1
|
Bigge J, Koebbe LL, Giel AS, Bornholdt D, Buerfent B, Dasmeh P, Zink AM, Maj C, Schumacher J. Expression quantitative trait loci influence DNA damage-induced apoptosis in cancer. BMC Genomics 2024; 25:1168. [PMID: 39623312 PMCID: PMC11613471 DOI: 10.1186/s12864-024-11068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Genomic instability and evading apoptosis are two fundamental hallmarks of cancer and closely linked to DNA damage response (DDR). By analyzing expression quantitative trait loci (eQTL) upon cell stimulation (called exposure eQTL (e2QTL)) it is possible to identify context specific gene regulatory variants and connect them to oncological diseases based on genome-wide association studies (GWAS). RESULTS We isolate CD8+ T cells from 461 healthy donors and stimulate them with high doses of 5 different carcinogens to identify regulatory mechanisms of DNA damage-induced apoptosis. Across all stimuli, we find 5,373 genes to be differentially expressed, with 85% to 99% of these genes being suppressed. While upregulated genes are specific to distinct stimuli, downregulated genes are shared across conditions but exhibit enrichment in biological processes depending on the DNA damage type. Analysis of eQTL reveals 654 regulated genes across conditions. Among them, 47 genes are significant e2QTL, representing a fraction of 4% to 5% per stimulus. To unveil disease relevant genetic variants, we compare eQTL and e2QTL with GWAS risk variants. We identify gene regulatory variants for KLF2, PIP4K2A, GPR160, RPS18, ARL17B and XBP1 that represent risk variants for oncological diseases. CONCLUSION Our study highlights the relevance of gene regulatory variants influencing DNA damage-induced apoptosis in cancer. The results provide new insights in cellular mechanisms and corresponding genes contributing to inter-individual effects in cancer development.
Collapse
Affiliation(s)
- Jessica Bigge
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Laura L Koebbe
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Ann-Sophie Giel
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Dorothea Bornholdt
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Benedikt Buerfent
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Pouria Dasmeh
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | | | - Carlo Maj
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany
| | - Johannes Schumacher
- Philipps University of Marburg, Center for Human Genetics, Marburg, Germany.
| |
Collapse
|
2
|
Singh S, Yadav S, Cavallo C, Mourya D, Singh I, Kumar V, Shukla S, Shukla P, Chaudhary R, Maurya GP, Müller RLJ, Rohde L, Mishra A, Wolkenhauer O, Gupta S, Tripathi A. Sunset Yellow protects against oxidative damage and exhibits chemoprevention in chemically induced skin cancer model. NPJ Syst Biol Appl 2024; 10:23. [PMID: 38431714 PMCID: PMC10908785 DOI: 10.1038/s41540-024-00349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Skin cancer and other skin-related inflammatory pathologies are rising due to heightened exposure to environmental pollutants and carcinogens. In this context, natural products and repurposed compounds hold promise as novel therapeutic and preventive agents. Strengthening the skin's antioxidant defense mechanisms is pivotal in neutralizing reactive oxygen species (ROS) and mitigating oxidative stress. Sunset Yellow (SY) exhibits immunomodulatory characteristics, evidenced by its capacity to partially inhibit the secretion of proinflammatory cytokines, regulate immune cell populations, and modulate the activation of lymphocytes. This study aimed to investigate the antioxidant and anti-genotoxic properties of SY using in-silico, in vitro, and physiochemical test systems, and to further explore its potential role in 7,12-dimethylbenz(a) anthracene (DMBA)/ 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced two-stage skin carcinogenesis. In vitro experiments showed that pre-treatment of SY significantly enhanced the cell viability of HaCaT cells when exposed to tertiary-Butyl Hydrogen Peroxide (tBHP). This increase was accompanied by reduced ROS levels, restoration of mitochondrial membrane potential, and notable reduction in DNA damage in (SY + tBHP) treated cells. Mechanistic investigations using DPPH chemical antioxidant activity test and potentiometric titrations confirmed SY's antioxidant properties, with a standard reduction potential (E o ) of 0.211 V. Remarkably, evaluating the effect of topical application of SY in DMBA/TPA-induced two-step skin carcinogenesis model revealed dose-dependent decreases in tumor latency, incidence, yield, and burden over 21-weeks. Furthermore, computational analysis and experimental validations identified GSK3β, KEAP1 and EGFR as putative molecular targets of SY. Collectively, our findings reveal that SY enhances cellular antioxidant defenses, exhibits anti-genotoxic effects, and functions as a promising chemopreventive agent.
Collapse
Affiliation(s)
- Saurabh Singh
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, 226001, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Sarika Yadav
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, 226001, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Celine Cavallo
- University of Strasbourg, F-67081, Strasbourg, France
- Department of Systems Biology and Bioinformatics, University of Rostock, 18055, Rostock, Germany
| | - Durgesh Mourya
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
- Drug and Chemical Toxicology Group (FEST), CSIR- Indian Institute of Toxicology Research, 226001, Lucknow, India
| | - Ishu Singh
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, 226001, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Vijay Kumar
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, 226001, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Sachin Shukla
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, 226001, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR-National Botanical Research Institute, 226001, Lucknow, India
| | - Romil Chaudhary
- Center for Advanced Studies, Dr APJ Abdul Kalam Technical University, 226031, Lucknow, India
| | - Gyan Prakash Maurya
- Center for Advanced Studies, Dr APJ Abdul Kalam Technical University, 226031, Lucknow, India
| | | | - Lilly Rohde
- Department of Systems Biology and Bioinformatics, University of Rostock, 18055, Rostock, Germany
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, 226001, Lucknow, India
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18055, Rostock, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
- Chhattisgarh Swami Vivekananda Technical University, 491107, Bhilai, India
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18055, Rostock, Germany.
- Chhattisgarh Swami Vivekananda Technical University, 491107, Bhilai, India.
| | - Anurag Tripathi
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, 226001, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India.
| |
Collapse
|
3
|
Beltz J, Chernatynskaya A, Pfaff A, Ercal N. Protective effects of tiopronin on oxidatively challenged human lung carcinoma cells (A549). Free Radic Res 2020; 54:319-329. [PMID: 32363952 DOI: 10.1080/10715762.2020.1763332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tiopronin (MPG) is a thiol antioxidant drug that has been explored as a treatment for various oxidative stress-related disorders. However, many of its antioxidant capabilities remain untested in well-validated cell models. To more thoroughly understand the action of this promising pharmaceutical compound against acute oxidative challenge, A549 human lung carcinoma cells were exposed to tert-butyl hydroperoxide (tBHP) and treated with MPG. Analyses of cell viability, intracellular glutathione (GSH) levels, and the prevalence of reactive oxygen species (ROS) and mitochondrial superoxide were used to examine the effects of MPG on tBHP-challenged cells. MPG treatment suppressed intracellular ROS and mitochondrial superoxide and prevented tBHP-induced GSH depletion and apoptosis. These results indicate that MPG is effective at preserving redox homeostasis against acute oxidative insult in A549 cells if present at sufficient concentrations during exposure to oxidants such as tBHP. The effects of treatment gleaned from this study can inform experimental design for future in vivo work on the therapeutic potential of MPG.
Collapse
Affiliation(s)
- Justin Beltz
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO, USA
| | - Anna Chernatynskaya
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO, USA
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO, USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science & Technology, Rolla, MO, USA
| |
Collapse
|
4
|
A Hydroxypropyl Methylcellulose-Based Solid Dispersion of Curcumin with Enhanced Bioavailability and its Hepatoprotective Activity. Biomolecules 2019; 9:biom9070281. [PMID: 31311168 PMCID: PMC6681311 DOI: 10.3390/biom9070281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a polyphenol compound derived from the rhizomes of Curcuma longa that exhibits antioxidant, anti-inflammatory, anticancer, and antimicrobial properties. However, its low solubility in aqueous solutions, low absorption following oral administration, and rapid degradation limit its use as a functional food material. In this study, a hydroxypropyl methylcellulose-based solid dispersion of curcumin (DW-CUR 20) was prepared and its bioavailability was evaluated. In addition, its therapeutic efficacy as a hepatoprotective agent was investigated using the model of tert-butyl hydroperoxide (t-BHP)-induced hepatocyte damage. The rat plasma pharmacokinetic study showed that the oral curcumin bioavailability of DW-CUR 20 significantly increased compared to that of non-formulated curcumin. DW-CUR 20 showed a concentration-dependent hepatocyte protective effect on t-BHP-induced HepG2 cells. DW-CUR 20 inhibited the release of lactate dehydrogenase and decreased apoptosis-related proteins such as Poly (ADP-ribose) polymerase, cleaved caspase-7 and cleaved caspase-8 on t-BHP-treated HepG2 cells. These findings suggest that DW-CUR 20 could be a promising formulation for enhancing the therapeutic efficiency of curcumin and for improving the safety.
Collapse
|
5
|
Beneficial effects of δ-tocotrienol against oxidative stress in osteoblastic cells: studies on the mechanisms of action. Eur J Nutr 2019; 59:1975-1987. [PMID: 31280345 PMCID: PMC7351870 DOI: 10.1007/s00394-019-02047-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Purpose Natural antioxidants are considered as promising compounds in the prevention/treatment of osteoporosis. We studied the ability of purified δ-tocotrienol (δ-TT) isolated from a commercial palm oil (Elaeis guineensis) fraction to protect osteoblast MC3T3-E1 and osteocyte MLO-Y4 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage and the mechanisms involved in its protective action in MC3T3-E1. Methods MC3T3-E1 and MLO-Y4 cells were treated with δ-TT (1.25–20 µg/ml for 2 h) followed by t-BHP at 250 µM or 125 µM for 3 h, respectively. MTT test was used to measure cell viability. Apoptotic cells were stained with Hoechst-33258 dye. Intracellular ROS levels were measured by dichlorofluorescein CM-DCFA. The OPT fluorimetric assay was used to detect the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents. Results δ-TT significantly prevented the effects of t-BHP on cell viability and apoptosis reaching a maximum protective activity at 10 and 5 µg/ml in MC3T3-E1 and MLO-Y4 cells, respectively. This protective effect was due to a reduction of intracellular ROS levels and an increase in the defense systems shown by the increase in the GSH/GSSG. GSH loss induced by an inhibitor of GSH synthesis significantly reduced the δ-TT-positive effect on ROS levels. δ-TT prevention of oxidative damage was completely removed by combined treatment with the specific inhibitors of PI3K/AKT (LY294002) and Nrf2 (ML385). Conclusions The δ-TT protective effect against oxidative damage in MC3T3-E1 cells is due to a reduction of intracellular ROS levels and an increase of the GSH/GSSG ratio, and involves an interaction between the PI3K/Akt–Nrf2 signaling pathways.
Collapse
|
6
|
Veríssimo G, Bast A, Weseler AR. Monomeric and oligomeric flavanols maintain the endogenous glucocorticoid response in human macrophages in pro-oxidant conditions in vitro. Chem Biol Interact 2018; 291:237-244. [PMID: 29935159 DOI: 10.1016/j.cbi.2018.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Chronic inflammation and oxidative stress are (sub)cellular processes that enhance each other and contribute to the genesis of many systemic pathologies. The endogenous glucocorticoid cortisol plays an important role in the physiological termination of a pro-inflammatory immune response. However, in conditions of pronounced oxidative stress the anti-inflammatory action of cortisol is impaired. Since grape seed-derived monomeric and oligomeric flavan-3-ols (MOF) have been shown to attenuate both inflammation and oxidative stress in vitro and in humans, we hypothesized that these compounds are able to maintain the anti-inflammatory activity of cortisol in immune cells in a pro-oxidant environment. In a glucocorticoid resistance model using human monocytes (THP-1 cell line) differentiated into macrophage-like cells we observed that exposure to 1 mM tertiary butyl hydroperoxide (t-BuOOH) for 4 h significantly hampered the anti-inflammatory action of cortisol assessed as attenuation of the interleukin (IL)-8 production. Under these conditions, the effects of MOF were assessed on pro-inflammatory cytokines expression, cortisol's anti-inflammatory action and on the expression of 11β-hydroxysteroid dehydrogenase (11β-HSD) 1, which catalyzes intracellular conversion of cortisone to cortisol. MOF attenuated the gene expression of pro-inflammatory cytokines and prevented the decline of the anti-inflammatory effect of cortisol in the presence of t-BuOOH. MOF also maintained the activity of histone deacetylase in the cell nucleus which is essential for cortisol's molecular action to terminate the transcription of pro-inflammatory genes. Moreover, MOF prevented the down-regulation of 11β-HSD1 gene expression in this pro-oxidant cellular environment. Taken together our data suggest that MOF contribute to maintain the anti-inflammatory action of cortisol under pro-oxidant conditions via preservation of the intracellular availability of bioactive cortisol and cortisol-mediated termination of pro-inflammatory gene transcription. These findings provide novel insights in how MOF may enhance the ability to adapt, which is of particular relevance for their rational use as dietary supplement to maintain health.
Collapse
Affiliation(s)
- Gesiele Veríssimo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health and Life Sciences, Maastricht University, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health and Life Sciences, Maastricht University, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health and Life Sciences, Maastricht University, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Casati L, Pagani F, Braga PC, Lo Scalzo R, Sibilia V. Nasunin, a new player in the field of osteoblast protection against oxidative stress. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
8
|
Lignan glycosides from sesame meal exhibit higher oral bioavailability and antioxidant activity in rat after nano/submicrosizing. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Dkhil MA, Metwaly MS, Al-Quraishy S. Berberine improves the intestinal antioxidant status of laboratory mice, Mus musculus. Saudi J Biol Sci 2015; 24:1567-1573. [PMID: 30294226 PMCID: PMC6169441 DOI: 10.1016/j.sjbs.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/10/2015] [Accepted: 10/18/2015] [Indexed: 01/27/2023] Open
Abstract
Oral administration of berberine chloride to mice induced an obvious enhancement in jejunal health status as expressed by the significant reduction of apoptotic cells within the intestinal villi from 15.5 to 8.3 apoptotic cell/10 VCU. In addition, jejunal antioxidant biomarkers were significantly improved as revealed by the increase in the activities of catalase and glutathione peroxidase enzymes with a concurrent increase in reduced glutathione levels and total antioxidant capacity. Also, it was associated with a significant decrease in oxidative damage biomarkers of hydrogen peroxides, malondialdehyde, nitrite/nitrate, inducible nitric oxide synthase and protein carbonyl content. Moreover, BBR treatment induced a reduction in the pro-inflammatory cytokine, TNF-α by about 40%. It is highly recommended to use berberine as food supplements or as natural drug therapy to enhance the antioxidant status within the intestinal tissue.
Collapse
Affiliation(s)
- Mohamed A. Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Corresponding author at: Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia. Tel.: +966 14675754; fax: +966 14678514.
| | - Mahmoud S. Metwaly
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Acylated and unacylated ghrelin protect MC3T3-E1 cells against tert-butyl hydroperoxide-induced oxidative injury: pharmacological characterization of ghrelin receptor and possible epigenetic involvement. Amino Acids 2014; 46:1715-25. [PMID: 24705647 DOI: 10.1007/s00726-014-1734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/21/2014] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests a role for oxidative stress in age-related decrease in osteoblast number and function leading to the development of osteoporosis. This study was undertaken to investigate whether ghrelin, previously reported to stimulate osteoblast proliferation, counteracts tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in MC3T3-E1 osteoblastic cells as well as to characterize the ghrelin receptor (GHS-R) involved in such activity. Pretreatment with ghrelin (10(-7)-10(-11)M) significantly increased viability and reduced apoptosis of MC3T3-E1 cells cultured with t-BHP (250 μM) for three hours at the low concentration of 10(-9)M as shown by MTT assay and Hoechst-33258 staining. Furthermore, ghrelin prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization evidenced by the staining of the actin fibers with Phalloidin-FITC by reducing reactive oxygen species generation. The GHS-R type 1a agonist, EP1572 (10(-7)-10(-11)M), had no effect against t-BHP-induced cytotoxicity and pretreatment with the selective GHS-R1a antagonist, D-Lys(3)-GHRP-6 (10(-7)M), failed to remove ghrelin (10(-9) M)-protective effects against oxidative injury, indicating that GHS-R1a is not involved in such ghrelin activity. Accordingly, unacylated ghrelin (DAG), not binding GHS-R1a, displays the same protective actions of ghrelin against t-BHP-induced cytotoxicity. Preliminary observations indicate that ghrelin increased the trimethylation of lys4 on histones H3, a known epigenetic mark activator, which may regulate the expression of some genes limiting oxidative damage. In conclusion, our data demonstrate that ghrelin and DAG promote survival of MC3T3-E1 cell exposed to t-BHP-induced oxidative damage. Such effect is independent of GHS-R1a and is likely mediated by a common ghrelin/DAG binding site.
Collapse
|
11
|
Comparison of biological processes induced in HepG2 cells by tert-butyl hydroperoxide (t-BHP) and hydroperoxide (H2O2): The influence of carvacrol. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:15-22. [DOI: 10.1016/j.mrgentox.2013.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/01/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022]
|
12
|
Zhao BS, Zhang G, Zeng S, He C, Chen PR. Probing subcellular organic hydroperoxide formation via a genetically encoded ratiometric and reversible fluorescent indicator. Integr Biol (Camb) 2013; 5:1485-9. [DOI: 10.1039/c3ib40209f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Behl M, Kadiiska MB, Hejtmancik MR, Vasconcelos D, Chhabra RS. Subacute oral and dermal toxicity of tert-butyl hydroperoxide in Fischer F344/N rats and B6C3F1 mice. Cutan Ocul Toxicol 2012; 31:204-13. [PMID: 22369679 DOI: 10.3109/15569527.2011.641194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tert-butyl hydroperoxide (TBHP) is a catalyst frequently used in oxidation and sulfonation reactions in the plastics industry. Since the toxicological evaluation of TBHP remains unknown, the National Toxicology Program (NTP) designed studies to characterize and compare TBHP toxicity by the dermal and oral (gavage) routes in male and female Fischer 344 rats and B6C3F1 mice in 14-day exposures. Rats and mice were administered TBHP at 22, 44, 88, 176 or 352 mg/kg in 0.5% aqueous methylcellulose for the gavage studies. In the dermal studies, mice were administered the same doses as above, while rats were administered four doses (22, 44, 88, 176 mg/kg) in 50% aqueous acetone. Results from the gavage studies revealed treatment-related decreases in survival in male rats and body weights in both male and female rats in the 352 mg/kg group. Clinical signs included post-treatment lethargy, thinness, abnormal breathing, ruffled fur, and/or ataxia which occurred sporadically. The male mice showed a statistically significant decrease in body weight in the 44, 88, 176, and 352 mg/kg groups. The major target organs of toxicity were the forestomach in male and female rats and mice, and the esophagus in male and female rats and in male mice. In addition, there was an increase in the absolute and relative liver weight in female mice with hepatocellular hypertrophy in the top-dose group only. Results from spin trapping experiments revealed the presence of electron paramagnetic resonance signals from radical adducts in the blood and organic extracts of the liver and kidneys of rats treated by gavage with 176 mg/kg TBHP, suggesting the involvement of free- radical generation. The no observed adverse effect level (NOAEL) was considered to be 22 mg/kg in rats and male mice, and 44 mg/kg in female mice. In the dermal studies, there was no effect on survival, body weight, or organ weights in either rats or mice. TBHP administration at the site of application resulted in dermal irritation, hyperkeratosis, hyperplasia, and/or inflammation of the epidermis and inflammation of the dermis at 176 mg/kg and above in male and female rats. Dermal irritation at the site of application was noted in all the mice exposed to 352 mg/kg TBHP. Histopathological lesions in the epidermis and dermis were seen in the 88-352 mg/kg males and in the 176-352 mg/kg females. The NOAEL was found to be 88 mg/kg for male rats and female mice, and 44 mg/kg for female rats and male mice. In conclusion, these studies demonstrate that TBHP is metabolized to free radicals and is a contact irritant affecting skin by the dermal route of exposure, and forestomach and esophagus by oral administration. There was no evidence of systemic absorption by the dermal route of exposure based on lack of pathological findings (Supported by National Institute of Environmental Health Sciences Contract No. N01-ES-65406).
Collapse
Affiliation(s)
- Mamta Behl
- Division of the National Toxicology Program, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
14
|
Prevention of oxidative stress in Chang liver cells by gallic acid-grafted-chitosans. Carbohydr Polym 2012; 87:876-880. [DOI: 10.1016/j.carbpol.2011.08.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/21/2022]
|
15
|
Gelin A, Redrejo-Rodríguez M, Laval J, Fedorova OS, Saparbaev M, Ishchenko AA. Genetic and biochemical characterization of human AP endonuclease 1 mutants deficient in nucleotide incision repair activity. PLoS One 2010; 5:e12241. [PMID: 20808930 PMCID: PMC2923195 DOI: 10.1371/journal.pone.0012241] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 07/25/2010] [Indexed: 11/19/2022] Open
Abstract
Background Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair enzyme involved in both base excision repair (BER) and nucleotide incision repair (NIR) pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5′ to a number of oxidatively damaged bases. At present, physiological relevance of the NIR pathway is fairly well established in E. coli, but has yet to be elucidated in human cells. Methodology/Principal Finding We identified amino acid residues in the APE1 protein that affect its function in either the BER or NIR pathway. Biochemical characterization of APE1 carrying single K98A, R185A, D308A and double K98A/R185A amino acid substitutions revealed that all mutants exhibited greatly reduced NIR and 3′→5′ exonuclease activities, but were capable of performing BER functions to some extent. Expression of the APE1 mutants deficient in the NIR and exonuclease activities reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to an alkylating agent, methylmethanesulfonate, suggesting that our APE1 mutants are able to repair AP sites. Finally, the human NIR pathway was fully reconstituted in vitro using the purified APE1, human flap endonuclease 1, DNA polymerase β and DNA ligase I proteins, thus establishing the minimal set of proteins required for a functional NIR pathway in human cells. Conclusion/Significance Taken together, these data further substantiate the role of NIR as a distinct and separable function of APE1 that is essential for processing of potentially lethal oxidative DNA lesions.
Collapse
Affiliation(s)
- Aurore Gelin
- CNRS UMR8126, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Modesto Redrejo-Rodríguez
- CNRS UMR8200 Groupe «Réparation de l′ADN», Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Jacques Laval
- CNRS UMR8200 Groupe «Réparation de l′ADN», Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Murat Saparbaev
- CNRS UMR8200 Groupe «Réparation de l′ADN», Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Alexander A. Ishchenko
- CNRS UMR8200 Groupe «Réparation de l′ADN», Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
16
|
Daley JM, Zakaria C, Ramotar D. The endonuclease IV family of apurinic/apyrimidinic endonucleases. Mutat Res 2010; 705:217-27. [PMID: 20667510 DOI: 10.1016/j.mrrev.2010.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/03/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are versatile DNA repair enzymes that possess a variety of nucleolytic activities, including endonuclease activity at AP sites, 3' phosphodiesterase activity that can remove a variety of ligation-blocking lesions from the 3' end of DNA, endonuclease activity on oxidative DNA lesions, and 3' to 5' exonuclease activity. There are two families of AP endonucleases, named for the bacterial counterparts endonuclease IV (EndoIV) and exonuclease III (ExoIII). While ExoIII family members are present in all kingdoms of life, EndoIV members exist in lower organisms but are curiously absent in plants, mammals and some other vertebrates. Here, we review recent research on these enzymes, focusing primarily on the EndoIV family. We address the role(s) of EndoIV members in DNA repair and discuss recent findings from each model organism in which the enzymes have been studied to date.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, 5415 de L'Assomption, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
17
|
Daley JM, Wilson TE, Ramotar D. Genetic interactions between HNT3/Aprataxin and RAD27/FEN1 suggest parallel pathways for 5' end processing during base excision repair. DNA Repair (Amst) 2010; 9:690-9. [PMID: 20399152 DOI: 10.1016/j.dnarep.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/26/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Mutations in Aprataxin cause the neurodegenerative syndrome ataxia oculomotor apraxia type 1. Aprataxin catalyzes removal of adenosine monophosphate (AMP) from the 5' end of a DNA strand, which results from an aborted attempt to ligate a strand break containing a damaged end. To gain insight into which DNA lesions are substrates for Aprataxin action in vivo, we deleted the Saccharomyces cerevisiae HNT3 gene, which encodes the Aprataxin homolog, in combination with known DNA repair genes. While hnt3Delta single mutants were not sensitive to DNA damaging agents, loss of HNT3 caused synergistic sensitivity to H(2)O(2) in backgrounds that accumulate strand breaks with blocked termini, including apn1Delta apn2Delta tpp1Delta and ntg1Delta ntg2Delta ogg1Delta. Loss of HNT3 in rad27Delta cells, which are deficient in long-patch base excision repair (LP-BER), resulted in synergistic sensitivity to H(2)O(2) and MMS, indicating that Hnt3 and LP-BER provide parallel pathways for processing 5' AMPs. Loss of HNT3 also increased the sister chromatid exchange frequency. Surprisingly, HNT3 deletion partially rescued H(2)O(2) sensitivity in recombination-deficient rad51Delta and rad52Delta cells, suggesting that Hnt3 promotes formation of a repair intermediate that is resolved by recombination.
Collapse
Affiliation(s)
- James M Daley
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | | | | |
Collapse
|
18
|
Geetha S, Ram MS, Sharma SK, Ilavazhagan G, Banerjee PK, Sawhney RC. Cytoprotective and antioxidant activity of seabuckthorn (Hippophae rhamnoides L.) flavones against tert-butyl hydroperoxide-induced cytotoxicity in lymphocytes. J Med Food 2009; 12:151-8. [PMID: 19298209 DOI: 10.1089/jmf.2007.0612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to determine the cytoprotective activity of flavones of seabuckthorn (Hippophae rhamnoides L.) against tert-butyl hydroperoxide (tert-BOOH), used as an oxidant to induce oxidative damage, with lymphocytes as the model system. Addition of tert-BOOH (250 microM) to the cells resulted in enhanced cytotoxicity and free radical production. The intracellular calcium levels, caspase activity, and apoptosis were significantly increased following tert-BOOH treatment. Seabuckthorn flavones at the concentration of 100 microg/mL significantly inhibited tert-BOOH-induced cytotoxicity and free radical production and also restored the antioxidant status to that of control cells. Seabuckthorn flavones also significantly restricted tert-BOOH-induced apoptosis by decreasing intracellular calcium levels and caspase activity. The extract also decreased tert-BOOH-induced formation of DNA breaks by 30%. These observations suggest that the flavones of seabuckthorn have marked cytoprotective properties, which could be attributed to the antioxidant activity.
Collapse
Affiliation(s)
- S Geetha
- Defence Institute of Physiology & Allied Sciences, Delhi, India.
| | | | | | | | | | | |
Collapse
|
19
|
Blanvillain R, Kim JH, Wu S, Lima A, Ow DW. OXIDATIVE STRESS 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:654-65. [PMID: 18980652 DOI: 10.1111/j.1365-313x.2008.03717.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A cDNA expression library from Brassica juncea was introduced into the fission yeast Schizosaccharomyces pombe to select for transformants tolerant to cadmium. Transformants expressing OXIDATIVE STRESS 3 (OXS3) or OXS3-Like cDNA exhibited enhanced tolerance to a range of metals and oxidizing chemicals. OXS3 belongs to a family of proteins that share a highly conserved domain corresponding to a putative N-acetyltransferase or thioltransferase catalytic site. Mutations within this conserved domain abolished the ability of Arabidopsis thaliana OXS3 to enhance stress tolerance in S. pombe, indicating a role in stress tolerance for the presumptive catalytic domain. A stress-sensitive mutant of AtOXS3 and enhanced tolerance of overexpression lines support the role of OXS3 in stress tolerance. The expression of tagged B. juncea and A. thaliana OXS3 proteins in plant cells revealed a subnuclear speckling pattern related to the nucleosome in discrete parts of the chromatin. It is possible that OXS3 might act as a chromatin remodeling factor for the stress response.
Collapse
Affiliation(s)
- Robert Blanvillain
- Plant Gene Expression Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | |
Collapse
|
20
|
Kaur G, Athar M, Alam MS. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages. Chem Biol Interact 2007; 171:272-82. [PMID: 18076871 DOI: 10.1016/j.cbi.2007.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 10/04/2007] [Accepted: 10/15/2007] [Indexed: 11/16/2022]
Abstract
The present study reports the antioxidant activity of ethanolic extract of Quercus infectoria galls. The antioxidant potency of galls was investigated employing several established in vitro model systems. Their protective efficacy on oxidative modulation of murine macrophages was also explored. Gall extract was found to contain a large amount of polyphenols and possess a potent reducing power. HPTLC analysis of the extract suggested it to contain 19.925% tannic acid (TA) and 8.75% gallic acid (GA). The extract potently scavenged free radicals including DPPH (IC(50)~0.5 microg/ml), ABTS (IC(50)~1 microg/ml), hydrogen peroxide (H(2)O(2)) (IC(50)~2.6 microg/ml) and hydroxyl (*OH) radicals (IC(50)~6 microg/ml). Gall extract also chelated metal ions and inhibited Fe(3+) -ascorbate-induced oxidation of protein and peroxidation of lipids. Exposure of rat peritoneal macrophages to tertiary butyl hydroperoxide (tBOOH) induced oxidative stress in them and altered their phagocytic functions. These macrophages showed elevated secretion of lysosomal hydrolases, and attenuated phagocytosis and respiratory burst. Activity of macrophage mannose receptor (MR) also diminished following oxidant exposure. Pretreatment of macrophages with gall extract preserved antioxidant armory near to control values and significantly protected against all the investigated functional mutilations. MTT assay revealed gall extract to enhance percent survival of tBOOH exposed macrophages. These results indicate that Q. infectoria galls possess potent antioxidant activity, when tested both in chemical as well as biological models.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Medical Elementology & Toxicology, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | | | | |
Collapse
|
21
|
Plazar J, Filipic M, Groothuis GMM. Antigenotoxic effect of Xanthohumol in rat liver slices. Toxicol In Vitro 2007; 22:318-27. [PMID: 17981005 DOI: 10.1016/j.tiv.2007.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/16/2007] [Accepted: 09/17/2007] [Indexed: 01/08/2023]
Abstract
Xanthohumol (XN), the principal prenylated flavonoid in the hop plant, Humulus lupulus L., is suggested to have cancer chemo-preventive activities. Its mechanisms of protection have been proposed to be inhibition of metabolic activation, induction of detoxifying enzymes and antioxidant activity. Our previous study showed that XN efficiently protected human hepatoma HepG2 cells against the genotoxic effects of two pro-carcinogens (2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and benzo(a)pyrene (BaP)) that are dependent on cytochrome P450 (CYP) mediated metabolic activation, and against genotoxic effects of the oxidative damage inducing tert-butyl hydroperoxide (tBOOH). In the present study, we investigated the antigenotoxic effects of XN in precision-cut rat liver slices. Using the comet assay, we detected that at non-cytotoxic concentrations (0.01-10 microM) XN completely prevented IQ and BaP-induced DNA damage. The protective effects of XN against tBOOH-induced DNA damage was less efficient; the maximal 50% reduction of DNA damage was observed at 0.1 microM XN. In rat microsomes, XN (0.001-10 microM) inhibited CYP1A activity (7-ethoxycoumarin (7EC) de-ethylation) in a concentration-dependent manner. Surprisingly, no inhibition of 7EC metabolism by XN was observed in rat liver slices. XN also did not have any influence on mRNA expression of the enzymes CYP1A2 and quinone reductase (QR). These results indicate that inhibition of metabolic activation of pro-carcinogens by CYP1A is not likely to be the mechanism of its antigenotoxic action. In conclusion, XN efficiently protects DNA against genotoxicity of IQ and BaP and against oxidative DNA damage. Although the mechanism of the protective effect of XN is unclear, our results indicate that XN exhibits antigenotoxic effects in fresh liver tissue and provide additional evidence for the cancer preventive potential of XN.
Collapse
Affiliation(s)
- Janja Plazar
- Department of Pharmacokinetics and Drug Delivery, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
22
|
Plazar J, Hreljac I, Pirih P, Filipic M, Groothuis GMM. Detection of xenobiotic-induced DNA damage by the comet assay applied to human and rat precision-cut liver slices. Toxicol In Vitro 2007; 21:1134-42. [PMID: 17459656 DOI: 10.1016/j.tiv.2007.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 02/21/2007] [Accepted: 02/27/2007] [Indexed: 11/18/2022]
Abstract
The comet assay is a simple and sensitive method for measuring DNA damage at the level of individual cells and is extensively used in genotoxicity studies. It is commonly applied to cultured cells. The aim of this study was to apply the comet assay for use in fresh liver tissue, where metabolic activity, all cell types and tissue architecture are preserved. The response of liver slices to genotoxic agents was tested with the reactive oxygen species generating tert-butyl hydroperoxide (tBOOH, 0.1-2 mM), [corrected] and the pro-carcinogens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ, 0.5-2 mM) and benzo(a)pyrene (BaP, 10-100 microM). Dose-dependent DNA damage was observed and compared to HepG2 cells. At non-cytotoxic concentrations of carcinogens, human liver slices were more sensitive to tBOOH than rat liver slices, while no significant difference was found for BaP and IQ. Human liver slices were more sensitive to IQ than HepG2 cells, equally sensitive to BaP and less to tBOOH. Control slices showed low levels of DNA damage, which did not increase during 24 h preservation (0 degrees C) or 48 h culturing (37 degrees C). In conclusion, the comet assay that we applied for measuring DNA damage in precision-cut liver slices is an useful tool to study genotoxic effects induced by various potential genotoxicants, allowing for detection of species differences in susceptibility to carcinogens.
Collapse
Affiliation(s)
- Janja Plazar
- Department of Pharmacokinetics and Drug Delivery, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Prasad D, Sai Ram M, Sawhney RC, Ilavazhagan G, Banerjee PK. Mechanism of tert-butylhydroperoxide induced cytotoxicity in U-937 macrophages by alteration of mitochondrial function and generation of ROS. Toxicol In Vitro 2007; 21:846-54. [PMID: 17419000 DOI: 10.1016/j.tiv.2007.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 02/08/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
tert-Butylhydroperoxide has been reported to inhibit growth and induce apoptosis in number of cell types, but little is known about the molecular mechanism mediating these effects. In the present study, we determined the molecular pathways that lead to apoptosis after treatment of cells with t-BOOH. The cells were exposed to different concentrations of t-BOOH (100-750 microM) for 1-4 h and various parameters such as cytotoxicity, ROS (reactive oxygen species) generation, MMP (mitochondrial membrane potential), intracellular Ca++ levels and expression of various proteins involved in apoptosis were determined. Exposure of U-937 cells to t-BOOH induced cytotoxicity in a time dependent manner with about 50% toxicity at 400 microM t-BOOH in 4h. t-BOOH treatment resulted in a time dependent increase in reactive oxygen species levels, Ca++ influx and annexin V positive cells. There was a significant fall in MMP following exposure to t-BOOH with time. t-BOOH treatment of U-937 cells leads to apoptosis, which is accompanied by activation of caspase-3. The caspase-3 inhibitor (Ac-DEVD-CHO) inhibits the cytotoxicity induced by t-BOOH, indicating a direct link between caspase-3 activation and cell death. This activation of apoptosis is accompanied by release of cytochrome c, down regulation of anti-apoptotic protein Bcl-2 levels with concurrent increase in pro-apoptotic proteins Bax and Bad levels. These observations indicate that t-BOOH induces cell death in U-937 macrophages by apoptosis, which is mediated through mitochondrial pathway.
Collapse
|
24
|
Rosa RM, Moura DJ, Melecchi MIS, dos Santos RS, Richter MF, Camarão EB, Henriques JAP, de Paula Ramos ALL, Saffi J. Protective effects of Hibiscus tiliaceus L. methanolic extract to V79 cells against cytotoxicity and genotoxicity induced by hydrogen peroxide and tert-butyl-hydroperoxide. Toxicol In Vitro 2007; 21:1442-52. [PMID: 17683899 DOI: 10.1016/j.tiv.2007.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Plants of the genus Hibiscus thrives produce a diversity of molecules with bioactive properties. In a previous study of Hibiscus tiliaceus L. methanolic extract (HME) using bacteria and yeast, as test media, it has been shown that HME strongly inhibited the mutagenic action of H(2)O(2) or tert-butyl-hydroperoxide (t-BHP). Here, our interest is to evaluate the genotoxicity and the antigenotoxic/antimutagenic properties of HME using oxidative challenge with H(2)O(2) and t-BHP in V79 cells. We determined cytotoxicity using clonal survival assay; evaluated DNA damage using the comet assay and the micronucleus test in binucleated cells besides of the lipid peroxidation degree and the reduced glutathione content. We examined the ability of HME in quenching hydroxyl radical by means of a HPLC-based method utilizing the hypoxanthine/xanthine oxidase assay. At concentrations ranging from 0.001 to 0.1mg/mL, HME was not cytotoxic, genotoxic or mutagenic. Treatment with non-cytotoxic concentrations of HME increased cell survival after H(2)O(2) and t-BHP exposure and prevented DNA damage. The pre-treatment with HME also was able to decrease the mutagenic effect of these genotoxins, evaluated using the micronucleus test. HME prevented the increase in lipid peroxidation and decrease in GSH content in response to the oxidative challenge. Therefore, the ability in preventing against H(2)O(2)- and t-BHP-induced GSH depletion and lipid peroxidation was probably a major contribution to the cytoprotective effects. Moreover, HME acts as a hydroxyl radical scavenger. In summary, HME did not have a harmful or inhibitory effect on the growth of V79 cells and presented antioxidant activity, consequently, both antigenotoxic and antimutagenic effects against oxidative DNA damage.
Collapse
Affiliation(s)
- Renato Moreira Rosa
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Plazar J, Zegura B, Lah TT, Filipic M. Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutat Res 2007; 632:1-8. [PMID: 17590382 DOI: 10.1016/j.mrgentox.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/26/2007] [Accepted: 03/17/2007] [Indexed: 11/16/2022]
Abstract
Xanthohumol is the major prenylated flavonoid present in the hop plant Humulus lupulus L. (Cannabinaceae) and a common ingredient of beer. Recently, xanthohumol has gained considerable interest due to its potential cancer chemo-preventive effect. The aim of this study was to reveal the possible anti-genotoxic activity of xanthohumol in metabolically competent human hepatoma HepG2 cells, by use of the comet assay. Xanthohumol by itself was neither cytotoxic nor genotoxic to the cells at concentrations below 10microM. However, a significant protective effect against the pro-carcinogens benzo(a)pyrene (BaP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was observed at concentrations as low as 0.01microM. In cells treated with xanthohumol in combination with tert-butyl hydroperoxide (t-BOOH) - an inducer of reactive oxygen species (ROS) - no protective effect was observed and xanthohumol also showed no significant scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. On the other hand, HepG2 cells pre-treated with xanthohumol showed significantly reduced levels of t-BOOH-induced DNA strand breaks, indicating that its protective effect is mediated by induction of cellular defence mechanisms against oxidative stress. As xanthohumol is known to be an effective inhibitor of cytochrome P450 enzymes and an inducer of NAD(P)H: quinone reductase (QR), our findings can be explained by an inhibition of metabolic activation of pro-carcinogens and/or by induction of carcinogen-detoxifying and anti-oxidative enzymes by xanthohumol. These results provide evidence that xanthohumol displays anti-genotoxic activity in metabolically competent human cells.
Collapse
Affiliation(s)
- Janja Plazar
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
26
|
MADURAWE RAPTID, LUMPKIN JANICEA. QUANTITATION OF PROTEIN DAMAGE IN METAL ION-CATALYZED OXIDATION SYSTEMS. CHEM ENG COMMUN 2007. [DOI: 10.1080/00986449708936630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- RAPTI D. MADURAWE
- a Department of Chemical and Biochemical Eng , University of Maryland , ECS Building-Suite 101, 1000 Hilltop Circle, Baltimore County, Baltimore, MD, 21250
| | - JANICE A. LUMPKIN
- a Department of Chemical and Biochemical Eng , University of Maryland , ECS Building-Suite 101, 1000 Hilltop Circle, Baltimore County, Baltimore, MD, 21250
| |
Collapse
|
27
|
Lumjiaktase P, Diggle SP, Loprasert S, Tungpradabkul S, Daykin M, Cámara M, Williams P, Kunakorn M. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology (Reading) 2006; 152:3651-3659. [PMID: 17159218 DOI: 10.1099/mic.0.29226-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a fatal human tropical disease. The non-specific DNA-binding protein DpsA plays a key role in protecting B. pseudomallei from oxidative stress mediated, for example, by organic hydroperoxides. The regulation of dpsA expression is poorly understood but one possibility is that it is regulated in a cell population density-dependent manner via N-acylhomoserine lactone (AHL)-dependent quorum sensing (QS) since a lux-box motif has been located within the dpsA promoter region. Using liquid chromatography and tandem mass spectrometry, it was first established that B. pseudomallei strain PP844 synthesizes AHLs. These were identified as N-octanoylhomoserine lactone (C8-HSL), N-(3-oxooctanoyl)homoserine lactone (3-oxo-C8-HSL), N-(3-hydroxyoctanoyl)-homoserine lactone (3-hydroxy-C8-HSL), N-decanoylhomoserine lactone (C10-HSL), N-(3-hydroxydecanoyl) homoserine lactone (3-hydroxy-C10-HSL) and N-(3-hydroxydodecanoyl)homoserine lactone (3-hydroxy-C12-HSL). Mutation of the genes encoding the LuxI homologue BpsI or the LuxR homologue BpsR resulted in the loss of C8-HSL and 3-oxo-C8-HSL synthesis, demonstrating that BpsI was responsible for directing the synthesis of these AHLs only and that bpsI expression and hence C8-HSL and 3-oxo-C8-HSL production depends on BpsR. In bpsI, bpsR and bpsIR mutants, dpsA expression was substantially down-regulated. Furthermore, dpsA expression in Escherichia coli required both BpsR and C8-HSL. bpsIR-deficient mutants exhibited hypersensitivity to the organic hydroperoxide tert-butyl hydroperoxide by displaying a reduction in cell viability which was restored by provision of exogenous C8-HSL (bpsI mutant only), by complementation with the bpsIR genes or by overexpression of dpsA. These data indicate that in B. pseudomallei, QS regulates the response to oxidative stress at least in part via the BpsR/C8-HSL-dependent regulation of DpsA.
Collapse
Affiliation(s)
- Putthapoom Lumjiaktase
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Stephen P Diggle
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Suvit Loprasert
- Department Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Sciences, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Mavis Daykin
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Miguel Cámara
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mongkol Kunakorn
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
28
|
Dipti P, Sharma SK, Sairam M, Ilavazhagan G, Sawhney RC, Banerjee PK. Flavonoids protect U-937 macrophages against tert-butylhydroperoxide induced oxidative injury. Food Chem Toxicol 2006; 44:1024-30. [PMID: 16497424 DOI: 10.1016/j.fct.2005.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 12/21/2005] [Indexed: 11/23/2022]
Abstract
The study was carried out to determine the relative efficacies of polyphenolic flavonoids, quercetin, catechin and epicatechin against tert-BOOH induced oxidative stress in human macrophage, U-937 cell line. Exposure of the cells to tert-BOOH oxidative stress resulted in a significant increase in cytotoxicity and reactive oxygen species (ROS) generation. Further, a significant decrease in mitochondrial membrane potential and increase in lipid peroxidation and DNA damage was observed in cells exposed to tert-BOOH. Pretreatment of cells with quercetin, catechin and epicatechin significantly inhibited tert-BOOH induced cytotoxicity by inhibiting ROS generation. The flavonoids inhibited DNA damage induced by tert-BOOH and preserved the mitochondrial transmembrane potential significantly. Epicatechin and catechin were found to be more efficient than quercetin in inhibiting tert-BOOH induced cellular damage.
Collapse
|
29
|
O'Brien NM, Carpenter R, O'Callaghan YC, O'Grady MN, Kerry JP. Modulatory Effects of Resveratrol, Citroflavan-3-ol, and Plant-Derived Extracts on Oxidative Stress in U937 Cells. J Med Food 2006; 9:187-95. [PMID: 16822204 DOI: 10.1089/jmf.2006.9.187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phytochemicals and plant extracts, present in fruit, vegetables, plants, herbs, and beverages, have been shown to have antioxidant potential that may modulate the etiology of certain chronic diseases. The objective of the present study was to determine the concentration of compound that inhibited cell growth by 50% (IC(50)) of a range of phytochemicals and plant extracts and to investigate their antioxidant and genoprotective effects under conditions of oxidative stress in U937 cells. Two phytochemicals-resveratrol and citroflavan-3-ol-and four plant extracts-grapeseed polyphenols, olive leaf extract, bearberry, and Echinacea purpurea-were examined. Viability was assessed by the fluorescein diacetate/ethidium bromide assay. The IC(50) was calculated. To examine their antioxidant and genoprotective effects, U937 cells were pretreated with the test compounds at levels below the IC(50) and then exposed to oxidants: 0.5 microM etoposide or 100 microM hydrogen peroxide (H(2)O(2)) or 400 microM tert-butylhydroperoxide (tBOOH). Cellular reduced glutathione levels were measured as an indicator of oxidative stress. DNA damage was assessed by the alkaline single-cell gel electrophoresis assay or comet assay. Resveratrol demonstrated the highest IC50 value of 13.7 microg/mL, with Echinacea the lowest at 9,400 microg/mL. Etoposide-induced oxidative stress was strongly reduced by olive leaf extract and bearberry. Grapeseed polyphenols and bearberry strongly protected against H2O2- and tBOOH-induced DNA damage. In conclusion, these results provide evidence that non-nutrient dietary constituents may act as significant bioactive compounds and that plant extracts, such as bearberry, grapeseed polyphenols, and olive leaf extract, strongly protect against oxidative stress.
Collapse
Affiliation(s)
- Nora M O'Brien
- Department of Food and Nutritional Sciences, University College Cork, Cork, Republic of Ireland
| | | | | | | | | |
Collapse
|
30
|
Ishchenko AA, Deprez E, Maksimenko A, Brochon JC, Tauc P, Saparbaev MK. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles. Proc Natl Acad Sci U S A 2006; 103:2564-9. [PMID: 16473948 PMCID: PMC1413785 DOI: 10.1073/pnas.0508582103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multifunctional DNA repair enzymes apurinic/apyrimidinic (AP) endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases in the base excision repair pathway. Alternatively, in the nucleotide incision repair (NIR) pathway, the same AP endonucleases incise DNA 5' of a number of oxidatively damaged bases. At present, the physiological relevance of latter function remains unclear. Here, we report genetic dissection of AP endonuclease functions in base excision repair and NIR pathways. Three mutants of Escherichia coli endonuclease IV (Nfo), carrying amino acid substitutions H69A, H109A, and G149D have been isolated. All mutants were proficient in the AP endonuclease and 3'-repair diesterase activities but deficient in the NIR. Analysis of metal content reveals that all three mutant proteins have lost one of their intrinsic zinc atoms. Expression of the nfo mutants in a repair-deficient strain of E. coli complemented its hypersensitivity to alkylation but not to oxidative DNA damage. The differential drug sensitivity of the mutants suggests that the NIR pathway removes lethal DNA lesions generated by oxidizing agents. To address the physiological relevance of the NIR pathway in human cells, we used the fluorescence quenching mechanism of molecular beacons. We show that in living cells a major human AP endonuclease, Ape1, incises DNA containing alpha-anomeric 2'-deoxyadenosine, indicating that the intracellular environment supports NIR activity. Our data establish that NIR is a distinct and separable function of AP endonucleases essential for handling lethal oxidative DNA lesions.
Collapse
Affiliation(s)
- Alexander A. Ishchenko
- Groupe Réparation de l’ADN, Unité Mixte de Recherche 8126, Centre National de la Recherche Scientifique, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Eric Deprez
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée, Unité Mixte de Recherche 8113, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Cachan, 94235 Cachan Cedex, France; and
| | - Andrei Maksimenko
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée, Unité Mixte de Recherche 8113, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Cachan, 94235 Cachan Cedex, France; and
- BioAlliance Pharma, 59, Boulevard du Général Martial Valin, 75015 Paris, France
| | - Jean-Claude Brochon
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée, Unité Mixte de Recherche 8113, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Cachan, 94235 Cachan Cedex, France; and
| | - Patrick Tauc
- Laboratoire de Biotechnologie et Pharmacologie Génétique Appliquée, Unité Mixte de Recherche 8113, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Cachan, 94235 Cachan Cedex, France; and
| | - Murat K. Saparbaev
- Groupe Réparation de l’ADN, Unité Mixte de Recherche 8126, Centre National de la Recherche Scientifique, Institut Gustave Roussy, 94805 Villejuif Cedex, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Sohn JH, Han KL, Lee SH, Hwang JK. Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biol Pharm Bull 2006; 28:1083-6. [PMID: 15930750 DOI: 10.1248/bpb.28.1083] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protective effect of panduratin A, isolated from Kaempferia pandurata ROXB. (Zingiberaceae), against tert-butylhydroperoxide (t-BHP)-induced cytotoxicity was investigated in a human hepatoma cell line, HepG2. The tetrazolium dye colorimetric test (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) was used to monitor cytotoxicity. Lipid peroxidation [malondialdehyde (MDA) formation] and intracellular glutathione level were estimated by fluorometric methods. Intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA). Panduratin A significantly reduced the cell growth inhibition caused by t-BHP. Furthermore, panduratin A ameliorated lipid peroxidation as demonstrated by a reduction in MDA formation, and attenuated glutathione (GSH) depletion in a dose-dependent manner. It was also found that panduratin A reduced intracellular ROS formation caused by t-BHP. These results strongly suggest that panduratin A has significant protective ability against oxidative damage caused by reactive intermediates.
Collapse
Affiliation(s)
- Jong Hee Sohn
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | |
Collapse
|
32
|
Prasad D, Sai Ram M, Kumar R, Sawhney RC, Sharma SK, Ilavazhagan G, Kumar D, Banerjee PK. Cytoprotective and antioxidant activity of Rhodiola imbricata against tert-butyl hydroperoxide induced oxidative injury in U-937 human macrophages. Mol Cell Biochem 2005; 275:1-6. [PMID: 16335781 DOI: 10.1007/s11010-005-7637-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study reports cytoprotective and antioxidant activity of aqueous and alcoholic extracts of Rhodiola imbricata rhizome on tert-butyl hydroperoxide (tert-BHP) induced cytotoxicity in U-937 human macrophages. There was an increase in cytotoxicity and apoptosis significantly in the presence of tert-BHP over control cells. The tert-BHP induced cytotoxicity can be attributed to enhanced reactive oxygen species (ROS) production which in turn is responsible for fall in reduced glutathione (GSH) levels; further there was a significant decrease in mitochondrial potential and increase in apoptosis and DNA fragmentation. Both aqueous and alcoholic extracts of Rhodiola rhizome at a concentration of 250 microg/ml were found to inhibit tert-BHP induced free radical production, apoptosis and to restore the anti-oxidant levels to that of the control cells. The alcoholic extract of Rhodiola showed higher cytoprotective activities than aqueous extract. These observations suggest that the alcoholic and aqueous extracts of Rhodiola have marked cytoprotective and antioxidant activities.
Collapse
|
33
|
Hwang JM, Wang CJ, Chou FP, Tseng TH, Hsieh YS, Hsu JD, Chu CY. Protective effect of baicalin on tert-butyl hydroperoxide-induced rat hepatotoxicity. Arch Toxicol 2005; 79:102-9. [PMID: 15645217 DOI: 10.1007/s00204-004-0588-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/08/2004] [Indexed: 11/28/2022]
Abstract
Baicalin (BA) is a flavonoid compound purified from Scutellaria baicalensis Georgi that is used as a traditional Chinese herbal medicine. Baicalin was studied for the mechanism of its inhibitory effects on the tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity and lipid peroxidation in rat liver system. Baicalin expressed an antioxidant property by its capacity for quenching the free radicals of 1,1-diphenyl-2-picrylhydrazyl (DPPH). Further investigations using the t-BHP-induced cytotoxicity in rat primary hepatocytes demonstrated that baicalin, at the concentrations of 2-220 microM, significantly decreased the leakages of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT), and the formation of malondialdehyde (MDA) induced by 30 min treatment of t-BHP(1.5 mM). Baicalin also attenuated the t-BHP-induced depletion of glutathione (GSH) and high level of DNA repaired synthesis. An in vivo study in rats showed that pretreatment with baicalin (i.p.) at concentrations of 0.5 and 5 mg/kg for 5 days before a single i.p. dose of t-BHP (0.1 mmol/kg) significantly lowered the serum levels of hepatic enzyme markers (ALT and AST) and reduced oxidative stress in the liver. Histopathological evaluation of the rat livers revealed that baicalin reduced the incidence of liver lesions induced by t-BHP including hepatocyte swelling, leukocyte infiltration, and necrosis. Based on the results described above, we speculate that baicalin may play a chemopreventive role via reducing oxidative stress in living systems.
Collapse
Affiliation(s)
- Jin-Ming Hwang
- Department of Biochemistry, Medical College, Chung Shan Medical University, No. 110, Section 1, Chien Kuo N. Rd., 402 Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S. DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol 2004; 182:96-101. [PMID: 15241582 DOI: 10.1007/s00203-004-0694-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/01/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
The human pathogen, Burkholderia pseudomalle, is able to survive and multiply in hostile environments such as within macrophages. In an attempt to understand its strategy to cope with oxidative stress, the physiological role and gene regulation of a nonspecific DNA-binding protein (DpsA) was investigated. Expression of dpsA increases in response to oxidative stress through increased transcription from the upstream katG (catalase-peroxidase) promoter, which is OxyR dependent. dpsA is also transcribed from its own promoter, which is activated by osmotic stress in an OxyR-independent manner. DpsA-deficient mutants are hypersensitive to tert-butyl hydroperoxide, while overexpression of DpsA leads to increased resistance to organic oxidants. B. pseudomallei DpsA can also protect Escherichia coli against organic hydroperoxide toxicity. The mechanism of DpsA-mediated resistance to organic hydroperoxides was shown to differ from that of alkyl hydroperoxide reductase.
Collapse
Affiliation(s)
- Suvit Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, 10210, Bangkok, Thailand.
| | | | | | | |
Collapse
|
35
|
Edenharder R, Grünhage D. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Mutat Res 2003; 540:1-18. [PMID: 12972054 DOI: 10.1016/s1383-5718(03)00114-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutagenicity induced by tert-butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in Salmonella typhimurium TA102 was effectively reduced by flavonols with 3',4'-hydroxyl groups such as fisetin, quercetin, rutin, isoquercitrin, hyperoxide, myricetin, myricitrin, robinetin, and to a lesser extent also by morin and kaempferol (ID50=0.25-1.05 micromol per plate). With the exception of isorhamnetin, rhamnetin, morin, and kaempferol, closely similar results were obtained with both peroxides. Hydrogenation of the double bond between carbons 2 and 3 (dihydroquercetin, dihydrorobinetin) as well as the additional elimination of the carbonyl function at carbon 4 (catechins) resulted in a loss of antimutagenicity with the notable exception of catechin itself. Again, all flavones and flavanones tested were inactive except luteolin, luteolin-7-glucoside, diosmetin, and naringenin. The typical radical scavenger butylated hydroxytoluene also showed strong antimutagenicity against CHP (ID50=5.4 micromol per plate) and BHP (ID50=11.4 micromol per plate). Other lipophilic scavengers such as alpha-tocopherol and N,N'-diphenyl-1,4-phenylenediamine exerted only moderate effects, the hydrophilic scavenger trolox was inactive. The metal chelating agent 1,10-phenanthroline strongly reduced mutagenicities induced by CHP and BHP (ID50=2.75 and 2.5 micromol per plate) at low concentrations but induced mutagenic activities at higher concentrations. The iron chelator deferoxamine mesylate, however, was less effective in both respects. The copper chelator neocuproine effectively inhibited mutagenicity induced by BHP (ID50=39.7 micromol per plate) and CHP (ID50=25.9 micrommol per plate), the iron chelator 2,2'-dipyridyl was less potent (ID50=6.25 mmol per plate against BHP, 0.42 mmol per plate against CHP). In the absence of BHP and CHP, yet not in the presence of these hydroperoxides, quercetin, rutin, catechin, epicatechin, and naringenin induced strong mutagenic activities in S. typhimurium TA102. Radical scavenging activities of flavonoids against peroxyl radicals generated from 2,2'-azo-bis(2-amidinopropane)dihydrochloride (AAPH) as measured in the haemolysis test, confirmed that in general flavonoids with di- or trihydroxy hydroxyl functions especially in positions 3', 4', 5' are effective radical scavengers. In this test system, however, luteolin was the most potent compound, followed by epicatechin and eriodictyol. Again, isorhamnetin was a potent inhibitor of lysis of red blood cells despite the presence of a 3'-OCH3 function. Radical scavenging activities of flavonoids against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in principle obeyed the rules outlined above. Flavanones, tamarixetin, and rhamnetin, however, were only weakly active against DPPH, while isorhamnetin was again a potent compound. From these results we conclude that in the Salmonella/reversion assay with strain TA102 antimutagenic activities of flavonoids against the peroxide mutagens CHP and BHP are mainly caused by radical scavenging effects.
Collapse
Affiliation(s)
- R Edenharder
- Department of Hygiene and Environmental Medicine, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | | |
Collapse
|
36
|
Qin C, Huang K, Xu H. Protective effect of polysaccharide from the loach on the in vitro and in vivo peroxidative damage of hepatocyte. J Nutr Biochem 2002; 13:592-597. [PMID: 12550070 DOI: 10.1016/s0955-2863(02)00193-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Misgurnus anguillicaudatus polysaccharide (MAP), a type of natural neutral polysaccharide occurring in the mucus of Misgurnus anguillicaudatus C., was studied for antioxidant bioactivity. The preliminary research showed that MAP was able to remove O(2)*, HO., H(2)O(2) and other active compounds of oxygen and significantly protected DNA chains from being damaged by hydroxyl radicals. This antioxidant bioactivity was further evaluated using the model of peroxide-induced oxidative injury in rat primary hepatocytes and hepatotoxity in mice. The results demonstrated that MAP, at the concentrations of 0.10 approximately 0.40 mg/ml, significantly increased the activity of SOD and GSH-px, but decreased the consumption of reduced glutathione and the formation of malondialdehyde induced by a 30-min treatment of H(2)O(2) (2.0 mmol/L). The in vivo investigation showed that oral pretreatment of MAP (100, 200 and 300 mg/kg) for 7 days before a single dose of t-BHP (0.2 mmol/kg, ip) significantly lowered the serum levels of hepatic enzyme markers (alanine and aspartate aminotransferase) and reduced oxidative liver injury. The histopathological evaluation of the liver revealed that MAP reduced the incidence of liver lesions including inflammatory, leukocyte infiltration, and necrosis induced by t-BHP in mice. Based on the results described above, a conclusion can be drown that MAP may play an important role in the prevention of oxidative damage in living systems.
Collapse
Affiliation(s)
- Chuanguang Qin
- Pharmaceutical Institute, Huazhong University of Science and Technology, 430074, P.R., Wuhan, China
| | | | | |
Collapse
|
37
|
Dumont P, Chainiaux F, Eliaers F, Petropoulou C, Remacle J, Koch-Brandt C, Gonos ES, Toussaint O. Overexpression of apolipoprotein J in human fibroblasts protects against cytotoxicity and premature senescence induced by ethanol and tert-butylhydroperoxide. Cell Stress Chaperones 2002; 7:23-35. [PMID: 11892985 PMCID: PMC514799 DOI: 10.1379/1466-1268(2002)007<0023:ooajih>2.0.co;2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human diploid fibroblasts (HDFs) exposed to subcytotoxic stresses under H2O2, tert-butylhydroperoxide (t-BHP), and ethanol (EtOH) undergo stress-induced premature senescence (SIPS) characterized by many biomarkers of HDFs replicative senescence. Among these biomarkers are a growth arrest, an increase in the senescence-associated beta-galactosidase activity, a senescent morphology, an overexpression of p21waf-1 and the subsequent inability to phosphorylate pRb, the presence of the common 4977-bp mitochondrial deletion, and an increase in the steady-state level of several senescence-associated genes such as apolipoprotein J (apo J). Apo J has been described as a survival gene against cytotoxic stress. In order to study whether apo J would be protective against cytotoxicity SIPS and replicative senescence in human fibroblasts, a full-length complementary deoxyribonucleic acid of apo J was transfected into WI-38 HDFs and SV40-transformed WI-38 HDFs. The overexpression of apo J resulted in an increased cell survival after t-BHP and EtOH stresses at cytotoxic concentrations. In addition, when WI-38 HDFs were exposed to 5 subcytotoxic stresses with EtOH or t-BHP, in conditions that were previously shown to induce SIPS, a lower induction of 2 biomarkers of SIPS was observed in HDFs overexpressing apo J. No effect of apo J overexpression was observed on the proliferative life span of HDFs, even if apo J overexpression triggered osteonectin (SPARC) overexpression, which was shown to decrease the mitogenic potential of platelet-derived growth factor but not of other common growth-inducing conditions. Apo J senescence-related overexpression is proposed to have antiapoptotic rather than antiproliferative effects.
Collapse
Affiliation(s)
- Patrick Dumont
- Unit of Cellular Biochemistry and Biology, Department of Biology, The University of Namur (FUNDP), Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dumont P, Royer V, Pascal T, Dierick JF, Chainiaux F, Frippiat C, de Magalhaes JP, Eliaers F, Remacle J, Toussaint O. Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett 2001; 502:109-12. [PMID: 11583109 DOI: 10.1016/s0014-5793(01)02679-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
WI-38 human diploid fibroblasts underwent accelerated telomere shortening (490 bp/stress) and growth arrest after exposure to four subcytotoxic 100 microM tert-butylhydroperoxide (t-BHP) stresses, with a stress at every two population doublings (PD). After subcytotoxic 160 microM H2O2 stress or five repeated 30 microM t-BHP stresses along the same PD, respectively a 322 +/- 55 and 380 +/- 129 bp telomere shortening was observed only during the first PD after stress. The percentage of cells resuming proliferation after stress suggests this telomere shortening is due to the number of cell divisions accomplished to reach confluence during the first PD after stress.
Collapse
Affiliation(s)
- P Dumont
- Department of Biology, University of Namur, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hix S, Kadiiska MB, Mason RP, Augusto O. In vivo metabolism of tert-butyl hydroperoxide to methyl radicals. EPR spin-trapping and DNA methylation studies. Chem Res Toxicol 2000; 13:1056-64. [PMID: 11080055 DOI: 10.1021/tx000130l] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic activation of peroxides and hydroperoxides to free radicals is associated with the tumor promoting activity of these compounds. tert-Butyl hydroperoxide (t-BOOH) metabolism has been extensively studied as a model of peroxide biotransformation. In vivo studies are limited, and the hemoglobin-thiyl radical was the only species thus far identified in the blood of treated rats. Here we further examine t-BOOH metabolism in vivo with regard to free radical and DNA adduct production. Spin-trapping experiments with phenyl-N-tert-butylnitrone (PBN) led to the detection of EPR signals in the blood, bile, and organic extracts of the liver and stomach of rats treated with t-BOOH. Analysis of these signals demonstrated that t-BOOH metabolism in vivo produces alkyl radicals, detected in the bile and organic extracts of liver and stomach, in addition to the previously identified hemoglobin-thiyl radical. To characterize the produced alkyl radicals, experiments were performed with (13)C-labeled t-BOOH and two spin traps, PBN and alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The latter was used because the EPR signals obtained with PBN were too weak to be unambiguous. Nevertheless, the EPR signals present in the bile of animals treated with (13)C-labeled t-BOOH and PBN or POBN were consistent with adducts of (13)C-labeled methyl radical and an unidentified alkyl radical. The latter is probably derived from lipids oxidized by the metabolically produced primary radicals, methyl and its precursor, tert-butoxyl. The presence of 8-methylguanine and 7-methylguanine in hydrolysates of DNA from liver and stomach of rats treated with t-BOOH was also examined. 8-Methylguanine, a typical product of methyl radical attack on DNA, was detectable in both the liver and stomach of treated rats. The results may be relevant to the understanding of the genotoxic properties of other peroxides, particularly of cumene hydroperoxide.
Collapse
Affiliation(s)
- S Hix
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
40
|
Aherne SA, O'Brien NM. Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells. Free Radic Biol Med 2000; 29:507-14. [PMID: 11025194 DOI: 10.1016/s0891-5849(00)00360-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide (tert-BOOH)- and menadione-induced DNA single strand breaks was investigated in Caco-2 cells. Both tert-BOOH and menadione induced DNA single strand breaks in a concentration-dependent manner. Pre-incubation of Caco-2 cells with either quercetin or rutin for 24 h significantly decreased the formation of DNA single strand breaks evoked by tert-BOOH (P <.05). Iron chelators, 1,10-phenanthroline (o-Phen) and deferoxamine mesylate (DFO), also protected against tert-BOOH-induced DNA damage, whereas butylated hydroxytoluene (BHT) had no effect. Quercetin, and not rutin, decreased the extent of menadione-induced DNA single strand breaks. DFO and BHT, and not o-Phen, protected against menadione-induced DNA strand break formation (P <.05). From the results of this study, iron ions were involved in tert-BOOH-induced DNA single strand break formation in Caco-2 cells, whereas DNA damage evoked by menadione was far more complex. We demonstrated that the flavonoids, quercetin and rutin, protected against tert-BOOH-induced DNA strand breaks by way of their metal ion chelating mechanism. However, quercetin, and not rutin, protected against menadione-induced DNA single strand breaks by acting as both a metal chelator and radical scavenger.
Collapse
Affiliation(s)
- S A Aherne
- Nutritional Sciences, Department of Food Science and Technology, National University of Ireland, Cork, Ireland.
| | | |
Collapse
|
41
|
Wang CJ, Wang JM, Lin WL, Chu CY, Chou FP, Tseng TH. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem Toxicol 2000; 38:411-6. [PMID: 10762726 DOI: 10.1016/s0278-6915(00)00011-9] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hibiscus anthocyanins (HAs), a group of natural pigments occurring in the dried flowers of Hibiscus sabdariffa L., which is a local soft drink material and medical herb, were studied for antioxidant bioactivity. The preliminary study showed that HAs were able to quench the free radicals of 1,1-diphenyl-2-picrylhydrazyl. This antioxidant bioactivitiy was further evaluated using the model of tert-butyl hydroperoxide (t-BHP)-induced cytotoxicity in rat primary hepatocytes and hepatotoxicity in rats. The results demonstrated that HAs, at the concentrations of 0.10 and 0.20 mg/ml, significantly decreased the leakage of lactate dehydrogenase and the formation of malondialdehyde induced by a 30-min treatment of t-BHP (1.5 mM). The in vivo investigation showed that the oral pretreatment of HAs (100 and 200 mg/kg) for 5 days before a single dose of t-BHP (0.2 mmol/kg, ip) significantly lowered the serum levels of hepatic enzyme markers (alanine and aspartate aminotransferase) and reduced oxidative liver damage. The histopathological evaluation of the liver revealed that Hibiscus pigments reduced the incidence of liver lesions including inflammatory, leucocyte infiltration, and necrosis induced by t-BHP in rats. Based on the results described above, we speculate that Hibiscus pigments may play a role in the prevention of oxidative damage in living systems.
Collapse
Affiliation(s)
- C J Wang
- Institute of Biochemistry, Chung Shan Medical and Dental College, No. 110, Sec. 1, Chien Kuo N. Rd, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Sentürker S, Dizdaroglu M. The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography-mass spectrometry: how many modified bases are involved? Prepurification or not? Free Radic Biol Med 1999; 27:370-80. [PMID: 10468211 DOI: 10.1016/s0891-5849(99)00069-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, an artifactual formation of a number of modified DNA bases has been alleged during derivatization of DNA hydrolysates to be analyzed by gas chromatography-mass spectrometry (GC-MS). These modified bases were 8-hydroxyguanine (8-OH-Gua), 5-hydroxycytosine (5-OH-Cyt), 8-hydroxyadenine (8-OH-Ade), 5-hydroxymethyluracil (5-OHMeUra), and 5-formyluracil, which represent only a small percentage of more than 20 modified DNA bases that can be analyzed by GC-MS. However, relevant papers reporting the levels of these modified bases in DNA of various sources have not been cited, and differences in experimental procedures have not been discussed. We investigated the levels of modified bases in calf thymus DNA by GC-MS using derivatization at three different temperatures. The results obtained with GC/isotope-dilution MS showed that the levels of 5-OH-Cyt, 8-OH-Ade, 5-OH-Ura, and 5-OHMeUra were not affected by increasing the derivatization temperature from 23 degrees C to 120 degrees C. The level of 8-OH-Gua was found to be higher at 120 degrees C. However, this level was much lower than those reported previously. Formamidopyrimidines were readily analyzed in contrast to some recent claims. The addition of trifluoroacetic acid (TFA) adversely affected the levels of pyrimidine-derived lesions, suggesting that TFA is not suitable for simultaneous measurement of both pyrimidine- and purine-derived lesions. The data obtained were also compared with those previously published. Our data and this comparison indicate that no artifactual formation of 5-OH-Cyt, 8-OH-Ade, and 5-OHMeUra occurred under our experimental conditions in contrast to recent claims, and no prepurification of DNA hydrolysates by a tedious procedure is necessary for accurate quantification of these compounds. The artifactual formation of 8-OH-Gua can be eliminated by derivatization at room temperature for at least 2 h, without the use of TFA. The results in this article and their comparison with published data indicate that different results may be obtained in different laboratories using different experimental conditions. The data obtained in various laboratories should be compared by discussing all relevant published data and scientific facts, including differences between experimental conditions used in different laboratories.
Collapse
Affiliation(s)
- S Sentürker
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
43
|
Gaivão I, Sierra LM, Comendador MA. The w/w+ SMART assay of Drosophila melanogaster detects the genotoxic effects of reactive oxygen species inducing compounds. Mutat Res 1999; 440:139-45. [PMID: 10209336 DOI: 10.1016/s1383-5718(99)00020-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The somatic mutation and recombination w/w+ eye assay has been used for genotoxic evaluation of a broad number of chemicals with different action mechanisms yielding high values of sensitivity, specificity and accuracy. The aim of this work was to determine the utility of this assay in the evaluation of reactive oxygen species inducers. For this, we have tested eight compounds: diquat, paraquat, menadione, juglone, plumbagin, streptonigrin, tert-butyl hydroperoxide and 4-nitroquinoline 1-oxide, using the Drosophila Oregon K strain which had previously shown advantageous conditions to test this type of compounds. Diquat was the only chemical for which the results were clearly negative, probably because its high toxicity, whereas indications of a marginal genotoxicity raised for menadione. The remaining compounds were evaluated as positives. The conclusion of these experiments is that the w/w+ assay is capable to detect genotoxic effects induced by compounds that generate reactive oxygen species through different action mechanisms.
Collapse
Affiliation(s)
- I Gaivão
- Departamento de Genética, Universidad de Tras-os-Montes e Alto Douro, Vila Real, Portugal
| | | | | |
Collapse
|
44
|
Dizdaroglu M. Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography-mass spectrometry. Free Radic Res 1998; 29:551-63. [PMID: 10098459 DOI: 10.1080/10715769800300591] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, several papers reported an artifactual formation of a number of modified bases from intact DNA bases during derivatization of DNA hydrolysates to be analyzed by gas chromatography-mass spectrometry (GC/MS). These reports dealt with 8-hydroxyguanine (8-OH-Gua), 5-hydroxycytosine (5-OH-Cyt), 8-hydroxyadenine (8-OH-Ade), 5-hydroxymethyluracil (5-OHMeUra) and 5-formyluracil that represent only a small percentage of the 20 or so modified DNA bases that can be analyzed by GC/MS. Removal of intact DNA bases by prepurification of calf thymus DNA hydrolysates using HPLC was shown to prevent artifactual formation of these modified bases during derivatization. It needs to be emphasized that the procedures for hydrolysis of DNA and derivatization of DNA hydrolysates used in these papers substantially differed from the established procedures previously described. Furthermore, a large number of relevant papers reporting the levels of these modified bases in DNA of various sources have been ignored. Interestingly, the levels of modified bases reported in the literature were not as high as those reported prior to prepurification. Most values for the level of 5-OH-Cyt were even lower than the level measured after prepurification. Levels of 8-OH-Ade were quite close to, or even the same as, or smaller than the level reported after prepurification. The same holds true for 5-OHMeUra and 8-OH-Gua. All these facts raise the question of the validity of the claims about the measurement of these modified DNA bases by GC/MS. A recent paper reported a complete destruction of 2, 6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-Gua) and 4,6-diamino-5-formamidopyrimidine (FapyAde) by formic acid under the conditions of DNA hydrolysis prior to GC/MS. The complete destruction of FapyGua and FapyAde by formic acid is in disagreement with the data on these compounds in the literature. These two compounds were measured by GC/MS following formic acid hydrolysis for many years in our laboratory and by other researchers with no difficulties. These facts clearly raise the question of the validity of the claims made about the previous measurements of these compounds by GC/MS.
Collapse
Affiliation(s)
- M Dizdaroglu
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
45
|
Li W, Zheng R, Jia Z, Zou Z, Lin N. Repair effect of phenylpropanoid glycosides on thymine radical anion induced by pulse radiolysis. Biophys Chem 1997; 67:281-6. [PMID: 17029901 DOI: 10.1016/s0301-4622(97)00055-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/1997] [Revised: 04/18/1997] [Accepted: 04/18/1997] [Indexed: 10/18/2022]
Abstract
Repair effects on thymine radical anion by six phenylpropanoid glycosides (PPGs), isolated from Pedicularis species, were studied using pulse radiolysis method. The thymine radical anion was produced by the reaction of hydrated electron with thymine. PPGs were added into the thymine solution saturated with N(2). Kinetic analysis showed that transient absorption spectrum of thymine radical anion formed at first, and then after several microseconds of pulse radiolysis changed to that of PPG radical anion. The evidence indicated that thymine radical anion was repaired through one-electron transfer between the radical anion and PPG. Electrophilic phenyl-substituted unsaturated carboxylic group containing in PPGs' structure was able to capture electron from thymine radical anion before it undergo reversible protonation. The reaction rate constants of electron transfer from thymine radical anion to PPGs were within 1.16-2.29 x 10(9) dm(3) mol(-1) s(-1).
Collapse
Affiliation(s)
- W Li
- Department of Biology, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | |
Collapse
|
46
|
Luo Y, Henle ES, Linn S. Oxidative damage to DNA constituents by iron-mediated fenton reactions. The deoxycytidine family. J Biol Chem 1996. [PMID: 8702887 DOI: 10.1074/jbc.271.35.21177] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Damage by iron-mediated Fenton reactions under aerobic or anaerobic conditions to deoxycytidine, deoxycytidine-5'-monophosphate, d-CpC, d-CpCpC, and dCMP residues in DNA resulted in at least 26 distinguishable products. Of these, 24 were identified by high performance liquid chromatography retention times, radiolabeling, UV absorption spectra, chemical synthesis, fast atom bombardment mass spectrometry, high resolution fast atom bombardment mass spectrometry, and/or NMR. The nature of the products was qualitatively similar for each substrate except for d-CpC (and possibly d-CpCpC) under anaerobic conditions for which 5-hydroxy-deoxycytidine was uniquely present and 1-carbamoyl-1-carboxy-4-(2-deoxy-beta-D-erythropentofuranosyl) glycinamide was uniquely absent. Damage to dC, d-CpC, and d-CpCpC but not to dCMP or DNA was largely quenched by ethanol, indicating that iron is strongly associated only with dCMP and DNA. The presence of oxygen had little effect with dC or dCMP but had quantitative and qualitative effects with d-CpC and a significantly quantitative but not a qualitative effect with DNA. NADH could drive the Fenton reaction to cause damage to the dC family in vitro, consistent with a previous proposal that NADH was the reducing agent for the Fenton reaction in vivo (Imlay, J.A., and Linn, S. (1988) Science 240, 1302-1309). Finally, the damage spectrum of the dC family by the Fenton reaction is compared with that by ionizing radiation and chemical mechanisms leading to the formation of the 24 identified products are proposed.
Collapse
Affiliation(s)
- Y Luo
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
47
|
Tseng TH, Wang CJ, Kao ES, Chu HY. Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chem Biol Interact 1996; 101:137-48. [PMID: 8760395 DOI: 10.1016/0009-2797(96)03721-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hibiscus protocatechuic acid (PCA), a simple phenolic compound isolated from Hibiscus sabdariffa L., was studied for its protective effects against oxidative damage induced by tert-butylhydroperoxide (t-BHP) in a primary culture of rat hepatocytes. It had been reported that exposure of isolated hepatocytes to t-BHP results in leakage of lactate dehydrogenase (LDH) and alanine transaminase (ALT), peroxidation of cellular lipids, and depolarization of mitochondria. The present investigations showed that PCA at concentrations of 0.05 mg/ml and 0.10 mg/ml significantly decreased the leakage of LDH (P < 0.01) and ALT (P < 0.05 and P < 0.01) and the formation of malondialdehyde (MDA; P < 0.05 and P < 0.01) induced by 30-min treatment with t-BHP (1.5 mM) in primary cultured rat hepatocytes. PCA also attenuated t-BHP (0.10 mM) induced mitochondrial depolarization as determined by a retention test of rhodamine 123 and DNA repair synthesis as evidenced by unscheduled DNA synthesis (UDS). In addition, PCA exhibited an effective ability to quench 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH). In conclusion, PCA demonstrated protective effects against cytotoxicity and genotoxicity of hepatocytes induced by t-BHP. One of mechanisms of PCA's protective effect may be associated with its property of scavenging free radicals.
Collapse
Affiliation(s)
- T H Tseng
- Institute of Biochemistry, Chung Shan Medical and Dental College, Taiwan, Republic of China
| | | | | | | |
Collapse
|
48
|
Urios A, Blanco M. Specificity of spontaneous and t-butyl hydroperoxide-induced mutations in delta oxyR strains of Escherichia coli differing with respect to the SOS mutagenesis proficiency and to the MutY and MutM functions. Mutat Res 1996; 354:95-101. [PMID: 8692213 DOI: 10.1016/0027-5107(96)00043-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mutations induced by oxidative DNA damage appear to occur by two pathways, differing in their dependence on SOS mutagenesis. We have analysed the specificity of mutations produced by each pathway. Base substitutions generating extragenic suppressors were characterized in Trp+ revertants of Escherichia coli strains carrying the trpE65 ochre mutation, which were hypersensitive to oxidative mutagenesis due to a deletion of the oxyR gene. In strain IC3821, containing MucA/B proteins and therefore proficient for SOS mutagenesis, the more frequently scored base substitutions, either spontaneous or induced by t-butyl hydroperoxide (BuOOH), were T:A-A:T transversions, followed by G:C-A:T transitions, while the frequency of G:C-T:A transversions was lower. This SOS-dependent mutability could be promoted by abasic sites. In strains IC3894 (mutY) and IC3981 (mutY mutM), lacking mutagenesis proteins, SOS-independent revertants arose almost exclusively via G:C-T:A transversions probably derived from oxidatively damaged 8-oxoguanine/adenine mispairs. Formation of these mispairs in IC3894 and IC3981 would be enhanced by BuOOH treatment since it caused a significant increase in the revertant number. Strains IC3894 and IC3981 could have a complementary role to that of IC3821 to analyse the mutagenicity and the mutational specificity of oxidants.
Collapse
Affiliation(s)
- A Urios
- Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomédicas, Valencia, Spain
| | | |
Collapse
|
49
|
Dizdaroglu M, Zastawny TH, Carmical JR, Lloyd RS. A novel DNA N-glycosylase activity of E. coli T4 endonuclease V that excises 4,6-diamino-5-formamidopyrimidine from DNA, a UV-radiation- and hydroxyl radical-induced product of adenine. Mutat Res 1996; 362:1-8. [PMID: 8538641 DOI: 10.1016/0921-8777(95)00025-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report on a novel activity of T4 endonuclease V. This enzyme is well known to be specific for the excision of pyrimidine dimers from UV-irradiated DNA. In this work, we show that T4 endonuclease V excises 4,6-diamino-5-formamidopyrimidine from DNA. 4,6-Diamino-5-formamidopyrimidine is formed as a product of adenine in DNA upon action of hydroxyl radicals and upon UV-irradiation. DNA substrates were prepared by UV-or gamma-irradiation of DNA in aqueous solution. DNA substrates were incubated either with active T4 endonuclease V or with heat-inactivated T4 endonuclease V or without the enzyme. After incubation, DNA was precipitated and supernatant fractions were separated. Supernatant fractions after derivatization, and pellets after hydrolysis and derivatization were analyzed by gas chromatography/isotope-dilution mass spectrometry. The results provide evidence for the excision of 4,6-diamino-5-formamidopyrimidine by T4 endonuclease V from both gamma-and UV-irradiated DNA. Kinetics of excision were also determined. Fifteen other pyrimidine- and purine-derived base lesions that were identified in DNA samples were not substrates for this enzyme. It was concluded that, in addition to its well known activity for pyrimidine photodimers, T4 endonuclease V possesses an N-glycosylase activity for a major UV-radiation- and hydroxyl radical-induced monomeric product in DNA.
Collapse
Affiliation(s)
- M Dizdaroglu
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | | | |
Collapse
|
50
|
Drouin R, Rodriguez H, Gao SW, Gebreyes Z, O'Connor TR, Holmquist GP, Akman SA. Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Radic Biol Med 1996; 21:261-73. [PMID: 8855437 DOI: 10.1016/0891-5849(96)00037-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The kinetics of frank DNA strand breaks and DNA base modifications produced by Cu(II)/ascorbate/H2O2 were simultaneously determined in purified human genomic DNA in vitro. Modified bases were determined by cleavage with Escherichia coli enzymes Nth protein (modified pyrimidines) and Fpg protein (modified purines). Single-stranded lesion frequency before (frank strand breaks) and after (modified bases) Nth or Fpg protein digestion was quantified by neutral glyoxal gel electrophoresis. Dialysis of EDTA-treated genomic DNA purified by standard proteinase K digestion/phenol extraction was necessary to remove low molecular weight species, probably transition metal ions and metal ion chelators, which supported frank strand breaks in the presence of ascorbate + H2O2 without supplemental copper ions. We then established a kinetic model of the DNA-damaging reactions caused by Cu(II) + ascorbate + H2O2. The principal new assumption in our model was that DNA base modifications were caused exclusively by DNA-bound Cu(I) and frank strand breaks by non-DNA-bound Cu(I). The model was simulated by computer using published rate constants. The computer simulation quantitatively predicted: (1) the rate of H2O2 degradation, which was measured using an H2O2-sensitive electrode, (2) the linearity of accumulation of DNA strand breaks and modified bases over the reaction period, (3) the rate of modified base accumulation, and (4) the dependence of modified base and frank strand production on initial Cu(II) concentration. The simulation significantly overestimated the rate of frank strand break accumulation, suggesting either that the ultimate oxidizing species that attacks the sugar-phosphate backbone is a less-reactive species than the hydroxyl radical used in the model and/or an unidentified hydroxyl radical-scavenging species was present in the reactions. Our experimental data are consistent with a model of copper ion-DNA interaction in which DNA-bound Cu(I) primarily mediates DNA base modifications and nonbound Cu(I) primarily mediates frank strand break production.
Collapse
Affiliation(s)
- R Drouin
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | | | | | |
Collapse
|