1
|
Judice SA, Sussman HE, Walker DM, O'Neill JP, Albertini RJ, Walker VE. Clonality, trafficking, and molecular alterations among Hprt mutant T lymphocytes isolated from control mice versus mice treated with N-ethyl-N-nitrosourea. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:432-457. [PMID: 37957787 PMCID: PMC10842105 DOI: 10.1002/em.22579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Mutations in T lymphocytes (T-cells) are informative quantitative markers for environmental mutagen exposures, but risk extrapolations from rodent models to humans also require an understanding of how T-cell development and proliferation kinetics impact mutagenic outcomes. Rodent studies have shown that patterns in chemical-induced mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene of T-cells differ between lymphoid organs. The current work was performed to obtain knowledge of the relationships between maturation events during T-cell development and changes in chemical-induced mutant frequencies over time in differing immune compartments of a mouse model. A novel reverse transcriptase-polymerase chain reaction based method was developed to determine the specific T-cell receptor beta (Tcrb) gene mRNA expressed in mouse T-cell isolates, enabling sequence analysis of the PCR product that then identifies the specific hypervariable CDR3 junctional region of the expressed Tcrb gene for individual isolates. Characterization of spontaneous Hprt mutant isolates from the thymus, spleen, and lymph nodes of control mice for their Tcrb gene expression found evidence of in vivo clonal amplifications of Hprt mutants and their trafficking between tissues in the same animal. Concurrent analyses of Hprt mutations and Tcrb gene rearrangements in different lymphoid tissues of control versus N-ethyl-N-nitrosourea-exposed mice permitted elucidation of the localization and timing of mutational events in T-cells, establishing that mutagenesis occurs primarily in the pre-rearrangement replicative period in pre-thymic/thymic populations. These findings demonstrate that chemical-induced mutagenic burden is determined by the combination of mutagenesis and T-cell clonal expansion, processes with roles in immune function and in the pathogenesis of autoimmune disease and cancer.
Collapse
Affiliation(s)
- Stephen A Judice
- Genetic Toxicology Laboratory, University of Vermont, Burlington, Vermont, USA
- EnviroLogix, Portland, Maine, USA
| | - Hillary E Sussman
- School of Public Health, University at Albany - SUNY, Albany, New York, USA
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA
| | - Dale M Walker
- Experimental Pathology Laboratories, Sterling, Virginia, USA
- The Burlington HC Research group, Inc., Jericho, Vermont, USA
| | - J Patrick O'Neill
- Genetic Toxicology Laboratory, University of Vermont, Burlington, Vermont, USA
| | - Richard J Albertini
- Genetic Toxicology Laboratory, University of Vermont, Burlington, Vermont, USA
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Vernon E Walker
- New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
2
|
Rozhok A, DeGregori J. Somatic maintenance impacts the evolution of mutation rate. BMC Evol Biol 2019; 19:172. [PMID: 31443631 PMCID: PMC6708161 DOI: 10.1186/s12862-019-1496-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background The evolution of multi-cellular animals has produced a conspicuous trend toward increased body size. This trend has introduced at least two novel problems: an expected elevated risk of somatic disorders, such as cancer, and declining evolvability due to generally reduced population size, lower reproduction rate and extended generation time. Low population size is widely recognized to explain the high mutation rates in animals by limiting the presumed universally negative selection acting on mutation rates. Results Here, we present evidence from stochastic modeling that the direction and strength of selection acting on mutation rates is highly dependent on the evolution of somatic maintenance, and thus longevity, which modulates the cost of somatic mutations. Conclusions We argue that the impact of the evolution of longevity on mutation rates may have been critical in facilitating animal evolution. Electronic supplementary material The online version of this article (10.1186/s12862-019-1496-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrii Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA. .,Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO, 80045, USA. .,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA. .,Department of Medicine, Section of Hematology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Rozhok A, DeGregori J. A generalized theory of age-dependent carcinogenesis. eLife 2019; 8:39950. [PMID: 31034356 PMCID: PMC6488293 DOI: 10.7554/elife.39950] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
The Multi-Stage Model of Carcinogenesis (MMC), developed in the 1950 s-70s, postulated carcinogenesis as a Darwinian somatic selection process. The cellular organization of tissues was then poorly understood, with almost nothing known about cancer drivers and stem cells. The MMC paradigm was later confirmed, and cancer incidence was explained as a function of mutation occurrence. However, the MMC has never been tested for its ability to account for the discrepancies in the number of driver mutations and the organization of the stem cell compartments underlying different cancers that still demonstrate nearly universal age-dependent incidence patterns. Here we demonstrate by Monte Carlo modeling the impact of key somatic evolutionary parameters on the MMC performance, revealing that two additional major mechanisms, aging-dependent somatic selection and life history-dependent evolution of species-specific tumor suppressor mechanisms, need to be incorporated into the MMC to make it capable of generalizing cancer incidence across tissues and species. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Andrii Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, United States.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States.,Department of Medicine, Section of Hematology, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
4
|
Abstract
DNA mutations are inevitable. Despite proficient DNA repair mechanisms, somatic cells accumulate mutations during development and aging, generating cells with different genotypes within the same individual, a phenomenon known as somatic mosaicism. While the existence of somatic mosaicism has long been recognized, in the last five years, advances in sequencing have provided unprecedented resolution to characterize the extent and nature of somatic genetic variation. Collectively, these new studies are revealing a previously uncharacterized aging phenotype: the accumulation of clones with cancer driver mutations. Here, we summarize the most recent findings, which converge in the novel notion that cancer-associated mutations are prevalent in normal tissue and accumulate with aging.
Collapse
Affiliation(s)
- Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Scott R. Kennedy
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
DeGregori J. Connecting Cancer to Its Causes Requires Incorporation of Effects on Tissue Microenvironments. Cancer Res 2017; 77:6065-6068. [PMID: 28754675 DOI: 10.1158/0008-5472.can-17-1207] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/29/2017] [Accepted: 07/13/2017] [Indexed: 11/16/2022]
Abstract
In a recent article in Science, Tomasetti and colleagues present an expanded model for cancer risk, which they claim demonstrates the relative contribution of mutations caused by replication errors, environment, and heredity. The foundation of this model is the theory that the overwhelming driver of cancer risk is mutations. This perspective will present experimental evidence and evolutionary theory to challenge the basis of this underlying theory. An argument will be presented that the mutation-centric model of cancer suggests unrealistic solutions to cancer and distracts the research community from more promising approaches that consider tissue context. Cancer Res; 77(22); 6065-8. ©2017 AACR.
Collapse
Affiliation(s)
- James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
6
|
Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, Huch M, Boymans S, Kuijk E, Prins P, Nijman IJ, Martincorena I, Mokry M, Wiegerinck CL, Middendorp S, Sato T, Schwank G, Nieuwenhuis EES, Verstegen MMA, van der Laan LJW, de Jonge J, IJzermans JNM, Vries RG, van de Wetering M, Stratton MR, Clevers H, Cuppen E, van Boxtel R. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016; 538:260-264. [PMID: 27698416 PMCID: PMC5536223 DOI: 10.1038/nature19768] [Citation(s) in RCA: 644] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.
Collapse
Affiliation(s)
- Francis Blokzijl
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Myrthe Jager
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Valentina Sasselli
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Sophie Roerink
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Nobuo Sasaki
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Meritxell Huch
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Ewart Kuijk
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Pjotr Prins
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Isaac J Nijman
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Michal Mokry
- Department of Pediatrics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Caroline L Wiegerinck
- Department of Pediatrics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Sabine Middendorp
- Department of Pediatrics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Toshiro Sato
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Gerald Schwank
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Department of Pediatrics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | - Robert G Vries
- Foundation Hubrecht Organoid Technology (HUB), Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Marc van de Wetering
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Ruben van Boxtel
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| |
Collapse
|
7
|
Toward an evolutionary model of cancer: Considering the mechanisms that govern the fate of somatic mutations. Proc Natl Acad Sci U S A 2015. [PMID: 26195756 DOI: 10.1073/pnas.1501713112] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Our understanding of cancer has greatly advanced since Nordling [Nordling CO (1953) Br J Cancer 7(1):68-72] and Armitage and Doll [Armitage P, Doll R (1954) Br J Cancer 8(1):1-12] put forth the multistage model of carcinogenesis. However, a number of observations remain poorly understood from the standpoint of this paradigm in its contemporary state. These observations include the similar age-dependent exponential rise in incidence of cancers originating from stem/progenitor pools differing drastically in size, age-dependent cell division profiles, and compartmentalization. This common incidence pattern is characteristic of cancers requiring different numbers of oncogenic mutations, and it scales to very divergent life spans of mammalian species. Also, bigger mammals with larger underlying stem cell pools are not proportionally more prone to cancer, an observation known as Peto's paradox. Here, we present a number of factors beyond the occurrence of oncogenic mutations that are unaccounted for in the current model of cancer development but should have significant impacts on cancer incidence. Furthermore, we propose a revision of the current understanding for how oncogenic and other functional somatic mutations affect cellular fitness. We present evidence, substantiated by evolutionary theory, demonstrating that fitness is a dynamic environment-dependent property of a phenotype and that oncogenic mutations should have vastly different fitness effects on somatic cells dependent on the tissue microenvironment in an age-dependent manner. Combined, this evidence provides a firm basis for understanding the age-dependent incidence of cancers as driven by age-altered systemic processes regulated above the cell level.
Collapse
|
8
|
Albertini RJ, Vacek PM, Carter EW, Nicklas JA, Squibb KS, Gucer PW, Engelhardt SM, McDiarmid MA. Mutagenicity monitoring following battlefield exposures: Longitudinal study of HPRT mutations in Gulf War I veterans exposed to depleted uranium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:581-593. [PMID: 25914368 DOI: 10.1002/em.21955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
A total of 70 military Veterans have been monitored for HPRT T-cell mutations in five separate studies at 2-year intervals over an 8-year period. Systemic depleted uranium (DU) levels were measured at the time of each study by determining urinary uranium (uU) excretion. Each HPRT study included 30-40 Veterans, several with retained DU-containing shrapnel. Forty-nine Veterans were evaluated in multiple studies, including 14 who were in all five studies. This permitted a characterization of the HPRT mutation assay over time to assess the effects of age, smoking and non-selected cloning efficiencies, as well as the inter- and intra-individual variability across time points. Molecular analyses identified the HPRT mutation and T-cell receptor (TCR) gene rearrangement in 1,377 mutant isolates. An unexpected finding was that in vivo clones of HPRT mutant T-cells were present in some Veterans, and could persist over several years of the study. The calculated HPRT mutant frequencies (MFs) were repeatedly elevated in replicate studies in three outlier Veterans with elevated urinary uranium excretion levels. However, these three outlier Veterans also harbored large and persistent in vivo HPRT mutant T-cell clones, each of which was represented by a single founder mutation. Correction for in vivo clonality allowed calculation of HPRT T-cell mutation frequencies (MutFs). Despite earlier reports of DU associated increases in HPRT MFs in some Veterans, the results presented here demonstrate that HPRT mutations are not increased by systemic DU exposure. Additional battlefield exposures were also evaluated for associations with HPRT mutations and none were found.
Collapse
Affiliation(s)
- Richard J Albertini
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vermont
| | - Elizabeth W Carter
- Center for Clinical and Translational Science-Biomedical Informatics Unit, University of Vermont, Burlington, Vermont
| | - Janice A Nicklas
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont
| | - Katherine S Squibb
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Patricia W Gucer
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Melissa A McDiarmid
- Occupational Health Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Rozhok AI, Salstrom JL, DeGregori J. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Aging (Albany NY) 2015; 6:1033-48. [PMID: 25564763 PMCID: PMC4298364 DOI: 10.18632/aging.100707] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer L Salstrom
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Medicine, Section of Hematology, University of Colorado School of Medicine, Aurora, CO 80045,USA
| |
Collapse
|
10
|
Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev 2012; 133:118-26. [PMID: 22079405 PMCID: PMC3325357 DOI: 10.1016/j.mad.2011.10.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/05/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
The somatic mutation theory of aging posits that the accumulation of mutations in the genetic material of somatic cells as a function of time results in a decrease in cellular function. In particular, the accumulation of random mutations may inactivate genes that are important for the functioning of the somatic cells of various organ systems of the adult, result in a decrease in organ function. When the organ function decreases below a critical level, death occurs. A significant amount of research has shown that somatic mutations play an important role in aging and a number of age related pathologies. In this review, we explore evidence for increases in somatic nuclear mutation burden with age and the consequences for aging, cancer, and neurodegeneration. We then review evidence for increases in mitochondrial mutation burden and the consequences for dysfunction in the disease processes.
Collapse
Affiliation(s)
- Scott R. Kennedy
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Alan J. Herr
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| |
Collapse
|
11
|
Nguyen T, Vacek PM, O'Neill P, Colletti RB, Finette BA. Mutagenicity and potential carcinogenicity of thiopurine treatment in patients with inflammatory bowel disease. Cancer Res 2009; 69:7004-12. [PMID: 19706768 DOI: 10.1158/0008-5472.can-09-0451] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thiopurines azathioprine and 6-mercaptopurine (6-MP) are effective immune modulators and cytotoxic agents extensively used in the treatment of autoimmune diseases, graft rejection, and cancer. There is compelling epidemiologic evidence that thiopurine treatment increases the risk for a variety of tumors by mechanisms that are unclear. We investigated the in vivo mutagenicity of long-term thiopurine treatment by determining the frequency and spectra of somatic mutation events at the hypoxanthine phosphoribosyltransferase (HPRT) locus in peripheral T lymphocytes as well as the prevalence of mutant clonal proliferation in a cross-sectional analysis of data from 119 children and adults with inflammatory bowel disease (IBD). ANOVA and regression were performed to assess relationships among the frequency and spectra of HPRT mutations with disease, duration of illness, duration of treatment, and total therapeutic dose of azathioprine and 6-MP. We observed a significant increase in the frequency of somatic mutations in 56 subjects treated with thiopurines for IBD compared with 63 subjects not treated with thiopurines. This increase was related to both total dose (P < 0.001) and duration of treatment (P < 0.001). Comparative mutation spectra analysis of 1,020 mutant isolates revealed a significant increase in the proportion of all transitions (P < 0.001), particularly G:C to A:T transitions (P < 0.001). Combined analyses of two signatures for mutant clonality, HPRT mutation, and T-cell receptor beta CDR3 region unique gene sequence also showed a significant thiopurine-dependent increase in mutant cell clonal proliferation (P < 0.001). These findings provide in vivo evidence for mutation induction as a potential carcinogenic mechanism associated with chronic thiopurine intervention.
Collapse
Affiliation(s)
- Truc Nguyen
- Department of Pediatrics, University of Vermont, Burlington, Vermont 05445-0068, USA
| | | | | | | | | |
Collapse
|
12
|
Soerensen M, Gredilla R, Müller-Ohldach M, Werner A, Bohr VA, Osiewacz HD, Stevnsner T. A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina: decrease in mitochondrial DNA repair activity during ageing. Mech Ageing Dev 2009; 130:487-96. [PMID: 19486911 DOI: 10.1016/j.mad.2009.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/21/2009] [Indexed: 12/21/2022]
Abstract
The free radical theory of ageing states that ROS play a key role in age-related decrease in mitochondrial function via the damage of mitochondrial DNA (mtDNA), proteins and lipids. In the sexually reproducing ascomycete Podospora anserina ageing is, as in other eukaryotes, associated with mtDNA instability and mitochondrial dysfunction. Part of the mtDNA instabilities may arise due to accumulation of ROS induced mtDNA lesions, which, as previously suggested for mammals, may be caused by an age-related decrease in base excision repair (BER). Alignments of known BER protein sequences with the P. anserina genome revealed high homology. We report for the first time the presence of BER activities in P. anserina mitochondrial extracts. DNA glycosylase activities decrease with age, suggesting that the increased mtDNA instability with age may be caused by decreased ability to repair mtDNA damage and hence contribute to ageing and lifespan control in this ageing model. Additionally, we find low DNA glycosylase activities in the long-lived mutants grisea and DeltaPaCox17::ble, which are characterized by low mitochondrial ROS generation. Overall, our data identify a potential role of mtDNA repair in controlling ageing and life span in P. anserina, a mechanism possibly regulated in response to ROS levels.
Collapse
Affiliation(s)
- Mette Soerensen
- Danish Centre for Molecular Gerontology and Danish Aging Research Center, Aarhus University, Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
McDiarmid MA, Engelhardt SM, Dorsey CD, Oliver M, Gucer P, Wilson PD, Kane R, Cernich A, Kaup B, Anderson L, Hoover D, Brown L, Albertini R, Gudi R, Squibb KS. Surveillance results of depleted uranium-exposed Gulf War I veterans: sixteen years of follow-up. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:14-29. [PMID: 18979351 DOI: 10.1080/15287390802445400] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As part of a longitudinal surveillance program, 35 members of a larger cohort of 77 Gulf War I veterans who were victims of depleted uranium (DU) "friendly fire" during combat underwent a 3-day clinical assessment at the Baltimore Veterans Administration Medical Center (VAMC). The assessment included a detailed medical history, exposure history, physical examination, and laboratory studies. Spot and 24-h urine collections were obtained for renal function parameters and for urine uranium (U) measures. Blood U measures were also performed. Urine U excretion was significantly associated with DU retained shrapnel burden (8.821 mug U/g creatinine [creat.] vs. 0.005 mug U/g creat., p = .04). Blood as a U sampling matrix revealed satisfactory results for measures of total U with a high correlation with urine U results (r = .84) when urine U concentrations were >/=0.1 mug/g creatinine. However, isotopic results in blood detected DU in only half of the subcohort who had isotopic signatures for DU detectable in urine. After stratifying the cohort based on urine U concentration, the high-U group showed a trend toward higher concentrations of urine beta(2) microglobulin compared to the low-U group (81.7 v. 69.0 mug/g creat.; p = .11 respectively) and retinol binding protein (48.1 vs. 31.0 mug/g creat.; p = .07 respectively). Bone metabolism parameters showed only subtle differences between groups. Sixteen years after first exposure, this cohort continues to excrete elevated concentrations of urine U as a function of DU shrapnel burden. Although subtle trends emerge in renal proximal tubular function and bone formation, the cohort exhibits few clinically significant U-related health effects.
Collapse
Affiliation(s)
- M A McDiarmid
- Department of Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sudo H, Li-Sucholeiki XC, Marcelino LA, Gruhl AN, Herrero-Jimenez P, Zarbl H, Willey JC, Furth EE, Morgenthaler S, Coller HA, Ekstrom PO, Kurzweil R, Gostjeva EV, Thilly WG. Fetal-juvenile origins of point mutations in the adult human tracheal-bronchial epithelium: absence of detectable effects of age, gender or smoking status. Mutat Res 2008; 646:25-40. [PMID: 18824180 DOI: 10.1016/j.mrfmmm.2008.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 08/21/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022]
Abstract
Allele-specific mismatch amplification mutation assays (MAMA) of anatomically distinct sectors of the upper bronchial tracts of nine nonsmokers revealed many numerically dispersed clusters of the point mutations C742T, G746T, G747T of the TP53 gene, G35T of the KRAS gene and G508A of the HPRT1 gene. Assays of these five mutations in six smokers have yielded quantitatively similar results. One hundred and eighty four micro-anatomical sectors of 0.5-6x10(6) tracheal-bronchial epithelial cells represented en toto the equivalent of approximately 1.7 human smokers' bronchial trees to the fifth bifurcation. Statistically significant mutant copy numbers above the 95% upper confidence limits of historical background controls were found in 198 of 425 sector assays. No significant differences (P=0.1) for negative sector fractions, mutant fractions, distributions of mutant cluster size or anatomical positions were observed for smoking status, gender or age (38-76 year). Based on the modal cluster size of mitochondrial point mutants, the size of the adult bronchial epithelial maintenance turnover unit was estimated to be about 32 cells. When data from all 15 lungs were combined the log2 of nuclear mutant cluster size plotted against log2 of the number of clusters of a given cluster size displayed a slope of approximately 1.1 over a range of cluster sizes from approximately 2(6) to 2(15) mutant copies. A parsimonious interpretation of these nuclear and previously reported data for lung epithelial mitochondrial point mutant clusters is that they arose from mutations in stem cells at a high but constant rate per stem cell doubling during at least ten stem cell doublings of the later fetal-juvenile period. The upper and lower decile range of summed point mutant fractions among lungs was about 7.5-fold, suggesting an important source of stratification in the population with regard to risk of tumor initiation.
Collapse
Affiliation(s)
- Hiroko Sudo
- Massachusetts Institute of Technology, Department of Biological Engineering, 21 Ames St., 16-743 Cambridge, MA 02139, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grant SG, Das R, Cerceo CM, Rubinstein WS, Latimer JJ. Elevated levels of somatic mutation in a manifesting BRCA1 mutation carrier. Pathol Oncol Res 2007; 13:276-83. [PMID: 18158561 DOI: 10.1007/bf02940305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 09/21/2007] [Indexed: 01/23/2023]
Abstract
Homozygous loss of activity at the breast cancerpredisposing genes BRCA1 and BRCA2 (FANCD1) confers increased susceptibility to DNA double strand breaks, but this genotype occurs only in the tumor itself, following loss of heterozygosity at one of these loci. Thus, if these genes play a role in tumor etiology as opposed to tumor progression, they must manifest a heterozygous phenotype at the cellular level. To investigate the potential consequences of somatic heterozygosity for a BRCA1 mutation demonstrably associated with breast carcinogenesis on background somatic mutational burden, we applied the two standard assays of in vivo human somatic mutation to blood samples from a manifesting carrier of the Q1200X mutation in BRCA1 whose tumor was uniquely ascertained through an MRI screening study. The patient had an allele-loss mutation frequency of 19.4 x 10(-6) at the autosomal GPA locus in erythrocytes and 17.1 x 10(-6) at the X-linked HPRT locus in lymphocytes. Both of these mutation frequencies are significantly higher than expected from age-matched disease-free controls (P < 0.05). Mutation at the HPRT locus was similarly elevated in lymphoblastoid cell lines established from three other BRCA1 mutation carriers with breast cancer. Our patient's GPA mutation frequency is below the level established for diagnosis of homozygous Fanconi anemia patients, but consistent with data from obligate heterozygotes. The increased HPRT mutation frequency is more reminiscent of data from patients with xeroderma pigmentosum, a disease characterized by UV sensitivity and deficiency in the nucleotide excision pathway of DNA repair. Therefore, this BRCA1-associated breast cancer patient manifests a unique phenotype of increased background mutagenesis that likely contributed to the development of her disease independent of loss of heterozygosity at the susceptibility locus.
Collapse
Affiliation(s)
- Stephen G Grant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | | | | | | | | |
Collapse
|
16
|
Kendall HE, Vacek PM, Rivers JL, Rice SC, Messier TL, Finette BA. Analysis of genetic alterations and clonal proliferation in children treated for acute lymphocytic leukemia. Cancer Res 2007; 66:8455-61. [PMID: 16951156 DOI: 10.1158/0008-5472.can-05-4015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of risk-directed treatment protocols over the last 25 years has resulted in an increase in the survival rates of children treated for cancer. As a consequence, there is a growing population of pediatric cancer survivors in which the long-term genotoxic effects of chemotherapy is unknown. We previously reported that children treated for acute lymphocytic leukemia have significantly elevated somatic mutant frequencies at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in their peripheral T cells. To understand the molecular etiology of the increase in mutant frequencies following chemotherapy, we investigated the HPRT mutation spectra and the extent of clonal proliferation in 562 HPRT T cell mutant isolates of 87 blood samples from 47 subjects at diagnosis, during chemotherapy, and postchemotherapy. We observed a significant increase in the proportion of CpG transitions following treatment (13.6-23.3%) compared with healthy controls (4.0%) and a significant decrease in V(D)J-mediated deletions following treatment (0-6.8%) compared with healthy controls (17.0%). There was also a significant change in the class type percentage of V(D)J-mediated HPRT deletions following treatment. In addition, there was a >5-fold increase in T cell receptor gene usage-defined mean clonal proliferation from diagnosis compared with the completion of chemotherapeutic intervention. These data indicate that unique genetic alterations and extensive clonal proliferation are occurring in children following treatment for acute lymphocytic leukemia that may influence long-term risks for multifactorial diseases, including secondary cancers.
Collapse
Affiliation(s)
- Heather E Kendall
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old.
Collapse
Affiliation(s)
- Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | |
Collapse
|
18
|
McDiarmid MA, Engelhardt SM, Oliver M, Gucer P, Wilson PD, Kane R, Cernich A, Kaup B, Anderson L, Hoover D, Brown L, Albertini R, Gudi R, Jacobson-Kram D, Squibb KS. Health surveillance of Gulf War I veterans exposed to depleted uranium: updating the cohort. HEALTH PHYSICS 2007; 93:60-73. [PMID: 17563493 DOI: 10.1097/01.hp.0000259850.66969.8c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A cohort of seventy-four 1991 Gulf War soldiers with known exposure to depleted uranium (DU) resulting from their involvement in friendly-fire incidents with DU munitions is being followed by the Baltimore Veterans Affairs Medical Center. Biennial medical surveillance visits designed to identify uranium-related changes in health have been conducted since 1993. On-going systemic exposure to DU in veterans with embedded metal fragments is indicated by elevated urine uranium (U) excretion at concentrations up to 1,000-fold higher than that seen in the normal population. Health outcome results from the subcohort of this group of veterans attending the 2005 surveillance visit were examined based on two measures of U exposure. As in previous years, current U exposure is measured by determining urine U concentration at the time of their surveillance visit. A cumulative measure of U exposure was also calculated based on each veteran's past urine U concentrations since first exposure in 1991. Using either exposure metric, results continued to show no evidence of clinically significant DU-related health effects. Urine concentrations of retinol binding protein (RBP), a biomarker of renal proximal tubule function, were not significantly different between the low vs. high U groups based on either the current or cumulative exposure metric. Continued evidence of a weak genotoxic effect from the on-going DU exposure as measured at the HPRT (hypoxanthine-guanine phosphoribosyl transferase) locus and suggested by the fluorescent in-situ hybridization (FISH) results in peripheral blood recommends the need for continued surveillance of this population.
Collapse
Affiliation(s)
- M A McDiarmid
- Department of Medicine, University of Maryland, School of Medicine, and Department of Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tapp RA, Feng J, Jones JW, Carlson JA, Wilson VL. Single base instability is promoted in vulvar lichen sclerosus. J Invest Dermatol 2007; 127:2563-76. [PMID: 17554370 DOI: 10.1038/sj.jid.5700889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Single base substitution mutations in codons 248 and 273 of TP53 and codon 12 Kirsten-ras (KRAS) are commonly found in human carcinomas. To determine whether these mutations also occur in normal and inflamed tissues from which carcinomas arise, we utilized the ultra-sensitive polymerase chain reaction/restriction endonuclease/ligase chain reaction mutation assay. Ninety samples of genital skin, including lichen sclerosus (LS) affected skin, adjacent normal and non-adjacent normal, were assayed. Mutations were detected in 103 of 349 assays and consisted of KRAS G34A, G34T, G35A, and TP53 C742T, G818C, C817T, and G818A mutations. Mutant prevalence varied from 1 to 20 per 10(6) wild-type cells. Mutations occurred significantly more frequently in LS (78/224 (35%)) than adjacent normal (20/88 (23%)) and non-adjacent normal genital skin (5/38 (13%)). KRAS G34A mutation was relatively common to all classes of specimen, whereas TP53 gene C742T and G818C mutations were significantly more frequent in LS than normal genital skin. In matched samples, immunohistochemistry evaluation of p53 protein expression revealed the presence of epidermal p53 clones in LS whose presence and number significantly correlated with the presence of TP53 C742T and G818C mutations. Based on these results, it appears oncogenic point mutations occur in normal genital skin, and are selected for in LS.
Collapse
Affiliation(s)
- Ronald A Tapp
- Department of Veterinary Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
20
|
Meng Q, Olivero OA, Fasco MJ, Bellisario R, Kaminsky L, Pass KA, Wade NA, Abrams EJ, Nesel CJ, Ness RB, Bigbee WL, O'Neill JP, Walker DM, Poirier MC, Walker VE. Plasma and cellular markers of 3'-azido-3'-dideoxythymidine (AZT) metabolism as indicators of DNA damage in cord blood mononuclear cells from infants receiving prepartum NRTIs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:307-21. [PMID: 17358024 DOI: 10.1002/em.20298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Several systemic and cellular markers of 3'-azido-3'-dideoxythymidine (AZT) metabolism and AZT incorporation into nuclear DNA were measured in cord blood from uninfected infants born to HIV-1-infected mothers receiving prepartum therapies based on AZT or AZT in combination with 2',3'-dideoxy-3'-thiacytidine (3TC). In addition, the relationships among these pharmacological end points, levels of AZT-DNA incorporation, and the previously reported mutagenic responses in these infants were evaluated. AZT- and 3TC-specific radioimmunoassays (RIAs), or HPLC coupled with AZT-RIA, were used to measure plasma levels of AZT and the AZT-glucuronide, and cellular levels of AZT, phosphorylated AZT, and DNA incorporation of AZT or 3TC in cord blood mononuclear cells from treated infants compared with unexposed controls born to HIV-uninfected mothers. Fewer infants had detectable AZT-DNA incorporation levels in the group exposed to AZT (71%; n = 7) compared with those receiving AZT-3TC (100%; n = 21), and the mean AZT-DNA incorporation for AZT-exposed infants (14.6 +/- 6.3 AZT/10(6) nucleotides) was significantly lower than that in AZT-3TC exposed infants (51.6 +/- 10.2 AZT/10(6) nucleotides; P = 0.028). Low levels of 3TC-DNA incorporation found in a few AZT-3TC-exposed newborns correlated with AZT-DNA incorporation values in the same samples. Among the metabolites studied, there were positive correlations between levels of AZT-diphosphate and AZT-triphosphate, and AZT-triphosphate and AZT-DNA incorporation, in nucleoside analog-exposed infants. Levels of AZT-DNA incorporation, however, did not correlate well with the reported frequencies of somatic mutations in the same population of nucleoside analog-treated children. While these data support the continued use of AZT-based therapies during pregnancy, infants receiving prepartum AZT should be monitored long-term for adverse health effects.
Collapse
Affiliation(s)
- Quanxin Meng
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- John Cairns
- Clinical Trial Service Unit, University of Oxford, Oxford OX3 7LF, United Kingdom.
| |
Collapse
|
22
|
Coolbaugh-Murphy MI, Xu J, Ramagli LS, Brown BW, Siciliano MJ. Microsatellite instability (MSI) increases with age in normal somatic cells. Mech Ageing Dev 2006; 126:1051-9. [PMID: 16098563 DOI: 10.1016/j.mad.2005.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/10/2005] [Accepted: 06/16/2005] [Indexed: 11/17/2022]
Abstract
Small pool PCR (SP-PCR) is a sensitive method for the detection and quantification of microsatellite instability (MSI) in somatic cells. Here we propose that mutant microsatellite fragments accumulate with age in normal somatic cells and that this increase in MSI can be quantified by SP-PCR. MSI at 6 microsatellite loci was determined by SP-PCR in PBL DNA from 17 "normal" blood bank donors. These individuals varied in age from 20 to 67 y/o. MSI phenotypes were plotted against age in a regression analyses. A positive slope indicated a correlation between age and MSI phenotype (p=0.0006). The mean weighted average mutant frequencies across all loci for all individuals in the age groups (0.009 for 20-30 y/o; 0.019 for 35-50 y/o; 0.034 for 60-70 y/o) were also significantly different from each other (p<0.01). A baseline for increases of MSI with age in human somatic cells was therefore begun and the effectiveness of SP-PCR to evaluate low, but significant, levels of MSI, established.
Collapse
Affiliation(s)
- Mary I Coolbaugh-Murphy
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
23
|
O'Neill P, Nicklas J, Hirsch B, Jostes R, Hunter T, Sullivan L, Albertini R. In vitro studies of the genotoxicity of ionizing radiation in human G(0) T lymphocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:207-20. [PMID: 15887213 DOI: 10.1002/em.20143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In an effort to mimic human in vivo exposures to ionizing irradiation, G(0) phase T lymphocytes from human peripheral blood samples were utilized for in vitro studies of the genotoxic effects of (137)Cs low-LET irradiation and (222)Rn high-LET irradiation. Both types of radiation induced mutations in the HPRT gene in a dose-dependent manner, with a mutant frequency (MF) = 4.28 + 1.34x + 7.51x(2) for (137)Cs (R(2) = 0.95) and MF = 4.81 + 0.67x for (222)Rn (R(2) = 0.51). Post (137)Cs irradiation incubation in the presence of cytosine arabinoside, a reversible inhibitor of DNA repair, caused an increase in the MF over irradiation alone, consistent with a misrepair mechanism being involved in the mutagenicity of low-LET irradiation. The spectrum of (137)Cs irradiation-induced mutation displayed an increase in macro-deletions (in particular total gene deletions) and rearrangement events, some of which were further defined by either chromosome painting or direct DNA sequencing. The spectrum of (222)Rn irradiation-induced mutation was characterized by an increase in small alterations, especially multiple single base deletions/substitutions and micro-deletions. These studies define the specific response of human peripheral blood T cells to ionizing irradiation in vitro and form a basis for evaluating the genotoxic effects of human in vivo exposure.
Collapse
Affiliation(s)
- Patrick O'Neill
- University of Vermont, Genetics Laboratory, Burlington, VT 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chang SJ, Chen SM, Chiang SL, Chang KL, Ko YC. Association between Cigarette Smoking and Hypoxanthine Guanine Phosphoribosyltransferase Activity. Kaohsiung J Med Sci 2005; 21:495-501. [PMID: 16358551 DOI: 10.1016/s1607-551x(09)70157-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to investigate the association between smoking behavior and hypoxanthine guanine phosphoribosyltransferase (HGPRT) activity. A cross-sectional study was performed of 82 men, including 38 non-smokers and 44 smokers. Inosine monophosphate (IMP), the product of HGPRT (used as the index of activity), was measured in peripheral blood mononuclear cells using high-performance liquid chromatography. The factors potentially associated with HGPRT activity included age, glutamyl oxaloacetic transaminase, glutamyl pyruvic transaminase, cholesterol, uric acid, triglycerides, creatinine, body mass index, gout, systolic blood pressure, diastolic blood pressure, alcohol consumption, and cigarette smoking. Mean HGPRT activity was 7.05 +/- 3.44 nmol/10(6) viable cells/hour for all participants, and was significantly lower for smokers than for non-smokers (6.24 +/- 3.40 vs 7.98 +/- 3.28 nmol/10(6) viable cells/hour; p = 0.02). In addition, as the number of smoked cigarettes increased, the HGPRT activity decreased (p < 0.05). The age at onset of cigarette smoking showed a positive correlation with HGPRT activity after adjusting for smoking duration, serum uric acid, and cigarettes smoked per year using a multiple regression model (p < 0.001). We concluded that the greater the number of cigarettes smoked, the lower the HGPRT activity, and that HGPRT activity was higher in smokers who had started smoking later.
Collapse
Affiliation(s)
- Shun-Jen Chang
- Department of Public Health, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Grant SG. Qualitatively and quantitatively similar effects of active and passive maternal tobacco smoke exposure on in utero mutagenesis at the HPRT locus. BMC Pediatr 2005; 5:20. [PMID: 15987524 PMCID: PMC1185547 DOI: 10.1186/1471-2431-5-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Induced mutagenesis in utero is likely to have life-long repercussions for the exposed fetus, affecting survival, birth weight and susceptibility to both childhood and adult-onset diseases, such as cancer. In the general population, such exposures are likely to be a consequence of the lifestyle choices of the parents, with exposure to tobacco smoke one of the most pervasive and easily documented. Previous studies attempting to establish a direct link between active smoking and levels of somatic mutation have largely discounted the effects of passive or secondary exposure, and have produced contradictory results. METHODS Data from three studies of possible smoking effects on in utero mutagenesis at the HPRT locus were compiled and reanalyzed, alone and in combination. Where possible, passive exposure to environmental tobacco smoke was considered as a separate category of exposure, rather than being included in the non-smoking controls. Molecular spectra from these studies were reanalyzed after adjustment for reported mutation frequencies from the individual studies and the entire data set. RESULTS A series of related studies on mutation at the X-linked HPRT locus in human newborn cord blood samples has led to the novel conclusion that only passive maternal exposure to tobacco mutagens has a significant effect on the developing baby. We performed a pooled analysis of the complete data from these studies, at the levels of both induced mutation frequency and the resulting mutational spectrum. CONCLUSION Our analysis reveals a more commonsensical, yet no less cautionary result: both active maternal smoking and secondary maternal exposure produce quantitatively and qualitatively indistinguishable increases in fetal HPRT mutation. Further, it appears that this effect is not perceptibly ameliorated if the mother adjusts her behavior (i.e. stops smoking) when pregnancy is confirmed, although this conclusion may also be affected by continued passive exposure.
Collapse
Affiliation(s)
- Stephen G Grant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
26
|
Vacek PM, Messier T, Rivers J, Sullivan L, O'Neill JP, Finette BA. Somatic mutant frequency at the HPRT locus in children associated with a pediatric cancer cluster linked to exposure to two superfund sites. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:339-345. [PMID: 15657919 DOI: 10.1002/em.20101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The somatic mutant frequency (Mf) of the hypoxanthine phosphoribosyl transferase (HPRT) gene has been widely used as a biomarker for the genotoxic effects of exposure but few studies have found an association with environmental exposures. We measured background Mfs in 49 current and former residents of Dover Township, New Jersey, who were exposed during childhood to industrially contaminated drinking water. The exposed subjects were the siblings of children who developed cancer after residing in Dover Township, where the incidence of childhood cancer has been elevated since 1979. Mfs from this exposed group were compared to Mfs in 43 age-matched, presumably unexposed residents of neighboring communities with no known water contamination and no increased cancer incidence. Statistical comparisons were based on the natural logarithm of Mf (lnMF). The mean Mf for the exposed group did not differ significantly from the unexposed group (3.90 x 10(-6) vs. 5.06 x 10(-6); P = 0.135), but unselected cloning efficiencies were higher in the exposed group (0.55 vs. 0.45; P = 0.005). After adjustment for cloning efficiency, lnMf values were very similar in both groups and age-related increases were comparable to those previously observed in healthy children. The results suggest that HPRT Mf may not be a sensitive biomarker for the genotoxic effects of environmental exposures in children, particularly when substantial time has elapsed since exposure.
Collapse
Affiliation(s)
- Pamela M Vacek
- Department of Medical Biostatistics, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Gorbunova V, Seluanov A. Making ends meet in old age: DSB repair and aging. Mech Ageing Dev 2005; 126:621-8. [PMID: 15888314 DOI: 10.1016/j.mad.2005.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/14/2005] [Accepted: 02/14/2005] [Indexed: 01/10/2023]
Abstract
Accumulation of somatic mutations has long been considered as a major cause of aging and age-related diseases such as cancer. Genomic rearrangements, which arise from aberrant repair of DNA breaks, are the most characteristic component of the mutation spectra in aging cells and tissues. The studies conducted in the past few years provide further support for the role of DNA double-strand break (DSB) repair in aging and cellular senescence. Evidence was obtained that in addition to accumulation of mutations the efficiency and fidelity of repair declines with age. We propose that DNA damage and age-related decline of DNA repair form a vicious cycle leading to amplification of damage and progression of aging, and discuss a hypothesis on how the interplay between the two pathways of DSB repair, homologous recombination and nonhomologous end joining, may contribute to the aging process.
Collapse
Affiliation(s)
- Vera Gorbunova
- Department of Biology, University of Rochester, NY 14627, USA.
| | | |
Collapse
|
28
|
Hernández LG, Heddle JA. A carcinogenic western diet does not induce somatic mutations in various target tissues of transgenic C56BL/6 mice. Mutat Res 2005; 570:185-96. [PMID: 15708577 DOI: 10.1016/j.mrfmmm.2004.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 10/27/2004] [Accepted: 11/07/2004] [Indexed: 05/01/2023]
Abstract
Although the importance of diet in human cancer is clear, most dietary studies of carcinogenesis in laboratory rodents have involved the use of large doses of a carcinogen, which is not comparable to the human situation. The use of carcinogens has been necessary because laboratory rodents have extremely low spontaneous rates of colon cancer. Newmark et al. (2001) showed, however, that a radical dietary manipulation sufficed to induce high rates of colon cancer in C57BL/6 mice. Here we report an investigation into whether or not this dietary manipulation acts by altering somatic mutation rates. We used the transgenic lambda cII locus of F1 pups (C57BL/6 x Big Blue with the same C57BL/6 genetic background. The same diet (ND), high in fat, and low in calcium, vitamin D, folic acid, choline, and fibre, that was used by Newmark et al. (2001) was fed ad libitum to dams during pregnancy and lactation in order to examine its effect on mutagenesis in development and growth. There was no significant difference in mutant frequency in the small intestine (P = 0.82), or bone marrow (P = 0.95) of pups fed a ND versus the control diet. To investigate the effect of a ND during adulthood, 6-week-old F1 pups were fed a ND ad libitum for 6, 12 and 19 weeks. There was no significant difference in mutant frequency in the small intestine (P = 0.66) or colon (P = 0.49) at the cII locus with no significant difference in body weight. These results indicate that Western diet-induced carcinogenesis is not mediated by alterations in mutation rate and thus may act at the promotion rather than at the initiation stage of carcinogenesis.
Collapse
Affiliation(s)
- Lya G Hernández
- Department of Biology, York University, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3
| | | |
Collapse
|
29
|
Kumar PRV, Hamza VZ, Mohankumar MN, Jeevanram RK. Studies on the HPRT mutant frequency in T lymphocytes from healthy Indian male population as a function of age and smoking. Mutat Res 2004; 556:107-16. [PMID: 15491638 DOI: 10.1016/j.mrfmmm.2004.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/06/2004] [Accepted: 07/14/2004] [Indexed: 11/23/2022]
Abstract
Mutant frequency at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in the peripheral blood lymphocytes obtained from 44 healthy individuals (23 non-smokers and 21 smokers) of an Indian male population was studied using T-lymphocyte cloning assay. It was found that lnMF increased with age at a rate of 2.5% per year (P <0.001). Blood samples from smokers showed a significant (P <0.037) increase in HPRT mutant frequency (MF) (10.43 +/- 4.74 x 10(-6)) as compared to that obtained from non-smokers (7.69 +/- 3.69 x 10(-6)). This study also showed a significant (P <0.027) inverse correlation between lnMF and non-selected cloning efficiency (CE). However, with respect to age no variation was observed in cloning efficiency. The results obtained in this study showed a good comparison with those reported in different populations of the world.
Collapse
Affiliation(s)
- P R Vivek Kumar
- Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam-603102, India
| | | | | | | |
Collapse
|
30
|
Poirier MC, Olivero OA, Walker DM, Walker VE. Perinatal genotoxicity and carcinogenicity of anti-retroviral nucleoside analog drugs. Toxicol Appl Pharmacol 2004; 199:151-61. [PMID: 15313587 DOI: 10.1016/j.taap.2003.11.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 11/25/2003] [Indexed: 11/18/2022]
Abstract
The current worldwide spread of the human immunodeficiency virus-1 (HIV-1) to the heterosexual population has resulted in approximately 800,000 children born yearly to HIV-1-infected mothers. In the absence of anti-retroviral intervention, about 25% of the approximately 7,000 children born yearly to HIV-1-infected women in the United States are HIV-1 infected. Administration of zidovudine (AZT) prophylaxis during pregnancy reduces the rate of infant HIV-1 infection to approximately 7%, and further reductions are achieved with the addition of lamivudine (3TC) in the clinical formulation Combivir. Whereas clinically this is a remarkable achievement, AZT and 3TC are DNA replication chain terminators known to induce various types of genotoxicity. Studies in rodents have demonstrated AZT-DNA incorporation, HPRT mutagenesis, telomere shortening, and tumorigenicity in organs of fetal mice exposed transplacentally to AZT. In monkeys, both AZT and 3TC become incorporated into the DNA from multiple fetal organs taken at birth after administration of human-equivalent protocols to pregnant dams during gestation, and telomere shortening has been found in monkey fetuses exposed to both drugs. In human infants, AZT-DNA and 3TC-DNA incorporation as well as HPRT and GPA mutagenesis have been documented in cord blood from infants exposed in utero to Combivir. In infants of mice, monkeys, and humans, levels of AZT-DNA incorporation were remarkably similar, and in newborn mice and humans, mutation frequencies were also very similar. Given the risk-benefit ratio, these highly successful drugs will continue to be used for prevention of vertical viral transmission, however evidence of genotoxicity in mouse and monkey models and in the infants themselves would suggest that exposed children should be followed well past adolescence for early detection of potential cancer hazard.
Collapse
Affiliation(s)
- Miriam C Poirier
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA.
| | | | | | | |
Collapse
|
31
|
Rice SC, Vacek P, Homans AH, Messier T, Rivers J, Kendall H, Finette BA. Genotoxicity of therapeutic intervention in children with acute lymphocytic leukemia. Cancer Res 2004; 64:4464-71. [PMID: 15231655 DOI: 10.1158/0008-5472.can-03-3940] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The survival rates of children treated for cancer have dramatically increased after the development of standardized multiple-modality treatment protocols. As a result, there is a rapidly growing population of pediatric cancer survivors in which the long-term genotoxic effects of chemotherapeutic intervention is unknown. To study the genotoxic effects of antineoplastic treatment in children, we performed a comparative analysis of the changes in the frequency of somatic mutations (Mfs) at the hypoxanthine-guanine phosphoribosyltransferase (HPRT)-reporter gene in children treated for acute lymphocytic leukemia (ALL). We measured HPRT Mfs from 130 peripheral blood samples from 45 children with ALL (13, low risk; 22, standard risk; and 10, high risk) from the time of diagnosis, as well as during and after the completion of therapy. We observed a significant increase in mean HPRT Mfs during each phase of therapy (diagnosis, 1.4 x 10(-6); consolidation, 52.1 x 10(-6); maintenance, 93.2 x 10(-6); and off-therapy, 271.7 x 10(-6)) that were independent of the risk group treatment protocol used. This 200-fold increase in mean somatic Mf remained elevated years after the completion of therapy. We did not observe a significant difference in the genotoxicity of each risk group treatment modality despite differences in the compositional and clinical toxicity associated with these treatment protocols. These findings suggest that combination chemotherapy used to treat children with ALL is quite genotoxic, resulting in an increased somatic mutational load that may result in an elevated risk for the development of multi-factorial diseases, in particular second malignancies.
Collapse
Affiliation(s)
- Sederick C Rice
- Department of Pediatrics, University of Vermont, Burlington 05405, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Trentin GA, Moody J, Shima N, Thompson LU, Heddle JA. Effect of dietary supplementation on the frequency of spontaneous lacZ mutations in the developing colon. Mutat Res 2004; 551:223-31. [PMID: 15225595 DOI: 10.1016/j.mrfmmm.2004.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/06/2004] [Accepted: 04/07/2004] [Indexed: 02/03/2023]
Abstract
Epidemiological studies have demonstrated that dietary modifications can reduce the incidence of cancer. Specifically, diets high in vegetables and fruits are associated with lower rates of cancer at many sites. Somatic mutations have a critical role in carcinogenesis suggesting the use of in vivo mutation assays as an alternative approach to studying the relationship between diet and cancer. Since the rate of accumulation of spontaneous mutations is highest during growth and development early in life, we tested whether certain foods as dietary supplements could reduce the rate of mutation during this period using lacZ transgenic mice. Pregnant female mice were placed on a control diet or a diet supplemented to 20% final dry weight with broccoli, cabbage, carrots, flaxseed, green peas, green peppers, oranges or strawberries for the entire duration of their pregnancy and lactation. Mutation frequencies were subsequently measured at the lacZ transgene in colonic epithelial cells of the offspring at 3 weeks of age. A small number of measurements were also made on siblings at 8 weeks of age. While the control AIN-96G diet on its own resulted in lower mutant frequencies than had been observed in earlier experiments with lab chow, no significant reduction in mutant frequencies was detected for any of the foods tested as compared to the AIN-93G diet alone. Significantly more mutations were found at 3 weeks of age in mice fed diets supplemented with broccoli or oranges, but the result with oranges may be the result of jackpot mutations.
Collapse
Affiliation(s)
- G A Trentin
- Department of Biology, York University, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3
| | | | | | | | | |
Collapse
|
33
|
Lin YW, Perkins JJ, Zhang Z, Aplan PD. Distinct mechanisms lead to HPRT gene mutations in leukemic cells. Genes Chromosomes Cancer 2004; 39:311-23. [PMID: 14978792 DOI: 10.1002/gcc.20005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Leukemias are considered malignant clonal disorders arising from the accumulation of mutations in hematopoietic cells; the majority of these mutations are thought to be acquired somatically. Measurement of mutation frequency (Mf) at the hypoxanthine phosphoribosyltransferase (HPRT) locus has been developed as a method for estimating genomic instability. We investigated the Mf in 16 leukemic cell lines to determine whether these cell lines showed evidence of genomic instability. Although some leukemic cell lines had markedly elevated Mfs, the Mfs at the HPRT locus in leukemic cell lines were not always higher than those of B-lymphoblastoid cell lines and T lymphocytes from normal individuals. We were able to identify the HPRT mutation for 159 of 160 individual HPRT mutants. The HPRT mutations were characterized at a molecular level and classified as either gross chromosomal rearrangements (GCRs) or point mutations, such as single-nucleotide substitutions, insertions, or deletions. With rare exceptions, individual leukemic cell lines showed either point mutations or GCR, but not both. Of note, all the cell lines that primarily showed point mutations are known to be defective in mismatch repair machinery.
Collapse
Affiliation(s)
- Ying-Wei Lin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20889-510, USA.
| | | | | | | |
Collapse
|
34
|
Hill KA, Buettner VL, Halangoda A, Kunishige M, Moore SR, Longmate J, Scaringe WA, Sommer SS. Spontaneous mutation in Big Blue mice from fetus to old age: tissue-specific time courses of mutation frequency but similar mutation types. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 43:110-120. [PMID: 14991751 DOI: 10.1002/em.20004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transgenic mouse mutation detection systems permit rapid determination of the frequency and type of mutations allowing direct examination of mutational markers for aging, neurodegeneration, and cancer. The Big Blue transgenic mouse mutation detection system was used to determine the frequency and nature of spontaneous mutations versus age in multiple tissue types. Nuclear DNA was extracted from whole fetus at 13.5 days postcoitus (dpc) and from six tissues postbirth (cerebellum, forebrain, thymus, liver, adipose tissue, and male germline) of Big Blue transgenic mice at four ages: 10 days and at 3, 10, and 25 months postbirth. Forty million total plaque-forming units (pfu) were screened. The time course of mutation frequency with age had a significantly different shape in different tissues (P < 10(-6)). By 13.5 dpc, the whole fetus mutation frequency had already started increasing from the theoretical zero at conception to a value that was about one-half the mid-adulthood (3-10 months) average. From 10 days to 3 months, mutation frequency increased significantly in liver (P = 0.007) and showed an increasing trend in cerebellum, forebrain, and thymus. From 3 to 10 months, there was no significant change in mutation frequency in any tissue examined. From 10 to 25 months, the mutation frequency increased significantly in liver (P < 10(-6)) and adipose tissue (P = 0.002), but not in the other tissues examined (cerebellum, forebrain, and male germline). It is of interest that the mutation frequency in the male germline is consistently the lowest, remaining essentially unchanged in old age. The spectrum of mutation types was unaltered with age, tissue type and gender, although, as previously reported, tandem GG-->TT mutations are tissue specific and show significant increases with age and certain hotspots (Buettner VL et al. [1999]: Environ Mol Mutagen 33:320-324; Hill KA et al. [2003]: Mutat Res 534:173-186). The spectrum of mutation types was generally the same for all tissue types, despite the tissue-specific increases in mutation frequency with age. These data provide a useful reference for future studies of endogenous and exogenous mutagenesis.
Collapse
Affiliation(s)
- Kathleen A Hill
- Department of Molecular Genetics, Beckman Research Institute/City of Hope, Duarte, California 91010-0269, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Rice SC, Vacek PM, Homans AH, Kendall H, Rivers J, Messier T, Finette BA. Comparative analysis of HPRT mutant frequency in children with cancer. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 42:44-49. [PMID: 12874812 DOI: 10.1002/em.10171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The link between exposure to environmental mutagens and the development of cancer is well established. Yet there is a paucity of data on the relationship between gene-environment interactions and the mechanisms associated with the somatic mutational events involved with malignant transformation, especially in children. To gain insight into somatic mutational mechanisms in children who develop cancer, we determined the background mutant frequency (Mf) in the hypoxanthine phosphoribosyl transferase (HPRT) reporter gene of peripheral blood lymphocytes from pediatric cancer patients at the time of diagnosis and prior to therapeutic intervention. We studied 23 children with hematologic malignancies and 31 children with solid tumors prior to initial therapeutic intervention. Children with solid tumors, specifically sarcomas, and Hodgkin's disease were significantly older and had elevated HPRT Mfs (6.1 x 10(-6) and 3.7 x 10(-6), respectively) at the time of diagnosis, compared to normal controls (2.3 x 10(-6)) and other pediatric tumor groups including children with acute lymphocytic leukemia and non-Hodgkin's lymphoma (ALL/NHL, 1.7 x 10(-6)), central nervous system tumors (CNS, 3.6 x 10(-6)), and neuroblastoma (1.9 x 10(-6)). Of importance is that the significant differences observed in HPRT Mfs between these groups no longer existed after correcting for the effects of age. These data demonstrate that in children who develop cancer there appears to be no significant increase in background HPRT Mf that would indicate significant exposure to genotoxic chemicals or an underlying DNA repair defect resulting in genomic instability. In addition, these data demonstrate the importance of correcting for the effect of age when comparing the frequency of somatic mutations in children and should provide baseline data for future longitudinal biomonitoring studies on the genetic effects of chemotherapy in children treated for cancer.
Collapse
Affiliation(s)
- Sederick C Rice
- Department of Pediatrics, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
There is growing evidence linking somatic mutational events during fetal development and childhood to an increasing number of multifactorial human diseases. Despite this, little is known about the relationship between endogenous and environmentally induced exogenous mutations during human development. Here we describe a comparative spectral analysis of somatic mutations at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) reporter gene locus in healthy children. We observed an age-specific decrease in the proportion of large alterations and a corresponding increase in the proportion of small alterations with increasing age following birth (P<0.001). The age specific decrease in the proportion of large alterations (67-30%) was mainly due to a decrease in the proportion of aberrant variable (V), diversity (D) and joining (J) (V(D)J) recombinase mediated HPRT deletions (P<0.001). The increase in the proportion of small alterations with age (28-64%) was associated with an increase in transversions from 8% in children at the late stages of fetal development to 31% in children 12-16 years old (P=0.003). Transitions decreased with age, especially at CpG dinucleotides (P=0.010), as transversions increased (P=0.009). These patterns of mutations provide insight into important spontaneous, genotoxic, and site-specific recombinational somatic mutational events associated with the age-specific development of human disease in children as well as adults.
Collapse
Affiliation(s)
- Barry A Finette
- Department of Pediatrics, University of Vermont, Burlington 05405, USA.
| | | | | |
Collapse
|
37
|
Hamahata K, Kubota M, Usami I, Lin YW, Shimizu K, Morimoto A, Nakahata T. Somatic cell mutation in pediatric patients undergoing allogeneic bone marrow transplantation. Mutat Res 2002; 517:21-8. [PMID: 12034305 DOI: 10.1016/s1383-5718(02)00023-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In order to examine whether bone marrow transplantation (BMT) has genotoxic effects in vivo, mutant frequencies (Mfs) at the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus were evaluated. Thirty-seven pediatric patients who had received allogeneic BMT for various hematologic or immunologic disorders were enrolled. Nine out of the 37 patients (24.3%) were found to have Hprt-Mfs exceeding the 99% confidence limits calculated from observation of healthy controls. Among factors including gender, primary disease of the patient, donor-recipient histocompatibility relationship, age of donor, and total body irradiation as conditioning regimen, none was associated with an increased Hprt-Mf. In three patients who had chimerism in their peripheral blood after BMT, Hprt mutant clones turned out to be of donor- or recipient-origin. Mfs at the T-cell receptor (TCR) locus were examined in 28 patients. Four patients (14.3%) were found to have increased TCR-Mfs. However, there were not any patients who showed elevation of both Hprt-and TCR-Mfs. These data, taken together, suggest that BMT may cause genotoxicity in vivo in some patients.
Collapse
Affiliation(s)
- Keigo Hamahata
- Department of Pediatrics, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Ballinger SW, Judice SA, Nicklas JA, Albertini RJ, O'Neill JP. DNA sequence analysis of interlocus recombination between the human T-cell receptor gamma variable (GV) and beta diversity-joining (BD/BJ) sequences on chromosome 7 (inversion 7). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 40:85-92. [PMID: 12203400 DOI: 10.1002/em.10099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
V(D)J recombinase-mediated recombination between the T-cell receptor (TCR) gamma variable (GV) genes at chromosome 7p15 and the TCR beta joining (BJ) genes at 7q35 leads to the formation of a hybrid TCR gene. These TCR gamma/beta interlocus rearrangements occur at classic V(D)J recombination signal sequences (RSS) and, because the loci are in an inverted orientation, result in inversion events that are detectable in the chromosome structure as inv(7)(p15;q35). Similar rearrangements involving oncogenes and either TCR or immunoglobulin genes mediated by the V(D)J recombinase are found in lymphoid malignancies. Oligonucleotide primers that allow polymerase chain reaction (PCR) amplification across the inv(7) genomic recombination junction sequence have been described. Southern blot analysis has been primarily used to confirm the GV/BJ hybrid nature of the product, with limited information on the DNA sequence of these recombinations. We have modified this PCR method using total genomic DNA from the mononuclear cells in peripheral blood samples to increase specificity and to allow direct sequencing of the translocation junction that results from the recombination between the GV1 and BJ1 families of TCR genes in 25 examples from 11 individuals (three adults, one child, six newborns, and one ataxia telangiectasia (AT) patient). We focused on samples from newborns based on previous studies indicating that the predominant hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutations in newborns are V(D)J recombinase-mediated deletion events and that the frequency of these mutations decreases with increasing age. Although the dilution series-based PCR assay utilized does not yield sharply defined quantitative endpoints, results of this study strongly suggest that inv(7) recombinations in newborns occur at equal or lower frequencies than those seen in adults. Consistent with the PCR primer pairs, all sequenced products contain a GV1 and a BJ1 segment and most also contain a BD1 segment. GV1s2 and 1s4 were the most frequently found GV1 genes (8 and 9 examples, respectively) and BJ1s5 and 1s6 were the most frequently found BJ1 genes (9 and 10 examples, respectively). These results demonstrate the effectiveness of this methodology for assessing GV/BJ interlocus rearrangements mediated by V(D)J recombinase.
Collapse
|
39
|
Finette BA, Homans AC, Rivers J, Messier T, Albertini RJ. Accumulation of somatic mutations in proliferating T cell clones from children treated for leukemia. Leukemia 2001; 15:1898-905. [PMID: 11753611 DOI: 10.1038/sj.leu.2402306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Accepted: 08/09/2001] [Indexed: 11/09/2022]
Abstract
There is continued controversy as to the sequential steps and mechanism(s) responsible for the in vivo acquisition of multiple mutations during neoplastic transformation. We investigated the in vivo clonality and mutational spectra of hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations in T cells from children with acute lymphocytic leukemia (ALL) to gain insight into the mutagenic mechanisms associated with leukemogenesis. We observed several instances of multiple, independent HPRT mutations accumulating in vivo in T cell receptor (TCR) gene defined clones that had undergone extensive pre- and/or post-thymic expansion following chemotherapy. In addition, we also detected the accumulation of multiple unique single mutations within distinct expanding post-thymic T cell clones. This pattern of clonally restricted hypermutability is compatible with extensive cell proliferation and selection alone without postulating genomic instability. These observations provide a paradigm for a continuum of cellular events that eventually results in the clonal accumulation of mutations in selected populations of cells in vivo and may provide insight into the primary genetic events associated with leukemogenesis, as well as the development of second malignancies and drug resistance following chemotherapy.
Collapse
Affiliation(s)
- B A Finette
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The observation of cancer in an individual does not identify the causative agent(s). However, epidemiological data on populations do indicate that a large fraction of human cancers are associated with lifestyle/diet. Such studies may also help identify the etiologic agents but unless there are good dose-response data for humans and/or animal models, the probability of identifying the agent is not high. Cancers may result from endogenous reactions, such as oxidations or from exogenous agents, such as tobacco smoke (lung cancer), sunlight exposure (skin cancer), aflatoxin (liver cancer), and relatively high doses of ionizing radiations (many types of cancers). Many carcinogenic chemicals have been identified in the workplace but, they usually do not affect the overall population. Most cancer causing agents affect cellular DNA and change its coding specificity and act as cancer initiators. The repair of DNA damage ameliorates most of these endogenous and exogenous changes. The important role of DNA repair in controlling the induction of human cancer came from the observation that individuals with the skin cancer-susceptible, human disease xeroderma pigmentosum (XP) were defective in nucleotide excision repair. Endogenous DNA damages are usually damages to individual bases and are usually repaired by systems of glycosylases and endonucleases. It should be useful to investigate the rates of appearance of tumors in normal mice and in mice knocked out for specific repair enzymes because such mice could be used to test the roles of diet and caloric input in affecting particular types of endogenous damages.
Collapse
Affiliation(s)
- R B Setlow
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
41
|
Meng Q, Henderson RF, Long L, Blair L, Walker DM, Upton PB, Swenberg JA, Walker VE. Mutagenicity at the Hprt locus in T cells of female mice following inhalation exposures to low levels of 1,3-butadiene. Chem Biol Interact 2001; 135-136:343-61. [PMID: 11397400 DOI: 10.1016/s0009-2797(01)00222-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A study was conducted to test the hypothesis that repeated low level exposures to 1,3-butadiene (BD), approaching the OSHA occupational threshold for this chemical, produce a significant mutagenic response in mice. Female B6C3F1 mice (4-5 weeks of age) were exposed by inhalation for 2 weeks (6 h/day, 5 days/week) to 0 or 3 ppm BD, and then necropsied at 4 weeks after the cessation of exposures to measure the frequency of mutations (MF) at the Hprt locus using the T-lymphocyte clonal assay. At necropsy, T cells were isolated from spleen and cultured in the presence of mitogen, growth factors, and a selection agent. Cells were scored for growth on days 8-9 after plating to determine cloning efficiencies (CEs) and Hprt MFs. There was a marginal but significant reduction in the growth of splenic T cells from mice exposed to 3 ppm (n=27) compared with control mice (n=24) (P=0.004), suggesting the occurrence of BD-induced cytotoxicity at this low exposure concentration. In addition, the average Hprt MF in mice exposed to 3 ppm BD [1.54+/-0.82 (S.D.)x10(-6)] was significantly increased by 1.6-fold over the average control value of 0.96+/-0.51 (S.D.)x10(-6) (P=0.004). Comparisons of these data to earlier Hprt mutagenicity studies of mice exposed to high concentrations of BD (where significant mutagenic but not cytotoxic effects were observed) indicate that the ability to detect the cytotoxic and mutagenic responses of T cells to low levels of BD was enhanced by using a much larger sample size than usual for both the control and treatment groups. Additional analyses of the quantitative relationships between CE and MF demonstrated that CE had no significant effect upon MF values in sham-exposed control mice or mice exposed to low-level BD. Furthermore, the approaches for assessing the impact of CE and clonality on Hprt MFs in these control and BD-exposed mice were applied with the same rigor as in in vivo Hprt mutagenicity studies in human children. The overall study results support the conclusion that short-term low-level BD exposure is mutagenic in the mouse.
Collapse
Affiliation(s)
- Q Meng
- Wadsworth Center for Laboratories and Research, New York State Department of Health, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ruttenber AJ, Harrison LT, Baron A, McClure D, Glanz J, Quillin R, O'Neill JP, Sullivan L, Campbell J, Nicklas JA. hprt mutant frequencies, nonpulmonary malignancies, and domestic radon exposure: "postmortem" analysis of an interesting hypothesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 37:7-16. [PMID: 11170237 DOI: 10.1002/1098-2280(2001)37:1<7::aid-em1001>3.0.co;2-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The hypothesis that exposure to domestic radon raises the risk for leukemia and other nonpulmonary cancers has been proposed and tested in a number of epidemiologic studies over the past decade. During this period, interest in this hypothesis was heightened by evidence of increased frequencies of mutations at the hypoxanthine guanine phosphoribosyl transferase (hprt) gene in persons exposed to domestic radon (Bridges BA et al. [1991]: Lancet 337:1187-1189). An extension of this study (Cole J et al. [lsqb[1996]: Radiat Res 145:61-69) and two independent studies (Albering HJ et al. [1992[: Lancet 340:739; Albering HJ et al. [1994[: Lancet 344:750-751) found that hprt mutant frequency was not correlated with domestic radon exposure, and two well-designed epidemiologic studies showed no evidence of a relation between radon exposure and leukemia in children or adults. In this report, we present additional data from a study of Colorado high school students showing no correlation between domestic radon exposure and hprt mutant frequency. We use reanalyses of previous studies of radon and hprt mutant frequency to identify problems with this assay as a biomarker for domestic radon exposure and to illustrate difficulties in interpreting the statistical data. We also show with analyses of combined data sets that there is no support for the hypothesis that domestic radon exposure elevates hprt mutant frequency. Taken together, the scientific evidence provides a useful example of the problems associated with analyzing and interpreting data that link environmental exposures, biomarkers, and diseases in epidemiologic studies.
Collapse
Affiliation(s)
- A J Ruttenber
- Department of Preventive Medicine and Biometrics, University of Colorado School of Medicine, 4200 E. Ninth Avenue, Campus Box C-245, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kubota M, Lin YW, Hamahata K, Sawada M, Koishi S, Hirota H, Wakazono Y. Cancer chemotherapy and somatic cell mutation. Mutat Res 2000; 470:93-102. [PMID: 11027962 DOI: 10.1016/s1383-5742(00)00043-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The occurrence of a second neoplasm is one of the major obstacles in cancer chemotherapy. The elucidation of the genotoxic effects induced by anti-cancer drugs is considered to be helpful in identifying the degree of cancer risk. Numerous investigations on cancer patients after chemotherapy have demonstrated: (i) an increase in the in vivo somatic cell mutant frequency (Mf) at three genetic loci, including hypoxanthine-guanine phosphoribosyl-transferase (hprt), glycophorin A (GPA), and the T-cell receptor (TCR), and (ii) alterations in the mutational spectra of hprt mutants. However, the time required for and the degree of such changes are quite variable among patients even if they have received the same chemotherapy, suggesting the existence of underlying genetic factor(s). Accordingly, some cancer patients prior to chemotherapy as well as patients with cancer-prone syndrome have been found to show an elevated Mf. Based on the information obtained from somatic cell mutation assays, an individualized chemotherapy should be considered in order to minimize the risk of a second neoplasm.
Collapse
Affiliation(s)
- M Kubota
- Department of Pediatrics, Faculty of Medicine, Kyoto University, Kawahara-cho 54, Shogoin, Sakyo-ku, 606-8507, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Shima N, Swiger RR, Heddle JA. Dietary restriction during murine development provides protection against MNU-induced mutations. Mutat Res 2000; 470:189-200. [PMID: 11027974 DOI: 10.1016/s1383-5718(00)00104-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The developmental stage is the most rapid period for the accumulation of somatic mutations. Epidemiological studies have also suggested a significant role of early life for cancer susceptibility, showing a protective effect of modest dietary restriction early in life. To determine if mutation rate, diet, and cancer risk are related, we have investigated the effect of dietary restriction on somatic mutations early in life. The diet of mouse dams was restricted during pregnancy and lactation by 10% from ad libitum control. F(1) pups (SWRxMutaMouse) were weaned at 3 weeks of age. Pups from dams that were on a restricted diet were kept under dietary restriction (40% until 5 weeks of age and then 20% until sacrifice). Only females from litters of seven or eight were used in this study. A portion of pups from both groups were treated with N-methyl-N-nitrosourea (MNU, 50mg/kg, i.p.) at 5 weeks of age and all mice were sacrificed at 10 weeks of age. The frequency of induced mutations was reduced by about 30% at the three loci studied, lacZ (P=0.028) and cII (P=0.042) and Dlb-1 (P=0.032) in the small intestine in the restricted group. A similar decrease in the lacZ mutant frequency was observed in the bone marrow, but the results did not reach statistical significance (P=0.074). Few differences in the lacZ mutant frequency were observed in the colon and the mammary epithelium, but variability of the mutant frequencies was such that an effect of similar magnitude could not be excluded statistically. Analysis of 47 cII mutants revealed that the majority of MNU-induced mutations were G:C to A:T transition at non-CpG sites, with no difference in the mutation spectrum between the two dietary groups.
Collapse
Affiliation(s)
- N Shima
- Department of Biology, York University, 4700 Keele Street, Ont., M3J 1P3, Toronto, Canada
| | | | | |
Collapse
|
45
|
Abstract
Abstract
Hydroxyurea (HU) is an effective therapeutic agent for patients with myeloproliferative disorders (MPDs) or sickle cell disease (SCD). Short-term HU toxicities primarily include transient myelosuppression, but long-term HU risks have not been defined. The mutagenic and carcinogenic potential of HU is not established, although HU has been associated with an increased risk of leukemia in some patients with MPD. In this study, 2 assays were used to quantitate acquired somatic DNA mutations in peripheral blood mononuclear cells (PBMCs) after in vivo HU exposure. The HPRT assay measures hypoxanthine phosphoribosyl transferase (hprt) mutations, while the VDJ assay identifies “illegitimate” T-cell receptor Vγ-Jβ interlocus recombination events. PBMCs were analyzed from patients with MPD, adults and children with SCD, and normal controls. MPD patients with prolonged HU exposure had numbers of DNA mutations equivalent to patients with low HU exposure or controls. Similarly, adults with SCD had equivalent numbers of DNA mutations regardless of HU exposure. Children with SCD and 30-month HU exposure had equivalenthprt− mutations but significantly more VDJ mutations (1.82 ± 1.20 events per μg DNA) than children with 7-month HU exposure (1.58 ± 0.87 events) or no HU exposure (1.06 ± 0.45 events), P = .04 by analysis of variance. Taken together, these data suggest that the mutagenic and carcinogenic potential of in vivo HU therapy is low. Although increased numbers of illegitimate VDJ recombination events do not directly portend leukemia, young patients with SCD and HU exposure should be monitored serially for increases in DNA mutations.
Collapse
|
46
|
Abstract
Hydroxyurea (HU) is an effective therapeutic agent for patients with myeloproliferative disorders (MPDs) or sickle cell disease (SCD). Short-term HU toxicities primarily include transient myelosuppression, but long-term HU risks have not been defined. The mutagenic and carcinogenic potential of HU is not established, although HU has been associated with an increased risk of leukemia in some patients with MPD. In this study, 2 assays were used to quantitate acquired somatic DNA mutations in peripheral blood mononuclear cells (PBMCs) after in vivo HU exposure. The HPRT assay measures hypoxanthine phosphoribosyl transferase (hprt) mutations, while the VDJ assay identifies “illegitimate” T-cell receptor Vγ-Jβ interlocus recombination events. PBMCs were analyzed from patients with MPD, adults and children with SCD, and normal controls. MPD patients with prolonged HU exposure had numbers of DNA mutations equivalent to patients with low HU exposure or controls. Similarly, adults with SCD had equivalent numbers of DNA mutations regardless of HU exposure. Children with SCD and 30-month HU exposure had equivalenthprt− mutations but significantly more VDJ mutations (1.82 ± 1.20 events per μg DNA) than children with 7-month HU exposure (1.58 ± 0.87 events) or no HU exposure (1.06 ± 0.45 events), P = .04 by analysis of variance. Taken together, these data suggest that the mutagenic and carcinogenic potential of in vivo HU therapy is low. Although increased numbers of illegitimate VDJ recombination events do not directly portend leukemia, young patients with SCD and HU exposure should be monitored serially for increases in DNA mutations.
Collapse
|
47
|
Abstract
T cells from patients who had received chemotherapy for B-lineage acute lymphocytic leukemia were studied to determine whether genetic instability, a principal characteristic of cancer cells, can also occur in nonmalignant cells. Consistent with expectations for a genetic instability phenotype, multiple mutations were detected in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) reporter gene in independently isolated mutant T cells expressing identical rearranged T cell receptor beta (TCRbeta) gene hypervariable regions. These results indicate that cancer treatment can lead to genetic instability in nonmalignant cells in some individuals. They also suggest a mechanistic paradigm for the induction of second malignancies and drug resistance.
Collapse
Affiliation(s)
- B A Finette
- Department of Pediatrics, Vermont Cancer Center, University of Vermont, Medical Alumni Building, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
48
|
Herrero-Jimenez P, Tomita-Mitchell A, Furth EE, Morgenthaler S, Thilly WG. Population risk and physiological rate parameters for colon cancer. The union of an explicit model for carcinogenesis with the public health records of the United States. Mutat Res 2000; 447:73-116. [PMID: 10686307 DOI: 10.1016/s0027-5107(99)00201-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relationship between the molecular mechanisms of mutagenesis and the actual processes by which most people get cancer is still poorly understood. One missing link is a physiologically based but quantitative model uniting the processes of mutation, cell growth and turnover. Any useful model must also account for human heterogeneity for inherited traits and environmental experiences. Such a coherent algebraic model for the age-specific incidence of cancer has been developing over the past 50 years. This development has been spurred primarily by the efforts of Nordling [N.O. Nordling, A new theory on the cancer-inducing mechanism, Br. J. Cancer 7 (1953) 68-72], Armitage and Doll [P. Armitage, R. Doll, The age distribution of cancer and a multi-stage theory of carcinogenesis, Br. J. Cancer 8 (1) (1954) 1-12; P. Armitage, R. Doll, A two-stage theory of carcinogenesis in relation to the age distribution of human cancer, Br. J. Cancer 9 (2) (1957) 161-169], and Moolgavkar and Knudson [S.H. Moolgavkar, A.G. Knudson Jr., Mutation and cancer: a model for human carcinogenesis. JNCI 66 (6) (1981) 1037-1052], whose work defined two rate-limiting stages identified with initiation and promotion stages in experimental carcinogenesis. Unfinished in these efforts was an accounting of population heterogeneity and a complete description of growth and genetic change during the growth of adenomas. In an attempt to complete a unified model, we present herein the first means to explicitly compute the essential parameters of the two-stage initiation-promotion model using colon cancer as an example. With public records from the 1930s to the present day, we first calculate the fraction at primary risk for each birth year cohort and note historical changes. We then calculate the product of rates for n initiation-mutations, the product of rates for m promotion-mutations and the average growth rate of the intermediate adenomatous colonies from which colon carcinomas arise. We find that the population fraction at primary risk for colon cancer risk was historically invariant at about 42% for the birth year cohorts from 1860 through 1930. This was true for each of the four cohorts we examined (European- and African-Americans of each gender). Additionally, the data indicate an historical increase in the initiation-mutation rates for the male cohorts and the promotion-mutation rates for the female cohorts. Interestingly, the calculated rates for initiation-mutations are in accord with mutation rates derived from observations of mutations in peripheral blood cells drawn from persons of different ages. Adenoma growth rates differed significantly between genders but were essentially historically invariant. In its present form, the model has also allowed us to calculate the rate of loss of heterozygosity (LOH) or loss of genomic imprinting (LOI) in adenomas to result in the high LOH/LOI fractions in tumors. But it has not allowed us to specify the number of events m required during promotion.
Collapse
Affiliation(s)
- P Herrero-Jimenez
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, 16-743, 21 Ames St., Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
49
|
Grant BW, Trombley LM, Hunter TC, Nicklas JA, O'Neill JP, Albertini RJ. HPRT mutations in vivo in human CD 34+ hematopoietic stem cells. Mutat Res 1999; 431:183-98. [PMID: 10635986 DOI: 10.1016/s0027-5107(99)00161-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The HPRT mutations in T lymphocytes are widely utilized as biomarkers of environmental exposure and effect. The HPRT gene detects a wide variety of mutation types, many of which are similar at the molecular level to those found in oncogenes in cancers. However, it remains to be determined whether the assay for mutations in T lymphocytes is reflective of mutagenic events in tissues or cells which have high frequencies of malignancy in humans. We now demonstrate that the HPRT gene can be utilized to detect mutations in myeloid stem cells, which are frequent progenitor cells of leukemias. This myeloid stem cell assay shows an age related increase in mutation at HPRT and also detects increases in mutant frequency (M-MF) in patients who have undergone chemotherapy. The myeloid mutants are confirmed to have mutations in the HPRT gene by DNA sequence analysis. Increases in M-MF are seen as expected in the clonally unstable myeloid stem cells of patients with myelodysplastic syndromes; however, unexpectedly these patients also have elevated T-lymphocyte mutant frequencies (T-MF). A good correlation is shown between M-MFs and T-MFs in the same patients. Thus, it appears that the T-lymphocyte assay, which is technically much less demanding than the myeloid assay, appears to faithfully represent the frequency of mutagenic events in the myeloid lineage.
Collapse
Affiliation(s)
- B W Grant
- Department of Medicine, Vermont Cancer Center & Genetic Toxicology Laboratory, University of Vermont, Burlington 05405, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Hou SM, Van Dam FJ, de Zwart F, Warnock C, Mognato M, Turner J, Podlutskaja N, Podlutsky A, Becker R, Barnett Y, Barnett CR, Celotti L, Davies M, Hüttner E, Lambert B, Tates AD. Validation of the human T-lymphocyte cloning assay--ring test report from the EU concerted action on HPRT mutation (EUCAHM). Mutat Res 1999; 431:211-21. [PMID: 10635988 DOI: 10.1016/s0027-5107(99)00164-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The T-cell cloning assay, which enables the enumeration and molecular analysis of 6-thioguanine resistant (HPRT-negative) mutant T-cells, has been extensively used for studying human somatic gene mutation in vivo. However, large inter-laboratory variations in the HPRT mutant frequency (MF) call for further investigation of inter-laboratory differences in the experimental methodology, and development of an optimal but easy uniform cloning protocol. As part of the EU Concerted Action on HPRT Mutation (EUCAHM), we have carried out two Ring tests for the T-cell cloning assay. For each test, duplicate and coded samples from three buffy coats were distributed to five laboratories for determination of MF using six different protocols. The results indicated a good agreement between split samples within each laboratory. However, both the cloning efficiencies (CEs) and MFs measured for the same blood donors showed substantial inter-laboratory variations. Also, different medium compositions used in one and the same laboratory resulted in a remarkable difference in the level of MF. A uniform operating protocol (UOP) was proposed and compared with the traditional protocols in the second Ring test. The UOP (preincubation) increased the CE in laboratories traditionally using preincubation, but decreased the CE in laboratories traditionally using priming. Adjusted for donor, use of different protocols contributed significantly to the overall variation in lnCE (P = 0.0004) and lnMF (P = 0.03), but there was no significant laboratory effect on the lnCE (P = 0.38) or lnMF (P = 0.14) produced by the UOP alone. Finally, a simplified version of the UOP using the serum-free medium X-Vivo 10 and PMA was tested in one laboratory, and found to produce a considerable increase in CE. This modified UOP needs to be further evaluated in order to be used for future databases on HPRT MFs in various populations.
Collapse
Affiliation(s)
- S M Hou
- Karolinska Institute, Department of Biosciences, CNT/NOVUM, Huddinge, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|