas 0.5 mg/kg lisuride disrupted PPI in βArr1 animals. The 5-HT2AR antagonist MDL100907 failed to restore PPI in βArr1 mice, whereas the dopamine D2/D3 antagonist raclopride normalized PPI in WTs but not in βArr1-KOs. Using vesicular monoamine transporter 2 mice, lisuride reduced immobility times in tail suspension and promoted a preference for sucrose that lasted up to 2 days. Together, it appears βArr1 and βArr2 play minor roles in lisuride's actions on many behaviors, while this drug exerts anti-depressant drug-like responses without hallucinogenic-like activities.
Collapse
Affiliation(s)
- Vladimir M. Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
11
|
Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME, Gloriam DE. Community Guidelines for GPCR Ligand Bias: IUPHAR Review XX. Br J Pharmacol 2022; 179:3651-3674. [PMID: 35106752 PMCID: PMC7612872 DOI: 10.1111/bph.15811] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signaling' paradigm requires that we now characterize physiological signaling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signaling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.
Collapse
Affiliation(s)
- Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | | | - Marcel Bermudez
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christian S Breinholt
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Stephen J Hill
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Rick R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - H Ongun Onaran
- Molecular Biology and Technology Development Unit, Department of Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, North, Carolina, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics, Hospital Del Mar Medical Research Institute, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Martha E Sommer
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Current affiliation: ISAR Bioscience Institute, Munich-Planegg, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Pottie E, Stove CP. In vitro assays for the functional characterization of (psychedelic) substances at the serotonin receptor 5-HT 2A R. J Neurochem 2022; 162:39-59. [PMID: 34978711 DOI: 10.1111/jnc.15570] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
Serotonergic psychedelics are substances that induce alterations in mood, perception, and thought, and have the activation of serotonin (5-HT) 2A receptors (5-HT2A Rs) as a main pharmacological mechanism. Besides their appearance on the (illicit) drug market, e.g. as new psychoactive substances, their potential therapeutic application is increasingly explored. This group of substances demonstrates a broad structural variety, leading to insufficiently described structure-activity relationships, hence illustrating the need for better functional characterization. This review therefore elaborates on the in vitro molecular techniques that have been used the most abundantly for the characterization of (psychedelic) 5-HT2A R agonists. More specifically, this review covers assays to monitor the canonical G protein signaling pathway (e.g. measuring G protein recruitment/activation, inositol phosphate accumulation, or Ca2+ mobilization), assays to monitor non-canonical G protein signaling (such as arachidonic acid release), assays to monitor β-arrestin recruitment or signaling, and assays to monitor receptor conformational changes. In particular, focus lies on the mechanism behind the techniques, and the specific advantages and challenges that are associated with these. Additionally, several variables are discussed that one should consider when attempting to compare functional outcomes from different studies, both linked to the specific assay mechanism and linked to its specific execution, as these may heavily impact the assay outcome.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Department of Bioanalysis, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Slocum ST, DiBerto JF, Roth BL. Molecular insights into psychedelic drug action. J Neurochem 2021; 162:24-38. [PMID: 34797943 DOI: 10.1111/jnc.15540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
A confluence of factors has renewed interest in the scientific understanding and translational potential of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin: the desire for additional approaches to mental health care, incremental progress in basic and clinical research, and the reconsideration and relaxation of existing drug policies. With the United States Food and Drug Administration's designation of psilocybin as a "Breakthrough Therapy" for treatment-resistant depression, a new path has been forged for the conveyance of psychedelics to the clinic. Essential to the further development of such applications, however, is a clearer understanding of how these drugs exert their effects at the molecular level. Here we review the current knowledge regarding the molecular details of psychedelic drug actions and suggest that these discoveries can facilitate new insights into their hallucinogenic and therapeutic mechanisms.
Collapse
Affiliation(s)
- Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Noble F, Marie N. Biased Opioid Ligands: Revolution or Evolution? FRONTIERS IN PAIN RESEARCH 2021; 2:722820. [PMID: 35295469 PMCID: PMC8915667 DOI: 10.3389/fpain.2021.722820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Opioid are the most powerful analgesics ever but their use is still limited by deleterious side effects such as tolerance, dependence, and respiratory depression that could eventually lead to a fatal overdose. The opioid crisis, mainly occurring in north America, stimulates research on finding new opioid ligands with reduced side effects. Among them, biased ligands are likely the most promising compounds. We will review some of the latest discovered biased opioid ligands and see if they were able to fulfill these expectations.
Collapse
|
15
|
Delaitre C, Boisbrun M, Lecat S, Dupuis F. Targeting the Angiotensin II Type 1 Receptor in Cerebrovascular Diseases: Biased Signaling Raises New Hopes. Int J Mol Sci 2021; 22:ijms22136738. [PMID: 34201646 PMCID: PMC8269339 DOI: 10.3390/ijms22136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/20/2022] Open
Abstract
The physiological and pathophysiological relevance of the angiotensin II type 1 (AT1) G protein-coupled receptor no longer needs to be proven in the cardiovascular system. The renin–angiotensin system and the AT1 receptor are the targets of several classes of therapeutics (such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers, ARBs) used as first-line treatments in cardiovascular diseases. The importance of AT1 in the regulation of the cerebrovascular system is also acknowledged. However, despite numerous beneficial effects in preclinical experiments, ARBs do not induce satisfactory curative results in clinical stroke studies. A better understanding of AT1 signaling and the development of biased AT1 agonists, able to selectively activate the β-arrestin transduction pathway rather than the Gq pathway, have led to new therapeutic strategies to target detrimental effects of AT1 activation. In this paper, we review the involvement of AT1 in cerebrovascular diseases as well as recent advances in the understanding of its molecular dynamics and biased or non-biased signaling. We also describe why these alternative signaling pathways induced by β-arrestin biased AT1 agonists could be considered as new therapeutic avenues for cerebrovascular diseases.
Collapse
Affiliation(s)
- Céline Delaitre
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | | | - Sandra Lecat
- Biotechnologie et Signalisation Cellulaire, UMR7242 CNRS/Université de Strasbourg, 300 Boulevard Sébastien Brant, CS 10413, CEDEX, 67412 Illkirch-Graffenstaden, France;
| | - François Dupuis
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: ; Tel.: +33-372747272
| |
Collapse
|
16
|
Abstract
Opioids such as morphine and oxycodone are analgesics frequently prescribed for the treatment of moderate or severe pain. Unfortunately, these medications are associated with exceptionally high abuse potentials and often cause fatal side effects, mainly through the μ-opioid receptor (MOR). Efforts to discover novel, safer, and more efficacious analgesics targeting MOR have encountered challenges. In this review, we summarize alternative strategies and targets that could be used to develop safer nonopioid analgesics. A molecular understanding of G protein-coupled receptor activation and signaling has illuminated not only the complexities of receptor pharmacology but also the potential for pathway-selective agonists and allosteric modulators as safer medications. The availability of structures of pain-related receptors, in combination with high-throughput computational tools, has accelerated the discovery of multitarget ligands with promising pharmacological profiles. Emerging clinical evidence also supports the notion that drugs targeting peripheral opioid receptors have potential as improved analgesic agents.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
17
|
Buchwald P. A single unified model for fitting simple to complex receptor response data. Sci Rep 2020; 10:13386. [PMID: 32770075 PMCID: PMC7414914 DOI: 10.1038/s41598-020-70220-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
The fitting of complex receptor-response data where fractional response and occupancy do not match is challenging. They encompass important cases including (a) the presence of "receptor reserve" and/or partial agonism, (b) multiple responses assessed at different vantage points along a pathway, (c) responses that are different along diverging downstream pathways (biased agonism), and (d) constitutive activity. For these, simple models such as the well-known Clark or Hill equations cannot be used. Those that can, such as the operational (Black&Leff) model, do not provide a unified approach, have multiple nonintuitive parameters that are challenging to fit in well-defined manner, have difficulties incorporating binding data, and cannot be reduced or connected to simpler forms. We have recently introduced a quantitative receptor model (SABRE) that includes parameters for Signal Amplification (γ), Binding affinity (Kd), Receptor activation Efficacy (ε), and constitutive activity (εR0). It provides a single equation to fit complex cases within a full two-state framework with the possibility of incorporating receptor occupancy data (i.e., experimental Kds). Simpler cases can be fit by using consecutively reduced forms obtained by constraining parameters to specific values, e.g., εR0 = 0: no constitutive activity, γ = 1: no amplification (Emax-type fitting), and ε = 1: no partial agonism (Clark equation). Here, a Hill-type extension is introduced (n ≠ 1), and simulated and experimental receptor-response data from simple to increasingly complex cases are fitted within the unified framework of SABRE with differently constrained parameters.
Collapse
Affiliation(s)
- Peter Buchwald
- Department of Molecular and Cellular Pharmacology and Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
18
|
Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, Slocum ST, Che T, Gavin AC, McCorvy JD, Roth BL, Strachan RT. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat Chem Biol 2020; 16:841-849. [PMID: 32367019 PMCID: PMC7648517 DOI: 10.1038/s41589-020-0535-8] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
G-protein-coupled receptors (GPCRs) remain major drug targets, despite our incomplete understanding of how they signal through 16 non-visual G-protein signal transducers (collectively named the transducerome) to exert their actions. To address this gap, we have developed an open-source suite of 14 optimized bioluminescence resonance energy transfer (BRET) Gαβγ biosensors (named TRUPATH) to interrogate the transducerome with single pathway resolution in cells. Generated through exhaustive protein engineering and empirical testing, the TRUPATH suite of Gαβγ biosensors includes the first Gα15 and GαGustducin probes. In head-to-head studies, TRUPATH biosensors outperformed first-generation sensors at multiple GPCRs and in different cell lines. Benchmarking studies with TRUPATH biosensors recapitulated previously documented signaling bias and revealed new coupling preferences for prototypic and understudied GPCRs with potential in vivo relevance. To enable a greater understanding of GPCR molecular pharmacology by the scientific community, we have made TRUPATH biosensors easily accessible as a kit through Addgene.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Justin G English
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Alexis M Glaudin
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ariana C Gavin
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
19
|
Brust TF. Biased Ligands at the Kappa Opioid Receptor: Fine-Tuning Receptor Pharmacology. Handb Exp Pharmacol 2020; 271:115-135. [PMID: 33140224 DOI: 10.1007/164_2020_395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kappa opioid receptor (KOR) is a G protein-coupled receptor (GPCR) that can signal through multiple signaling pathways. KOR agonists are known to relieve pain and itch, as well as induce dysphoria, sedation, hallucinations, and diuresis. As is the case with many other GPCRs, specific signaling pathways downstream of the KOR have been linked to certain physiological responses induced by the receptor. Those studies motivated the search and discovery of a number of KOR ligands that preferentially activate one signaling pathway over another. Such compounds are termed functionally selective or biased ligands, and may present a way of inducing desired receptor effects with reduced adverse reactions. In this chapter, I review the molecular intricacies of KOR signaling and discuss the studies that have used biased signaling through the KOR as a way to selectively modulate in vivo physiology.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA.
| |
Collapse
|
20
|
Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat Struct Mol Biol 2019; 26:535-544. [PMID: 31270468 DOI: 10.1038/s41594-019-0252-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Metabotropic receptors are responsible for so-called 'slow synaptic transmission' and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein-coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.
Collapse
|
21
|
|
22
|
Abstract
Pharmacology, the chemical control of physiology, emerged as an offshoot of physiology when the physiologists using chemicals to probe physiological systems became more interested in the probes than the systems. Pharmacologists were always, and in many ways still are, bound to study drugs in systems they do not fully understand. Under these circumstances, null methods were the main ways in which conclusions about biologically active molecules were made. However, as understanding of the basic mechanisms of cellular function and biochemical systems were elucidated, so too did the understanding of how drugs affected these systems. Over the past 20 years, new ideas have emerged in the field that have completely changed and revitalized it; these are described herein. It will be seen how null methods in isolated tissues gave way to, first biochemical radioligand binding studies, and then to a wide array of functional assay technologies that can measure the effects of molecules on drug targets. In addition, the introduction of molecular dynamics, the appreciation of the allosteric nature of receptors, protein X-ray crystal structures, genetic manipulations in the form of knock-out and knock-in systems and Designer Receptors Exclusively Activated by Designer Drugs have revolutionized pharmacology.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Kenakin T. Is the Quest for Signaling Bias Worth the Effort? Mol Pharmacol 2018; 93:266-269. [PMID: 29348268 DOI: 10.1124/mol.117.111187] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/12/2018] [Indexed: 01/14/2023] Open
Abstract
The question of whether signaling bias is a viable discovery strategy for drug therapy is discussed as a value proposition. On the positive side, bias is easily identified and quantified in simple in vitro functional assays with little resource expenditure. However, there are valid pharmacological reasons why these in vitro bias numbers may not accurately translate to in vivo therapeutic systems making the expectation of direct correspondence of in vitro bias to in vivo systems a problematic process. Presently, in vitro bias is used simply as a means to identify unique molecules to be advanced to more complex therapeutic assays but from this standpoint alone, the value proposition lies far to the positive. However, pharmacological attention needs to be given to the translational gap to reduce inevitable and costly attrition in biased molecule progression.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
25
|
Discovery of new GPCR ligands to illuminate new biology. Nat Chem Biol 2017; 13:1143-1151. [PMID: 29045379 DOI: 10.1038/nchembio.2490] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Although a plurality of drugs target G-protein-coupled receptors (GPCRs), most have emerged from classical medicinal chemistry and pharmacology programs and resemble one another structurally and functionally. Though effective, these drugs are often promiscuous. With the realization that GPCRs signal via multiple pathways, and with the emergence of crystal structures for this family of proteins, there is an opportunity to target GPCRs with new chemotypes and confer new signaling modalities. We consider structure-based and physical screening methods that have led to the discovery of new reagents, focusing particularly on the former. We illustrate their use against previously untargeted or orphan GPCRs, against allosteric sites, and against classical orthosteric sites that selectively activate one downstream pathway over others. The ligands that emerge are often chemically novel, which can lead to new biological effects.
Collapse
|
26
|
Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics? Drug Discov Today 2017; 22:1719-1729. [PMID: 28743488 DOI: 10.1016/j.drudis.2017.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
Biased activation of G-protein-coupled receptors (GPCRs) is shifting drug discovery efforts and appears promising for the development of safer drugs. The most effective analgesics to treat acute pain are agonists of the μ opioid receptor (μ-OR), a member of the GPCR superfamily. However, the analgesic use of opioid drugs, such as morphine, is hindered by adverse effects. Only a few μ-OR agonists have been reported to selectively activate the Gi over β-arrestin signaling pathway, resulting in lower gastrointestinal dysfunction and respiratory suppression. Here, we discuss the strategies that led to the development of biased μ-OR agonists, and potential areas for improvement, with an emphasis on structural aspects of the ligand-receptor recognition process.
Collapse
Affiliation(s)
- Abraham Madariaga-Mazón
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Andrés F Marmolejo-Valencia
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Yangmei Li
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Karina Martinez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Mexico City 04510, Mexico.
| |
Collapse
|
27
|
Abstract
INTRODUCTION The availability of different functional pharmacological assays has revealed that agonists for receptors that are pleiotropically coupled to multiple signaling pathways in the cell can emphasize signals to some pathways over others, i.e. can be biased toward certain signals. This, in turn, opens the possibility that molecules can be made to emphasize favorable signals, de-emphasize harmful signals or selectively block the ability of the natural agonist to produce unfavorable signals. Areas covered: This paper discusses the mechanism of biased signaling, the possible therapeutic implications of this effect, methods to quantify and measure bias and the current literature describing the translation of biased measure in vitro to in vivo systems. In addition, the challenges of exploiting this mechanism for therapy are outlined. Expert opinion: While this mechanism is well established and ubiquitous in pharmacology and easily measured in vitro, there are theoretical and practical hurdles to overcome to the fruitful utilization of signaling bias in therapeutic systems. There will be failures in the translation of biased molecules in vivo because of these challenges but hopefully also success and these latter translations hopefully will provide guidance in exploiting this effect further for therapy.
Collapse
Affiliation(s)
- Terry Kenakin
- a Department of Pharmacology , University of North Carolina School of Medicine , Chapel Hill , NC , USA
| |
Collapse
|
28
|
Costa-Neto CM, Parreiras-E-Silva LT, Bouvier M. A Pluridimensional View of Biased Agonism. Mol Pharmacol 2016; 90:587-595. [PMID: 27638872 DOI: 10.1124/mol.116.105940] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
When studying G protein-coupled receptor (GPCR) signaling and ligand-biased agonism, at least three dimensional spaces must be considered, as follows: 1) the distinct conformations that can be stabilized by different ligands promoting the engagement of different signaling effectors and accessory regulators; 2) the distinct subcellular trafficking that can be conferred by different ligands, which results in spatially distinct signals; and 3) the differential binding kinetics that maintain the receptor in specific conformation and/or subcellular localization for different periods of time, allowing for the engagement of distinct signaling effector subsets. These three pluridimensional aspects of signaling contribute to different faces of functional selectivity and provide a complex, interconnected way to define the signaling profile of each individual ligand acting at GPCRs. In this review, we discuss how each of these aspects may contribute to the diversity of signaling, but also how they shed light on the complexity of data analyses and interpretation. The impact of phenotype variability as a source of signaling diversity, and the influence of novel and more sensitive assays in the detection and analysis of signaling pluridimensionality, is also discussed. Finally, we discuss perspectives for the use of the concept of pluridimensional signaling in drug discovery, in which we highlight future predictive tools that may facilitate the identification of compounds with optimal therapeutic and safety properties based on the signaling signatures of drug candidates.
Collapse
Affiliation(s)
- Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil (C.M.C.-N., L.T.P.-S.); and Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Canada (L.T.P.-S., M.B.)
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil (C.M.C.-N., L.T.P.-S.); and Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Canada (L.T.P.-S., M.B.)
| | - Michel Bouvier
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil (C.M.C.-N., L.T.P.-S.); and Department of Biochemistry and Molecular Medicine and Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Canada (L.T.P.-S., M.B.)
| |
Collapse
|
29
|
Roth BL, Lopez E, Patel S, Kroeze WK. The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches? Neuroscientist 2016. [DOI: 10.1177/107385840000600408] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A large number of 5-HT receptors (>15) have been identified by molecular cloning technology over the past 10 years. This review briefly summarizes available information regarding the functional and therapeutic implications of serotonin receptor diversity for neurology and psychiatry. 5-HT receptors are divided into seven main families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7. Several families (e.g., 5-HT1 family) have many members (e.g., 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F), each of which is encoded by a distinct gene product. In addition to the genomic diversity of 5-HT receptors, splice variants and editing isoforms exist for many of the 5-HT receptors, making the family even more diverse. Evidence that is summarized in this review suggests that 5-HT receptors represent novel therapeutic targets for a number of neurologic and psychiatric diseases including migraine headaches, chronic pain conditions, schizophrenia, anxiety, depression, eating disorders, obsessive compulsive disorder, pervasive developmental disorders, and obesity-related conditions (Type II diabetes, hypertension, obesity syndromes). It is possible that sub-type-selective serotonergic agents may revolutionize the treatment for a number of medical, psychiatric, and neurological disorders.
Collapse
Affiliation(s)
- Bryan L. Roth
- Department of Psychiatry, Department of Biochemistry, Department of Neuroscience, Case Western Reserve University Medical School, Cleveland, Ohio,
| | - Estelle Lopez
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| | - Shamil Patel
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| | - Wesley K. Kroeze
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio
| |
Collapse
|
30
|
Lee HM, Kim Y. Drug Repurposing Is a New Opportunity for Developing Drugs against Neuropsychiatric Disorders. SCHIZOPHRENIA RESEARCH AND TREATMENT 2016; 2016:6378137. [PMID: 27073698 PMCID: PMC4814692 DOI: 10.1155/2016/6378137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 01/03/2023]
Abstract
Better the drugs you know than the drugs you do not know. Drug repurposing is a promising, fast, and cost effective method that can overcome traditional de novo drug discovery and development challenges of targeting neuropsychiatric and other disorders. Drug discovery and development targeting neuropsychiatric disorders are complicated because of the limitations in understanding pathophysiological phenomena. In addition, traditional de novo drug discovery and development are risky, expensive, and time-consuming processes. One alternative approach, drug repurposing, has emerged taking advantage of off-target effects of the existing drugs. In order to identify new opportunities for the existing drugs, it is essential for us to understand the mechanisms of action of drugs, both biologically and pharmacologically. By doing this, drug repurposing would be a more effective method to develop drugs against neuropsychiatric and other disorders. Here, we review the difficulties in drug discovery and development in neuropsychiatric disorders and the extent and perspectives of drug repurposing.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Cell Biology & Physiology, School of Medicine, University of North Carolina, 115 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Yuna Kim
- Department of Pediatrics, School of Medicine, Duke University, 905 S. LaSalle Street, Durham, NC 27710, USA
| |
Collapse
|
31
|
Kenakin T. The mass action equation in pharmacology. Br J Clin Pharmacol 2015; 81:41-51. [PMID: 26506455 DOI: 10.1111/bcp.12810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/25/2015] [Accepted: 10/12/2015] [Indexed: 01/14/2023] Open
Abstract
The mass action equation is the building block from which all models of drug-receptor interaction are built. In the simplest case, the equation predicts a sigmoidal relationship between the amount of drug-receptor complex and the logarithm of the concentration of drug. The form of this function is also the same as most dose-response relationships in pharmacology (such as enzyme inhibition and the protein binding of drugs) but the potency term in dose-response relationships very often differs in meaning from the similar term in the simple mass action relationship. This is because (i) most pharmacological systems are collections of mass action reactions in series and/or in parallel and (ii) the important assumptions in the mass action reaction are violated in complex pharmacological systems. In some systems, the affinity of the receptor R for some ligand A is modified by interaction of the receptor with the allosteric ligand B and concomitantly the affinity of the receptor for ligand B is modified to the same degree. When this occurs, the observed affinity of the ligand A for the receptor will depend on both the concentration of the co-binding allosteric ligand and its nature. The relationships between drug potency in pharmacological models and the equilibrium dissociation constants defined in single mass action reactions are discussed. More detailed knowledge of efficacy has led to new models of drug action that depend on the relative probabilities of different states, and these have taken knowledge of drug-receptor interactions beyond Guldberg and Waage.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Kenakin T. Gaddum Memorial Lecture 2014: receptors as an evolving concept: from switches to biased microprocessors. Br J Pharmacol 2015; 172:4238-53. [PMID: 26075971 PMCID: PMC4556465 DOI: 10.1111/bph.13217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
This review is based on the JR Vane Medal Lecture presented at the BPS Winter Meeting in December 2014 by T. Kenakin. A recording of the lecture is included as supporting information and can also be viewed online here: https://www.youtube.com/watch?v=xrP81AQ8l-8. Pharmacological models used to describe drug agonism and antagonism have evolved over the past 20 years from a parsimonious model describing single active and inactive receptor states to models of multiconformational receptor systems modified by ligand conformational selection. These latter models describe the observed, presently underexploited, pharmacological mechanism of ligand-directed biased signalling. Biased signals can be quantified with transduction coefficients (ΔΔLog(τ/KA) values), a scale grounded in the Black/Leff operational model; this enables the optimization of biased profiles through medicinal chemistry. The past decades have also brought the availability of new technologies to measure multiple functional effects mediated by seven transmembrane receptors. These have confirmed that drugs can have many efficacies, which may be collaterally linked, that is there is no linear sequence of activities required. In addition, new functional screening assays have introduced increasing numbers of allosteric ligands into drug discovery. These molecules are permissive (they do not necessarily preclude endogenous signalling in vivo); therefore, they may allow better fine tuning of pathological physiology. The permissive quality of allosteric ligands can also change the quality of endogenous signalling efficacy ('induced bias') as well as the quantity of signal; in this regard, indices related to ΔΔLog(τ/KA) values (namely ΔLog(αβ) values) can be used to quantify these effects for optimization in the drug discovery process. All of these added scales of drug activity will, hopefully, allow better targeting of candidate molecules towards therapies.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of MedicineChapel Hill, NC, USA
| |
Collapse
|
33
|
Kenakin T. The Effective Application of Biased Signaling to New Drug Discovery. Mol Pharmacol 2015; 88:1055-61. [PMID: 26138073 DOI: 10.1124/mol.115.099770] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 01/14/2023] Open
Abstract
The ability of agonists to selectively activate some but not all signaling pathways linked to pleiotropically signaling receptors has opened the possibility of obtaining molecules that emphasize beneficial signals, de-emphasize harmful signals, and concomitantly deemphasize harmful signals while blocking the harmful signals produced by endogenous agonists. The detection and quantification of biased effects is straightforward, but two important factors should be considered in the evaluation of biased effects in drug discovery. The first is that efficacy, and not bias, determines whether a given agonist signal will be observed; bias only dictates the relative concentrations at which agonist signals will appear when they do appear. Therefore, a Cartesian coordinate system plotting relative efficacy (on a scale of Log relative Intrinsic Activities) as the ordinates and Log(bias) as the abscissae is proposed as a useful tool in evaluating possible biased molecules for progression in discovery programs. Second, it should be considered that the current scales quantifying bias limit this property to the allosteric vector (ligand/receptor/coupling protein complex) and that whole-cell processing of this signal can completely change measured bias from in vitro predictions.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
34
|
McCorvy JD, Roth BL. Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 2015; 150:129-42. [PMID: 25601315 DOI: 10.1016/j.pharmthera.2015.01.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/18/2022]
Abstract
Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein-coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling.
Collapse
MESH Headings
- Allosteric Site
- Animals
- Ergotamine/pharmacology
- Ergotamine/therapeutic use
- GTP-Binding Proteins/physiology
- Heart Valve Diseases/drug therapy
- Heart Valve Diseases/metabolism
- Humans
- Migraine Disorders/drug therapy
- Migraine Disorders/metabolism
- Models, Molecular
- Protein Conformation
- Receptor, Serotonin, 5-HT1B/chemistry
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT2B/chemistry
- Receptor, Serotonin, 5-HT2B/metabolism
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/metabolism
- Serotonin Receptor Agonists/pharmacology
- Serotonin Receptor Agonists/therapeutic use
- Signal Transduction
- Vasoconstrictor Agents/pharmacology
- Vasoconstrictor Agents/therapeutic use
Collapse
Affiliation(s)
- John D McCorvy
- Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA
| | - Bryan L Roth
- Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA
| |
Collapse
|
35
|
Steen A, Larsen O, Thiele S, Rosenkilde MM. Biased and g protein-independent signaling of chemokine receptors. Front Immunol 2014; 5:277. [PMID: 25002861 PMCID: PMC4066200 DOI: 10.3389/fimmu.2014.00277] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/28/2014] [Indexed: 01/14/2023] Open
Abstract
Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor), different receptors (with the same ligand), or different tissues or cells (for the same ligand–receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of “classic” redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor-, or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the solution.
Collapse
Affiliation(s)
- Anne Steen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Stefanie Thiele
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
36
|
Abstract
It is now established that agonists do not uniformly activate pleiotropic signaling mechanisms initiated by receptors but rather can bias signals according to the unique receptor conformations they stabilize. One of the important emerging signaling systems where this can occur is through β-arrestin. This chapter discusses biased signaling where emphasis or de-emphasis of β-arrestin signaling is postulated (or been shown) to be beneficial. The chapter specifically focuses on methods to quantify biased effects; these methods furnish scales that can be used in the process of optimizing biased agonism (and antagonism) for therapeutic benefit. Specifically, methods to derive ΔΔLog(τ/K A) or ΔΔLog(Relative Activity) values are described to do this.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042, Genetic Medicine Building, CB# 7365, Chapel Hill, NC, 27599-7365, USA,
| |
Collapse
|
37
|
Lee HM, Giguere PM, Roth BL. DREADDs: novel tools for drug discovery and development. Drug Discov Today 2013; 19:469-73. [PMID: 24184433 DOI: 10.1016/j.drudis.2013.10.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/17/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
Since the invention of the first designer receptors exclusively activated by designer drugs (DREADDs), these engineered G protein-coupled receptors (GPCRs) have been widely applied in investigations of biological processes and behaviors. DREADD technology has emerged as a powerful tool with great potential for drug discovery and development. DREADDs can facilitate the identification of druggable targets and enable researchers to explore the activities of novel drugs against both known and orphan GPCRs. Here, we discuss how DREADDs can be used as novel tools for drug discovery and development.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Pharmacology, Program in Neuroscience, Division of Chemical Biology and Medicinal Chemistry, and NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill Medical School, 4072 Genetic Medicine Building, Chapel Hill, NC 27514, USA
| | - Patrick M Giguere
- Department of Pharmacology, Program in Neuroscience, Division of Chemical Biology and Medicinal Chemistry, and NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill Medical School, 4072 Genetic Medicine Building, Chapel Hill, NC 27514, USA
| | - Bryan L Roth
- Department of Pharmacology, Program in Neuroscience, Division of Chemical Biology and Medicinal Chemistry, and NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill Medical School, 4072 Genetic Medicine Building, Chapel Hill, NC 27514, USA.
| |
Collapse
|
38
|
Kenakin T. New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol 2013; 168:554-75. [PMID: 22994528 PMCID: PMC3579279 DOI: 10.1111/j.1476-5381.2012.02223.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/03/2012] [Accepted: 09/12/2012] [Indexed: 01/14/2023] Open
Abstract
The present-day concept of drug efficacy has changed completely from its original description as the property of agonists that causes tissue activation. The ability to visualize the multiple behaviours of seven transmembrane receptors has shown that drugs can have many efficacies and also that the transduction of drug stimulus to various cellular stimulus-response cascades can be biased towards some but not all pathways. This latter effect leads to agonist 'functional selectivity', which can be favourable for the improvement of agonist therapeutics. However, in addition, biased agonist potency becomes cell type dependent with the loss of the monotonic behaviour of stimulus-response mechanisms, leading to potential problems in agonist quantification. This has an extremely important effect on the discovery process for new agonists since it now cannot be assumed that a given screening or lead optimization assay will correctly predict therapeutic behaviour. This review discusses these ideas and how new approaches to quantifying agonist effect may be used to circumvent the cell type dependence of agonism. This article, written by a corresponding member of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), reviews our current understanding of the interaction of ligands with seven transmembrane receptors. Further information on these pharmacological concepts is being incorporated into the IUPHAR/BPS database GuideToPharmacology.org.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
39
|
Chen X, Sassano MF, Zheng L, Setola V, Chen M, Bai X, Frye SV, Wetsel WC, Roth BL, Jin J. Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D₂ receptor agonists. J Med Chem 2012; 55:7141-53. [PMID: 22845053 DOI: 10.1021/jm300603y] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functionally selective G protein-coupled receptor (GPCR) ligands, which differentially modulate canonical and noncanonical signaling, are extremely useful for elucidating key signal transduction pathways essential for both the therapeutic actions and side effects of drugs. However, few such ligands have been created, and very little purposeful attention has been devoted to studying what we term: "structure-functional selectivity relationships" (SFSR). We recently disclosed the first β-arrestin-biased dopamine D(2) receptor (D(2)R) agonists UNC9975 (44) and UNC9994 (36), which have robust in vivo antipsychotic drug-like activities. Here we report the first comprehensive SFSR studies focused on exploring four regions of the aripiprazole scaffold, which resulted in the discovery of these β-arrestin-biased D(2)R agonists. These studies provide a successful proof-of-concept for how functionally selective ligands can be discovered.
Collapse
Affiliation(s)
- Xin Chen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kenakin T. The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacol Toxicol 2012; 13:3. [PMID: 22947056 PMCID: PMC3506267 DOI: 10.1186/2050-6511-13-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022] Open
Abstract
The discovery that not all agonists uniformly activate cellular signaling pathways (biased signaling) has greatly changed the drug discovery process for agonists and the strategy for treatment of disease with agonists. Technological advances have enabled complex receptor behaviors to be viewed independently and through these assays, the bias for an agonist can be quantified. It is predicted that therapeutic phenotypes will be linked, through translational studies, to quantified scales of bias to guide medicinal chemists in the drug discovery process.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042 Genetic Medicine Building, CB# 7365, Chapel Hill, NC 27599-7365, USA.
| |
Collapse
|
41
|
Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 2012; 3:193-203. [PMID: 22860188 DOI: 10.1021/cn200111m] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/20/2011] [Indexed: 11/30/2022] Open
Abstract
Activation of seven-transmembrane (7TM) receptors by agonists does not always lead to uniform activation of all signaling pathways mediated by a given receptor. Relative to other ligands, many agonists are "biased" toward producing subsets of receptor behaviors. A hallmark of such "functional selectivity" is cell type dependence; this poses a particular problem for the profiling of agonists in whole cell test systems removed from the therapeutic one(s). Such response-specific cell-based variability makes it difficult to guide medicinal chemistry efforts aimed at identifying and optimizing therapeutically meaningful agonist bias. For this reason, we present a scale, based on the Black and Leff operational model, that contains the key elements required to describe 7TM agonism, namely, affinity (K(A) (-1)) for the receptor and efficacy (τ) in activating a particular signaling pathway. Utilizing a "transduction coefficient" term, log(τ/K(A)), this scale can statistically evaluate selective agonist effects in a manner that can theoretically inform structure-activity studies and/or drug candidate selection matrices. The bias of four chemokines for CCR5-mediated inositol phosphate production versus internalization is quantified to illustrate the practical application of this method. The independence of this method with respect to receptor density and the calculation of statistical estimates of confidence of differences are specifically discussed.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel
Hill, North Carolina 27599-7365, United States
| | - Christian Watson
- Platform Technology Sciences, GlaxoSmithKline Research, Research Triangle Park, North
Carolina 27709, United States
| | - Vanessa Muniz-Medina
- Infectious Diseases Discovery
Performance Unit, GlaxoSmithKline Research, Research Triangle Park, North Carolina 27709, United States
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash
Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Melbourne, Australia
| | - Steven Novick
- Discovery Analytics, GlaxoSmithKline Research, Research Triangle Park, North
Carolina 27709, United States
| |
Collapse
|
42
|
Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2012; 12:205-16. [PMID: 23411724 DOI: 10.1038/nrd3954] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Agonists of seven-transmembrane receptors, also known as G protein-coupled receptors (GPCRs), do not uniformly activate all cellular signalling pathways linked to a given seven-transmembrane receptor (a phenomenon termed ligand or agonist bias); this discovery has changed how high-throughput screens are designed and how lead compounds are optimized for therapeutic activity. The ability to experimentally detect ligand bias has necessitated the development of methods for quantifying agonist bias in a way that can be used to guide structure-activity studies and the selection of drug candidates. Here, we provide a viewpoint on which methods are appropriate for quantifying bias, based on knowledge of how cellular and intracellular signalling proteins control the conformation of seven-transmembrane receptors. We also discuss possible predictions of how biased molecules may perform in vivo, and what potential therapeutic advantages they may provide.
Collapse
|
43
|
Stroth N, Svenningsson P. Ligand-specific differential regulation of 5-hydroxytryptamine receptors: functional selectivity in serotonergic signaling. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Yadav PN, Kroeze WK, Farrell MS, Roth BL. Antagonist functional selectivity: 5-HT2A serotonin receptor antagonists differentially regulate 5-HT2A receptor protein level in vivo. J Pharmacol Exp Ther 2011; 339:99-105. [PMID: 21737536 DOI: 10.1124/jpet.111.183780] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of the 5-HT(2A) receptor is implicated in both the etiology and treatment of schizophrenia. Although the essential role of 5-HT(2A) receptors in atypical antipsychotic drug actions is widely accepted, the contribution of 5-HT(2A) down-regulation to their efficacy is not known. We hypothesized that down-regulation of cortical 5-HT(2A) receptors contributes to the therapeutic action of atypical antipsychotic drugs. To test this hypothesis, we assessed the effect of chronically administered antipsychotics (clozapine, olanzapine, and haloperidol) and several 5-HT(2A) antagonists [ketanserin, altanserin, α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol (M100907), α-phenyl-1-(2-phenylethyl)-4-piperidinemethano (M11939), 4-[(2Z)-3-{[2-(dimethylamino)ethoxy]amino}-3-(2-fluorophenyl)prop-2-en-1-ylidene]cyclohexa-2,5-dien-1-one (SR46349B), and pimavanserin], on the phencyclidine (PCP)-induced hyperlocomotor response and cortical 5-HT(2A) receptor levels in C57BL/6J mice. Clozapine and olanzapine, but not haloperidol, induced receptor down-regulation and attenuated PCP-induced locomotor responses. Of the selective 5-HT(2A) antagonists tested, only ketanserin caused significant receptor protein down-regulation, whereas SR46349B up-regulated 5-HT(2A) receptors and potentiated PCP-hyperlocomotion; the other 5-HT(2A) receptor antagonists were without effect. The significance of these findings with respect to atypical antipsychotic drug action is discussed.
Collapse
Affiliation(s)
- Prem N Yadav
- Department of Pharmacology, University of North Carolina, Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
45
|
Co-involvement of psychological and neurological abnormalities in infertility with polycystic ovarian syndrome. Arch Gynecol Obstet 2011; 284:773-8. [DOI: 10.1007/s00404-011-1947-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/03/2011] [Indexed: 01/31/2023]
|
46
|
Abstract
The critical involvement of GPCRs (G-protein-coupled receptors) in nearly all physiological processes, and the presence of these receptors at the interface between the extracellular and the intracellular milieu, has positioned these receptors as pivotal therapeutic targets. Although a large number of drugs targeting GPCRs are currently available, significant efforts have been directed towards understanding receptor properties, with the goal of identifying and designing improved receptor ligands. Recent advances in GPCR pharmacology have demonstrated that different ligands binding to the same receptor can activate discrete sets of downstream effectors, a phenomenon known as 'ligand-directed signal specificity', which is currently being explored for drug development due to its potential therapeutic advantage. Emerging studies suggest that GPCR responses can also be modulated by contextual factors, such as interactions with other GPCRs. Association between different GPCR types leads to the formation of complexes, or GPCR heteromers, with distinct and unique signalling properties. Some of these heteromers activate discrete sets of signalling effectors upon activation by the same ligand, a phenomenon termed 'heteromer-directed signalling specificity'. This has been shown to be involved in the physiological role of receptors and, in some cases, in disease-specific dysregulation of a receptor effect. Hence targeting GPCR heteromers constitutes an emerging strategy to select receptor-specific responses and is likely to be useful in achieving specific beneficial therapeutic effects.
Collapse
|
47
|
Roth BL. Irving Page Lecture: 5-HT(2A) serotonin receptor biology: interacting proteins, kinases and paradoxical regulation. Neuropharmacology 2011; 61:348-54. [PMID: 21288474 DOI: 10.1016/j.neuropharm.2011.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/28/2010] [Accepted: 01/10/2011] [Indexed: 01/04/2023]
Abstract
5-Hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity.
Collapse
Affiliation(s)
- Bryan L Roth
- Department of Pharmacology, Program in Neurosciences, Lineberger Cancer Center, NIMH Psychoactive Drug Screening Program, and Division of Medicinal Chemistry and Natural Products, Room 4072, Genetic Medicine Building, University of North Carolina Chapel Hill Medical School, Chapel Hill, NC 27514, USA.
| |
Collapse
|
48
|
|
49
|
Kenakin T. Being mindful of seven-transmembrane receptor 'guests' when assessing agonist selectivity. Br J Pharmacol 2010; 160:1045-7. [PMID: 20590598 DOI: 10.1111/j.1476-5381.2010.00764.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The time-honored approach of quantifying agonist selectivity through measurement of agonist affinity with binding and efficacy through potency ratios in model assays for prediction of effect in therapeutic systems can fall short of providing useful answers for functionally selective agonists. Agonists are now known to have pluridimensional efficacies that are associated with selected signalling pathways coupled to the receptor. This necessitates specifically tailored assay formats to measure pre-determined efficacies of ligands to characterize agonist selectivity fully. If such assays can access signalling that directly emanates from the interaction of the agonist-bound receptor and a cytosolic signalling protein, then the Black/Leff operational model can be used to specifically quantify 'transduction ratios' (tau/K(A)) that fully characterize selective activation of signalling pathways by a given agonist. As whole-cell processing of pleiotropic signalling cascades imposes cell-specific phenotypic agonist profiles, ultimately the assessment of agonist selectivity is most reliably done in the therapeutically relevant primary cell system.
Collapse
Affiliation(s)
- Terry Kenakin
- Molecular Discovery Research, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
50
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|