1
|
Ni X, Inoue R, Wu Y, Yoshida T, Yaku K, Nakagawa T, Saito T, Saido TC, Takao K, Mori H. Regional contributions of D-serine to Alzheimer's disease pathology in male AppNL-G-F/NL-G-F mice. Front Aging Neurosci 2023; 15:1211067. [PMID: 37455930 PMCID: PMC10339350 DOI: 10.3389/fnagi.2023.1211067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background Neurodegenerative processes in Alzheimer's disease (AD) are associated with excitotoxicity mediated by the N-methyl-D-aspartate receptor (NMDAR). D-Serine is an endogenous co-agonist necessary for NMDAR-mediated excitotoxicity. In the mammalian brain, it is produced by serine racemase (SRR) from L-serine, suggesting that dysregulation of L-serine, D-serine, or SRR may contribute to AD pathogenesis. Objective and methods We examined the contributions of D-serine to AD pathology in the AppNL-G-F/NL-G-F gene knock-in (APPKI) mouse model of AD. We first examined brain SRR expression levels and neuropathology in APPKI mice and then assessed the effects of long-term D-serine supplementation in drinking water on neurodegeneration. To further confirm the involvement of endogenous D-serine in AD progression, we generated Srr gene-deleted APPKI (APPKI-SRRKO) mice. Finally, to examine the levels of brain amino acids, we conducted liquid chromatography-tandem mass spectrometry. Results Expression of SRR was markedly reduced in the retrosplenial cortex (RSC) of APPKI mice at 12 months of age compared with age-matched wild-type mice. Neuronal density was decreased in the hippocampal CA1 region but not altered significantly in the RSC. D-Serine supplementation exacerbated neuronal loss in the hippocampal CA1 of APPKI mice, while APPKI-SRRKO mice exhibited attenuated astrogliosis and reduced neuronal death in the hippocampal CA1 compared with APPKI mice. Furthermore, APPKI mice demonstrated marked abnormalities in the cortical amino acid levels that were partially reversed in APPKI-SRRKO mice. Conclusion These findings suggest that D-serine participates in the regional neurodegenerative process in the hippocampal CA1 during the amyloid pathology of AD and that reducing brain D-serine can partially attenuate neuronal loss and reactive astrogliosis. Therefore, regulating SRR could be an effective strategy to mitigate NMDAR-dependent neurodegeneration during AD progression.
Collapse
Affiliation(s)
- Xiance Ni
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yi Wu
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Geoffroy C, Paoletti P, Mony L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J Physiol 2021; 600:233-259. [PMID: 34339523 DOI: 10.1113/jp280875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that play key roles in synaptic transmission and plasticity. Both hyper- and hypo-activation of NMDARs are deleterious to neuronal function. In particular, NMDAR hypofunction is involved in a wide range of neurological and psychiatric conditions like schizophrenia, intellectual disability, age-dependent cognitive decline, or Alzheimer's disease. While early medicinal chemistry efforts were mostly focused on the development of NMDAR antagonists, the last 10 years have seen a boom in the development of NMDAR positive allosteric modulators (PAMs). Here we review the currently developed NMDAR PAMs, their pharmacological profiles and mechanisms of action, as well as their physiological effects in healthy animals and animal models of NMDAR hypofunction. In light of the complexity of physiological outcomes of NMDAR PAMs in vivo, we discuss the remaining challenges and questions that need to be addressed to better grasp and predict the therapeutic potential of NMDAR positive allosteric modulation.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| |
Collapse
|
3
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
4
|
Krachtus D, Smith JC, Imhof P. Quantum Mechanical/Molecular Mechanical Analysis of the Catalytic Mechanism of Phosphoserine Phosphatase. Molecules 2018; 23:E3342. [PMID: 30563005 PMCID: PMC6321591 DOI: 10.3390/molecules23123342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphoserine phosphatase (PSP), a member of the haloacid dehalogenase (HAD) superfamily that comprises the vast majority of phosphotransferases, is likely a steady-state regulator of the level of d-serine in the brain. The proposed catalytic cycle of PSP consists of a two-step mechanism: formation of a phospho-enzyme intermediate by phosphate transfer to Asp11 and its subsequent hydrolysis. Our combined quantum mechanical/molecular mechanical (QM/MM) calculations of the reaction pathways favour a dissociative mechanism of nucleophilic substitution via a trigonal-planar metaphosphate-like configuration for both steps, associated with proton transfer to the leaving group or from the nucleophile. This proton transfer is facilitated by active site residue Asp13 that acts as both a general base and a general acid. Free energy calculation on the reaction pathways further support the structural role of the enzymatic environment and the active site architecture. The choice of a proper reaction coordinate along which to bias the free energy calculations can be guided by a projection of the canonical reaction coordinate obtained from a chain-of-state optimisation onto important internal coordinates.
Collapse
Affiliation(s)
- Dieter Krachtus
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
| | - Jeremy C Smith
- Computational Molecular Biophysics Group, Interdisciplinary Center for Scientific Computing (IWR), Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, One Bethel Valley Road, P.O. Box 2008, Oak Ridge, TN 37831-6255, USA.
| | - Petra Imhof
- Freie Universität Berlin, Institute for Theoretical Physics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Astrocytes as Pharmacological Targets in the Treatment of Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00025-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Marrs TC, Maynard RL. Neurotranmission systems as targets for toxicants: a review. Cell Biol Toxicol 2013; 29:381-96. [PMID: 24036955 DOI: 10.1007/s10565-013-9259-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022]
Abstract
Neurotransmitters are chemicals that transmit impulses from one nerve to another or from nerves to effector organs. Numerous neurotransmitters have been described in mammals, amongst them acetylcholine, amino acids, amines, peptides and gases. Toxicants may interact with various parts of neurotransmission systems, including synthetic and degradative enzymes, presynaptic vesicles and the specialized receptors that characterize neurotransmission systems. Important toxicants acting on the cholinergic system include the anticholinesterases (organophosphates and carbamates) and substances that act on receptors such as nicotine and the neonicotinoid insecticides, including imidacloprid. An important substance acting on the glutamatergic system is domoic acid, responsible for amnesic shellfish poisoning. 4-Aminobutyric acid (GABA) and glycine are inhibitory neurotransmitters and their antagonists, fipronil (an insecticide) and strychnine respectively, are excitatory. Abnormalities of dopamine neurotransmission occur in Parkinson's disease, and a number of substances that interfere with this system produce Parkinsonian symptoms and clinical signs, including notably 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is the precursor of 1-methyl-4-phenylpyridinium. Fewer substances are known that interfere with adrenergic, histaminergic or seroninergic neurotransmission, but there are some examples. Among peptide neurotransmission systems, agonists of opioids are the only well-known toxic compounds.
Collapse
Affiliation(s)
- Timothy C Marrs
- Edentox Associates, Pinehurst, Four Elms Road Edenbridge, Kent, TN8 6AQ, UK,
| | | |
Collapse
|
7
|
Abstract
Schizophrenia is a severe neuropsychiatric disorder without adequate current treatment. Recent theories of schizophrenia focus on disturbances of glutamatergic neurotransmission particularly at N-methyl-D-aspartate (NMDA)-type glutamate receptors. NMDA receptors are regulated in vivo by the amino acids glycine and D-serine. Glycine levels, in turn, are regulated by glycine type I (GlyT1) transporters, which serve to maintain low subsaturating glycine levels in the vicinity of the NMDA receptor. A proposed approach to treatment of schizophrenia, therefore, is inhibition of GlyT1-mediated transport. Over the past decade, several well tolerated, high affinity GlyT1 inhibitors have been developed and shown to potentiate NMDA receptor-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GlyT1 inhibitor, and with the high affinity compound RG1678. Although definitive trials remain ongoing, encouraging results to date have been reported.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan S Kline Institute for Psychiatric Research, Columbia University, Orangeburg, NY 10962, USA.
| |
Collapse
|
8
|
Yang L, Liao RZ, Ding WJ, Liu K, Yu JG, Liu RZ. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Dubroqua S, Serrano L, Boison D, Feldon J, Gargiulo PA, Yee BK. Intact working memory in the absence of forebrain neuronal glycine transporter 1. Behav Brain Res 2012; 230:208-14. [PMID: 22342492 DOI: 10.1016/j.bbr.2012.01.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/26/2023]
Abstract
Glycine transporter 1 (GlyT1) is a potential pharmacological target to ameliorate memory deficits attributable to N-methyl-d-aspartate receptor (NMDAR) hypofunction. Disruption of glycine-reuptake near excitatory synapses is expected to enhance NMDAR function by increasing glycine-B site occupancy. Genetic models with conditional GlyT1 deletion restricted to forebrain neurons have yielded several promising promnesic effects, yet its impact on working memory function remains essentially unanswered because the previous attempt had yielded un-interpretable outcomes. The present study clarified this important outstanding lacuna using a within-subject multi-test approach. Here, a consistent lack of effects was convincingly demonstrated across three working memory tests - the radial arm maze, the cheeseboard maze, and the water maze. These null outcomes contrasted with the phenotype of enhanced working memory performance seen in mutant mice with GlyT1 deletion extended to cortical/hippocampal glial cells. It follows that glial-based GlyT1 might be more closely linked to the modulation of working memory function, and raises the possibility that neuronal and glial GlyT1 may regulate cognitive functions via dissociable mechanisms.
Collapse
Affiliation(s)
- Sylvain Dubroqua
- Laboratory of Behavioral Neurobiology, ETH Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Anxioselective profile of glycineB receptor partial agonist, d-cycloserine, in plus-maze-naïve but not plus-maze-experienced mice. Eur J Pharmacol 2010; 646:31-7. [DOI: 10.1016/j.ejphar.2010.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/20/2010] [Accepted: 08/04/2010] [Indexed: 01/06/2023]
|
11
|
Singer P, Boison D, Möhler H, Feldon J, Yee BK. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability? Behav Neurosci 2009; 123:1012-27. [PMID: 19824767 DOI: 10.1037/a0016676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Local availability of glycine near N-methyl-D-aspartate receptors (NMDARs) is partly regulated by neuronal glycine transporter 1 (GlyT1), which can therefore modulate NMDAR function because binding to the glycine site of the NMDAR is necessary for channel activation. Disrupting GlyT1 in forebrain neurons has been shown to enhance Pavlovian conditioning and object recognition memory. Here, the authors report that the same genetic manipulation facilitated reversal learning in the water maze test of reference memory, but did not lead to any clear improvement in a working memory version of the water maze test. Facilitation in a nonspatial discrimination reversal task conducted on a T maze was also observed, supporting the conclusion that forebrain neuronal GlyT1 may modulate the flexibility in (new) learning and relevant mnemonic functions. One possibility is that these phenotypes may reflect reduced susceptibility to certain forms of proactive interference. This may be relevant for the suggested clinical application of GlyT1 inhibitors in the treatment of cognitive deficits, including schizophrenia, which is characterized by cognitive inflexibility in addition to the positive symptoms of the disease.
Collapse
Affiliation(s)
- Philipp Singer
- Laboratory of Behavioural Neurobiology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Abstract
Glycine and GABA are the two main inhibitory neurotransmitters in the central nervous system (CNS). While GABA receptors in the hippocampus have been studied in great detail, the role of glycine receptors (GlyRs) in the hippocampus is less understood. Here we examine recent evidence suggesting that GlyRs are present and active throughout the hippocampus. Extracellular glycine levels are controlled through a combination of release and transport mechanisms, both of which, along with the GlyRs themselves, can be modulated by a number of factors. We discuss the role of GlyRs in suppressing excitation by decreasing postsynaptic membrane resistance in the hippocampus, as well as the contribution of GlyRs to both short- and long-term plasticity.
Collapse
Affiliation(s)
- Tara Keck
- Department of Cellular and Systems Neurobiology, Max Planck-Institute of Neurobiology, Martinsried, Germany.
| | | |
Collapse
|
13
|
Ueno T, Tabara Y, Fukuda N, Tahira K, Matsumoto T, Kosuge K, Haketa A, Matsumoto K, Sato Y, Nakayama T, Katsuya T, Ogihara T, Makita Y, Hata A, Yamada M, Takahashi N, Hirawa N, Umemura S, Miki T, Soma M. Association of SLC6A9 gene variants with human essential hypertension. J Atheroscler Thromb 2009; 16:201-6. [PMID: 19556729 DOI: 10.5551/jat.e125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM We previously identified a quantitative trait locus (QTL) on rat chromosome 5 that appeared to be primarily controlled by the sympathetic nervous system. Because sympathetic overactivity is related to hypertension, solute carrier family 6, member 9 (SLC6A9) is a candidate gene for the connection of this QTL with blood pressure regulation. In the present study, we therefore explored the role of SLC6A9 genetic variations in human essential hypertension (EH). METHODS We evaluated three single nucleotide polymorphisms (SNPs) (rs2286245, rs3791124 and rs2486001) in 758 essential hypertension patients and 726 controls. Polymorphism-related genotypes were determined with TaqMan assays. RESULTS The allelic frequency of rs2286245 (C versus T, p=0.032) showed significant differences between EH and normotensive controls (NT) groups. The genotypic distribution of rs3791124 in its dominant model (AA+GA versus GG, p=0.027) also showed significant differences between EH and NT groups. The genotype and allele distributions of rs2486001 did not exhibit any significant differences. CONCLUSION We found an association between SLC6A9 gene polymorphisms and essential hypertension in a Japanese population, suggesting that SLC6A9 is a susceptibility locus for essential hypertension.
Collapse
Affiliation(s)
- Takahiro Ueno
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Itabashi 173-8610, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nguyen K, Syed S, Urwyler S, Bertrand S, Bertrand D, Reymond JL. Discovery of NMDA Glycine Site Inhibitors from the Chemical Universe Database GDB. ChemMedChem 2008; 3:1520-4. [DOI: 10.1002/cmdc.200800198] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Role of glycine receptors and glycine release for the neuroprotective activity of bilobalide. Brain Res 2008; 1201:143-50. [DOI: 10.1016/j.brainres.2008.01.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 11/18/2022]
|
16
|
Oda M, Kure S, Sugawara T, Yamaguchi S, Kojima K, Shinka T, Sato K, Narisawa A, Aoki Y, Matsubara Y, Omae T, Mizoi K, Kinouchi H. Direct correlation between ischemic injury and extracellular glycine concentration in mice with genetically altered activities of the glycine cleavage multienzyme system. Stroke 2007; 38:2157-64. [PMID: 17510459 DOI: 10.1161/strokeaha.106.477026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Ischemia elicits the rapid release of various amino acid neurotransmitters. A glutamate surge activates N-methyl-d-aspartate (NMDA) glutamate receptors, triggering deleterious processes in neurons. Although glycine is a coagonist of the NMDA receptor, the effect of extracellular glycine concentration on ischemic injury remains controversial. To approach this issue, we examined ischemic injury in mice with genetically altered activities of the glycine cleavage multienzyme system (GCS), which plays a fundamental role in maintaining extracellular glycine concentration. METHODS A mouse line with increased GCS activity (340% of C57BL/6 control mice) was generated by transgenic expression of glycine decarboxylase, a key GCS component (high-GCS mice). Another mouse line with reduced GCS activity (29% of controls) was established by transgenic expression of a dominant-negative mutant of glycine decarboxylase (low-GCS mice). We examined neuronal injury after transient occlusion of the middle cerebral artery in these mice by measuring extracellular amino acid concentrations in microdialysates. RESULTS High-GCS and low-GCS mice had significantly lower and higher basal concentrations of extracellular glycine than did controls, respectively. In low-GCS mice, the extracellular glycine concentration reached 2-fold of control levels during ischemia, and infarct volume was significantly increased by 69% with respect to controls. In contrast, high-GCS mice had a significantly smaller infarct volume (by 21%). No significant difference was observed in extracellular glutamate concentrations throughout the experiments. An antagonist for the NMDA glycine site, SM-31900, attenuated infarct size, suggesting that glycine operated via the NMDA receptor. CONCLUSIONS There is a direct correlation between ischemic injury and extracellular glycine concentration maintained by the GCS.
Collapse
Affiliation(s)
- Masaya Oda
- Department of Medical Genetics, Tohoku University School of Medicine, Seiryomachi, Aobaku, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nilsson M, Markinhuhta KR, Carlsson ML. Differential effects of classical neuroleptics and a newer generation antipsychotics on the MK-801 induced behavioural primitivization in mouse. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:521-30. [PMID: 16414166 DOI: 10.1016/j.pnpbp.2005.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Cognitive dysfunction plays an important role in mental disorders like schizophrenia and may involve inadequate glutamatergic signalling in different regions of the brain, mediated by e.g. glutamatergic N-methyl-D-aspartate (NMDA) receptors. In rodents, NMDA receptor antagonists often increase motor activity; in addition they induce a more primitive and undifferentiated behavioural pattern, which we believe may correspond to some of the cognitive defects seen in schizophrenia. In the present study, the movement pattern of mice treated with the uncompetitive NMDA receptor antagonist MK-801 in conjunction with six antipsychotic agents, some with reported clinical effects on cognition, was characterised and quantified. The classical neuroleptic drugs chlorpromazine and trifluoperazine, the atypical antipsychotic agents ziprasidone and olanzapine, the gamma-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor potentiator CX516 and the serotonin (5-HT)2A-antagonist M100907 were tested. In accordance with previous observations, MK-801 was found to induce a primitive and monotonous behavioural pattern dominated by forward locomotion; spatial movements, the number of switches between the states moving and stationary, and rearing frequency were reduced. All test substances counteracted MK-801-induced hyperactivity, but differed in their ability to improve behavioural quality. Chlorpromazine and trifluoperazine were unable to restore behavioural diversity while ziprasidone, olanzapine, CX516 and M100907 restored it to varying degrees. A striking similarity in movement pattern was seen between the hypoglutamatergic mice treated with the AMPA-receptor agonist CX516, and those receiving the 5HT2A-antagonist M100907.
Collapse
Affiliation(s)
- Marie Nilsson
- The Arvid Carlsson Institute for Neuroscience at the Institute of Clinical Neuroscience, The Sahlgrenska Academy at Göteborg University, Medicinaregatan 11, Box 432, SE-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
18
|
Downing SS, Lee YT, Farb DH, Gibbs TT. Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABA(A) receptors supports an allosteric model of modulation. Br J Pharmacol 2006; 145:894-906. [PMID: 15912137 PMCID: PMC1576208 DOI: 10.1038/sj.bjp.0706251] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Benzodiazepines (BZDs) have been used extensively for more than 40 years because of their high therapeutic index and low toxicity. Although BZDs are understood to act primarily as allosteric modulators of GABA(A) receptors, the mechanism of modulation is not well understood. The applicability of an allosteric model with two binding sites for gamma-aminobutyric acid (GABA) and one for a BZD-like modulator was investigated. This model predicts that BZDs should enhance the efficacy of partial agonists. Consistent with this prediction, diazepam increased the efficacy of the GABA(A) receptor partial agonist kojic amine in chick spinal cord neurons. To further test the validity of the model, the effects of diazepam, flurazepam, and zolpidem were examined using wild-type and spontaneously active mutant alpha1(L263S)beta3gamma2 GABA(A) receptors expressed in HEK-293 cells. In agreement with the predictions of the allosteric model, all three modulators acted as direct agonists for the spontaneously active receptors. The results indicate that BZD-like modulators enhance the amplitude of the GABA response by stabilizing the open channel active state relative to the inactive state by less than 1 kcal, which is similar to the energy of stabilization conferred by a single hydrogen bond.
Collapse
Affiliation(s)
- Scott S Downing
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - Yan T Lee
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany St, Boston, MA 02118, U.S.A
- Author for correspondence:
| |
Collapse
|
19
|
Leonetti M, Desvignes C, Bougault I, Souilhac J, Oury-Donat F, Steinberg R. 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission. Neuroscience 2006; 137:555-64. [PMID: 16289893 DOI: 10.1016/j.neuroscience.2005.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 09/02/2005] [Accepted: 09/07/2005] [Indexed: 01/02/2023]
Abstract
2-Chloro-N-S-phenyl 2S-piperidin-2-yl methyl]-3-trifluoromethyl benzamide, monohydrochloride (SSR504734) is a potent and selective inhibitor of the glycine transporter type 1, which increases central N-methyl-D aspartate glutamatergic tone. Since glutamate has been shown to play a role in the regulation of the dopaminergic system in dopamine-related disorders, such as schizophrenia, we investigated the possibility that SSR504734 may modify the basolateral amygdala-elicited stimulation of dopamine release in the nucleus accumbens via an augmentation of glutamate receptor-mediated neurotransmission. First, our data confirmed that SSR504734 is an inhibitor of GlytT1. In the nucleus accumbens of anesthetized rat, SSR504734 (10 mg/kg, i.p.) induced an increase of extracellular levels of glycine as measured by microdialysis coupled with capillary electrophoresis with laser-induced fluorescence detection. Second, the data demonstrated that SSR504734 (10 mg/kg, i.p.) enhanced the facilitatory influence of glutamatergic afferents on dopamine neurotransmission in the nucleus accumbens. Using an electrochemical technique, we measured dopamine release in the nucleus accumbens evoked by an electrical stimulation of the basolateral amygdala. SSR504734 facilitated dopamine release evoked by a 20 or a 40 Hz frequency basolateral amygdala stimulation. This facilitatory effect was dependent on glutamatergic tone, as intra-nucleus accumbens application of 6-7-dinitroquinoxaline-2,3-dione (10(-3) M) or DL-2-amino-5-phosphonopentanoic acid (10(-3) M), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and N-methyl-D aspartate receptors antagonists, respectively, inhibited dopamine release evoked by basolateral amygdala stimulation. Furthermore DL-2-amino-5-phosphonopentanoic acid co-administrated with SSR504734 hampered the dopamine-evoked release facilitation. These data underline the in vivo implication of the glycine uptake mechanism in the control of subcortical glutamate/dopamine interactions.
Collapse
Affiliation(s)
- M Leonetti
- Sanofi-Aventis, 371 rue du Professeur Joseph Blayac, 34184 Montpellier Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
20
|
Fuchs SA, Berger R, Klomp LWJ, de Koning TJ. D-amino acids in the central nervous system in health and disease. Mol Genet Metab 2005; 85:168-80. [PMID: 15979028 DOI: 10.1016/j.ymgme.2005.03.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/05/2005] [Accepted: 03/09/2005] [Indexed: 11/13/2022]
Abstract
Recent evidence has shown that d-amino acids are present in animals and humans in high concentrations and fulfill specific biological functions. In the central nervous system, two d-amino acids, d-serine and d-aspartate, occur in considerable concentrations. d-Serine is synthesized and metabolized endogenously and the same might account for d-aspartate. d-Serine has been studied most extensively and was shown to play a role in excitatory amino acid metabolism, being a co-agonist of the N-methyl-d-aspartate (NMDA) receptor. Insight into d-serine metabolism is relevant for physiological NMDA receptor (NMDAr) activation and for all the disorders associated with an altered function of the NMDAr, such as schizophrenia, ischemia, epilepsy, and neurodegenerative disorders. d-Aspartate appears to play a role in development and endocrine function, but the precise function of d-aspartate and other d-amino acids in animals and humans requires further investigation. As d-amino acids play biological roles, alterations in the concentrations of d-amino acids might occur in some disorders and relate to the pathogenesis of these disorders. d-Amino acid concentrations may then not only help in the diagnostic process, but also provide novel therapeutic targets. Consequently, the presence and important roles of d-amino acids in higher organisms do not only challenge former theories on mammalian physiology, but also contribute to exciting new insights in human disease.
Collapse
Affiliation(s)
- Sabine A Fuchs
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
21
|
Wood PL, Hawkinson JE. N-methyl-D-aspartate antagonists for stroke and head trauma. Expert Opin Investig Drugs 2005; 6:389-97. [PMID: 15989606 DOI: 10.1517/13543784.6.4.389] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is a ligand-gated ion channel which is widely distributed in the central nervous system (CNS), and which mediates most of the fast excitatory neuronal transmission in the CNS. As with other ligand-gated ion channels, the NMDA receptor is a macromolecular complex which possesses a number of intricate regulatory sites within and around a central ion channel. The key regulatory components for which prototypic antagonists have been developed are the competitive NMDA antagonist binding site, the non-competitive NMDA antagonist binding site within the ion channel, and the NMDA receptor-associated glycine antagonist site. The binding domains for each of these binding sites possess discrete and non-overlapping SAR with regard to the chemical series developed to date. The potential utility of NMDA antagonists in the treatment of stroke and traumatic brain injury was investigated soon after the synthesis of the first bioavailable NMDA antagonists. Efficacy in preclinical models was demonstrated with both competitive and non-competitive NMDA antagonists. However, preclinical testing also revealed potentially clinically-limiting side-effects which included phencyclidine (PCP)-like actions indicative of possible psychotomimetic activity, cerebral vacuolisation of limbic cortical neurones, low therapeutic indices relative to incapacitating motor side-effects and, in the case of non-competitive antagonists, hypertension. These limitations have led to the design of clinical trials that should define the therapeutic index for this type of compound in humans. Currently, the first competitive antagonist to enter clinical trials, selfotel, is on hold, while D-CPPene is still in development. The non-competitive antagonist, aptiganel, is currently in Phase III clinical trials and its therapeutic efficacy and index should be defined in 1997 and 1998. The well-defined limitations of competitive and non-competitive NMDA antagonists have been a key impetus in the investigation of alternative approaches to modulating the NMDA receptor complex. In the case of glycine site antagonists, these compounds have been shown in preclinical studies to be devoid of PCP-like actions and the neuronal vacuolisation associated with the competitive and non-competitive NMDA antagonists. This has induced the development of a number of chemical series with at least three compounds currently in Phase I and II clinical trials. These include ACEA 1021, GV150526A and ZD9379. Clinical efficacies and therapeutic indices of these compounds should be defined in 1998 and 1999. An alternative approach using a partial agonist of the glycine site (1-aminocyclopropane-carboxylic acid, ACPC) has been halted in Phase I. Another approach which has led to the development of NMDA receptor antagonists, selective for the NMDA receptor subunits 1A/2B (NR1A/2B subtype), was the discovery in early studies of the neuroprotective actions of ifenprodil. Structural analogues include eliprodil, CP-101,606 and lubeluzole. In the cases of eliprodil and lubeluzole, these compounds have demonstrated neuroprotection in preclinical models, but they possess the extremely dangerous side-effect of increasing cardiac repolarisation time (i.e., increased QTc interval). The therapeutic index for these compounds is low. This has led to the termination of eliprodil's development and has limited the current dosing strategy with lubeluzole. It has not been disclosed if CP-101,606 possesses this dose-limiting side-effect. In summary, strategies for drug design and development based on our knowledge of the NMDA receptor complex have led to the development of a new generation of compounds for the treatment of stroke and traumatic brain injury, which remain to be evaluated in the clinic. The success of this approach will be defined in the next two to three years.
Collapse
Affiliation(s)
- P L Wood
- CoCensys, Inc., 213 Technology Drive, Irvine, CA 92618, USA; Tel: +1 714 753 6101; Fax: +1 714 753 6194
| | | |
Collapse
|
22
|
Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2004; 359:943-64. [PMID: 15306409 PMCID: PMC1693380 DOI: 10.1098/rstb.2003.1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
23
|
Huang H, Barakat L, Wang D, Bordey A. Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices. J Physiol 2004; 560:721-36. [PMID: 15331688 PMCID: PMC1665288 DOI: 10.1113/jphysiol.2004.067801] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine is an inhibitory neurotransmitter and is critical for NMDA receptor activation. These roles are dependent on extracellular glycine levels, which are regulated by Na(+)/Cl(-)-dependent glycine transporters (GlyTs) in neurones and glia. The glial GlyT subtype GlyT1 is well located to activate NMDA receptors. However, glial GlyTs have not been studied in an intact system thus far. Whole-cell patch-clamp recordings were obtained from Bergmann glia in mice cerebellar slices to determine whether these glia express functional GlyT1 that can mediate both glycine uptake and efflux. In the presence of a glycine receptor blocker, glycine and a substrate agonist for GlyT1, sarcosine, induced voltage-dependent inward currents that were abolished by removing external Na(+), identifying them as transport currents. Inhibitors of glycine transport through GlyT1 (sarcosine and (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS)) reduced glycine currents by approximately 85%, consistent with positive immunostaining for GlyT1 in Bergmann glia while inhibitors of glycine transport through GlyT2 (4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminocyclopently)methyl]benzamide (ORG 25543) and amoxapine) or through systems A and ASC did not affect glycine transport currents. Following internal glycine perfusion during the recording, outward currents progressively developed at -50 mV and external glycine-induced uptake currents were reduced. Using paired recordings of a Bergmann glial cell and a granule cell in the whole cell and outside-out modes, respectively, depolarizations of Bergmann glia to +20 mV induced a 73% increase in the open probability of glycine receptor channels in membrane patches of granule cells. This increase was prevented when NFPS was included in the bath solution. Overall, these results demonstrate for the first time that Bergmann glia express functional GlyT1 that can work in reverse at near-physiological ionic and internal glycine conditions in brain slices. These glial GlyTs can probably mediate glycine efflux under conditions of metabolic impairments like ischaemia.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | | | | | | |
Collapse
|
24
|
MUSTAFA ASIFK, KIM PAULM, SNYDER SOLOMONH. D-Serine as a putative glial neurotransmitter. NEURON GLIA BIOLOGY 2004; 1:275-81. [PMID: 16543946 PMCID: PMC1403160 DOI: 10.1017/s1740925x05000141] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abundant recent evidence favors a neurotransmitter/neuromodulator role for D-serine. D-serine is synthesized from L-serine by serine racemase in astrocytic glia that ensheath synapses, especially in regions of the brain that are enriched in NMDA-glutamate receptors. D-serine is more potent than glycine at activating the 'glycine' site of these receptors. Moreover, selective degradation of D-serine but not glycine by D-amino acid oxidase markedly reduces NMDA neurotransmission. D-serine appears to be released physiologically in response to activation by glutamate of AMPA-glutamate receptors on D-serine-containing glia. This causes glutamate-receptor-interacting protein, which binds serine racemase, to stimulate enzyme activity and D-serine release. Thus, glutamate triggers the release of D-serine so that the two amino acids can act together on postsynaptic NMDA receptors. D-serine also plays a role in neural development, being released from Bergmann glia to chemokinetically enhance the migration of granule cell cerebellar neurons from the external to the internal granular layer.
Collapse
Affiliation(s)
- ASIF K. MUSTAFA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore
| | - PAUL M. KIM
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore
| | - SOLOMON H. SNYDER
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
25
|
Whitehead KJ, Pearce SM, Walker G, Sundaram H, Hill D, Bowery NG. Positive N-methyl-d-aspartate receptor modulation by selective glycine transporter-1 inhibition in the rat dorsal spinal cord in vivo. Neuroscience 2004; 126:381-90. [PMID: 15207356 DOI: 10.1016/j.neuroscience.2004.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2004] [Indexed: 10/26/2022]
Abstract
In this study we have employed the selective glycine transporter-1 (GlyT-1) and GlyT-2 transporter inhibitors R-(-)-N-methyl-N-[3-[(4-trifluoromethyl)phenoxy]-3-phenyl-propyl]glycine (1:1) lithium salt (Org 24598) and 4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminocyclopently)methyl]benzamide (Org 25543), respectively, and microdialysis perfusion to determine the effect of GlyT transporter inhibition on extracellular amino acid concentrations in the lumbar dorsal spinal cord of the halothane-anaesthetised rat. Reverse dialysis of Org 24598 (0.1-10 microM) induced a concentration-related increase in extracellular glycine accompanied by a progressive increase in citrulline, but not aspartate, glutamate or GABA, efflux. Org 25543 (10 microM) by the same route induced a similar increase in glycine levels without affecting the efflux of other amino acids quantified. To test the hypothesis that the increase in citrulline efflux resulted from activation of the N-methyl-D-aspartate receptor (NMDA-R)/nitric oxide synthase (NOS) signalling cascade, the sensitivity was determined of GlyT-1 inhibition-induced effects to NMDA-R antagonism or NOS inhibition. Co-administration by reverse dialysis of the selective NMDA-R channel blocker MK-801 (0.5 mM) or the selective antagonist of the strychnine-insensitive glycine site, 7-chlorokynurenic acid (1 mM), with Org 24598 (10 microM) did not affect the uptake inhibition-induced increase in glycine efflux, but did significantly attenuate the increase in extracellular citrulline. Similarly, co-administration with Org 24598 of the isoform non-selective and selective neuronal NOS inhibitors Nomega-nitro-L-arginine methyl ester (1 mM) or 1-(2-trifluoromethylphenyl)imidazole (0.2 mM), respectively, prevented Org 24598-induced citrulline efflux with no effect on increased glycine efflux. These data provide evidence that the observed increased in extracellular citrulline is a consequence of positive modulation of NMDA-R, secondary to increased extracellular glycine and support a protective role for GlyT-1 against fluctuations in extracellular glycine uptake at glutamatergic synapses in the dorsal spinal cord. Such a mechanism could be important to NMDA-R-mediated synaptic plasticity in the spinal cord and be of relevance to the clinical usage of GlyT-1 inhibitors.
Collapse
Affiliation(s)
- K J Whitehead
- Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Heresco-Levy U. Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:1113-23. [PMID: 14642971 DOI: 10.1016/j.pnpbp.2003.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The neurotransmission mediated by the excitatory amino acids (EAA) glutamate (GLU) and aspartate is of interest to the pharmacotherapy of psychosis due to its role in neurodevelopment and neurotoxicity, its complex interactions with dopaminergic and other neurotransmitter systems and its pivotal importance in recent models of schizophrenia. Accumulating evidence indicates that modulation of glutamatergic neurotransmission may play an important role in the mechanisms of action of atypical antipsychotic drugs. The principles of the phencyclidine (PCP) model of schizophrenia suggest that conventional neuroleptics cannot counteract all aspects of schizophrenia symptomatology, while a more favorable outcome, including anti-negative and cognitive symptoms effects, would be expected with the use of treatment modalities targeting glutamatergic neurotransmission. Clozapine and other presently used atypical antipsychotics differ from conventional neuroleptics in the way they affect various aspects of glutamatergic receptors function. In this context, a specific hypothesis suggesting an agonistic role of clozapine at the N-methyl-D-aspartate (NMDA) subtype of GLU receptors has been postulated. Furthermore, the results of the first generation of clinical trials with glycine (GLY) site agonists of the NMDA receptor in schizophrenia suggest that this type of compounds (1) have efficacy and side effects profiles different than those of conventional neuroleptics and (2) differ in their synergic effects when used in addition to conventional neuroleptics versus clozapine and possibly additional atypical antipsychotics. These findings (1) bring further support to the hypothesis that glutamatergic effects may play an important role in the mechanism of action of atypical antipsychotics, (2) help explain the unique clinical profile of clozapine, and (3) suggest that GLY site agonists of the NMDA receptor may represent a new class of atypical antipsychotic medication. Future research in this area is bound to bring about a better understanding of the role of glutamatergic neurotransmission manipulation in the pharmacotherapy of psychosis and the development of novel pharmacological strategies targeting GLU brain systems.
Collapse
Affiliation(s)
- Uriel Heresco-Levy
- Department of Psychiatry, Ezrath Nashim-Sarah Herzog Memorial Hospital, Hadassah Medical School, Hebrew University, PO Box 35300, Jerusalem 91351, Israel.
| |
Collapse
|
27
|
Rao TS, Lariosa-Willingham KD, Yu N. Glutamate-dependent glutamine, aspartate and serine release from rat cortical glial cell cultures. Brain Res 2003; 978:213-22. [PMID: 12834916 DOI: 10.1016/s0006-8993(03)02841-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glia play a pivotal role in glutaminergic excitatory neurotransmission in the central nervous system by regulating synaptic levels of glutamate and by providing glutamine as the sole precursor for the neurotransmitter pool glutamate to neurons through the glutamate-glutamine cycle. In the present investigation, we examined the influence of glutamate application on glutamine, serine and aspartate release from rat cortical glial cultures. The glial glutamate transporters rapidly cleared exogenously applied glutamate and this was accompanied by rapid increases in aspartate and glutamine, and a delayed increase in serine levels in the glial-conditioned medium. While glutamate-induced increases in glutamine and serine were sustained for up to 24 h, increases in aspartate lasted only for up to 6 h. The glutamate-induced increases in aspartate and glutamine were dependent both on the concentration and the duration of glutamate stimulus, but were largely insensitive to the inhibition of non-N-methyl-D-aspartate receptors or the metabotropic glutamate receptor 5. Inhibition of the glutamate transporter function by L-trans-pyrrolidine 2,4-dicarboxylate decreased the rate of glutamate uptake but not completely abrogated the uptake process, and this resulted in the attenuation of rate of glutamate induced glutamine synthesis. Dexamethasone treatment increased serine and glutamine levels in conditioned medium and increased glutamate induced glutamine release suggesting an upregulation of glutamine synthase activity. These results further substantiate coupling between glutamate and glutamine, and shed light on glutamate-dependent release of serine and aspartate, which may further contribute to excitatory neurotransmission.
Collapse
Affiliation(s)
- Tadimeti S Rao
- Merck Research Laboratories, 3535 General Atomics Ct, MRLSDB1, San Diego, CA 92122, USA.
| | | | | |
Collapse
|
28
|
Qureshi AI, Ali Z, Suri MFK, Shuaib A, Baker G, Todd K, Guterman LR, Hopkins LN. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit Care Med 2003; 31:1482-9. [PMID: 12771622 DOI: 10.1097/01.ccm.0000063047.63862.99] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether extracellular concentrations of glutamate and other amino acids are significantly elevated after intracerebral hemorrhage and, if so, the temporal characteristics of these changes. Although the role of excitotoxic amino acids, particularly that of glutamate, has been described in ischemic stroke and head trauma, no information exists regarding their possible contribution to the pathogenesis of neuronal injury in intracerebral hemorrhage. DESIGN Prospective, controlled, laboratory trial. SETTINGS Animal research laboratory. SUBJECTS Sixteen anesthetized New Zealand rabbits. INTERVENTION We introduced intracerebral hemorrhage in each of eight anesthetized New Zealand rabbits by injecting 0.4 mL of autologous blood under arterial pressure into the deep gray matter of the cerebrum. MEASUREMENTS AND MAIN RESULTS Extracellular fluid samples were collected from the perihematoma region and contralateral (right) hemisphere by in vivo microdialysis at 30-min intervals for 6 hrs. Corresponding samples were similarly collected from both hemispheres in each of eight control animals that underwent needle placement without introduction of a hematoma. Concentrations of amino acids (glutamate, aspartate, asparagine, glycine, taurine, and gamma-aminobutyric acid) in the samples were measured by use of high-pressure liquid chromatography with fluorescence detection. Glutamate concentrations (mean +/- sem) were significantly higher in the hemisphere ipsilateral to the hematoma than in the contralateral hemisphere (92 +/- 22 pg/microL vs. 22 +/- 6 pg/microL) at 30 mins after hematoma creation. A significant increase was observed at 30 mins posthematoma creation in the hemisphere ipsilateral to the hematoma compared with the baseline value. A nonsignificant increase in glutamate concentration persisted in the hemisphere ipsilateral to the hematoma, ranging from 134% to 187% of baseline value between 1 and 5 hrs after hematoma creation. In the hemisphere ipsilateral to the hematoma, a three-fold increase in the concentration of glycine was observed at 30 mins after hematoma creation compared with the baseline level (890 +/- 251 pg/microL vs. 291 +/- 73 pg/microL). There was a significant difference between the hemisphere ipsilateral to the hematoma compared with the ipsilateral (corresponding) hemisphere of the control group at 30 mins posthematoma (890 +/- 251 pg/microL vs. 248 +/- 66 pg/microL). A similar transient increase was observed in taurine and asparagine concentrations at 30 mins after hematoma creation, compared with baseline measurements. Taurine concentrations in the hemisphere ipsilateral to the hematoma were significantly higher than the ipsilateral hemisphere of the control group (622 +/- 180 pg/microL vs. 202 +/- 64 pg/microL) at 30 mins after hematoma creation. CONCLUSIONS The present study suggests that glutamate and other amino acids accumulate transiently in extracellular fluids in the perihematoma region during the early period of intracerebral hemorrhage. The exact role of these amino acids in the pathogenesis of neuronal injury observed in intracerebral hemorrhage needs to be defined.
Collapse
Affiliation(s)
- Adnan I Qureshi
- Department of Neurosurgery, Toshiba Stroke Research Center, University of Buffalo, State University of New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89:691-703. [PMID: 12574447 DOI: 10.1152/jn.00680.2002] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor (NMDA-R) has pivotal roles in neural development, learning, memory, and synaptic plasticity. Functional impairment of NMDA-R has been implicated in schizophrenia. NMDA-R activation requires glycine to act on the glycine-B (GlyB) site of the NMDA-R as an obligatory co-agonist with glutamate. Extracellular glycine near NMDA-R is regulated effectively by a glial glycine transporter (GlyT1). Using whole-cell voltage-clamp recordings in prefrontal cortex (PFC) slices, we have shown that exogenous GlyB site agonists glycine and D-serine, or a specific GlyT1 inhibitor N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS) in the presence of exogenous glycine (10 microM), potentiated synaptically evoked NMDA excitatory postsynaptic currents (EPSCs) in vitro. Furthermore, in urethan-anesthetized rats, microiontophoretic NMDA pulses excite single PFC neurons. When these responses were blocked by approximately 50% to approximately 90% on continuous iontophoretic application of the GlyB site, antagonist (+)HA-966, intravenous NFPS (5 mg/kg), or a GlyB site agonist D-serine (50 mg/kg iv) reversed this (+)HA-966 block. NFPS may elevate endogenous glycine levels sufficiently to displace (+)HA-966 from the GlyB sites of the NMDA-R, thus enabling reactivation of the NMDA-Rs by iontophoretic NMDA applications. D-Serine (50-100 mg/kg iv) or NFPS (1-2 mg/kg iv) alone also augmented NMDA-evoked excitatory responses. These data suggest that direct GlyB site stimulation by D-serine, or blockade of GLYT1 to elevate endogenous glycine to act on unsaturated GlyB sites on NMDA-Rs, potentiated NMDA-R-mediated firing responses in rat PFC. Hence, blockade of GlyT1 to elevate glycine near the NMDA-R may activate hypofunctional NMDA-R, which has been implicated to play a critical role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Long Chen
- Neuroscience Discovery, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, Indiana 46220, USA
| | | | | |
Collapse
|
30
|
Kim HY, Heo YS, Kim JH, Park MH, Moon J, Kim E, Kwon D, Yoon J, Shin D, Jeong EJ, Park SY, Lee TG, Jeon YH, Ro S, Cho JM, Hwang KY. Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase. J Biol Chem 2002; 277:46651-8. [PMID: 12213811 DOI: 10.1074/jbc.m204866200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human phosphoserine phosphatase (HPSP) regulates the levels of glycine and d-serine, the putative co-agonists for the glycine site of the NMDA receptor in the brain. Here, we describe the first crystal structures of the HPSP in complexes with the competitive inhibitor 2-amino-3-phosphonopropionic acid (AP3) at 2.5 A, and the phosphate ion (Pi) and the product uncompetitive inhibitor l-serine (HPSP.l-Ser.Pi) at 2.8 A. The complex structures reveal that the open-closed environmental change of the active site, generated by local rearrangement of the alpha-helical bundle domain, is important to substrate recognition and hydrolysis. The maximal extent of this structural rearrangement is shown to be about 13 A at the L4 loop and about 25 degrees at the helix alpha3. Both the structural change and mutagenesis data suggest that Arg-65 and Glu-29 play an important role in the binding of the substrate. Interestingly, the AP3 binding mode turns out to be significantly different from that of the natural substrate, phospho-l-serine, and the HPSP.l-Ser.Pi structure provides a structural basis for the feedback control mechanism of serine. These analyses allow us to provide a clear model for the mechanism of HPSP and a framework for structure-based drug development.
Collapse
Affiliation(s)
- Hye-Yeon Kim
- Divison of Drug Discovery, CrystalGenomics Incorporated, Daeduck Biocommunity, Jeonmin-dong, Yuseong-gu, Taejeon City, South Korea 305-600
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jouvenceau A, Potier B, Poindessous-Jazat F, Dutar P, Slama A, Epelbaum J, Billard JM. Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties. Neuropharmacology 2002; 42:444-58. [PMID: 11955516 DOI: 10.1016/s0028-3908(01)00202-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contribution of the cytosolic calcium binding protein calbindin D(28K) (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca(2+) entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 microM) and of the calcium chelator BAPTA-AM (5 microM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced [Ca(2+)](i) rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol [Ca(2+)](i), due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern.
Collapse
Affiliation(s)
- A Jouvenceau
- Neurobiologie de la Croissance et de la Sénescence, INSERM U 549, IFR Broca-Sainte Anne, 2ter rue d'Alésia, 75014, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Weber M, Dietrich D, Gräsel I, Reuter G, Seifert G, Steinhäuser C. 6-Hydroxykynurenic acid and kynurenic acid differently antagonise AMPA and NMDA receptors in hippocampal neurones. J Neurochem 2001; 77:1108-15. [PMID: 11359876 DOI: 10.1046/j.1471-4159.2001.00340.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
6-Hydroxykynurenic acid (6-HKA), a derivative of kynurenic acid (KYNA) extracted from Ginkgo biloba leaves, was tested for its putative glutamate receptor (GluR) antagonism in comparison to the scaffold substance. The patch-clamp method together with fast-application techniques were used to estimate inhibition by 6-HKA and KYNA of agonist binding at NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (NMDARs and AMPARs) of CA1 pyramidal neurones. 6-Hydroxykynurenic acid proved to be a low-affinity antagonist. When comparing with KYNA, 6-HKA was less potent at NMDARs (IC(50) = 136 versus 59 microM), but showed a higher affinity to AMPARs (K(B) = 22 versus 172 microM). The replacement of 6-HKA and KYNA by glutamate was investigated on outside-out patches. Both antagonists competitively inhibited AMPAR responses and displayed fast unbinding kinetics, but the derivative was significantly slower displaced than KYNA (tau = 1.63 versus 1.22 ms). Our findings demonstrate that 6-hydroxylation considerably changes the pharmacological profile of KYNA. Among the 6-derivatives of KYNA, 6-HKA shows the highest affinity to AMPARS: Despite its relatively low lipophily, these properties might be of clinical relevance under conditions that compromise the integrity of the blood-brain barrier. Furthermore, 6-HKA should be a useful tool to analyse glutamate-mediated synaptic responses.
Collapse
Affiliation(s)
- M Weber
- Experimental Neurobiology, Neurosurgery, Bonn University, Bonn, Germany Institute of Pharmacy, Jena University, Jena, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Murray F, Kennedy J, Hutson PH, Elliot J, Huscroft I, Mohnen K, Russell MG, Grimwood S. Modulation of [3H]MK-801 binding to NMDA receptors in vivo and in vitro. Eur J Pharmacol 2000; 397:263-70. [PMID: 10844123 DOI: 10.1016/s0014-2999(00)00263-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
[3H]MK-801 binding in vivo was used to determine the occupancy of NMDA receptor ligands shown to allosterically modulate binding in vitro. ED(50) values (mg/kg) were obtained for the channel blockers (+)-5-methyl-10,11-dihydro-5,4-dibenzo[a,d]cyclohepten-5,10-imine maleate ((+)-MK-801, 0.2), 1-(1-phenylcyclohexyl)piperidine (phencyclidine, PCP, 1.7) and ketamine (4.4). Antagonists at the glutamate (DL-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (DL-CPP, 5.7)) and glycine site (7-Chloro-4-hydroxy-3-(3-phenoxy)-phenyl-2(H)quinolinone (L-701,324, 14.1), 3R(+)cis-4-methyl-pyrrollid-2-one (L-687,414, 15.1)) inhibited [3H]MK-801 binding in vivo to varying maximum levels (69%, 103% and 45%, respectively). NR2B subunit-selective compounds acting at the ifenprodil site inhibited [3H]MK-801 in vivo by a maximum of 52-72% and gave ED(50) values (mg/kg) of: (+/-)-(1S*, 2S*)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol ((+/-)CP-101,606), 1.9; (+/-)-(3R, 4S)-3-[4-(4-fluorophenyl)-4-hydroxypiperidin-1-yl]chroman-4,7-diol ((+/-)CP-283,097), 1.8; (+/-)-(R*, S*)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propanol ((+/-)Ro 25-6981), 1.0; ifenprodil, 6.0. The glycine site agonist D-serine stimulated binding to 151% of control with an ED(50) of 1.7 mg/kg. Results show that [3H]MK-801 binding in vivo may be used to measure receptor occupancy of ligands acting not only within the ion channel but also at modulatory sites on the NMDA receptor complex.
Collapse
Affiliation(s)
- F Murray
- Department of Behavioural Neuroscience, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Essex CM20 2QR, Harlow, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Millan MJ, Audinot V, Honoré P, Bervoets K, Veiga S, Brocco M. Blockade of NMDA receptors in the nucleus accumbens elicits spontaneous tail-flicks in rats. Eur J Pharmacol 2000; 388:37-47. [PMID: 10657545 DOI: 10.1016/s0014-2999(99)00820-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The open channel blocker at N-methyl-D-aspartate (NMDA) receptors, dizocilpine, stereospecifically elicited spontaneous tail-flicks in rats - a reaction similar to those elicited by other drugs (tenocyclidine, phencyclidine and ketamine) acting as open channel blockers. Their relative potencies were strongly correlated with affinities at NMDA binding sites and labeled by [3H]dizocilpine in the frontal cortex (r=0.94) and, as determined previously [Millan, M. J., Seguin, L., 1994. Chemically-diverse ligands at the glycine B site coupled to N-methyl-D-aspartate (NMDA) receptors selectively block the late phase of formalin-induced pain in mice, Neurosci. Lett., 178 (1994) 139-143], potency for eliciting antinociception (0. 93). The competitive antagonists at the NMDA receptor recognition site, (+/-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), 4-phosphonomethyl-2-piperidine carboxylic acid (CGS19755), D, L-(E)-2-amino-4-methylphosphono-3-pentanoic acid (CGP37849) and (3E)-1-ethyl ester-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP39551), likewise dose-dependently evoked spontaneous tail-flick. In contrast, antagonists/weak partial agonists at the coupled, glycine B site, 7-chloro-4-hydroxy-3-(3-phenoxy) phenyl-2(H)-quinolinone (L701,324), (+)-1-hydroxy-3-aminopyrrolidine-2-one ((+)-HA966), (3R, 4R)-3-amino-1-hydroxy-4-methyl-2-pyrrolidinone (L687,414), 6, 7-dichloro-1, 4-dihydro-5-nitro, 2,3 quinoxalinedione (ACEA1021) and 2-carboxy-4,6-dichloro (1H)-indole-3-propanoic acid (MDL29,951), were inactive. NMDA abolished induction of spontaneous tail-flick by CPP and CGS19755, but not by dizocilpine. Upon bilateral injection into the nucleus accumbens, dizocilpine immediately and dose-dependently elicited spontaneous tail-flick, but it was ineffective in the ventrotegmental area and striatum. Similarly, injection of CPP into the nucleus accumbens elicited spontaneous tail-flick. Neither dizocilpine nor CPP elicited spontaneous tail-flick upon administration onto lumbar spinal cord. In conclusion, a pharmacologically specific spontaneous tail-flick-response is elicited by both open channel blockers and recognition site antagonists, but not glycine B site antagonists, at NMDA receptors. Their actions, mediated in the nucleus accumbens, may be differentiated by their respective resistance and sensitivity to NMDA.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy-sur-Seine, Paris, France
| | | | | | | | | | | |
Collapse
|
35
|
Li PA, Shuaib A, Miyashita H, He QP, Siesjö BK, Warner DS. Hyperglycemia enhances extracellular glutamate accumulation in rats subjected to forebrain ischemia. Stroke 2000; 31:183-92. [PMID: 10625736 DOI: 10.1161/01.str.31.1.183] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE An increase in serum glucose at the time of acute ischemia has been shown to adversely affect prognosis. The mechanisms for the hyperglycemia-exacerbated damage are not fully understood. The objective of this study was to determine whether hyperglycemia leads to enhanced accumulation of extracellular concentrations of excitatory amino acids and whether such increases correlate with the histopathological outcome. METHODS Rats fasted overnight were infused with either glucose or saline 45 minutes before the induction of 15 minutes of forebrain ischemia. Extracellular glutamate, glutamine, glycine, taurine, alanine, and serine concentrations were measured before, during, and after ischemia in both the hippocampus and the neocortex in both control and hyperglycemic animals. The histopathological outcome was evaluated by light microscopy. RESULTS There was a significant increase in extracellular glutamate levels in the hippocampus and cerebral cortex in normoglycemic ischemic animals. The increase in glutamate levels in the cerebral cortex, but not in the hippocampus, was significantly higher in hyperglycemic animals than in controls. Correspondingly, exaggerated neuronal damage was observed in neocortical regions in hyperglycemic animals. CONCLUSIONS The present results demonstrate that, at least in the neocortex, preischemic hyperglycemia enhances the accumulation of extracellular glutamate during ischemia, providing a tentative explanation for why neuronal damage is exaggerated.
Collapse
Affiliation(s)
- P A Li
- Saskatchewan Stroke Research Centre, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Javitt DC, Balla A, Sershen H, Lajtha A. A.E. Bennett Research Award. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 1999; 45:668-79. [PMID: 10187996 DOI: 10.1016/s0006-3223(98)00237-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Phencycline (PCP, "angel dust") and other noncompetitive antagonists of N-methyl-D-aspartate (NMDA)-type glutamatergic neurotransmission induce psychotic effects in humans that closely resemble positive, negative, and cognitive symptoms of schizophrenia. Behavioral effects of PCP in rodents are reversed by glycine (GLY) and other NMDA augmenting agents. In rodents, behavioral effects of PCP are mediated, in part, by secondary dysregulation of subcortical dopaminergic neurotransmission. This study evaluates effects of GLY and GLY transport antagonists on behavioral and neurochemical consequences of PCP administration in rodents. METHODS Two separate experiments were performed. In the first, effects of GLY on PCP-induced stimulation of dopaminergic neurotransmission in nucleus accumbens were evaluated using in vivo microdialysis in awake animals. In the second, effects of a series of GLY transport antagonists were evaluated for potency in inhibiting PCP-induced hyperactivity. RESULTS In microdialysis studies, GLY significantly inhibited PCP-induced stimulation of subcortical DA release in a dose-dependent fashion. In behavioral studies, the potency of a series of GLY transport antagonists for inhibiting PCP-induced hyperactivity in vivo correlated significantly with their potency in antagonizing GLY transport in vitro. CONCLUSIONS These findings suggest, first, that GLY reverses not only the behavioral, but also the neurochemical, effects of PCP in rodents. Second, the findings suggest that GLY transport antagonists may induce similar effects to GLY, and may therefore represent an appropriate site for targeted drug development.
Collapse
Affiliation(s)
- D C Javitt
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatry Research, Orangeburg, New York 10962, USA
| | | | | | | |
Collapse
|
37
|
Parsons CG, Danysz W, Hesselink M, Hartmann S, Lorenz B, Wollenburg C, Quack G. Modulation of NMDA receptors by glycine--introduction to some basic aspects and recent developments. Amino Acids 1999; 14:207-16. [PMID: 9871463 DOI: 10.1007/bf01345264] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycine is a co-agonist at NMDA receptors and it's presence is a prerequisite for channel activation by glutamate or NMDA. Physiological concentrations reduce one form of NMDA receptor-desensitization. Interactions between the glycineB site and other domains of the NMDA receptor are complex and include the glutamate, Mg2+ and polyamines sites. Glycine shows different affinities at various NMDA receptor subtypes probably via to allosteric interactions between NMDA2 subunits and the glycine recognition site on the NMDAR1 subunit. There is still some debate whether the glycineB site is saturated in vivo but it seems likely that this depends on regional differences in receptor subtype expression, local glycine or D-serine concentrations and the expression of specific glycine transporters. GlycineB antagonists and partial agonists have been reported to have good therapeutic indices as neuroprotective agents against focal ischaemia and trauma, anti-epileptics, anxiolytics, anti-psychotomimetics and in models of chronic pain. They clearly lack two potentially serious side effects classically associated with NMDA receptor blockade, namely neurodegenerative changes in the cingulate/retrosplenial cortex and psychotomimetic-like effects. This improved therapeutic profile may be partially due to the ability of full glycineB antagonists to reveal glycine-sensitive desensitization and possibly also via functional and/or regional NMDA receptor subtype selectivity.
Collapse
Affiliation(s)
- C G Parsons
- Department of Pharmacology, Merz + Co., Frankfurt am Main, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Saigoh K, Matsui K, Takahashi K, Nishikawa T, Wada K. The stereo-specific effect of D-serine ethylester and the D-cycloserine in ataxic mutant mice. Brain Res 1998; 808:42-7. [PMID: 9795125 DOI: 10.1016/s0006-8993(98)00810-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spinocerebellar ataxia is one of the most common neurological disorders. However, few therapeutics are effective for the treatment of this disorder. In the present study, we investigated the efficacy of d-serine ethylester and a related substance, d-cycloserine, as therapeutic agents for ataxia in a murine model. Both compounds are known to stereospecific modulate N-methyl-d-aspartate type glutamate receptors, and impaired glutamate-mediated signaling has been implicated in spinocerebellar ataxia. Using a microdialysis method, we found that intraperitoneal administration of d-serine ethylester increases the extracellular content of endogenous d-serine in the mouse cerebellum for at least 3 h. Maximum elevation of the extracellular d-serine was observed at 40 min after injection. An open-field study was used to assay the effect of the d-serine derivatives on movement and ataxia. In mice exhibiting cytosine arabinoside-induced ataxia, d-serine ethylester reduced the falling index in a dose-dependent manner. The effect of d-serine ethylester was stereo-specific in that l-serine ethylester had no effect on the falling index at the maximum doses tested, and was partially inhibited by 5,7-dichlorokynurenate, an antagonist that binds to the glycine-binding site. Locomotor activity was not changed by the d-serine ethylester treatment. d-cycloserine also significantly reduced the falling index of the mice. Both d-serine ethylester and d-cycloserine had longer lasting effects than other potential therapeutic reagents for ataxia. Growing evidence suggests the essential involvement of endogenous d-serine in mammalian brain function, and our results suggest that d-serine derivatives may represent an effective new therapeutic for the treatment of spinocerebellar ataxia.
Collapse
Affiliation(s)
- K Saigoh
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | | | | | | | | |
Collapse
|
39
|
Rodríguez-Contreras A, Calderón F, López-Colomé AM. Strychnine-insensitive [3H] glycine binding to synaptosomal membranes from the chick retina. Int J Dev Neurosci 1998; 16:413-21. [PMID: 9829177 DOI: 10.1016/s0736-5748(98)00041-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The pharmacology and kinetics of strychnine-insensitive [3H] glycine binding to synaptic membranes from the outer (P1) and the inner (P2) plexiform layers of chick retina was studied. Inhibition curves for glycine, D-serine, 1-amincyclopropanecarboxylic acid (ACPC) and strychnine were analyzed by non-linear regression. Hill slopes for glycine and D-serine were not different from unity, whereas those for ACPC were < 1 in both fractions, revealing heterogeneity of binding sites in these membranes. Non-linear regression analysis of time course and saturation experiments strengthen the idea that [3H] glycine binds to more than one class of sites, with similar affinities at equilibrium. Antagonists of strychnine-insensitive glycine receptors in the CNS did not inhibit [3H] glycine binding to these membranes, which demonstrates that NMDA receptors in the retina have different structural requirements for ligand interaction at these sites. pH affected the specific binding, in agreement with the participation of specific amino acid residues at glycine binding sites on NMDA receptors, and also with functional studies in which the modulation of affinity at this site by protons has been observed. These results support previous studies regarding CPP and MK-801 binding, and provide evidence which indicates that the pharmacophore for glycine and other NMDA-related ligands is distinct for the retina, compared to the CNS, mainly regarding the effects of glycine-site antagonists.
Collapse
Affiliation(s)
- A Rodríguez-Contreras
- Instituto de Fisiología Celular, Departamento de Neurociencias, Universidad Nacional Autonoma de México (UNAM)
| | | | | |
Collapse
|
40
|
Nilsson M, Carlsson A, Carlsson ML. Glycine and D-serine decrease MK-801-induced hyperactivity in mice. J Neural Transm (Vienna) 1998; 104:1195-205. [PMID: 9503265 DOI: 10.1007/bf01294720] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is well known that the un-competitive N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine can induce a syndrome in humans that mimics both positive and negative symptoms of schizophrenia. In the light of this observation, it has been hypothesised that schizophrenia might be due to a hypofunction of central glutamate systems. A glycine agonist, by strengthening glutamatergic transmission, has been suggested to be useful as treatment. A crucial issue is the uncertainty regarding the degree of saturation of the glycine site associated with the NMDA receptor. The purpose of this study was to investigate if it is possible to strengthen NMDA receptor-mediated neurotransmission by modulating the associated glycine site. The effects of systemic and intraventricular administration of glycine. D-serine and L-serine on the hyperactivity induced in mice by the uncompetitive NMDA receptor antagonist MK-801 were tested. Systemically administered glycine and D-serine were found to decrease MK-801-induced hyperactivity. Intraventricularly administered D-serine in doses of 50 or 100 micrograms/side was found to decrease MK-801-induced hyperactivity during the second half hour of registration; L-serine given in the same doses did not affect the MK-801-induced hyperactivity during this period. These data may suggest that the NMDA receptor-associated glycine site is not saturated in vivo.
Collapse
Affiliation(s)
- M Nilsson
- Department of Pharmacology, University of Göteborg, Sweden
| | | | | |
Collapse
|
41
|
Furuya Y, Kagaya T, Nishizawa Y, Ogura H. Differential effects of the strychnine-insensitive glycine site antagonist (+)-HA-966 on the hyperactivity and the disruption of prepulse inhibition induced by phencyclidine in rats. Brain Res 1998; 781:227-35. [PMID: 9507144 DOI: 10.1016/s0006-8993(97)01245-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The amplitude of the acoustic startle response is reduced by a preceding weak stimulation which by itself does not elicit the startle response. This phenomenon is named prepulse inhibition (PPI) and is thought to reflect the operation of the sensorimotor gating system, which is deficient in schizophrenic patients. It has been reported that an antagonist at the strychnine-insensitive glycine site has atypical neuroleptic properties in experimental animals. To evaluate the effect of an antagonist at the site on disrupted PPI, we examined whether (+)-HA-966 antagonizes phencyclidine-induced (3 mg/kg s.c.) and apomorphine-induced (1 mg/kg s.c.) disruption of PPI in rats. In addition, its effect on phencyclidine-induced hyperactivity was tested. The effects of (+)-HA-966 were compared with those of haloperidol, a typical neuroleptic. (+)-HA-966 antagonized phencyclidine-induced hyperactivity, but not phencyclidine-induced disruption of PPI, which is thought to be a model of refractory symptoms in schizophrenia. Furthermore, (+)-HA-966 did not improve the deficit in PPI induced by apomorphine. On the other hand, haloperidol antagonized phencyclidine-induced hyperactivity and the disruption of PPI by apomorphine, but not by phencyclidine. The results of this study might mean that (+)-HA-966 antagonizes the behavioral change induced by excessive dopamine release (the increment of locomotor activity due to phencyclidine), but not the effect induced by a direct dopamine agonist or the dopamine-independent effect of phencyclidine (the disruption of PPI). Thus, as regards antagonism of phencyclidine-induced disruption of PPI, (+)-HA-966 does not appear to have an atypical neuroleptic-like effect.
Collapse
Affiliation(s)
- Y Furuya
- Eisai Tsukuba Research Laboratories, 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-26, Japan.
| | | | | | | |
Collapse
|
42
|
Matsumoto RR, Brackett RL, Kanthasamy AG. Novel NMDA/glycine site antagonists attenuate cocaine-induced behavioral toxicity. Eur J Pharmacol 1997; 338:233-42. [PMID: 9424017 DOI: 10.1016/s0014-2999(97)81926-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-Methyl-D-aspartate (NMDA)/glycine site antagonists were tested for their ability to prevent cocaine-induced convulsions and lethality in Swiss Webster mice. Pre-treatment of mice with the novel NMDA/glycine site antagonists ACEA-1021 (5-nitro-6,7-dichloro-1,4-dihydro-2,3-quinoxalinedione) or ACEA-1328 (5-nitro-6,7-dimethyl-1,4-dihydro-2,3-quinoxalinedione) attenuated cocaine-induced convulsions; these effects were pharmacologically antagonized with D-cycloserine. The structurally-related NMDA/glycine site antagonist DCQX (6,7-dichloroquinoxaline-2,3-dione) and the structurally-unrelated NMDA/glycine site partial agonist HA-966 (3-amino-1-hydroxy-2-pyrrolidinone) also attenuated cocaine-induced convulsions, with the R(+)-isomer of HA-966 being more effective than the S(-)-isomer. In contrast, the selective alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptor antagonist, NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide) , failed to provide statistically significant protection although it shares the 2,3-quinoxalinedione structure of DCQX and the ACEA compounds. Pre-treatment with ACEA-1021, ACEA-1328, DCQX, or R(+)-HA-966 also attenuated cocaine-induced lethality in mice. Significantly, post-treatment with ACEA-1021, immediately prior to or after the onset of seizures, prevented death in up to 86% of mice receiving a lethal dose of cocaine; post-treatment with vehicle resulted in death of all mice. The results suggest the utility of targeting excitatory mechanisms for the treatment of cocaine overdose and offer a novel base structure from which effective pharmacotherapies can be developed.
Collapse
Affiliation(s)
- R R Matsumoto
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA
| | | | | |
Collapse
|
43
|
Jarvis CR, Xiong ZG, Plant JR, Churchill D, Lu WY, MacVicar BA, MacDonald JF. Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons. J Neurophysiol 1997; 78:2363-71. [PMID: 9356388 DOI: 10.1152/jn.1997.78.5.2363] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons. J. Neurophysiol. 78: 2363-2371, 1997. Patch-clamp and calcium imaging techniques were used to assess the acute effects of the neurotrophins, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF), on the responses of cultured and acutely isolated hippocampal and cultured striatal neurons to the glutamate receptor agonist N-methyl--aspartic acid (NMDA). The effects of BDNF on NMDA-activated currents were examined in greater detail. Currents evoked by NMDA, and the accompanying changes in intracellular calcium, were enhanced by low concentrations of the neurotrophins (1-20 ng/ml). The potentiation by the neurotrophins was rapid in onset and offset (<1 s). The neurotrophins also reduced desensitization of these currents in most cells. The enhancement of NMDA-activated currents by BDNF was observed using both perforated and whole cell patch recording techniques and could be demonstrated in outside-out patches. Furthermore, its effects were not attenuated by pretreatment with the protein kinase inhibitors genistein or 1-(5-isoquinolynesulfony)2-methylpiperazine (H7). Therefore, the actions of BDNF do not appear to be mediated by phosphorylation. Similar enhancements were observed with NT-3 and NT-4 and with NGF despite the fact that hippocampal neurons lack TrkA receptors. All together this evidence suggests that the enhancement of NMDA-evoked currents is unlikely to be mediated through the activation of growth factor receptors. Modulation of NMDA responses by BDNF was dependent on the concentration of extracellular glycine. The most pronounced potentiation by BDNF was observed at low concentrations, whereas no potentiation was observed in saturating concentrations of glycine, suggesting that BDNF may have increased the affinity of the NMDA receptor for glycine. However, the competitive glycine-site antagonist 7-chloro-kynurenic acid blocked the enhancement by BDNF without shifting the dose-inhibition relationship for this antagonist, and Mg2+ consistently depressed the potentiation of NMDA-evoked currents by BDNF, indicating that BDNF does not alter glycine affinity. BDNF also reversibly increased the probability of opening of NMDA channels recorded from outside-out patches taken from cultured hippocampal neurons. Other unrelated peptides including dynorphin and somatostatin also caused a glycine-dependent enhancement of NMDA currents and depressed the currents in saturating concentrations of glycine. In contrast, a shortened analogue dynorphin (6-17), which lacks N-terminus glycine residues, and another peptide met-enkephalin were without effects on NMDA currents recorded in low concentrations of glycine. Our results suggest that neurotrophins and other peptides can serve as glycine-like ligands for the NMDA receptor.
Collapse
Affiliation(s)
- C R Jarvis
- NeuroScience Research Group, Faculty of Medicine, University of Calgary, Alberta T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Phosphoserine phosphatase (EC 3.1.1.3) catalyzes the final step in the major pathway of L-serine biosynthesis in brain. This enzyme may also regulate the levels of glycine and D-serine, the known and putative co-agonists for the glycine site of the N-methyl-D-aspartate receptor in caudal and rostral brain regions, respectively. Using L-phosphoserine as substrate, the rank order potency for inhibition of phosphoserine phosphatase was p-chloromercuriphenylsulfonic acid (CMPSA) > glycerophosphorylcholine >> hexadecylphosphocholine > or = phosphorylcholine > N-ethylmaleimide > or = L-serine > fluoride > D-2-amino-3-phosphonopropionic acid (D-AP3). Glycerylphosphorylcholine (IC50 18 microM) was found to be an uncompetitive inhibitor of phosphoserine phosphatase. Glycerylphosphorylcholine probably binds a novel site on the enzyme since the known allosteric inhibitor L-serine is highly selective for its feedback regulatory site, indicated by the inactivity of 25 L-serine analogs. Fluoride ion (IC50 770 microM) may bind the active site as has been shown for other Mg2+-dependent enzymes. The sulfhydryl reagent CMPSA is a potent, noncompetitive inhibitor of the enzyme using L-phosphoserine as substrate (IC50 9 microM) but is > 300-fold less potent using D-phosphoserine as substrate. Substrate-dependent differences are also observed with the sulfhydryl alkylator N-ethylmaleimide, which inhibits L-phosphoserine, but stimulates D-phosphoserine hydrolysis. These sulfhydryl reagents may dissociate multimeric forms of the enzyme to form monomers; the multimeric forms and monomers may preferentially cleave L- and D-phosphoserine, respectively. Phosphorylcholine esters and sulfhydryl reagents may prove useful in determining the contribution of phosphoserine phosphatase to the biosynthesis of glycine and D-serine in neuronal tissue in vitro.
Collapse
|
45
|
Kappor R, Kapoor V. Distribution of D-amino acid oxidase (DAO) activity in the medulla and thoracic spinal cord of the rat: implications for a role for D-serine in autonomic function. Brain Res 1997; 771:351-5. [PMID: 9401756 DOI: 10.1016/s0006-8993(97)00886-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The activity and regional distribution of D-amino acid oxidase (DAO), an enzyme that inactivates D-serine, were examined in the medulla and spinal cord of the rat by biochemical and histochemical procedures. DAO activity was noticeably low or absent in the nucleus of the solitary tract, ventrolateral medulla and intramediolateral cell column of the spinal cord. This may be indicative of a neuromodulatory role for endogenous D-serine (at the NMDA-glycine site) in in the central control of blood pressure.
Collapse
Affiliation(s)
- R Kappor
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
46
|
Furuya Y, Ogura H. Competitive NMDA and strychnine-insensitive glycine-site antagonists disrupt prepulse inhibition. Pharmacol Biochem Behav 1997; 57:909-13. [PMID: 9259023 DOI: 10.1016/s0091-3057(96)00452-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prepulse inhibition (PPI) is thought to reflect the operation of a sensorimotor gating system in the brain. Sensorimotor gating abnormalities have been identified in schizophrenic patients, and various neural systems are involved in this function. To study the modulation of the sensorimotor gating system by the N-methyl-D-aspartate (NMDA) receptor channel complex, the effects of noncompetitive and competitive NMDA antagonists on PPI were examined in rats. PPI was not disrupted by CGS 19755, a competitive NMDA antagonist, at 30 min after subcutaneous (s.c.) administration. However, CGS 19755 (40 mg/kg s.c.) decreased PPI at 120 min after administration with a marked decrease of startle amplitude. Late onset of the effect of CGS 19755 was also observed in the increase of spontaneous locomotor activity (SLA). On the other hand, phencyclidine, a noncompetitive NMDA antagonist, disrupted PPI at 30 min after administration and increased SLA from 20 min after administration. PPI was also disrupted by bilateral intracerebroventricular administration of 5,7-dichlorokyn urenate (10 and 20 micrograms/side X 2), an antagonist at the strychnine-insensitive glycine receptor, which is an allosteric binding site in the NMDA receptor-channel complex. It is concluded that the NMDA receptor-channel complex plays an important role in regulation of PPI.
Collapse
Affiliation(s)
- Y Furuya
- Eisai Tsukuba Research Laboratories, Ibaraki, Japan
| | | |
Collapse
|
47
|
Kotlinska J, Liljequist S. The NMDA/glycine receptor antagonist, L-701,324, produces discriminative stimuli similar to those of ethanol. Eur J Pharmacol 1997; 332:1-8. [PMID: 9298919 DOI: 10.1016/s0014-2999(97)01069-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ethanol-like discriminative stimulus properties of a novel NMDA glycine receptor antagonist, L-701,324 ((7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2-(1H)-quinolone), a polyamine receptor antagonist, eliprodil, and a non-competitive NMDA receptor antagonist, MK-801 (dizocilpine), were examined in rats trained to discriminate ethanol from vehicle in a two-lever discrimination procedure. In rats trained to discriminate ethanol from vehicle, L-701,324 and MK-801 substituted for ethanol in a dose-dependent fashion with a complete substitution noted following administration of 7.5 mg/kg L-701,324 and 0.2 mg/kg MK-801, respectively. Full substitution for ethanol was achieved with no alteration in the rate of responding. In contrast, administration of eliprodil (in doses up to 5 mg/kg) showed only a partial, but not dose-dependent, substitution for ethanol. These findings indicate that a reduction of NMDA receptor activity, produced either via a blockade of non-competitive NMDA recognition sites or of NMDA/glycine-sensitive regulatory sites, had discriminative stimulus properties that are similar to those produced by ethanol. Furthermore, the observation that the NMDA/glycine receptor antagonist, L-701,324, was a more effective substitute for ethanol than was the polyamine antagonist, eliprodil, suggests that several NMDA receptor subunits, and thus not only NMDAR2B receptor subunits, are of importance for the discriminative stimulus effects of ethanol.
Collapse
Affiliation(s)
- J Kotlinska
- Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | | |
Collapse
|
48
|
Abstract
It has long been assumed that L-forms of amino acids exclusively constitute free amino acid pools in mammals. However, a variety of studies in the last decade has demonstrated that free D-aspartate and D-serine occur in mammals and may have important physiological function in mammals. Free D-serine is confined predominantly to the forebrain structure, and the distribution and development of D-serine correspond well with those of the N-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. As D-serine acts as a potent and selective agonist for the strychnine-insensitive glycine site of the NMDA receptor, it is proposed that D-serine is a potential candidate for an NMDA receptor-related glycine site agonist in mammalian brain. In contrast, widespread and transient emergence of a high concentration of free D-aspartate is observed in the brain and periphery. Since the periods of maximal emergence of D-aspartate in the brain and periphery occur during critical periods of morphological and functional maturation of the organs, D-aspartate could participate in the regulation of these regulation of these developmental processes of the organs. This review deals with the recent advances in the studies of presence of free D-aspartate and D-serine and their metabolic systems in mammals. Since D-aspartate and D-serine have been shown to potentiate NMDA receptor-mediated transmission through the glutamate binding site and the strychnine-insensitive glycine binding site, respectively, and have been utilized extensively as potent and selective tools to study the excitatory amino acid system in the brain, we shall discuss also the NMDA receptor and uptake system of D-amino acids.
Collapse
Affiliation(s)
- A Hashimoto
- Department of Pharmacology, Takai University School of Medicine, Kanagawa, Japan.
| | | |
Collapse
|
49
|
Abstract
Septal cholinergic neurons are known to play an important role in cognitive processes including learning and memory through afferent innervation of the hippocampal formation and cerebral cortex. The septum contains not only cholinergic neurons but also various types of neurons including GABA (gamma-aminobutyric acid)-ergic neurons. Although synaptic transmission in the septum is mediated primarily by the activation of excitatory and inhibitory amino-acid receptors, it is possible that a distinct phenotype of neuron is endowed with a different type for each of the amino-acid receptors and thus they play different roles from each other, since it has been demonstrated within the septum that there is a regional distribution of various types of amino-acid receptor subunits, their expression as different combinations within a specific cell may produce receptor channels with disparate functional properties. As a first step towards knowing the various functions of septal cholinergic neurons, we characterized the functional properties of glutamate, GABA (type A; GABAA) and glycine receptor channels on cultured rat septal neurons which were histologically identified to be cholinergic. These were similar to those of receptor channels on other types of neurons, except for the actions of some neuromodulators. The septal N-methyl-D-aspartate receptor channel was distinct in being less sensitive to Mg2+ and in a voltage-dependent action of Zn2+. The septal GABAA receptor channel exhibited a lanthanide site whose activation resulted in a positive allosteric interaction with a binding site of pentobarbital. The septal glycine receptor channel was only positively modulated by Zn2+; this action of Zn2+ was not accompanied by an inhibitory effect. Our data suggest that the amino-acid receptors on septal cholinergic neurons may play a distinct role compared to other types of neurons; this difference depends on the actions of neuromodulators and metal cations. It would be interesting to compare these effects recorded in tissue culture to those observed with septal cholinergic neurons in slice preparations.
Collapse
Affiliation(s)
- E Kumamoto
- Department of Physiology, Saga Medical School, Japan
| |
Collapse
|
50
|
Vibert N, De Waele C, Serafin M, Babalian A, Mühlethaler M, Vidal PP. The vestibular system as a model of sensorimotor transformations. A combined in vivo and in vitro approach to study the cellular mechanisms of gaze and posture stabilization in mammals. Prog Neurobiol 1997; 51:243-86. [PMID: 9089790 DOI: 10.1016/s0301-0082(96)00057-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the cellular mechanisms underlying behaviours in mammals, the respective contributions of the individual properties characterizing each neuron, as opposed to the properties emerging from the organization of these neurons in functional networks, have to be evaluated. This requires the use, in the same species, of various in vivo and in vitro experimental preparations. The present review is meant to illustrate how such a combined in vivo in vitro approach can be used to investigate the vestibular-related neuronal networks involved in gaze and posture stabilization, together with their plasticity, in the adult guinea-pig. Following first a general introduction on the vestibular system, the second section describes various in vivo experiments aimed at characterizing gaze and posture stabilization in that species. The third and fourth parts of the review deal with the combined in vivo-in vitro investigations undertaken to unravel the physiological and pharmacological properties of vestibulo-ocular and vestibulo-spinal networks, together with their functional implications. In particular, we have tried to use the central vestibular neurons as examples to illustrate how the preparation of isolated whole brain can be used to bridge the gap between the results obtained through in vitro, intracellular recordings on slices and those collected in vivo, in the behaving animal.
Collapse
Affiliation(s)
- N Vibert
- Laboratoire de Physiologie de la Perception et de l' Action, CNRS-College de France, UMR C-9950, Paris, France
| | | | | | | | | | | |
Collapse
|