1
|
Cafarchio EM, da Silva LA, Auresco LC, Ogihara CA, Almeida RL, Giannocco G, Luz MCB, Fonseca FLA, Sato MA. Cholinergic activation of neurons in the medulla oblongata changes urinary bladder activity by plasma vasopressin release in female rats. Eur J Pharmacol 2016; 776:116-23. [PMID: 26879866 DOI: 10.1016/j.ejphar.2016.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/15/2022]
Abstract
The central control of the micturition is dependent on cortical areas and other ascending and descending pathways in the brain stem. The descendent pathways from the pons to the urinary bladder (UB) can be direct or indirect through medullary neurons (MN). Chemical stimulation with l-glutamate of MN known for their involvement in cardiovascular regulation evokes changes in pelvic nerves activities, which innervate the urinary bladder. Different neurotransmitters have been found in medullary areas; nevertheless, their involvement in UB control is few understood. We focused to investigate if cholinergic activation of neurons in the medulla oblongata changes the urinary bladder activity. Carbachol (cholinergic agonist) or atropine (cholinergic antagonist) was injected into the 4thV in anesthetized female Wistar rats and the intravesical pressure (IP), mean arterial pressure (MAP), heart rate (HR) and renal conductance (RC) were recorded for 30 min. Carbachol injection into the 4thV increased IP with peak response at 30 min after carbachol and yielded no changes in MAP, HR and RC. Atropine injection into the 4thV decreased IP and elicited no changes in MAP, HR and RC. Plasma vasopressin levels evaluated by ELISA kit assay increased after carbachol into the 4th V. Intravenous blockade of V1 receptors prior to carbachol into the 4thV abolished the increase in IP evoked by carbachol. Therefore, our findings suggest that cholinergic activation of neurons in the medulla oblongata by carbachol injections into the 4thV increases IP due to plasma vasopressin release, which acts in V1 receptors in the UB.
Collapse
Affiliation(s)
- Eduardo M Cafarchio
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Luiz A da Silva
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Luciana C Auresco
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Cristiana A Ogihara
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Roberto L Almeida
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Gisele Giannocco
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Maria C B Luz
- Clinical Laboratory Analysis, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Fernando L A Fonseca
- Clinical Laboratory Analysis, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Santo Andre, SP 09060-650, Brazil.
| |
Collapse
|
2
|
Poliacek I, Rose MJ, Pitts TE, Mortensen A, Corrie LW, Davenport PW, Bolser DC. Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats. J Appl Physiol (1985) 2014; 118:265-72. [PMID: 25477349 DOI: 10.1152/japplphysiol.00075.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphragm, abdominal muscle, and laryngeal muscles EMGs; and several temporal characteristics of cough were analyzed after administration of nicotine and compared with those during control and recovery period. (-)Nicotine (ia) reduced cough number, cough expiratory efforts, blood pressure, and heart rate in a dose-dependent manner. (-)Nicotine did not alter temporal characteristics of the cough motor pattern. Pretreatment with mecamylamine prevented the effect of (-)nicotine on blood pressure and heart rate, but did not block the antitussive action of this drug. (+)Nicotine was less potent than (-)nicotine for inhibition of cough. Microinjections of (-)nicotine into the caudal ventral respiratory column produced similar inhibitory effects on cough as administration of this isomer by the ia route. Mecamylamine microinjected in the region just before nicotine did not significantly reduce the cough suppressant effect of nicotine. Nicotinic acetylcholine receptors significantly modulate functions of brain stem and in particular caudal ventral respiratory column neurons involved in expression of the tracheobronchial cough reflex by a mecamylamine-insensitive mechanism.
Collapse
Affiliation(s)
- I Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - M J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - T E Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - A Mortensen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - L W Corrie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - P W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - D C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| |
Collapse
|
3
|
Feng L, Uteshev VV. Projection target-specific action of nicotine in the caudal nucleus of the solitary tract. J Neurosci Res 2014; 92:1560-72. [PMID: 24975270 DOI: 10.1002/jnr.23436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/11/2014] [Accepted: 05/20/2014] [Indexed: 01/26/2023]
Abstract
The brainstem nucleus of the solitary tract (NTS) is the key integrating relay in the central processing of sensory information from the thoracic and from most subdiaphragmatic viscera. Modulation of neuronal excitability and synaptic activity in the NTS by nicotinic agents can have potent effects on vital physiological functions, such as feeding, digestion, respiration, and blood circulation. Caudal NTS neurons demonstrate considerable heterogeneity in projection targets, synaptic properties, and expression of nicotinic acetylcholine receptors (nAChRs). However, despite its heterogeneity, the caudal NTS may contain discrete subsets of neurons with unique projection target-specific properties. To test this hypothesis, we used in vivo fluorescent tracing and ex vivo patch-clamp electrophysiology to evaluate responsiveness to nicotine of anatomically identified caudal NTS neurons that project to the hypothalamic paraventricular nucleus (PVN) and the brainstem caudal ventrolateral medulla (CVLM). The results of this study demonstrate that responsiveness to nicotine correlates with where the neurons project. Specifically, PVN-projecting caudal NTS neurons respond to nicotine only presynaptically (i.e., via activation of presynaptic nAChRs and potentiation of synaptic release of glutamate), suggesting indirect, glutamate-dependent effects of nicotine on the PVN-projecting NTS circuitry. By contrast, CVLM-projecting caudal NTS neurons exhibit only limited presynaptic, but dominant somatodendritic, responsiveness to nicotine, suggesting that the effects of nicotine on the CVLM-projecting NTS circuitry are direct and largely glutamate independent. Understanding the relationships among function-specific brainstem/hypothalamic neuronal networks, nuclei, and individual neurons could help develop therapies targeting identifiable neuronal circuits to offset impaired autonomic homeostasis.
Collapse
Affiliation(s)
- Lin Feng
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| | | |
Collapse
|
4
|
Jutkiewicz EM, Rice KC, Carroll FI, Woods JH. Patterns of nicotinic receptor antagonism II: cardiovascular effects in rats. Drug Alcohol Depend 2013; 131:284-97. [PMID: 23333294 PMCID: PMC4174279 DOI: 10.1016/j.drugalcdep.2012.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Tobacco cessation pharmacotherapies currently are limited to nicotine itself, the partial nicotine agonists varenicline and cytisine, and the antidepressant bupropion. Compared with agonists, nicotinic antagonists such as the noncompetitive, nonselective compound mecamylamine, and the competitive, α4β2-preferring antagonist dihydro-β-erythroidine (DHβE) may be a novel approach to the treatment of tobacco smoking as both are effective antagonists of nicotine's central effects. Considering nicotinic acetylcholine receptors mediate critical peripheral effects of acetylcholine, such as cardiovascular effects, it is important to study how nicotinic antagonists would alter the cardiovascular system and the cardiovascular changes induced by nicotine. METHODS The effects of several nicotinic agonists and antagonists on blood pressure and heart rate were measured in conscious, unrestrained rats following parenteral administration using a telemetry system. RESULTS Nicotine and other nicotinic receptor agonists (epibatidine, varenicline, and cytisine) produced similar increases in blood pressure, whereas their effects on heart rate were biphasic. The cardiovascular changes were attenuated by the nonselective nicotine antagonist, mecamylamine, but the peripherally restricted antagonist hexamethonium blocked only the agonist-induced changes in blood pressure. The α7-preferring antagonist, MLA, and the α4β2-preferring antagonist, DHβE, were much less effective in blocking the agonist-induced cardiovascular changes, indicating that nicotine's cardiovascular effects, are due to activation at autonomic ganglia involving nicotinic receptor subtypes other than α4, α7, or β2. CONCLUSIONS The data indicate that the cardiovascular effects of nicotine and nicotine-like agents are mediated through receptor mechanisms that are distinct from those that mediate the central effects of nicotine.
Collapse
Affiliation(s)
- Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
5
|
|
6
|
|
7
|
Abstract
AbstractAs neurophysiological investigations of sleep cycle control have provided an increasingly detailed picture of events at the cellular level, the concept that the sleep cycle is generated by the interaction of multiple, anatomically distributed sets of neurons has gradually replaced the hypothesis that sleep is generated by a single, highly localized neuronal oscillator.Cell groups that discharge during rapid-eye-movement (REM) sleep (REM-on) and neurons that slow or cease firing during REM sleep (REM-off) have long been thought to comprise at least two neurochemically distinct populations. The fact that putatively cholinoceptive and/or cholinergic (REM-on) and putatively aminergic (REM-off) cell populations discharge reciprocally over the sleep cycle suggests a causal interdependence.In some brain stem areas these cell groups are not anatomically segregated and may instead be neurochemically mixed (interpenetrated). This finding raises important theoretical and practical issues not anticipated in the original reciprocal-interaction model. The electrophysiological evidence concerning the REM-on and REM-off cell groups suggests a gradient of sleep-dependent membrane excitability changes that may be a function of the connectivity strength within an anatomically distributed neuronal network. The connectivity strength may be influenced by the degree of neurochemical interpenetration between the REM-on and REM-offcells. Recognition of these complexities forces us to revise the reciprocal-interaction model and to seek new methods to test its tenets.Cholinergic microinjection experiments indicate that some populations of REM-on cells can execute specific portions of the REM sleep syndrome or block the generation of REM sleep. This observation suggests that the order of activation within the anatomically distributed generator populations may be critical in determining behavioral outcome. Support for the cholinergic tenets of the reciprocal-interaction model has been reinforced by observations from sleep-disorders medicine.Specific predictions of the reciprocal-interaction model and suggestions for testing these predictions are enumerated for future experimental programs that aim to understand the cellular and molecular basis of the mammalian sleep cycle.
Collapse
|
8
|
|
9
|
|
10
|
|
11
|
|
12
|
D'hoedt D, Bertrand D. Nicotinic acetylcholine receptors: an overview on drug discovery. Expert Opin Ther Targets 2009; 13:395-411. [DOI: 10.1517/14728220902841045] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Murota Y, Fujii M, Sugiyama Y, Funabashi T, Yagami T, Takahashi T, Goshima Y. DOPA cyclohexyl ester, a DOPA antagonist, blocks the depressor responses elicited by microinjections of nicotine into the nucleus tractus solitarii of rats. Neurosci Lett 2008; 442:114-7. [PMID: 18620021 DOI: 10.1016/j.neulet.2008.06.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/07/2008] [Accepted: 06/29/2008] [Indexed: 11/28/2022]
Abstract
Nicotinic cholinergic receptors play a role in cardiovascular regulation in the lower brain stem. Herein, we present evidence that l-3,4-dihydroxyphenylalanine (DOPA), a putative neurotransmitter in the central nervous system, is involved in the depressor response to microinjection of nicotine into the nucleus tractus solitarii (NTS). Microinjection of nicotine into the medial area of the NTS led to decreases in arterial blood pressure and heart rate in anesthetized rats. Mecamylamine, a nicotinic receptor antagonist, microinjected into NTS, blocked the depressor and bradycardic responses to nicotine. Nicotine-induced depressor and bradycardic responses were blocked by DOPA cyclohexyl ester (DOPA CHE), an antagonist for DOPA. DOPA CHE did not modify the action of carbachol on excitatory postsynaptic potential in rat cortical slices. These results suggest that endogenous DOPA is involved in nicotine-induced depressor responses in the NTS of anesthetized rats.
Collapse
Affiliation(s)
- Y Murota
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Smith DV, Uteshev VV. Heterogeneity of nicotinic acetylcholine receptor expression in the caudal nucleus of the solitary tract. Neuropharmacology 2007; 54:445-53. [PMID: 18078963 DOI: 10.1016/j.neuropharm.2007.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 09/26/2007] [Accepted: 10/22/2007] [Indexed: 01/25/2023]
Abstract
The nucleus of the solitary tract (NTS) is the principal integrating relay in the processing of visceral sensory and gustatory information. In the present study, patch-clamp electrophysiological experiments were conducted using rat horizontal brainstem sections. Pre-synaptic and somatic/dendritic nicotinic acetylcholine receptors (nAChRs) expressed in neurons of the caudal NTS (cNTS) were found to be randomly distributed between pre-synaptic and somatic/dendritic sites (chi(2)=0.72, df=3, p>0.87, n=200). Pre-synaptic nAChRs were detected by their facilitating effects on glutamatergic neurotransmission of a sub-population of cNTS neurons (categorized as "effect-positive") upon brief picospritzer applications of 0.1-0.5mM nicotine. These effects were resistant to inhibition by 20nM methyllycaconitine (MLA) and 4muM dihydro-beta-erythroidine (DHbetaE), and were replicated by brief picospritzer applications of 0.2-1mM cytisine. Picospritzer applications of 0.2mM RJR-2403, a potent agonist of alpha4beta2 nAChRs, did not facilitate synaptic release of glutamate in effect-positive cNTS neurons. The population of somatic/dendritic nAChRs has been found to be heterogeneous and included nAChRs that were activated by RJR-2403 and/or cytisine, or insensitive to cytisine, or inhibited by MLA. The presented results are consistent with the expression of beta4-containing (i.e., beta4*) nAChRs, likely alpha3beta4*, in pre-synaptic terminals of effect-positive cNTS neurons. Somatic/dendritic nAChRs appear to involve both alpha7 and non-alpha7 subunits. Heterogeneity in the subunit composition of pre-synaptic and somatic/dendritic nAChRs may underlie diverse roles that these receptors play in regulation of behavioral and visceral reflexes, and may reflect specific targeting by endogenous nicotinic agents and nicotine.
Collapse
Affiliation(s)
- David V Smith
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
15
|
Philippu A. Regulation of blood pressure by central neurotransmitters and neuropeptides. Rev Physiol Biochem Pharmacol 2005; 111:1-115. [PMID: 2906169 DOI: 10.1007/bfb0033872] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Vaupel DB, Tella SR, Huso DL, Wagner VO, Mukhin AG, Chefer SI, Horti AG, London ED, Koren AO, Kimes AS. Pharmacological and toxicological evaluation of 2-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-F-A-85380), a ligand for imaging cerebral nicotinic acetylcholine receptors with positron emission tomography. J Pharmacol Exp Ther 2004; 312:355-65. [PMID: 15331657 DOI: 10.1124/jpet.104.073999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-[(18)F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[(18)F]F-A-85380), a positron emission tomography (PET) radioligand for neuronal alpha4beta2(*) nicotinic acetylcholine receptors, was evaluated for its pharmacology and safety. In the Ames test for mutagenicity, 2-F-A-85380 was without effect in five bacterial strains. No evidence of gross pathology or histopathological changes occurred in either 2-day acute (0.4-4000 nmol/kg i.v.) or 14-day expanded acute (40-4000 nmol/kg i.v.) toxicity studies in mice. Similarly, hematology and serum chemistry values in rhesus monkeys administered 60 nmol/kg i.v. were not affected over 14 days. Like nicotine, 2-F-A-85380 produced convulsions in mice at very high doses. The ED(50) value of 2-F-A-85380 for eliciting tonic-clonic convulsions (5.0 micromol/kg i.v.) was nearly 4 times greater than that of nicotine (ED(50) = 1.4 micromol/kg i.v.). Lower doses of 2-F-A-85380 (30-300 nmol/kg i.v.) and nicotine (20-400 nmol/kg i.v.) increased systolic and diastolic blood pressure, heart rate, and cardiac contractility in rats. Notably, the PR, QRS, or QTc intervals of the rat electrocardiogram were unaffected by either drug. Dosimetry studies indicated that the urinary bladder wall was the critical organ and total radiation exposure was within acceptable limits. Estimated doses of 2-F-A-85380 required to elevate blood pressure and heart rate by 10% ranged from 40 to 58 nmol/kg i.v. Nevertheless, the estimated radiopharmaceutically relevant dose of [(18)F]2-F-A-8380 required for initial PET imaging studies, 10 pmol/kg, is less than 1/4000th of the doses calculated (40-58 nmol/kg i.v.) to elevate blood pressure and heart rate by 10% in humans and should elicit no clinically significant effects and have acceptable dosimetry.
Collapse
Affiliation(s)
- D Bruce Vaupel
- NIDA IRP, Neuroimaging Research Branch, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Khan IM, Stanislaus S, Zhang L, Vaughn D, Printz MP, Yaksh TL, Taylor P. Spinal nicotinic receptor activity in a genetic model of hypertension. Clin Exp Hypertens 2001; 23:555-68. [PMID: 11710757 DOI: 10.1081/ceh-100106826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intrathecal cytisine, a nicotinic receptor agonist, elicits greater dose-dependent increases in blood pressure, heart rate and nociceptive responses in SHR than normotensive rat strains. Similar to adult rats, cardiovascular and nociceptive responses were augmented in prehypertensive SHR than age-matched WKY. While hydralazine or captopril pretreatment significantly lowered blood pressure in both SHR and WKY rats, responses to i.t. cytisine were still greater in SHR. By contrast, i.t. cytisine elicited responses were not exaggerated in DOCA-salt hypertensive WKY rats. Pressor and irritation responses to i.t. cytisine can be divided into a transient, initial and persisting, late phases. Both are augmented in SHR. In F1 rats, only the late phase pressor and pain responses to i.t. cytisine are similar in magnitude to those observed in SHR suggesting a possible dominant trait in the SHR. Overall, our findings suggest that hyper-responsiveness in nociception and pressor activity to spinal cytisine in SHR may be pathogenetically associated, but not a consequence, of hypertension.
Collapse
Affiliation(s)
- I M Khan
- Department of Pharmacology, University of California, San Diego 92093-0636, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Dhar S, Nagy F, McIntosh JM, Sapru HN. Receptor subtypes mediating depressor responses to microinjections of nicotine into medial NTS of the rat. Am J Physiol Regul Integr Comp Physiol 2000; 279:R132-40. [PMID: 10896874 DOI: 10.1152/ajpregu.2000.279.1.r132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microinjections (50 nl) of nicotine (0.01-10 microM) into the nucleus of the solitary tract (NTS) of adult, urethan-anesthetized, artificially ventilated, male Wistar rats, elicited decreases in blood pressure and heart rate. Prior microinjections of alpha-bungarotoxin (alpha-BT) and alpha-conotoxin ImI (specific toxins for nicotinic receptors containing alpha7 subunits) elicited a 20-38% reduction in nicotine responses. Similarly, prior microinjections of hexamethonium, mecamylamine, and alpha-conotoxin AuIB (specific blockers or toxin for nicotinic receptors containing alpha3beta4 subunits) elicited a 47-79% reduction in nicotine responses. Nicotine responses were completely blocked by prior sequential microinjections of alpha-BT and mecamylamine into the NTS. Complete blockade of excitatory amino acid receptors (EAARs) in the NTS did not attenuate the responses to nicotine. It was concluded that 1) the predominant type of nicotinic receptor in the NTS contains alpha3beta4 subunits, 2) a smaller proportion contains alpha7 subunits, 3) the presynaptic nicotinic receptors in the NTS do not contribute to nicotine-induced responses, and 4) EAARs in the NTS are not involved in mediating responses to nicotine.
Collapse
Affiliation(s)
- S Dhar
- Department of Neurosurgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
19
|
Shihara M, Hori N, Hirooka Y, Eshima K, Akaike N, Takeshita A. Cholinergic systems in the nucleus of the solitary tract of rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1141-8. [PMID: 10198396 DOI: 10.1152/ajpregu.1999.276.4.r1141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pharmacological and physiological properties of excitatory amino acid and ACh systems in the nucleus of the solitary tract (NTS) were studied in slices of rat brain stem by extracellular and intracellular recordings from neurons activated by solitary tract (ST) stimulation. These neurons were characterized as having several long dendrites with multiple varicosities. Synaptic activation of the medial NTS (mNTS) neurons by ST stimulation was mediated by non-N-methyl-D-aspartate (NMDA) glutamate (Glu) receptors, because the excitation was blocked by 6-cyano-7-nitro-quinoxaline-2,3-dione but not by NMDA, nicotinic, or muscarinic antagonists. Identified mNTS neurons were excited by iontophoresis of both Glu and ACh. The most sensitive region of the cell was on the dendrites approximately 100 micrometer from the cell body for both putative neurotransmitters. Nicotinic and/or muscarinic excitatory ACh responses were detected on the mNTS neurons. Our observations suggest that both types of ACh receptors may contribute to the attenuation of the baroreceptor reflex, but the functional correlation of this receptor profile remains to be determined.
Collapse
Affiliation(s)
- M Shihara
- Research Institute of Angiocardiology and Cardiovascular Clinic, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Ashworth-Preece MA, Jarrott B, Lawrence AJ. Nicotinic acetylcholine receptor mediated modulation of evoked excitatory amino acid release in the nucleus tractus solitarius of the rat: evidence from in vivo microdialysis. Brain Res 1998; 806:287-91. [PMID: 9739154 DOI: 10.1016/s0006-8993(98)00773-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vivo microdialysis was used to measure release of endogenous l-glutamate and l-aspartate in the nucleus tractus solitarius of the anaesthetised rat evoked by baroreceptor loading. Aortic constriction, the method of loading, elicited a reproducible increase in extracellular levels of l-glutamate to 322+/-139% of basal levels, which could be attenuated by concomitant local administration of the nicotinic acetylcholine receptor antagonist mecamylamine (100 microM).
Collapse
Affiliation(s)
- M A Ashworth-Preece
- Department of Pharmacology, Monash University, Wellington Road, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
21
|
Ashworth-Preece M, Jarrott B, Lawrence AJ. Nicotinic acetylcholine receptors in the rat and primate nucleus tractus solitarius and on rat and human inferior vagal (nodose) ganglia: evidence from in vivo microdialysis and [125I]alpha-bungarotoxin autoradiography. Neuroscience 1998; 83:1113-22. [PMID: 9502250 DOI: 10.1016/s0306-4522(97)00476-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleus tractus solitarius is a key brain centre involved in the regulation of numerous autonomic functions. The present study has employed in vitro autoradiography and in vivo microdialysis to investigate the presence and function of nicotinic acetylcholine receptors located in the medial nucleus tractus solitarius of the rat. Autoradiography using [125I]alpha-bungarotoxin (0.5 nM) enabled visualization of binding sites on sections of rat and monkey brainstem. Specific binding was highest in the medial nucleus tractus solitarius. The presence of binding sites was also apparent on sections of rat nodose ganglia/vagus nerve and human inferior vagal ganglia. Subsequent to unilateral ligation of the vagus nerve in the rat, an accumulation of binding sites was visualized adjacent to the ligature. Unilateral nodose ganglionectomy in the rat caused an approximate 97% reduction in [125I]alpha-bungarotoxin binding site density in the medial nucleus tractus solitarius from 814 +/- 183 to 27 +/- 2 d.p.m./mm2. Microdialysis results indicated that local administration of nicotine (1 mM) into the nucleus tractus solitarius of the rat resulted in increases of extracellular L-glutamate of 146 +/- 9% of basal levels. This effect was not reproducible following a second stimulation and was also blocked by prior and co-administration of the nicotinic acetylcholine receptor antagonist mecamylamine (100 microM). Extracellular levels of L-aspartate exhibited a similar pattern although results were not significant. Taken together, these results are supportive of the presence of a population of [125I]alpha-bungarotoxin binding sites located presynaptically with respect to vagal afferent terminals in the medial nucleus tractus solitarius of the rat. It is possible that these binding sites are the site of action of locally administered nicotine on extracellular levels of L-glutamate, the favoured neurotransmitter at primary baroreceptor afferent fibres. These data are discussed in relation to the functional pharmacology of acetylcholine and nicotinic acetylcholine receptors in this region of the brain.
Collapse
Affiliation(s)
- M Ashworth-Preece
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
22
|
Khan IM, Printz MP, Yaksh TL, Taylor P. Augmented responses to intrathecal nicotinic agonists in spontaneous hypertension. Hypertension 1994; 24:611-9. [PMID: 7960022 DOI: 10.1161/01.hyp.24.5.611] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abnormal central cholinergic activity has been reported to be responsible in part for the pathogenesis of high blood pressure in spontaneously hypertensive rats (SHR). Administration of cholinergic agonists in brain and spinal cord results in exaggerated pressor responses in SHR. Studies to date have focused largely on the muscarinic cholinergic system. Recently, we demonstrated that intrathecal administration of nicotinic agonists results in pressor, tachycardic, and irritation responses. In the present study we examine the cardiovascular and behavioral responses to nicotine and cytisine administered intrathecally in La Jolla strain (LJ) SHRLJ and age-matched Wistar-Kyoto (WKYLJ) rats. Nicotinic agonists produced augmented pressor, heart rate, and irritation responses in SHRLJ compared with normotensive rats. In both SHRLJ and WKYLJ rats, cytisine elicited a greater nociceptive response and greater spinobulbar component to the pressor response than nicotine. SHRLJ and WKYLJ rats also differ in that the SHRLJ strain shows a diminished tendency for desensitization to cytisine. As in Sprague-Dawley rats, in SHRLJ and WKYLJ rats the cardiovascular and behavioral responses to intrathecal nicotine were significantly inhibited by mecamylamine, dihydro-beta-erthyroidine, and methyllycaconitine. However, methyllycaconitine, which effectively blocked cytisine-elicited cardiovascular and behavioral responses in Sprague-Dawley and WKYLJ rats, was unable to inhibit the maximal rise in cystine-elicited blood pressure, heart rate, and irritation responses in SHRLJ. In contrast to the heightened cardiovascular and behavioral responses, the number of nicotinic binding sites in spinal cord membranes was significantly decreased in the hypertensive rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I M Khan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | | | | | | |
Collapse
|
23
|
Maley BE, Seybold VS. Distribution of [3H]quinuclidinyl benzilate, [3H]nicotine, and [125I]alpha-bungarotoxin binding sites in the nucleus tractus solitarii of the cat. J Comp Neurol 1993; 327:194-204. [PMID: 8425941 DOI: 10.1002/cne.903270203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of muscarinic and nicotinic cholinergic binding sites in the cat nucleus tractus solitarii was studied by the technique of in vitro autoradiography. Using the antagonist [3H]quinuclidinyl benzilate, muscarinic binding sites were differentially located in subdivisions of the nucleus tractus solitarii. The majority of muscarinic binding sites were located predominantly in the caudal half of the nucleus, reaching their greatest amounts at the mid levels of the nucleus tractus solitarii. The medial, dorsolateral, intermediate, and interstitial subdivisions contained the highest densities of quinuclidinyl benzilate binding sites. Nicotinic cholinergic binding sites, using [3H]nicotine and [125I]alpha-bungarotoxin, had unique patterns of distribution. With [3H]nicotine the majority of binding sites were located in rostral levels of the nucleus with very few binding sites present in the caudal half. In contrast, [125I]alpha-bungarotoxin binding sites were present mainly in subdivisions located in the caudal half of the nucleus, i.e., commissural, ventrolateral, dorsolateral, medial, and intermediate subdivisions, and dropped off precipitously at more rostral levels. The differential distribution of [3H]nicotine and [125I]alpha-bungarotoxin suggests the two ligands may be labeling different types of nicotinic binding sites in the nucleus tractus solitarii. The unique distribution of muscarinic and nicotinic cholinergic binding sites in the various subdivisions of the nucleus solitarii suggests that muscarinic and nicotine mechanisms may play an active role in the regulation of the diverse autonomic functions at the level of the nucleus tractus solitarii.
Collapse
Affiliation(s)
- B E Maley
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center 40536-0084
| | | |
Collapse
|
24
|
Ueno S, Kakehata S, Akaike N. Nicotinic acetylcholine receptor in dissociated rat nucleus tractus solitarii neurons. Neurosci Lett 1993; 149:15-8. [PMID: 8469372 DOI: 10.1016/0304-3940(93)90336-j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ACh-activated response of the acutely dissociated neuron from the rat nucleus tractus solitarii (NTS) was investigated using conventional and perforated-patch techniques. In the present preparation, ACh and nicotine evoked inward transient currents in approximately 30% of NTS neurons tested. The ACh-activated inward current reversed the direction near 0 mV and was inhibited by D-tubocurarine in a dose-dependent manner. In contrast, muscarine resulted in no detectable changes in the NTS neurons. Some populations of the NTS had nicotinic but no muscarinic acetylcholine receptors.
Collapse
Affiliation(s)
- S Ueno
- Department of Neurophysiology, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
25
|
Whitescarver SA, Roberts AM, Stremel RW, Jimenez AE, Passmore JC. Nicotine impairs reflex renal nerve and respiratory activity in deoxycorticosterone acetate-salt rats. Hypertension 1991; 17:179-86. [PMID: 1991650 DOI: 10.1161/01.hyp.17.2.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Smoking exacerbates the increase in arterial pressure in hypertension. The effect of nicotine on the baroreceptor-mediated reflex responses of renal nerve activity (RNA), heart rate, and respiratory activity (minute diaphragmatic activity [MDA]) after bolus injections of phenylephrine was compared in deoxycorticosterone acetate (DOCA)-salt sensitive and normotensive rats. Osmotic minipumps that dispensed either nicotine (2.4 mg/kg/day) or saline were implanted in DOCA and normotensive rats for 18 days. Anesthetized DOCA-nicotine, DOCA-saline, control-nicotine, and control-saline rats had mean arterial pressures (MAP) of 117 +/- 3, 110 +/- 9, 90 +/- 3, and 89 +/- 5 mm Hg, respectively. Nicotine decreased the sensitivity (p less than 0.05) of baroreceptor reflex control of RNA (% delta RNA/delta MAP) in the DOCA-nicotine rats (-0.92 +/- 0.08) compared with the DOCA-saline (-1.44 +/- 0.16), control-nicotine (-1.45 +/- 0.08), or control-saline (-1.45 +/- 0.21) rats. The reflex decrease in respiratory activity (% delta MDA/delta MAP x 100) was impaired (p less than 0.01) in both control-nicotine (-24.5 +/- 3.3) and DOCA-nicotine (-18.2 +/- 4.6) rats compared with control-saline (-59.2 +/- 9.1) and DOCA-saline (-52.5 +/- 9.9) rats. The reflex decrease in heart rate (absolute delta HR/delta MAP) in both DOCA-nicotine (1.56 +/- 0.17) and control-nicotine (1.54 +/- 0.24) rats was augmented compared with DOCA-saline and control-saline rats (0.91 +/- 0.12 and 0.97 +/- 0.14).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S A Whitescarver
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Ky 40292
| | | | | | | | | |
Collapse
|
26
|
Kiritsy-Roy JA, Mousa SA, Appel NM, Van Loon GR. Tolerance to nicotine-induced sympathoadrenal stimulation and cross-tolerance to stress: differential central and peripheral mechanisms in rats. Neuropharmacology 1990; 29:579-89. [PMID: 2385330 DOI: 10.1016/0028-3908(90)90071-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nicotine stimulates the secretion of catecholamines from sympathetic nerve endings and adrenal medulla by acting on peripheral nicotinic cholinergic receptors. Nicotine is also a potent stimulant in the central nervous system but the significance of nicotinic receptors in brain in mediating cardiovascular and sympathoadrenal responses to nicotine is unclear. The responses of resting plasma catecholamines, blood pressure and heart rate were compared in rats receiving nicotine, administered either systemically or intracerebroventricularly (i.c.v.). Sympathoadrenal stress responses were also studied in rats rendered tolerant to nicotine from repeated systemic or intraventricular injections. Nicotine, given either intraventricularly or systemically, produced dose-related increases in the concentration of epinephrine in plasma. Little effect on norepinephrine in plasma was observed with nicotine given intraventricularly, indicating predominant stimulation of adrenomedullary pathways. In contrast, nicotine, given systemically, produced comparable increases in both epinephrine and norepinephrine. Blood pressure increased and heart rate fell in response to either intraventricular or systemic administration of nicotine. Rats exhibited tolerance to nicotine 24 hr after a single intraventricular injection; however, tolerance was not detected with systemically injected nicotine unless the injections were given at least every 30 min. Whereas rats rendered tolerant to systemic administration of nicotine were cross-tolerant to stress, with respect to sympathoadrenal stimulation, cross-tolerance with stress was not detected in rats treated with nicotine repeatedly by the intraventricular route. These results indicate that nicotinic receptors in brain modulate the central sympathetic outflow and adapt readily to nicotine stimulation with prolonged tolerance, but are probably not involved in sympathoadrenal stress responses. Peripheral nicotinic receptors, regulating sympathoadrenal secretion of catecholamines, displayed much shorter-lasting tolerance.
Collapse
Affiliation(s)
- J A Kiritsy-Roy
- Department of Medicine, University of Kentucky, Lexington 40536
| | | | | | | |
Collapse
|
27
|
Blozovski D, Hess C. Hippocampal nicotinic cholinergic mechanisms mediate spontaneous alternation and fear during ontogenesis but not later in the rat. Behav Brain Res 1989; 35:209-20. [PMID: 2574580 DOI: 10.1016/s0166-4328(89)80142-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spontaneous alternation was examined in young rats following microinjections of antinicotinic agents into one of the 4 hippocampal sites: anterodorsal, or posteroventral dentate gyrus, hippocampal gyrus, or entorhinal cortex. In control and saline-injected animals, the alternation rate was shown to grow suddenly from 40 to 80% between days 15 and 17 (the adult level being 85-90%), to regress partly (to 55%) between days 20 and 30, and return to a near-adult level (75%) by day 40. Meanwhile fear responses to environment (defecation and vocalization) emerged between days 20 and 25, increased to a maximum until day 30, and returned to the typically low adult level by day 40. Injections of mecamylamine (5, 20 micrograms) or hexamethonium (5, 20 micrograms) into any of the 4 sites significantly reduced the rate of alternation from as early as day 10 on, but were no longer effective from day 30 on; on the other hand, they did not alter the level of defecation, but had a tendency to lower the level of vocalization on day 30 only. These results indicate that hippocampal nicotinic cholinergic mechanisms play a role in spontaneous alternation and appear to be involved in the control of one fear reaction (vocalization) until day 30.
Collapse
Affiliation(s)
- D Blozovski
- Université Pierre et Marie Curie-C.N.R.S. UA 1199, Département de Neurophysiologie Comparée, Paris, France
| | | |
Collapse
|
28
|
Sloan JW, Martin WR, Bostwick M, Hook R, Wala E. The comparative binding characteristics of nicotinic ligands and their pharmacology. Pharmacol Biochem Behav 1988; 30:255-67. [PMID: 3174751 DOI: 10.1016/0091-3057(88)90454-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Five drugs [(-)- and (+)-nicotine, (-)-lobeline, (-)-anabasine and (-)-cytisine] were infused IV into the urethane-pentobarbital anesthetized rat. Changes in heart rate, blood pressure, respiratory rate, minute and tidal volume, which appeared to be largely centrally mediated, were studied. Each of these compounds produced different pharmacologic profiles. The nature of these dissimilarities is not readily explained on the basis of pharmacokinetic considerations suggesting that the drugs have different mechanisms of action. Binding data obtained with these compounds using the rat brain P2 preparation also show differences. (-)-Lobeline and (-)-anabasine, like the nicotinic antagonists mecamylamine and hexamethonium, bind predominantly to low affinity sites with KDs in the micromolar range whereas (-)-cytisine binds only to a single high affinity site with a KD in the nanomolar range. Further, the binding patterns of these drugs are different from (-)- and (+)-nicotine which bind to both high and low affinity sites but differ from each other in binding characteristics. Thus the binding data are consistent with the pharmacologic data in suggesting that the drugs have different modes of action and support the concept that the low affinity site has an important role in the central nervous system action of these compounds.
Collapse
Affiliation(s)
- J W Sloan
- University of Kentucky, College of Medicine, Department of Pharmacology, Lexington 40536
| | | | | | | | | |
Collapse
|
29
|
Abstract
In humans short-term administration of nicotine, whether by smoking or intravenous injection, will typically raise blood pressure by 5 to 10 mm Hg and heart rate by 10 to 25 bpm. Smoking causes reduced myocardial contractility and left ventricular function in patients with angina pectoris or heart failure. Nicotine's mechanism of action is more complex than the classic concept of nicotinic ganglionic stimulation can account for. Nicotine exerts a potent pressor effect in the ventral lateral medulla (C-1 area). Little current data are available documenting the efficacy of centrally acting antihypertensive agents and converting-enzyme inhibitors with regard to preventing nicotine's acute cardiovascular effects.
Collapse
Affiliation(s)
- D Robertson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | | |
Collapse
|
30
|
Yamada S, Kagawa Y, Ushijima H, Takayanagi N, Tomita T, Hayashi E. Brain nicotine cholinoceptor binding in spontaneous hypertension. Brain Res 1987; 410:212-8. [PMID: 3594235 DOI: 10.1016/0006-8993(87)90318-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To study the role of central cholinergic mechanisms in hypertension, we have determined nicotinic and muscarinic agonist binding sites in the brain regions of stroke-prone spontaneously hypertensive rats (SHRSP), using [3H]nicotine and [3H]cismethyldioxolane (CD). There was a significant decrease in specific [3H]nicotine binding in the cerebral cortex, thalamus, midbrain, cerebellum and medulla oblongata of SHRSP at 16-24 weeks of age compared to that of age-matched Wistar Kyoto rats (WKY). Scatchard analysis revealed 35% decrease in the Bmax value for [3H]nicotine binding in the SHRSP medulla oblongata without a change in the Kd value, suggesting a change in the receptor density. Similar reduction of nicotinic cholinoceptor binding sites was also observed in the discrete brain regions of young (5-week-old) SHRSP. In contrast, there was no alteration in specific [3H]CD binding in the SHRSP brains regions, except the hypothalamus which showed a significant increase. The SHRSP medulla oblongata showed no change in the ChAT activity. Thus, the present study suggests an important role for medullary nicotinic cholinoceptors in the pathogenesis of spontaneous hypertension.
Collapse
|
31
|
|
32
|
|
33
|
Martin WR, Sloan JW, Hook R, Kaplan E, Wash C. Fourth ventricle effects of nicotine, 2-methylpiperidine and cytisine in dogs. Pharmacol Biochem Behav 1986; 25:843-8. [PMID: 3786343 DOI: 10.1016/0091-3057(86)90396-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Four distinguishable nicotinic binding sites have been identified as well as four nicotinic ligands with different specificities: (+/-)-2-methylpiperidine which binds to a very high affinity site (Site 1) and produces up-regulation of the high affinity site (Site 2); (-)-nicotine which binds to Site 1 and Site 2 as well as to a low affinity site (Site 4); (+)-nicotine which binds to Site 1, Site 4 and Site 3 which is also a high affinity site; and (-)-cytisine which binds to Sites 1 and 2. These drugs were injected into the 4th ventricle of 5 dogs in graded concentrations (12.5 to 400 micrograms) and their effects on the EEG, skin twitch reflex latency, heart rate, rectal temperature, pupillary diameter, blood pressure and the amplitude of the flexor reflex were measured. Drugs which act predominantly on Site 1 [(+/-)-2-methylpiperidine and (+)-nicotine] produced EEG synchronization and hyperalgesia while drugs which interact with Sites 2 and 4 produce EEG desynchronization, analgesia and tachycardia. These data indicate that nicotinic ligands which have different binding specificities have different actions in medullary function and support the hypothesis that the different binding sites have different pharmacologic significance.
Collapse
|
34
|
|
35
|
|
36
|
Doubt and certainty in the neurophysiology of state. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Reciprocal interactions in the brain stem, REM sleep, and the generation of generalized convulsions. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
|
39
|
Sleep cycle generation: Testing the new hypotheses. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x0004629x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Modeling sleep: We need all the perspectives we can get! Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Revising sleep cycle theory? Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Are cholinergic, noradrenergic, and serotonergic neurons sufficient for understanding REM sleep control? Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
The elusive sleep cycle generator. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x0004632x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Transmitters and REM sleep. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
The biological purpose of sleep may make multiple distributed reciprocal systems meaningful. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Reciprocal interaction in sleep cycle control: Description, yes; explanation, no. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Rapid eye movements and the cerebellum. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
The REM generator: Here, there, and everywhere? Behav Brain Sci 1986. [DOI: 10.1017/s0140525x0004646x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Vasotocin: Neurohumoral control of the reciprocal-interaction model? Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Reciprocal interaction revisited. Behav Brain Sci 1986. [DOI: 10.1017/s0140525x00046379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|