1
|
Somasundaram I, Jain SM, Blot-Chabaud M, Pathak S, Banerjee A, Rawat S, Sharma NR, Duttaroy AK. Mitochondrial dysfunction and its association with age-related disorders. Front Physiol 2024; 15:1384966. [PMID: 39015222 PMCID: PMC11250148 DOI: 10.3389/fphys.2024.1384966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is a complex process that features a functional decline in many organelles. Various factors influence the aging process, such as chromosomal abnormalities, epigenetic changes, telomere shortening, oxidative stress, and mitochondrial dysfunction. Mitochondrial dysfunction significantly impacts aging because mitochondria regulate cellular energy, oxidative balance, and calcium levels. Mitochondrial integrity is maintained by mitophagy, which helps maintain cellular homeostasis, prevents ROS production, and protects against mtDNA damage. However, increased calcium uptake and oxidative stress can disrupt mitochondrial membrane potential and permeability, leading to the apoptotic cascade. This disruption causes increased production of free radicals, leading to oxidative modification and accumulation of mitochondrial DNA mutations, which contribute to cellular dysfunction and aging. Mitochondrial dysfunction, resulting from structural and functional changes, is linked to age-related degenerative diseases. This review focuses on mitochondrial dysfunction, its implications in aging and age-related disorders, and potential anti-aging strategies through targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Indumathi Somasundaram
- Biotechnology Engineering, Kolhapur Institute of Technology’s College of Engineering, Kolhapur, India
| | - Samatha M. Jain
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Surajit Pathak
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Antara Banerjee
- Department of Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, India
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
3
|
Jalili S, Panji M, Mahdavimehr M, Mohseni Ahangar A, Shirzad H, Mousavi Nezhad SA, Palhano FL. Enhancing anti-amyloidogenic properties and antioxidant effects of Scutellaria baicalensis polyphenols through novel nanoparticle formation. Int J Biol Macromol 2024; 262:130003. [PMID: 38325696 DOI: 10.1016/j.ijbiomac.2024.130003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Protein aggregation and oxidative stress have gained significant research attention due to their association with a group of diseases known as amyloidosis. Among the strategies developed to prevent amyloidosis, utilization of polyphenols stands out as one of the most commonly employed approaches. Scutellaria baicalensis is renowned as one of the foremost herbal sources of polyphenols. In this study, we employed a direct oxidative pyrolysis method for polymerizing S. baicalensis's polyphenols (SBPPs) after their extraction, resulting in the formation of novel SBPPs nanoparticles. Upon polymerization, SBPPs nanoparticles showed remarkable properties including heightened water solubility, increased surface area, modified surface functional groups, and enhanced stability. As a result of these diverse factors, there was a considerable enhancement in the anti-amyloidogenic properties and antioxidant effects of SBPPs nanoparticles compared to its bulk form. The fibrillation kinetics, AFM images, and cytotoxicity assays strongly indicate that SBPPs nanoparticles are more effective than SBPPs at preventing amyloid fibril formation and associated cell toxicity. Additionally, SBPPs nanoparticles demonstrated more effective prevention of reactive oxygen species (ROS) production. In conclusion, the use of SBPPs in nanoparticle form presents a promising strategy to enhance anti-amyloidogenic properties, mitigate oxidative stress, and offer potential therapeutic benefits for amyloidosis-related diseases.
Collapse
Affiliation(s)
- Shirin Jalili
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran; Institute of Police Equipment and Technologies, Policing Sciences and Social Studies Research Institute, Tehran 1417944661, Iran
| | - Mohammad Panji
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran
| | - Mohsen Mahdavimehr
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran.
| | - Ali Mohseni Ahangar
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Hadi Shirzad
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran
| | - Seyed Amin Mousavi Nezhad
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran
| | - Fernando L Palhano
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
4
|
Karagianni C, Bazopoulou D. Redox regulation in lifespan determination. J Biol Chem 2024; 300:105761. [PMID: 38367668 PMCID: PMC10965828 DOI: 10.1016/j.jbc.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
One of the major challenges that remain in the fields of aging and lifespan determination concerns the precise roles that reactive oxygen species (ROS) play in these processes. ROS, including superoxide and hydrogen peroxide, are constantly generated as byproducts of aerobic metabolism, as well as in response to endogenous and exogenous cues. While ROS accumulation and oxidative damage were long considered to constitute some of the main causes of age-associated decline, more recent studies reveal a signaling role in the aging process. In fact, accumulation of ROS, in a spatiotemporal manner, can trigger beneficial cellular responses that promote longevity and healthy aging. In this review, we discuss the importance of timing and compartmentalization of external and internal ROS perturbations in organismal lifespan and the role of redox regulated pathways.
Collapse
|
5
|
Li R, Robinson M, Ding X, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Genistein: A focus on several neurodegenerative diseases. J Food Biochem 2022; 46:e14155. [PMID: 35460092 DOI: 10.1111/jfbc.14155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are caused by the progressive loss of function or structure of nerve cells in the central nervous system. The most common neurodegenerative diseases include Alzheimer's disease, Huntington's disease, motor neuron disease, and Parkinson's disease. Although the physical or mental symptoms of neurodegenerative disease may be relieved by various treatment combinations, there are currently no strategies to directly slow or prevent neurodegeneration. Given the demographic evidence of a rapidly growing aging population and the associated prevalence of these common neurodegenerative diseases, it is paramount to develop safe and effective ways to protect against neurodegenerative diseases. Most neurodegenerative diseases share some common etiologies such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. Genistein is an isoflavone found in soy products that have been shown to exhibit antioxidant, anti-inflammation, and estrogenic properties. Increasing evidence indicates the protective potential of genistein in neurodegenerative disorders. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disease. PRACTICAL APPLICATIONS: Genistein is a naturally occurring isoflavone found mainly in soybean, but also green peas, legumes, and peanuts. Genistein is found to pass through the blood-brain barrier and possess a neuroprotective effect. In this review, we discuss studies in support of these actions and the underlying biological mechanisms. Together, these data indicate that genistein may hold neuroprotective effects in either delaying the onset or relieving the symptoms of neurodegenerative disease.
Collapse
Affiliation(s)
- Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Xiaowen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Hambardikar V, Guitart-Mampel M, Scoma ER, Urquiza P, Nagana GGA, Raftery D, Collins JA, Solesio ME. Enzymatic Depletion of Mitochondrial Inorganic Polyphosphate (polyP) Increases the Generation of Reactive Oxygen Species (ROS) and the Activity of the Pentose Phosphate Pathway (PPP) in Mammalian Cells. Antioxidants (Basel) 2022; 11:685. [PMID: 35453370 PMCID: PMC9029763 DOI: 10.3390/antiox11040685] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Inorganic polyphosphate (polyP) is an ancient biopolymer that is well preserved throughout evolution and present in all studied organisms. In mammals, it shows a high co-localization with mitochondria, and it has been demonstrated to be involved in the homeostasis of key processes within the organelle, including mitochondrial bioenergetics. However, the exact extent of the effects of polyP on the regulation of cellular bioenergetics, as well as the mechanisms explaining these effects, still remain poorly understood. Here, using HEK293 mammalian cells under Wild-type (Wt) and MitoPPX (cells enzymatically depleted of mitochondrial polyP) conditions, we show that depletion of polyP within mitochondria increased oxidative stress conditions. This is characterized by enhanced mitochondrial O2- and intracellular H2O2 levels, which may be a consequence of the dysregulation of oxidative phosphorylation (OXPHOS) that we have demonstrated in MitoPPX cells in our previous work. These findings were associated with an increase in basal peroxiredoxin-1 (Prx1), superoxide dismutase-2 (SOD2), and thioredoxin (Trx) antioxidant protein levels. Using 13C-NMR and immunoblotting, we assayed the status of glycolysis and the pentose phosphate pathway (PPP) in Wt and MitoPPX cells. Our results show that MitoPPX cells display a significant increase in the activity of the PPP and an increase in the protein levels of transaldolase (TAL), which is a crucial component of the non-oxidative phase of the PPP and is involved in the regulation of oxidative stress. In addition, we observed a trend towards increased glycolysis in MitoPPX cells, which corroborates our prior work. Here, for the first time, we show the crucial role played by mitochondrial polyP in the regulation of mammalian redox homeostasis. Moreover, we demonstrate a significant effect of mitochondrial polyP on the regulation of global cellular bioenergetics in these cells.
Collapse
Affiliation(s)
- Vedangi Hambardikar
- Department of Biology and Center for Computational and Integrative Biology (CCIB), College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (V.H.); (M.G.-M.); (E.R.S.); (P.U.)
| | - Mariona Guitart-Mampel
- Department of Biology and Center for Computational and Integrative Biology (CCIB), College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (V.H.); (M.G.-M.); (E.R.S.); (P.U.)
| | - Ernest R. Scoma
- Department of Biology and Center for Computational and Integrative Biology (CCIB), College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (V.H.); (M.G.-M.); (E.R.S.); (P.U.)
| | - Pedro Urquiza
- Department of Biology and Center for Computational and Integrative Biology (CCIB), College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (V.H.); (M.G.-M.); (E.R.S.); (P.U.)
| | - Gowda G. A. Nagana
- Mitochondrial and Metabolism Center, University of Washington, Seattle, WA 98109, USA; (G.G.A.N.); (D.R.)
| | - Daniel Raftery
- Mitochondrial and Metabolism Center, University of Washington, Seattle, WA 98109, USA; (G.G.A.N.); (D.R.)
| | - John A. Collins
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Maria E. Solesio
- Department of Biology and Center for Computational and Integrative Biology (CCIB), College of Arts and Sciences, Rutgers University, Camden, NJ 08103, USA; (V.H.); (M.G.-M.); (E.R.S.); (P.U.)
| |
Collapse
|
7
|
Cheng R, Dhorajia VV, Kim J, Kim Y. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology 2022; 88:88-101. [PMID: 34748789 PMCID: PMC8748425 DOI: 10.1016/j.neuro.2021.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Iron is a key element for mitochondrial function and homeostasis, which is also crucial for maintaining the neuronal system, but too much iron promotes oxidative stress. A large body of evidence has indicated that abnormal iron accumulation in the brain is associated with various neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, Parkinson's disease, and Friedreich's ataxia. However, it is still unclear how irregular iron status contributes to the development of neuronal disorders. Hence, the current review provides an update on the causal effects of iron overload in the development and progression of neurodegenerative diseases and discusses important roles of mitochondrial iron homeostasis in these disease conditions. Furthermore, this review discusses potential therapeutic targets for the treatments of iron overload-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruiying Cheng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA
| | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, USA.
| | - Yuho Kim
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, USA.
| |
Collapse
|
8
|
Kazemi T, Moodi M, Rajabi S, Sharifi F, Samarghandian S, Khorashadizadeh M, Farkhondeh T. Trace Element Concentration and Cognitive Dysfunction in Elderly Residents in Birjand. Curr Alzheimer Res 2022; 19:674-680. [PMID: 36100996 DOI: 10.2174/1567205019666220913114154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Trace elements were suggested to have a main role in modulating cognitive function. However, there are several controversial findings regarding the association between serum trace element concentration and cognitive function in patients with cognitive disorders. METHODS Thus, this study aimed to evaluate the changes in serum trace element concentrations in elderly with cognitive dysfunction versus the participants with normal cognitive function. This crosssectional study included 191 older adults over 60 years from Birjand County, Iran. Participants were assessed for cognitive performance and serum trace elements concentration, including aluminum (AL), cobalt (Co), cadmium (Cd), Chrome (Cr), copper (Cu), Iron (Fe), magnesium (Mg), manganese (Mn), selenium (Se) and zinc (Zn). Our findings showed no significant difference in the serum concentration of AL, Co, Cr, Zn, Fe, Mg, Mn, and Se of elderly with cognitive dysfunction versus the subjects with normal cognitive function. RESULTS However, the concentration of Cu significantly increased in the serum of the elderly with cognitive dysfunction versus participants with normal function. In conclusion, our study indicated an increase in the serum concentration of Cu in the elderly with cognitive dysfunction in the sample of the Birjand Longitudinal Aging Study. CONCLUSION However, due to the main limitations of our study, including low sample size and crosssection design, these findings should be interpreted with caution.
Collapse
Affiliation(s)
- Toba Kazemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Moodi
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Rajabi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoumeh Khorashadizadeh
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Social Determinants of Health Research Center, Department of Health Promotion and Education, School of Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Singh T, Jiao Y, Ferrando LM, Yablonska S, Li F, Horoszko EC, Lacomis D, Friedlander RM, Carlisle DL. Neuronal mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is developmentally regulated. Sci Rep 2021; 11:18916. [PMID: 34556702 PMCID: PMC8460779 DOI: 10.1038/s41598-021-97928-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is an adult-onset neurodegenerative disorder characterized by loss of motor neurons. Mitochondria are essential for neuronal survival but the developmental timing and mechanistic importance of mitochondrial dysfunction in sporadic ALS (sALS) neurons is not fully understood. We used human induced pluripotent stem cells and generated a developmental timeline by differentiating sALS iPSCs to neural progenitors and to motor neurons and comparing mitochondrial parameters with familial ALS (fALS) and control cells at each developmental stage. We report that sALS and fALS motor neurons have elevated reactive oxygen species levels, depolarized mitochondria, impaired oxidative phosphorylation, ATP loss and defective mitochondrial protein import compared with control motor neurons. This phenotype develops with differentiation into motor neurons, the affected cell type in ALS, and does not occur in the parental undifferentiated sALS cells or sALS neural progenitors. Our work demonstrates a developmentally regulated unifying mitochondrial phenotype between patient derived sALS and fALS motor neurons. The occurrence of a unifying mitochondrial phenotype suggests that mitochondrial etiology known to SOD1-fALS may applicable to sALS. Furthermore, our findings suggest that disease-modifying treatments focused on rescue of mitochondrial function may benefit both sALS and fALS patients.
Collapse
Affiliation(s)
- Tanisha Singh
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Yuanyuan Jiao
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Lisa M. Ferrando
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Svitlana Yablonska
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Fang Li
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Emily C. Horoszko
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - David Lacomis
- grid.21925.3d0000 0004 1936 9000Departments of Neurology and Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Robert M. Friedlander
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Diane L. Carlisle
- grid.21925.3d0000 0004 1936 9000Neuroapoptosis Laboratory, Department of Neurological Surgery, University of Pittsburgh, B400 Presbyterian Hospital, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| |
Collapse
|
10
|
Marini C, Cossu V, Kumar M, Milanese M, Cortese K, Bruno S, Bellese G, Carta S, Zerbo RA, Torazza C, Bauckneht M, Venturi C, Raffa S, Orengo AM, Donegani MI, Chiola S, Ravera S, Castellani P, Morbelli S, Sambuceti G, Bonanno G. The Role of Endoplasmic Reticulum in the Differential Endurance against Redox Stress in Cortical and Spinal Astrocytes from the Newborn SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2021; 10:antiox10091392. [PMID: 34573024 PMCID: PMC8472526 DOI: 10.3390/antiox10091392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/01/2022] Open
Abstract
Recent studies reported that the uptake of [18F]-fluorodeoxyglucose (FDG) is increased in the spinal cord (SC) and decreased in the motor cortex (MC) of patients with ALS, suggesting that the disease might differently affect the two nervous districts with different time sequence or with different mechanisms. Here we show that MC and SC astrocytes harvested from newborn B6SJL-Tg (SOD1G93A) 1Gur mice could play different roles in the pathogenesis of the disease. Spectrophotometric and cytofluorimetric analyses showed an increase in redox stress, a decrease in antioxidant capacity and a relative mitochondria respiratory uncoupling in MC SOD1G93A astrocytes. By contrast, SC mutated cells showed a higher endurance against oxidative damage, through the increase in antioxidant defense, and a preserved respiratory function. FDG uptake reproduced the metabolic response observed in ALS patients: SOD1G93A mutation caused a selective enhancement in tracer retention only in mutated SC astrocytes, matching the activity of the reticular pentose phosphate pathway and, thus, of hexose-6P dehydrogenase. Finally, both MC and SC mutated astrocytes were characterized by an impressive ultrastructural enlargement of the endoplasmic reticulum (ER) and impairment in ER–mitochondria networking, more evident in mutated MC than in SC cells. Thus, SOD1G93A mutation differently impaired MC and SC astrocyte biology in a very early stage of life.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, 20054 Milan, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
- Correspondence:
| | - Vanessa Cossu
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Mandeep Kumar
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Marco Milanese
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Grazia Bellese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Sonia Carta
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (S.C.); (P.C.)
| | - Roberta Arianna Zerbo
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Carola Torazza
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Consuelo Venturi
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Maria Isabella Donegani
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Silvia Chiola
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, 16132 Genoa, Italy; (K.C.); (S.B.); (G.B.); (C.V.); (S.R.)
| | - Patrizia Castellani
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (S.C.); (P.C.)
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (V.C.); (S.R.); (M.I.D.)
| | - Gianmario Sambuceti
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, 20054 Milan, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.B.); (A.M.O.); (S.C.); (S.M.); (G.S.)
| | - Giambattista Bonanno
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, 16148 Genoa, Italy; (M.K.); (M.M.); (R.A.Z.); (C.T.); (G.B.)
- Pharmacology and Toxycology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
11
|
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1069. [PMID: 34356302 PMCID: PMC8301100 DOI: 10.3390/antiox10071069] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress. Accumulative evidence suggests that the transcriptional factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a vital defensive role orchestrating the antioxidant response in the brain. Nrf2 activation promotes the expression of several antioxidant enzymes that exert cytoprotective effects against oxidative damage and mitochondrial impairment. In this context, several studies have proposed a role of Nrf2 in the pathogenesis of PD and AD. Thus, we consider it important to summarize the ongoing literature related to the effects of the Nrf2 pathway in the context of these diseases. Therefore, in this review, we discuss the mechanisms involved in Nrf2 activity and its connection with mitochondria, energy supply, and antioxidant response in the brain. Furthermore, we will lead our discussion to identify the participation of the Nrf2 pathway in mitochondrial impairment and neurodegeneration present in PD and AD. Finally, we will discuss the therapeutic effects that the Nrf2 pathway activation could have on the cognitive impairment, neurodegeneration, and mitochondrial failure present in PD and AD.
Collapse
Affiliation(s)
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
12
|
Porosnicu I, Butnaru CM, Tiseanu I, Stancu E, Munteanu CVA, Bita BI, Duliu OG, Sima F. Y 2O 3 Nanoparticles and X-ray Radiation-Induced Effects in Melanoma Cells. Molecules 2021; 26:molecules26113403. [PMID: 34199757 PMCID: PMC8200002 DOI: 10.3390/molecules26113403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
The innovative strategy of using nanoparticles in radiotherapy has become an exciting topic due to the possibility of simultaneously improving local efficiency of radiation in tumors and real-time monitoring of the delivered doses. Yttrium oxide (Y2O3) nanoparticles (NPs) are used in material science to prepare phosphors for various applications including X-ray induced photodynamic therapy and in situ nano-dosimetry, but few available reports only addressed the effect induced in cells by combined exposure to different doses of superficial X-ray radiation and nanoparticles. Herein, we analyzed changes induced in melanoma cells by exposure to different doses of X-ray radiation and various concentrations of Y2O3 NPs. By evaluation of cell mitochondrial activity and production of intracellular reactive oxygen species (ROS), we estimated that 2, 4, and 6 Gy X-ray radiation doses are visibly altering the cells by inducing ROS production with increasing the dose while at 6 Gy the mitochondrial activity is also affected. Separately, high-concentrated solutions of 25, 50, and 100 µg/mL Y2O3 NPs were also found to affect the cells by inducing ROS production with the increase of concentration. Additionally, the colony-forming units assay evidenced a rather synergic effect of NPs and radiation. By adding the NPs to cells before irradiation, a decrease of the number of proliferating cell colonies was observed with increase of X-ray dose. DNA damage was evidenced by quantifying the γ-H2AX foci for cells treated with Y2O3 NPs and exposed to superficial X-ray radiation. Proteomic profile confirmed that a combined effect of 50 µg/mL Y2O3 NPs and 6 Gy X-ray dose induced mitochondria alterations and DNA changes in melanoma cells.
Collapse
Affiliation(s)
- Ioana Porosnicu
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
- Faculty of Physics, Doctoral School on Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania;
| | - Cristian M. Butnaru
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
- Correspondence: (C.M.B.); (F.S.)
| | - Ion Tiseanu
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
| | - Elena Stancu
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
| | - Cristian V. A. Munteanu
- Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Bogdan I. Bita
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
| | - Octavian G. Duliu
- Faculty of Physics, Doctoral School on Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania;
| | - Felix Sima
- National Institute of Laser Plasma and Radiation Physics, P.O. Box MG-36, 76900 Bucharest-Magurele, Romania; (I.P.); (I.T.); (E.S.); (B.I.B.)
- Correspondence: (C.M.B.); (F.S.)
| |
Collapse
|
13
|
Depletion of mitochondrial inorganic polyphosphate (polyP) in mammalian cells causes metabolic shift from oxidative phosphorylation to glycolysis. Biochem J 2021; 478:1631-1646. [PMID: 33843973 DOI: 10.1042/bcj20200975] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Inorganic polyphosphate (polyP) is a linear polymer composed of up to a few hundred orthophosphates linked together by high-energy phosphoanhydride bonds, identical with those found in ATP. In mammalian mitochondria, polyP has been implicated in multiple processes, including energy metabolism, ion channels function, and the regulation of calcium signaling. However, the specific mechanisms of all these effects of polyP within the organelle remain poorly understood. The central goal of this study was to investigate how mitochondrial polyP participates in the regulation of the mammalian cellular energy metabolism. To accomplish this, we created HEK293 cells depleted of mitochondrial polyP, through the stable expression of the polyP hydrolyzing enzyme (scPPX). We found that these cells have significantly reduced rates of oxidative phosphorylation (OXPHOS), while their rates of glycolysis were elevated. Consistent with this, metabolomics assays confirmed increased levels of metabolites involved in glycolysis in these cells, compared with the wild-type samples. At the same time, key respiratory parameters of the isolated mitochondria were unchanged, suggesting that respiratory chain activity is not affected by the lack of mitochondrial polyP. However, we detected that mitochondria from cells that lack mitochondrial polyP are more fragmented when compared with those from wild-type cells. Based on these results, we propose that mitochondrial polyP plays an important role as a regulator of the metabolic switch between OXPHOS and glycolysis.
Collapse
|
14
|
Food for Special Medical Purposes and Nutraceuticals for Pain: A Narrative Review. Pain Ther 2021; 10:225-242. [PMID: 33594594 PMCID: PMC8119521 DOI: 10.1007/s40122-021-00239-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/30/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction The present paper focuses on the possible contribution of food compounds to alleviate symptomatic pains. Chronic pain can more easily be linked to anticipatory signals such as thirst and hunger than it is to sensory perceptions as its chronicity makes it fall under the behavioural category rather than it does senses. In fact, pain often negatively affects one’s normal feeding behavioural patterns, both directly and indirectly, as it is associated with pain or because of its prostrating effects. Nutritional Compounds for Pain Several nutraceuticals and Foods for Special Medical Purposes (FSMPs) are reported to have significant pain relief efficacy with multiple antioxidant and anti-inflammatory properties. Apart from the aforementioned properties, amino acids, fatty acids, trace elements and vitamins may have a role in the modulation of pain signals to and within the nervous system. Conclusion In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective in the management of pain. Trials with well-defined patient and symptoms selection and a robust pharmacological design are pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
|
15
|
Mori Y, Oikawa S, Kurimoto S, Kitamura Y, Tada-Oikawa S, Kobayashi H, Yamashima T, Murata M. Proteomic analysis of the monkey hippocampus for elucidating ischemic resistance. J Clin Biochem Nutr 2020; 67:167-173. [PMID: 33041514 PMCID: PMC7533853 DOI: 10.3164/jcbn.19-78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023] Open
Abstract
It is well-known that the cornu Ammonis 1 (CA1) sector of hippocampus is vulnerable for the ischemic insult, whereas the dentate gyrus (DG) is resistant. Here, to elucidate its underlying mechanism, alternations of protein oxidation and expression of DG in the monkey hippocampus after ischemia-reperfusion by the proteomic analysis were studied by comparing CA1 data. Oxidative damage to proteins such as protein carbonylation interrupt the protein function. Carbonyl modification of molecular chaperone, heat shock 70 kDa protein 1 (Hsp70.1) was increased remarkably in CA1, but slightly in DG. In addition, expression levels of nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-2 (SIRT2) was significantly increased in DG after ischemia, but decreased in CA1. Accordingly, it is likely that SIRT2 upregulation and negligible changes of carbonylation of Hsp70.1 exert its neuroprotective effect in DG. On the contrary, carbonylation level of dihydropyrimidinase related protein 2 (DRP-2) and l-lactate dehydrogenase B chain (LDHB) were slightly increased in CA1 as shown previously, but remarkably increased in DG after ischemia. It is considered that DRP-2 and LDHB are specific targets of oxidative stress by ischemia insult and high carbonylation levels of DRP-2 may play an important role in modulating ischemic neuronal death.
Collapse
Affiliation(s)
- Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shota Kurimoto
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.,Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaoka-motomachi, Chikusa-ku, Nagoya, Aichi 464-8662, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsumori Yamashima
- Departments of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Takakura-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| |
Collapse
|
16
|
Marini C, Cossu V, Bonifacino T, Bauckneht M, Torazza C, Bruno S, Castellani P, Ravera S, Milanese M, Venturi C, Carlone S, Piccioli P, Emionite L, Morbelli S, Orengo AM, Donegani MI, Miceli A, Raffa S, Marra S, Signori A, Cortese K, Grillo F, Fiocca R, Bonanno G, Sambuceti G. Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Res 2020; 10:76. [PMID: 32638178 PMCID: PMC7340686 DOI: 10.1186/s13550-020-00666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods The study included 15 SOD1G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts. Results FDG retention was significantly higher in hindlimb skeletal muscles of symptomatic SOD1G93A mice with respect to control ones. This difference was not explained by any acceleration in glucose degradation through glycolysis or cytosolic pentose phosphate pathway (PPP). Similarly, it was independent of inflammatory infiltration. Rather, the high FDG retention in SOD1G93A skeletal muscle was associated with an accelerated generation of reactive oxygen species. This redox stress selectively involved the ER and the local PPP triggered by hexose-6P-dehydrogenase. ER involvement was confirmed by the colocalization of the 2-NBDG with a vital ER tracker. The oxidative damage in transgenic skeletal muscle was associated with a severe impairment in the crosstalk between ER and mitochondria combined with alterations in mitochondrial ultrastructure and fusion/fission balance. The expected respiratory damage was confirmed by a deceleration in ATP synthesis and oxygen consumption rate. These same abnormalities were represented to a markedly lower degree in the myocardium, as a sample of non-voluntary striated muscle. Conclusion Skeletal muscle of SOD1G93A mice reproduces the increased FDG uptake observed in ALS patients. This finding reflects the selective activation of the ER-PPP in response to significant redox stress associated with alterations of mitochondrial ultrastructure, networking, and connection with the ER itself. This scenario is less severe in cardiomyocytes suggesting a relevant role for either communication with synaptic plaque or contraction dynamics.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milano, Italy. .,Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Carola Torazza
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Consuelo Venturi
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | | | | | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy
| | | | - Alberto Miceli
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Raffa
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Stefano Marra
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Roberto Fiocca
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Section of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy.,Pharmacology and Toxicology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132, Genova, Italy.,Department of Health Sciences, University of Genoa, Genova, Italy
| |
Collapse
|
17
|
Butterfield DA, Mattson MP. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer's disease. Neurobiol Dis 2020; 138:104795. [PMID: 32036033 DOI: 10.1016/j.nbd.2020.104795] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Inheritance of apolipoprotein E4 (APOE4) is a major risk factor for development of Alzheimer's disease (AD). This lipoprotein, in contrast to apoE2, has arginine residues at positions 112 and 158 in place of cysteines in the latter isoform. In apoE3, the Cys at residue 158 is replaced by an arginine residue. This differential amino acid composition of the three genotypes of APOE have profound influence on the structure, binding properties, and multiple functions of this lipoprotein. Moreover, AD brain is under a high degree of oxidative stress, including that associated with amyloid β-peptide (Aβ) oligomers. Lipid peroxidation produces the highly reactive and neurotoxic molecule, 4-hydroxynonenal (HNE) that forms covalent bonds with cysteine residues (Cys) [as well as with Lys and His residues]. Covalently modified Cys significantly alter structure and function of modified proteins. HNE bound to Cys residue(s) on apoE2 and apoE3 lessens the chance of HNE damage other proteins. apoE4, lacking Cys residues, is unable to scavenge HNE, permitting this latter neurotoxic molecule to lead to oxidative modification of neuronal proteins and eventual cell death. We posit that this lack of HNE scavenging activity in apoE4 significantly contributes to the association of APOE4 inheritance and increased risk of developing AD. Apoe knock-out mice provide insights into the role of this lipoprotein in oxidative stress. Targeted replacement mice in which the mouse gene of Apoe is separately replaced by the human APOE2, APOE3, or APOE4 genes, while keeping the mouse promoter assures the correct location and amount of the human protein isoform. Human APOE targeted replacement mice have been used to investigate the notion that oxidative damage to and death of neurons in AD and its earlier stages is related to APOE genotype. This current paper reviews the intersection of human APOE genotype, oxidative stress, and diminished function of this lipoprotein as a major contributing risk factor for development of AD. Discussion of potential therapeutic strategies to mitigate against the elevated risk of developing AD with inheritance of the APOE4 allele also is presented.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Bando Y, Geisler JG. Disease modifying mitochondrial uncouplers, MP101, and a slow release ProDrug, MP201, in models of Multiple Sclerosis. Neurochem Int 2019; 131:104561. [DOI: 10.1016/j.neuint.2019.104561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
|
19
|
Sesame Lignans Suppress Age-Related Cognitive Decline in Senescence-Accelerated Mice. Nutrients 2019; 11:nu11071582. [PMID: 31336975 PMCID: PMC6682928 DOI: 10.3390/nu11071582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Sesame lignans, which are biologically active compounds present in sesame seeds and oil, are known to have neuroprotective effects in several models of brain dysfunction. However, the effects of sesame lignans on age-related brain dysfunction are not clear and were thus investigated in the present study using a senescence-accelerated mouse (SAMP10). Two-month-old male SAMP10 mice were administrated a basal diet with 0% or 0.05% sesame lignans for two months, or with 0%, 0.02%, or 0.05% sesame lignans for 10 months and subjected to step-through passive avoidance tasks and forced swim tests. Reactive carbonyl species (RCs) were evaluated as markers of oxidative stress using a recently developed comprehensive analytical method. Both learning time in passive avoidance tasks and immobile time in forced swim tests became longer with aging (p < 0.05). However, the administration of sesame lignans significantly ameliorated age-related effects in both tests (p < 0.05). Age-related increases in RCs such as 4-hydroxy-2-nonenal in the cerebral cortex and liver were reduced in mice fed sesame lignans. These results suggest that sesame lignans can prevent age-related brain dysfunction via anti-oxidative activity.
Collapse
|
20
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
21
|
Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci 2018; 217:202-211. [PMID: 30528774 DOI: 10.1016/j.lfs.2018.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
AIMS Due to rapid increase in industrialization in the last few years, use of aluminum (Al) and its alloys have been increased in different industrial fields. Ample evidence supports the neurotoxic effects of chronic aluminum chloride (AlCl3) administration in rats but acute Al toxicity has been less described so the present study was aimed to investigate the neurotoxic effects of acute AlCl3. MAIN METHODS To investigate such effects 12 male albino Wistar rats were randomly divided into control and test rats. AlCl3 at a dose of 150 mg/kg was intraperitoneally injected to test rats for 7 days. Rats were subjected to behavioral assessments 24 h after last dose and after behavioral assessment rats were sacrificed to collect brain samples for further neurochemical, biochemical and histopathological examinations. KEY FINDINGS In the present study acute administration of AlCl3 resulted in noticeable behavioral deficits. Cognitive deficits and neuropsychiatric disturbances were evident in AlCl3 injected rats. Test rats also exhibited marked antioxidant enzymes, cholinergic, serotonergic and dopaminergic dysfunctions and DNA fragmentation. Histopathological alterations were observed in hippocampus and cortex of rats injected with AlCl3. SIGNIFICANCE The observed effects may be due to pro-oxidant nature of Al and its participation in free radical mediated cellular injury. Al by promoting oxidative stress, impairing antioxidant defense system and altering brain neurochemistry may act as a potent neurotoxic agent as evident from observed histopathological alterations in brain of test rats. This investigation may further confirm and shed some more light on deleterious effects of acute Al intoxication on brain.
Collapse
|
22
|
Petrovic R, Puskas L, Jevtic Dozudic G, Stojkovic T, Velimirovic M, Nikolic T, Zivkovic M, Djorovic DJ, Nenadovic M, Petronijevic N. NADPH oxidase and redox status in amygdala, hippocampus and cortex of male Wistar rats in an animal model of post-traumatic stress disorder. Stress 2018; 21:494-502. [PMID: 29804499 DOI: 10.1080/10253890.2018.1474874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.
Collapse
Affiliation(s)
- Romana Petrovic
- Special Psychiatric Hospital Laza Lazarevic, Belgrade, Serbia
| | - Laslo Puskas
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gordana Jevtic Dozudic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tihomir Stojkovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Velimirovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Nikolic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Zivkovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djordje J Djorovic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Natasa Petronijevic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Katebi B, Mahdavimehr M, Meratan AA, Ghasemi A, Nemat-Gorgani M. Protective effects of silibinin on insulin amyloid fibrillation, cytotoxicity and mitochondrial membrane damage. Arch Biochem Biophys 2018; 659:22-32. [PMID: 30266624 DOI: 10.1016/j.abb.2018.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 02/02/2023]
Abstract
A growing body of evidence suggests that secretion and assembly of insulin to amyloid fibrils reduce its efficacy in treating type II diabetes and may lead to dysfunctioning of several organs. The research presented here explores the effects of silibinin on the in vitro amyloid fibrillation and cytotoxicity of bovine insulin fibrils on SH-SY5Y human neuroblastoma cells. Interaction of the resulting structures with rat brain mitochondria was also investigated. Using a range of methods for amyloid detection we showed that insulin fibrillation was significantly inhibited by silibinin in a dose-dependent fashion. Moreover, we found that silibinin was very effective in attenuating insulin fibril-induced neuronal toxicity characterized by decrease of cell viability, the release of lactate dehydrogenase, intracellular reactive oxygen species enhancement, morphological alterations, and apoptotic cell death induction. While insulin fibrillation products showed the capacity to damage mitochondria, the resultant structures produced in the presence of silibinin were totally ineffective. Together, results demonstrate the capacity of insulin fibrils to cause SH-SY5Y cell death by inducing necrosis/apoptosis changes and suggest how silibinin may afford protection. It is concluded that elucidation of such protection may provide important insights into the development of preventive and therapeutic agents for amyloid-related diseases.
Collapse
Affiliation(s)
- Bentolhoda Katebi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mohsen Mahdavimehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
24
|
Niu L, Ye C, Sun Y, Peng T, Yang S, Wang W, Li H. Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington's disease. Cell Biosci 2018; 8:41. [PMID: 30002810 PMCID: PMC6033216 DOI: 10.1186/s13578-018-0239-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background Iron accumulation in basal ganglia accompanies neuronal loss in Huntington’s disease (HD) patients and mouse disease models. Disruption of HD brain iron homeostasis occurs before the onset of clinical signs. Therefore, investigating the mechanism of iron accumulation is essential to understanding its role in disease pathogenesis. Methods N171-82Q HD transgenic mice brain iron was detected by using Diaminobenzidine-enhanced Perls’ stain. Iron homeostatic proteins including iron response protein 1 (IRP1), transferrin (Tf), ferritin and transferrin receptor (TfR) were determined by using western blotting and immunohistochemistry, and their relative expression levels of RNA were measured by RT-PCR in both N171-82Q HD transgenic mice and HEK293 cells expressing N-terminal of huntingtin. Results Iron was increased in striatum and cortex of N171-82Q HD transgenic mice. Analysis of iron homeostatic proteins revealed increased expression of IRP1, Tf, ferritin and TfR in N171-82Q mice striatum and cortex. The same results were obtained in HEK293 cells expressing N-terminal of mutant huntingtin containing 160 CAG repeats. Conclusion We conclude that mutant huntingtin may cause abnormal iron homeostatic pathways by increasing IRP1 expression in Huntington’s disease, suggesting potential therapeutic target.
Collapse
Affiliation(s)
- Li Niu
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Cuifang Ye
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Yun Sun
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Ting Peng
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| | - Shiming Yang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - Weixi Wang
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China
| | - He Li
- 1Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030 People's Republic of China.,2Institute for Brain Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China.,3Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030 People's Republic of China
| |
Collapse
|
25
|
Ma YM, Guo YZ, Ibeanu G, Wang LY, Dong JD, Wang J, Jing L, Zhang JZ, Li PA. Overexpression of selenoprotein H prevents mitochondrial dynamic imbalance induced by glutamate exposure. Int J Biol Sci 2017. [PMID: 29535592 PMCID: PMC5845479 DOI: 10.7150/ijbs.21300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Selenium and selenoproteins play important roles in neuroprotection against glutamate‑induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. Recent studies have revealed that mitochondrial fission could activates mitochondrial initiated cell death pathway. The objectives of the study are to determine whether glutamate induced cell death is mediated through mitochondrial initiated cell death pathway and activation of autophagy, and whether overexpression of selenoprotein H can protect cells from glutamate toxicity by preserving mitochondrial morphology and suppressing autophagy. Vector- or human selenoprotein H (SelH)-transfected HT22 cells (V-HT22 and SelH-HT22, respectively) were exposed to glutamate. The results showed that glutamate-induced cytotoxicity was associated with increased ROS production and imbalance in mitochondrial dynamics and autophagy. These alterations were reversed and cellular integrity restored by overexpression of SelH in HT22 cells.
Collapse
Affiliation(s)
- Yan-Mei Ma
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Yong-Zhen Guo
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Gordon Ibeanu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| | - Li-Yao Wang
- Department of Pathology, Shanxi Traditional Chinese Medicine Hospital, Xi'an, Shanxi, P. R. China
| | - Jian-Da Dong
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Juan Wang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Li Jing
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Jian-Zhong Zhang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Dietary Polyphenols in the Prevention of Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7467962. [PMID: 29204249 PMCID: PMC5674514 DOI: 10.1155/2017/7467962] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022]
Abstract
Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of polyphenols has shown to be inversely associated with morbidity and mortality by cardio- and cerebrovascular diseases. It is well-known that the protective effects of polyphenols in vivo depend on the grade how they are extracted from food and on their intestinal absorption, metabolism, and biological action with target tissues. The aim of this review was to summarise the relation between polyphenols of different plant sources and stroke in human intervention studies, animal models, and in vitro studies.
Collapse
|
27
|
Yuan S, Zhang ZW, Li ZL. Cell Death-Autophagy Loop and Glutamate-Glutamine Cycle in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:231. [PMID: 28785203 PMCID: PMC5519524 DOI: 10.3389/fnmol.2017.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although we know that amyotrophic lateral sclerosis (ALS) is correlated with the glutamate-mediated corticomotor neuronal hyperexcitability, detailed ALS pathology remains largely unexplained. While a number of drugs have been developed, no cure exists so far. Here, we propose a hypothesis of neuronal cell death—incomplete autophagy positive-feedback loop—and summarize the role of the neuron-astrocyte glutamate-glutamine cycle in ALS. The disruption of these two cycles might ideally retard ALS progression. Cerebrovascular injuries (such as multiple embolization sessions and strokes) induce neuronal cell death and the subsequent autophagy. ALS impairs autophagosome-lysosome fusion and leads to magnified cell death. Trehalose rescues this impaired fusion step, significantly delaying the onset of the disease, although it does not affect the duration of the disease. Therefore, trehalose might be a prophylactic drug for ALS. Given that a major part of neuronal glutamate is converted from glutamine through neuronal glutaminase (GA), GA inhibitors may decrease the neuronal glutamate accumulation, and, therefore, might be therapeutic ALS drugs. Of these, Ebselen is the most promising one with strong antioxidant properties.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, General Hospital of Lanzhou Military RegionLanzhou, China
| |
Collapse
|
28
|
Distinct Mechanisms Underlying Resveratrol-Mediated Protection from Types of Cellular Stress in C6 Glioma Cells. Int J Mol Sci 2017; 18:ijms18071521. [PMID: 28708069 PMCID: PMC5536011 DOI: 10.3390/ijms18071521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
The polyphenolic phytostilbene, trans-resveratrol, is found in high amounts in several types and tissues of plants, including grapes, and has been proposed to have beneficial effects in the central nervous system due to its activity as an antioxidant. The objective of the present study was to identify the mechanisms underlying the protective effects of resveratrol under conditions of oxidative stress or DNA damage, induced by the extracellularly applied oxidant, tert-butyl hydrogen peroxide, or UV-irradiation, respectively. In C6 glioma cells, a model system for glial cell biology and pharmacology, resveratrol was protective against both types of insult. Prevention of tau protein cleavage and of the formation of neurofibrillary tangles were identified as mechanisms of action of resveratrol-mediated protection in both paradigms of cellular damage. However, depending on the type of insult, resveratrol exerted its protective activity differentially: under conditions of chemically induced oxidative stress, inhibition of caspase activity, while with DNA damage, resveratrol regulated tau phosphorylation at Ser422. Results advance our understanding of resveratrol’s complex impact on cellular signaling pathway and contribute to the notion of resveratrol’s role as a pleiotropic therapeutic agent.
Collapse
|
29
|
CEDIKOVA M, PITULE P, KRIPNEROVA M, MARKOVA M, KUNCOVA J. Multiple Roles of Mitochondria in Aging Processes. Physiol Res 2016; 65:S519-S531. [DOI: 10.33549/physiolres.933538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process influenced by genetic factors, nutrition, and lifestyle. According to mitochondrial theory of aging, mitochondrial dysfunction is widely considered a major contributor to age-related processes. Mitochondria are both the main source and targets of detrimental reactions initiated in association with age-dependent deterioration of the cellular functions. Reactions leading to increased reactive oxygen species generation, mtDNA mutations, and oxidation of mitochondrial proteins result in subsequent induction of apoptotic events, impaired oxidative phosphorylation capacity, mitochondrial dynamics, biogenesis and autophagy. This review summarizes the major changes of mitochondria related to aging, with emphasis on mitochondrial DNA mutations, the role of the reactive oxygen species, and structural and functional changes of mitochondria.
Collapse
Affiliation(s)
| | | | | | | | - J. KUNCOVA
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
30
|
Geevasinga N, Menon P, Özdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 2016; 12:651-661. [DOI: 10.1038/nrneurol.2016.140] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Wright RM, Weigel LK, Repine JE. Aldehyde oxidase generates deoxyribonucleic acid single strand nicks in vitro. Redox Rep 2016; 1:349-55. [DOI: 10.1080/13510002.1995.11747010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
32
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 810] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
33
|
Gleason CE, Fischer BL, Dowling NM, Setchell KDR, Atwood CS, Carlsson CM, Asthana S. Cognitive Effects of Soy Isoflavones in Patients with Alzheimer's Disease. J Alzheimers Dis 2016; 47:1009-19. [PMID: 26401779 DOI: 10.3233/jad-142958] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In a previous trial, treatment with soy isoflavones was associated with improved nonverbal memory, construction abilities, verbal fluency, and speeded dexterity compared to treatment with placebo in cognitively healthy older adults. OBJECTIVE The current trial aimed to examine the potential cognitive benefits of soy isoflavones in patients with Alzheimer's disease. METHODS Sixty-five men and women over the age of 60 were treated with 100 mg/day soy isoflavones, or matching placebo capsules for six months. APOE genotype was determined for all participants. Cognitive outcomes and plasma isoflavone levels were measured at baseline, and at two additional time points: three and six months after baseline. RESULTS Of the sixty-five participants enrolled, thirty-four (52.3% ) were women, and 31 (47.7% ) were APOEɛ4 positive. Average age was 76.3 (SD = 7.2) years. Fifty-nine (90.8% ) subjects completed all study visits. Plasma isoflavone levels increased in subjects treated with soy isoflavones compared to baseline and to placebo, although intersubject variability in plasma levels was large. No significant differences in treatment effects for cognition emerged between treatment groups or genders. Exploratory analyses of associations between changes in cognition and plasma isoflavone levels revealed an association between equol levels, and speeded dexterity and verbal fluency. CONCLUSIONS Six months of 100 mg/day treatment with soy isoflavones did not benefit cognition in older men and women with Alzheimer's disease. However, our results suggest the need to examine the role of isoflavone metabolism, i.e., the ability to effectively metabolize soy isoflavones by converting daidzen to equol when attempting to fully clarify the cognitive effects of isoflavones.
Collapse
Affiliation(s)
- Carey E Gleason
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Barbara L Fischer
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - N Maritza Dowling
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI, USA
| | - Kenneth D R Setchell
- Division of Pathology and Laboratory Medicine, Department of Pediatrics University of Cincinnati, Cincinnati, OH, USA
| | - Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
34
|
Pandya JD, Royland JE, MacPhail RC, Sullivan PG, Kodavanti PRS. Age- and brain region-specific differences in mitochondrial bioenergetics in Brown Norway rats. Neurobiol Aging 2016; 42:25-34. [PMID: 27143418 DOI: 10.1016/j.neurobiolaging.2016.02.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 02/03/2023]
Abstract
Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bioenergetic parameters in 5 brain regions (brain stem [BS], frontal cortex, cerebellum, striatum, hippocampus [HIP]) of 4 diverse age groups (1 month [young], 4 months [adult], 12 months [middle-aged], 24 months [old age]) to understand age-related differences in selected brain regions and their possible contribution to age-related chemical sensitivity. Mitochondrial bioenergetic parameters and enzyme activities were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5/group). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State III respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12, and 24-months age groups. Activities of mitochondrial pyruvate dehydrogenase complex and electron transport chain complexes I, II, and IV enzymes were also age and brain region specific. In general, changes associated with age were more pronounced with enzyme activities declining as the animals aged (young > adult > middle-aged > old age). These age- and brain region-specific observations may aid in evaluating brain bioenergetic impact on the age-related susceptibility to environmental chemical stressors.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Joyce E Royland
- Genetic and Cellular Toxicology Branch, Integrated Systems Toxicology Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert C MacPhail
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
35
|
Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc Natl Acad Sci U S A 2016; 113:E1206-15. [PMID: 26884195 DOI: 10.1073/pnas.1524128113] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The protein alpha-synuclein (αS) self-assembles into small oligomeric species and subsequently into amyloid fibrils that accumulate and proliferate during the development of Parkinson's disease. However, the quantitative characterization of the aggregation and spreading of αS remains challenging to achieve. Previously, we identified a conformational conversion step leading from the initially formed oligomers to more compact oligomers preceding fibril formation. Here, by a combination of single-molecule fluorescence measurements and kinetic analysis, we find that the reaction in solution involves two unimolecular structural conversion steps, from the disordered to more compact oligomers and then to fibrils, which can elongate by further monomer addition. We have obtained individual rate constants for these key microscopic steps by applying a global kinetic analysis to both the decrease in the concentration of monomeric protein molecules and the increase in oligomer concentrations over a 0.5-140-µM range of αS. The resulting explicit kinetic model of αS aggregation has been used to quantitatively explore seeding the reaction by either the compact oligomers or fibrils. Our predictions reveal that, although fibrils are more effective at seeding than oligomers, very high numbers of seeds of either type, of the order of 10(4), are required to achieve efficient seeding and bypass the slow generation of aggregates through primary nucleation. Complementary cellular experiments demonstrated that two orders of magnitude lower numbers of oligomers were sufficient to generate high levels of reactive oxygen species, suggesting that effective templated seeding is likely to require both the presence of template aggregates and conditions of cellular stress.
Collapse
|
36
|
Sharma A, Varghese AM, Vijaylakshmi K, Sumitha R, Prasanna VK, Shruthi S, Chandrasekhar Sagar BK, Datta KK, Gowda H, Nalini A, Alladi PA, Christopher R, Sathyaprabha TN, Raju TR, Srinivas Bharath MM. Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients Induces Mitochondrial and Lysosomal Dysfunction. Neurochem Res 2015; 41:965-84. [PMID: 26646005 DOI: 10.1007/s11064-015-1779-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 12/14/2022]
|
37
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
38
|
Ritesh K, Suganya A, Dileepkumar H, Rajashekar Y, Shivanandappa T. A single acute hepatotoxic dose of CCl 4 causes oxidative stress in the rat brain. Toxicol Rep 2015; 2:891-895. [PMID: 28962426 PMCID: PMC5598138 DOI: 10.1016/j.toxrep.2015.05.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 02/05/2023] Open
Abstract
Carbon tetrachloride (CCl4), a hepatotoxic agent is widely used to study the toxic mechanisms in experimental animals. We have investigated whether oxidative stress is induced in the brain at a single hepatotoxic dosage (1 ml/kg bw) of CCl4. Increased lipid peroxidation (LPO), protein carbonyls (PC) content and glutathione (GSH) depletion were observed in the brain regions of rats treated with CCl4 which was higher than that of liver. A drastic reduction in the activity of glutathione-S-transferase (GST) was seen in the brain regions which was higher than that of liver. Similarly, activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), NADH- and NADPH-dehydrogenase were reduced in the brain regions similar to that of liver. Higher induction of oxidative stress in the brain compared to that of liver implies vulnerability of the brain for CCl4 neurotoxicity. Our study shows that a single hepatotoxic dose of CCl4 is equally neurotoxic to rats.
Collapse
Affiliation(s)
- K.R. Ritesh
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - A. Suganya
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - H.V. Dileepkumar
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Y. Rajashekar
- Department of Food Protectants and Infestation Control, CSIR – Central Food Technological Research Institute, Mysore 570020, Karnataka, India
- Animal Bioresources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Takyelpat, Imphal 795001, Manipur, India
| | - T. Shivanandappa
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| |
Collapse
|
39
|
A high dose of short term exogenous d-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sci 2015; 124:110-9. [DOI: 10.1016/j.lfs.2015.01.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/17/2014] [Accepted: 01/15/2015] [Indexed: 12/11/2022]
|
40
|
Pandya JD, Grondin R, Yonutas HM, Haghnazar H, Gash DM, Zhang Z, Sullivan PG. Decreased mitochondrial bioenergetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol Aging 2015; 36:1903-13. [PMID: 25726361 DOI: 10.1016/j.neurobiolaging.2015.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/24/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023]
Abstract
Altered mitochondrial function in the basal ganglia has been hypothesized to underlie cellular senescence and promote age-related motor decline. We tested this hypothesis in a nonhuman primate model of human aging. Six young (6-8 years old) and 6 aged (20-25 years old) female Rhesus monkeys (Macaca mulatta) were behaviorally characterized from standardized video records. Additionally, we measured mitochondrial bioenergetics along with calcium buffering capacity in the substantia nigra and putamen (PUT) from both age groups. Our results demonstrate that the aged animals had significantly reduced locomotor activity and movement speed compared with younger animals. Moreover, aged monkeys had significantly reduced ATP synthesis capacity (in substantia nigra and PUT), reduced pyruvate dehydrogenase activity (in PUT), and reduced calcium buffering capacity (in PUT) compared with younger animals. Furthermore, this age-related decline in mitochondrial function in the basal ganglia correlated with decline in motor function. Overall, our results suggest that drug therapies designed to enhance altered mitochondrial function may help improve motor deficits in the elderly.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Richard Grondin
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Heather M Yonutas
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Hamed Haghnazar
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Don M Gash
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Zhiming Zhang
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA.
| |
Collapse
|
41
|
Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 2014; 1105:419-37. [PMID: 24623245 DOI: 10.1007/978-1-62703-739-6_31] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this chapter, we describe a gene-specific quantitative PCR (QPCR)-based assay for the measurement of DNA damage, using amplification of long DNA targets. This assay has been used extensively to measure the integrity of both nuclear and mitochondrial genomes exposed to different genotoxins and has proven to be particularly valuable in identifying reactive oxygen species-mediated mitochondrial DNA damage. QPCR can be used to quantify both the formation of DNA damage as well as the kinetics of damage removal. One of the main strengths of the assay is that it permits monitoring the integrity of mtDNA directly from total cellular DNA without the need for isolating mitochondria or a separate step of mitochondrial DNA purification. Here we discuss advantages and limitations of using QPCR to assay DNA damage in mammalian cells. In addition, we give a detailed protocol of the QPCR assay that helps facilitate its successful deployment in any molecular biology laboratory.
Collapse
|
42
|
Mitra RN, Merwin MJ, Han Z, Conley SM, Al-Ubaidi MR, Naash MI. Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free Radic Biol Med 2014; 75:140-8. [PMID: 25066531 PMCID: PMC4171208 DOI: 10.1016/j.freeradbiomed.2014.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
Abstract
Photoreceptor (PR) cells are prone to accumulation of reactive oxygen species (ROS) and oxidative stress. An imbalance between the production of ROS and cellular antioxidant defenses contributes to PR degeneration and blindness in many different ocular disease states. Yttrium oxide (Y2O3) nanoparticles (NPs) are excellent free radical scavengers owing to their nonstoichiometric crystal defects. Here we utilize a murine light-stress model to test the efficacy of Y2O3 NPs (~10-14nm in diameter) in ameliorating retinal oxidative stress-associated degeneration. Our studies demonstrate that intravitreal injections of these NPs at doses ranging from 0.1 to 5.0µM 2 weeks before acute light stress protect PRs from degeneration. This protection is reflected both structurally (i.e., decreased light-associated thinning of the outer nuclear layer) and functionally (i.e., preservation of scotopic and photopic electroretinogram amplitudes). We also observe preservation of structure and function when NPs are delivered immediately after acute light stress, although the magnitude of the preservation is smaller, and only doses ranging from 1.0 to 5.0µM were effective. We show that the Y2O3 NPs are nontoxic and well tolerated after intravitreal delivery. Our results suggest that Y2O3 NPs have astonishing antioxidant benefits and, with further exploration, may be an excellent strategy for the treatment of oxidative stress associated with multiple forms of retinal degeneration.
Collapse
Affiliation(s)
- Rajendra N Mitra
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Miles J Merwin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muayyad R Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muna I Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
43
|
Klinedinst NJ, Regenold WT. A mitochondrial bioenergetic basis of depression. J Bioenerg Biomembr 2014; 47:155-71. [PMID: 25262287 DOI: 10.1007/s10863-014-9584-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/17/2014] [Indexed: 12/13/2022]
Abstract
Major depressive disorder (MDD) is an important public health problem affecting 350 million people worldwide. After decades of study, the pathophysiology of MDD remains elusive, resulting in treatments that are only 30-60% effective. This review summarizes the emerging evidence that implicates impaired mitochondrial bioenergetics as a basis for MDD. It is suggested that impaired mitochondrial bioenergetic function contributes to the pathophysiology of MDD via several potential pathways including: genetics/genomics, inflammation, oxidative stress, and alterations in neuroplasticity. A discussion of mitochondrial bioenergetic pathways that lead to MDD is provided. Evidence is reviewed regarding the mito-toxic or mito-protective impact of various antidepressant medications currently in use. Opportunities for further research on novel therapeutic approaches, including mitochondrial modulators, as stand-alone or adjunct therapy for reducing depression are suggested. In conclusion, while there is substantial evidence linking mitochondrial bioenergetics and MDD, there are currently no clear mitochondrial phenotypes or biomarkers to use as guides in targeting therapies beyond individuals with MDD and known mitochondrial disorders toward the general population of individuals with MDD. Further study is needed to develop these phenotypes and biomarkers, to identify therapeutic targets, and to test therapies aimed at improving mitochondrial function in individuals whose MDD is to some extent symptomatic of impaired mitochondrial bioenergetics.
Collapse
Affiliation(s)
- N Jennifer Klinedinst
- University of Maryland School of Nursing, 655 W. Lombard Street, Room 404-J, Baltimore, MD, 21201, USA,
| | | |
Collapse
|
44
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
45
|
Kunze A, Lengacher S, Dirren E, Aebischer P, Magistretti PJ, Renaud P. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr Biol (Camb) 2013; 5:964-75. [PMID: 23695230 DOI: 10.1039/c3ib40022k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. ALS is believed to be a non-cell autonomous condition, as other cell types, including astrocytes, have been implicated in disease pathogenesis. Hence, to facilitate the development of therapeutics against ALS, it is crucial to better understand the interactions between astrocytes and neural cells. Furthermore, cell culture assays are needed that mimic the complexity of cell to cell communication at the same time as they provide control over the different microenvironmental parameters. Here, we aim to validate a previously developed microfluidic system for an astrocyte-neuron cell culture platform, in which astrocytes have been genetically modified to overexpress either a human wild-type (WT) or a mutated form of the super oxide dismutase enzyme 1 (SOD1). Cortical neural cells were co-cultured with infected astrocytes and studied for up to two weeks. Using our microfluidic device that prevents direct cell to cell contact, we could evaluate neural cell response in the vicinity of astrocytes. We showed that neuronal cell density was reduced by about 45% when neurons were co-cultured with SOD-mutant astrocytes. Moreover, we demonstrated that SOD-WT overexpressing astrocytes reduced oxidative stress on cortical neurons that were in close metabolic contact. In contrast, cortical neurons in metabolic contact with SOD-mutant astrocytes lost their synapsin protein expression after severe glutamate treatment, an indication of the toxicity potentiating effect of the SOD-mutant enzyme.
Collapse
Affiliation(s)
- Anja Kunze
- Di Carlo Laboratory, Department of Bioengineering, University of California, Los Angeles (UCLA), California, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Ma WW, Hou CC, Zhou X, Yu HL, Xi YD, Ding J, Zhao X, Xiao R. Genistein alleviates the mitochondria-targeted DNA damage induced by β-amyloid peptides 25–35 in C6 glioma cells. Neurochem Res 2013; 38:1315-23. [DOI: 10.1007/s11064-013-1019-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|
47
|
Pettit LK, Varsanyi C, Tadros J, Vassiliou E. Modulating the inflammatory properties of activated microglia with Docosahexaenoic acid and Aspirin. Lipids Health Dis 2013; 12:16. [PMID: 23398903 PMCID: PMC3663775 DOI: 10.1186/1476-511x-12-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/06/2013] [Indexed: 11/29/2022] Open
Abstract
Background Microglia are considered the “resident macrophages” of the brain. When in their resting state, microglia perform routine maintenance and immune surveillance. Once activated, either by injury or an immune stimulus, microglia secrete a variety of pro-inflammatory molecules, such as Nitric Oxide, superoxide, and inflammatory cytokines. Up-regulation of pro-inflammatory molecules is transient, and does not cause neurodegeneration. However, if up-regulation lasts for an extended period of time, neurodegeneration ensues. Many neurodegenerative diseases are characterized by chronic inflammation due to microglial activation. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have been proposed as possible preventative treatments for neurodegenerative diseases, due to their anti-inflammatory properties. Docosahexaenoic Acid (DHA) is an omega-3 polyunsaturated fatty acid (PUFA) that has potent anti-inflammatory properties.This research work sought to elucidate whether microglial activation can be modulated by combining Aspirin, a classical NSAID, with Docosahexaenoic Acid, a natural anti-inflammatory agent. The combined ability of Aspirin and DHA to modulate microglial activation was determined in the context of pro-inflammatory cytokines, Nitric Oxide levels, as well as total Glutathione levels. Results Docosahexaenoic Acid increased total Glutathione levels in microglia cells and enhanced their anti-oxidative capacity. It reduced production of the pro-inflammatory cytokines TNF-α and IL-6 induced through TLR-3 and TLR-4 activation. Furthermore, it reduced production of Nitric Oxide. Aspirin showed similar anti-inflammatory effects with respect to TNF-α during TLR-3 and TLR-7 stimulation. Aspirin did not show any redection in terms of Nitric Oxide production. Combination of Aspirin and Docosahexaenoic Acid showed augmentation in total Glutathione production during TLR-7 stimulation as well as a reduction in IL-6, TNF-α and Nitric Oxide. Conclusions Collectively, these findings highlight the combination of Docosahexaenoic Acid and Aspirin as a possible measure against inflammation of the nervous system, thus leading to protection against neurodegenerative diseases with an inflammatory etiology.
Collapse
|
48
|
Yadav SS, Srikanth E, Singh N, Rathaur S. Identification of GR and TrxR systems in Setaria cervi: Purification and characterization of glutathione reductase. Parasitol Int 2013; 62:193-8. [PMID: 23305756 DOI: 10.1016/j.parint.2012.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/21/2012] [Accepted: 12/31/2012] [Indexed: 01/03/2023]
Abstract
The glutathione reductase (GR) and thioredoxin reductase (TrxR) are important enzymes of the redox system that aid parasites to maintain an adequate intracellular redox environment. In the present study, the enzyme activity of GR and TrxR was investigated in Setaria cervi (S. cervi). Significant activity of both enzymes was detected in the somatic extract of adult and microfilariae stages of S. cervi. Both GR and TrxR were separated by partial purification using ammonium sulfate fractionation and DEAE ion exchange chromatography suggesting the presence of both glutathione and thioredoxin systems in S. cervi. The enzyme glutathione reductase (ScGR) was purified to homogeneity using affinity and ion exchange chromatography that resulted in 90 fold purification with a yield of 11.54%. The specific activity of the ScGR was 643U/mg that migrated as a single band on SDS-PAGE. The subunit molecular mass was determined to be ~50kDa while the optimum pH and temperature were found to be 7.0 and 35°C respectively. The activation energy (Ea) was calculated from the slope of Arrhenius plot as 16.29±1.40kcal/mol. The Km and Vmax were determined to be 0.27±0.045mM; 30.30±1.30U/ml with NADPH and 0.59±0.060mM; 4.16±0.095U/ml with GSSG respectively. DHBA, a specific inhibitor for GR has completely inhibited the enzyme activity at 1μM concentration. The inhibition of ScGR activity with NAI (IC50 0.71mM), NEM (IC50 0.50mM) and DEPC (IC50 0.27mM) suggested the presence of tyrosine, cysteine and histidine residues at its active site. Further studies on characterization and understanding of these antioxidant enzymes may lead to designing of an effective drug against lymphatic filariasis.
Collapse
Affiliation(s)
- Sudhanshu S Yadav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | | | | |
Collapse
|
49
|
Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle. INSECTS 2012; 4:9-30. [PMID: 26466793 PMCID: PMC4553427 DOI: 10.3390/insects4010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/12/2012] [Accepted: 12/04/2012] [Indexed: 01/13/2023]
Abstract
Honey bees move through a series of in-hive tasks (e.g., “nursing”) to outside tasks (e.g., “foraging”) that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing) to those requiring prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence.
Collapse
|
50
|
Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 2012; 31:563-92. [PMID: 23022622 DOI: 10.1016/j.biotechadv.2012.09.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023]
Abstract
Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology.
Collapse
|