1
|
Oestreicher S, Bowler DM, Derwent CT, Gaigg SB, Roessner V, Vetter N, Volk T, Beyer N, Ring M. Structural Learning in Autistic and Non-Autistic Children: A Replication and Extension. J Autism Dev Disord 2024:10.1007/s10803-024-06486-0. [PMID: 39269674 DOI: 10.1007/s10803-024-06486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/15/2024]
Abstract
The hippocampus is involved in many cognitive domains which are difficult for autistic individuals. Our previous study using a Structural Learning task that has been shown to depend on hippocampal functioning found that structural learning is diminished in autistic adults (Ring et al., 2017). The aim of the present study was to examine whether those results can be replicated in and extended to a sample of autistic and non-autistic children. We tested 43 autistic children and 38 non-autistic children with a subsample of 25 autistic and 28 non-autistic children who were well-matched on IQ. The children took part in a Simple Discrimination task which a simpler form of compound learning, and a Structural Learning task. We expected both groups to perform similarly in Simple Discrimination but reduced performance by the autism group on the Structural Learning task, which is what we found in both the well-matched and the non-matched sample. However, contrary to our prediction and the findings from autistic adults in our previous study, autistic children demonstrated a capacity for Structural Learning and showed an overall better performance in the tasks than was seen in earlier studies. We discuss developmental differences in autism as well as the role of executive functions that may have contributed to better than predicted task performance in this study.
Collapse
Affiliation(s)
- Svenja Oestreicher
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Claire T Derwent
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Sebastian B Gaigg
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nora Vetter
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Medical School Berlin, Department of Psychology, Berlin, Germany
| | - Theresia Volk
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nicole Beyer
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Melanie Ring
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Hu J, Huang Y, Wang N, Dong S. BrainNPT: Pre-Training Transformer Networks for Brain Network Classification. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2727-2736. [PMID: 39074019 DOI: 10.1109/tnsre.2024.3434343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Deep learning methods have advanced quickly in brain imaging analysis over the past few years, but they are usually restricted by the limited labeled data. Pre-trained model on unlabeled data has presented promising improvement in feature learning in many domains, such as natural language processing. However, this technique is under-explored in brain network analysis. In this paper, we focused on pre-training methods with Transformer networks to leverage existing unlabeled data for brain functional network classification. First, we proposed a Transformer-based neural network, named as BrainNPT, for brain functional network classification. The proposed method leveraged token as a classification embedding vector for the Transformer model to effectively capture the representation of brain networks. Second, we proposed a pre-training framework for BrainNPT model to leverage unlabeled brain network data to learn the structure information of brain functional networks. The results of classification experiments demonstrated the BrainNPT model without pre-training achieved the best performance with the state-of-the-art models, and the BrainNPT model with pre-training strongly outperformed the state-of-the-art models. The pre-training BrainNPT model improved 8.75% of accuracy compared with the model without pre-training. We further compared the pre-training strategies and the data augmentation methods, analyzed the influence of the parameters of the model, and explained the trained model.
Collapse
|
3
|
Baizer JS. Neuroanatomy of autism: what is the role of the cerebellum? Cereb Cortex 2024; 34:94-103. [PMID: 38696597 PMCID: PMC11484497 DOI: 10.1093/cercor/bhae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/04/2024] Open
Abstract
Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
4
|
Liu J, Zhao K, Zhou S, Hong L, Xu Y, Sun S, Tong S, Huang L, Liu J, Wang J, Li N, Lou M, Tang W, Cai Z. Suicidal ideation in Chinese adults with schizophrenia: associations with neurocognitive function and empathy. BMC Psychiatry 2023; 23:311. [PMID: 37138258 PMCID: PMC10155378 DOI: 10.1186/s12888-023-04739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Suicidal ideation is common among people diagnosed with schizophrenia spectrum disorders and may be related to neurocognitive, social cognitive, and clinical variables. This study aimed to investigate the relationships between suicidal ideation and both neurocognitive function and empathy. METHODS The sample for this cross-sectional study comprised 301 schizophrenic patients aged 18-44 years. All participants were administered the Beck Scale for Suicide Ideation-Chinese Version (BSI-CV), the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), the Interpersonal Reactivity Index (IRI), and the Positive and Negative Syndrome Scale (PANSS). The demographic and clinical data of the patients were also collected. RESULTS In total, 82 patients reported suicidal ideation. Compared to patients without suicidal ideation, patients with suicidal ideation showed significant differences in the IRI-Personal Distress subscale, PANSS-General Psychopathology symptom scores, and suicide attempts. Moreover, there were moderating effects of neurocognitive function and empathy on the relationship between suicide attempts and suicidal ideation. CONCLUSIONS These results indicate that the personal distress component of empathy, general psychopathology symptoms and suicide attempts are independent risk factors for suicidal ideation in Chinese adults with schizophrenia. Moreover, neurocognitive function may also be related to suicidal ideation through a moderating relationship. In order to reduce suicidal ideation among patients with schizophrenia, early screening of empathy and neurocognitive function is essential.
Collapse
Affiliation(s)
- Jie Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Zhao
- Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui, China
| | - Siyao Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lan Hong
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shiyu Sun
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyu Tong
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liandan Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325000, Wenzhou, China
| | - Jiahong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325000, Wenzhou, China
| | - Jieqiong Wang
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325000, Wenzhou, China
| | - Na Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengbei Lou
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Tang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325000, Wenzhou, China.
| | - Zhengmao Cai
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325000, Wenzhou, China.
| |
Collapse
|
5
|
Duan Y, Zhao W, Luo C, Liu X, Jiang H, Tang Y, Liu C, Yao D. Identifying and Predicting Autism Spectrum Disorder Based on Multi-Site Structural MRI With Machine Learning. Front Hum Neurosci 2022; 15:765517. [PMID: 35273484 PMCID: PMC8902595 DOI: 10.3389/fnhum.2021.765517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Although emerging evidence has implicated structural/functional abnormalities of patients with Autism Spectrum Disorder(ASD), definitive neuroimaging markers remain obscured due to inconsistent or incompatible findings, especially for structural imaging. Furthermore, brain differences defined by statistical analysis are difficult to implement individual prediction. The present study has employed the machine learning techniques under the unified framework in neuroimaging to identify the neuroimaging markers of patients with ASD and distinguish them from typically developing controls(TDC). To enhance the interpretability of the machine learning model, the study has processed three levels of assessments including model-level assessment, feature-level assessment, and biology-level assessment. According to these three levels assessment, the study has identified neuroimaging markers of ASD including the opercular part of bilateral inferior frontal gyrus, the orbital part of right inferior frontal gyrus, right rolandic operculum, right olfactory cortex, right gyrus rectus, right insula, left inferior parietal gyrus, bilateral supramarginal gyrus, bilateral angular gyrus, bilateral superior temporal gyrus, bilateral middle temporal gyrus, and left inferior temporal gyrus. In addition, negative correlations between the communication skill score in the Autism Diagnostic Observation Schedule (ADOS_G) and regional gray matter (GM) volume in the gyrus rectus, left middle temporal gyrus, and inferior temporal gyrus have been detected. A significant negative correlation has been found between the communication skill score in ADOS_G and the orbital part of the left inferior frontal gyrus. A negative correlation between verbal skill score and right angular gyrus and a significant negative correlation between non-verbal communication skill and right angular gyrus have been found. These findings in the study have suggested the GM alteration of ASD and correlated with the clinical severity of ASD disease symptoms. The interpretable machine learning framework gives sight to the pathophysiological mechanism of ASD but can also be extended to other diseases.
Collapse
Affiliation(s)
- YuMei Duan
- Department of Computer and Software, Chengdu Jincheng College, Chengdu, China
| | - WeiDong Zhao
- College of Computer, Chengdu University, Chengdu, China
| | - Cheng Luo
- The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - XiaoJu Liu
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Jiang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YiQian Tang
- College of Computer, Chengdu University, Chengdu, China
| | - Chang Liu
- College of Computer, Chengdu University, Chengdu, China
- The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - DeZhong Yao
- The Key Laboratory for Neuro Information of Ministry of Education, Center for Information in Bio Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Domínguez-Borràs J, Vuilleumier P. Amygdala function in emotion, cognition, and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:359-380. [PMID: 35964983 DOI: 10.1016/b978-0-12-823493-8.00015-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amygdala is a core structure in the anterior medial temporal lobe, with an important role in several brain functions involving memory, emotion, perception, social cognition, and even awareness. As a key brain structure for saliency detection, it triggers and controls widespread modulatory signals onto multiple areas of the brain, with a great impact on numerous aspects of adaptive behavior. Here we discuss the neural mechanisms underlying these functions, as established by animal and human research, including insights provided in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Judith Domínguez-Borràs
- Department of Clinical Psychology and Psychobiology & Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Patrik Vuilleumier
- Department of Neuroscience and Center for Affective Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Doi H, Tsumura N, Kanai C, Masui K, Mitsuhashi R, Nagasawa T. Automatic Classification of Adult Males With and Without Autism Spectrum Disorder by Non-contact Measurement of Autonomic Nervous System Activation. Front Psychiatry 2021; 12:625978. [PMID: 34079477 PMCID: PMC8165244 DOI: 10.3389/fpsyt.2021.625978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
People with autism spectrum disorder (ASD) exhibit atypicality in various domains of behavior. Previous psychophysiological studies have revealed an atypical pattern of autonomic nervous system (ANS) activation induced by psychosocial stimulation. Thus, it might be feasible to develop a novel assessment tool to evaluate the risk of ASD by measuring ANS activation in response to emotional stimulation. The present study investigated whether people with ASD could be automatically classified from neurotypical adults based solely on physiological data obtained by the recently introduced non-contact measurement of pulse wave. We video-recorded faces of adult males with and without ASD while watching emotion-inducing video clips. Features reflective of ANS activation were extracted from the temporal fluctuation of facial skin coloration and entered into a machine-learning algorithm. Though the performance was modest, the gradient boosting classifier succeeded in classifying people with and without ASD, which indicates that facial skin color fluctuation contains information useful for detecting people with ASD. Taking into consideration the fact that the current study recruited only high-functioning adults who have relatively mild symptoms and probably developed some compensatory strategies, ASD screening by non-contact measurement of pulse wave could be a promising assessment tool to evaluate ASD risk.
Collapse
Affiliation(s)
- Hirokazu Doi
- Graduate School of Engineering, School of Science and Engineering, Kokushikan University, Setagaya, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Chieko Kanai
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Faculty of Humanities, Wayo Women's University, Chiba, Japan
| | - Kenta Masui
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | | | - Takumi Nagasawa
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Lima RC. Autismo e memória: neurociência e cognitivismo à luz da filosofia de Henri Bergson. REVISTA LATINOAMERICANA DE PSICOPATOLOGIA FUNDAMENTAL 2020. [DOI: 10.1590/1415-4714.2020v23n4p745.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Este artigo tem como objetivo investigar a relação entre autismo e memória, tomando como referência as teses do filósofo francês Henri Bergson, em interlocução com o paradigma cognitivista e o campo das neurociências. A partir da perspectiva bergsoniana, defendemos haver no autismo uma dissociação precoce entre memória e ação corporal, levando à dificuldade em usar as experiências passadas para iluminar a situação atual. A memória autista, sem a bússola pragmática, vaga sem função precisa, resultando ora na incapacidade do sujeito em se localizar nos contextos e em sua própria história, ora em prodígios mnêmicos pouco úteis para a autonomia e a vida social. O autismo pode, portanto, ser entendido como transtorno da memória pragmática ou perturbação da atenção à vida, afetando a capacidade dos indivíduos de responder criativamente aos obstáculos do cotidiano.
Collapse
|
9
|
Manzi F, Savarese G, Mollo M, Iannaccone A. Objects as Communicative Mediators in Children With Autism Spectrum Disorder. Front Psychol 2020; 11:1269. [PMID: 32625148 PMCID: PMC7311758 DOI: 10.3389/fpsyg.2020.01269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022] Open
Abstract
In recent years, the socio-material perspective has informed an important interdisciplinary debate concerning the role of the physical world (i.e., the objects) in human psychological development. Several studies in the field of developmental psychology showed positive achievements in explaining the relationship between the subject and the social context through a socio-material approach, in particular in the early development. The importance of objects was also recognized in children with autism spectrum disorder (ASD), showing that these children are characterized by alterations in the use of the objects from early development. Some studies highlighted that objects could be a facilitator in the interactions between children with ASD and peers. However, the role of objects was not sufficiently investigated in interactions between children with ASD and adults. The main purpose of the present study was to investigate in children with ASD the communicative function that the activities with objects assume in the interactions with adults, highlighting the mediator role of objects in these interactions. More generally, this study also aims to highlight the relevance of adopting a socio-material perspective to explore some neglected aspects of the psychological activity of children with ASD. To test this hypothesis, we conducted an extensive exploratory study, collecting data from a sample of 3-year-old (N = 18; F = 3) and 4-year-old (N = 26; F = 3) with ASD. Children were observed in a free-play situation with an adult. They were free to choose an object from a predefined set. Through quantitative data, we have described the general characteristics of the manipulation of objects; through qualitative data, we aimed to capture and describe, in microgenetic sequences, some characteristics of children's activities, defined as socio-material. The analysis of the socio-material activities suggested the role of objects as mediator of the interactions between children with ASD and adults.
Collapse
Affiliation(s)
- Federico Manzi
- Research Unit on Theory of Mind, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Giulia Savarese
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Monica Mollo
- Department of Human, Philosophical, and Education Sciences, University of Salerno, Salerno, Italy
| | - Antonio Iannaccone
- Institut de Psychologie et Éducation, Université de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
10
|
Katz-Nave G, Adini Y, Hetzroni OE, Bonneh YS. Sequence Learning in Minimally Verbal Children With ASD and the Beneficial Effect of Vestibular Stimulation. Autism Res 2019; 13:320-337. [PMID: 31729171 DOI: 10.1002/aur.2237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022]
Abstract
People with autism spectrum disorder (ASD) and especially the minimally verbal, often fail to learn basic perceptual and motor skills. This deficit has been demonstrated in several studies, but the findings could have been due to the nonoptimal adaptation of the paradigms. In the current study, we sought to characterize the skill learning deficit in young minimally verbal children with ASD and explore ways for improvement. For this purpose, we used vestibular stimulation (VS) whose beneficial effects have been demonstrated in the typical population, but the data regarding ASD are limited. We trained 36 children ages 6-13 years, ASD (N = 18, 15 of them minimally verbal) and typical development (TD, N = 18), on a touch version of the visual-motor Serial-Reaction-Time sequence-learning task, in 10 short (few minutes) weekly practice sessions. A subgroup of children received VS prior to each training block. All the participants but two ASD children showed gradual median reaction time improvement with significant speed gains across the training period. The ASD children were overall slower (by ~250 msec). Importantly, those who received VS (n = 10) showed speed gains comparable to TD, which were larger (by ~100%) than the ASD controls, and partially sequence-specific. VS had no effect on the TD group. These results suggest that VS has a positive effect on learning in minimally verbal ASD children, which may have important therapeutic implications. Furthermore, contrary to some previous findings, minimally verbal children with ASD can acquire, in optimal conditions, procedural skills with few short training sessions, spread over weeks, and with a similar time course as non-ASD controls. Autism Res 2020, 13: 320-337. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Minimally verbal children with ASD who received specially adjusted learning conditions showed significant learning of a visual-motor sequence across 10 practice days. This learning was considerably improved with vestibular stimulation before each short learning session. This may have important practical implications in the education and treatment of ASD children.
Collapse
Affiliation(s)
- Gili Katz-Nave
- Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel.,Learning-Competence - Center for Functional Advancement, Even Yehuda, Israel
| | - Yael Adini
- Independent scholar, Hameyasdim St., Beit-Oved, Israel
| | - Orit E Hetzroni
- Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Ryan AM, Berman RF, Bauman MD. Bridging the species gap in translational research for neurodevelopmental disorders. Neurobiol Learn Mem 2019; 165:106950. [PMID: 30347236 PMCID: PMC6474835 DOI: 10.1016/j.nlm.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
The prevalence and societal impact of neurodevelopmental disorders (NDDs) continue to increase despite years of research in both patient populations and animal models. There remains an urgent need for translational efforts between clinical and preclinical research to (i) identify and evaluate putative causes of NDD, (ii) determine their underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches, and (iv) translate basic research into safe and effective clinical practices. Given the complexity behind potential causes and behaviors affected by NDDs, modeling these uniquely human brain disorders in animals will require that we capitalize on unique advantages of a diverse array of species. While much NDD research has been conducted in more traditional animal models such as the mouse, ultimately, we may benefit from creating animal models with species that have a more sophisticated social behavior repertoire such as the rat (Rattus norvegicus) or species that more closely related to humans, such as the rhesus macaque (Macaca mulatta). Here, we highlight the rat and rhesus macaque models for their role in previous psychological research discoveries, current efforts to understand the neurobiology of NDDs, and focus on the convergence of behavior outcome measures that parallel features of human NDDs.
Collapse
Affiliation(s)
- A M Ryan
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States
| | - R F Berman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Neurological Surgery, University of California, Davis, United States
| | - M D Bauman
- The UC Davis MIND Institute, University of California, Davis, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States; California National Primate Research Center, University of California, Davis, United States.
| |
Collapse
|
12
|
Li L, Bachevalier J, Hu X, Klin A, Preuss TM, Shultz S, Jones W. Topology of the Structural Social Brain Network in Typical Adults. Brain Connect 2019; 8:537-548. [PMID: 30280929 DOI: 10.1089/brain.2018.0592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although a large body of research has identified discrete neuroanatomical regions involved in social cognition and behavior (the "social brain"), the existing findings are based largely on studies of specific brain structures defined within the context of particular tasks or for specific types of social behavior. The objective of the current work was to view these regions as nodes of a larger collective network and to quantitatively characterize both the topology of that network and the relative criticality of its many nodes. Large-scale data mining was performed to generate seed regions of the social brain. High-quality diffusion MRI data of typical adults were used to map anatomical networks of the social brain. Network topology and nodal centrality were analyzed using graph theory. The structural social brain network demonstrates a high degree of global functional integration with strong local segregation. Bilateral dorsomedial prefrontal cortices and amygdala play the most central roles in the network. Strong probabilistic evidence supports modular divisions of the social brain into subnetworks bearing good resemblance to functionally classified clusters. The present network-driven approach quantifies the structural topology of the social brain as a whole. This work can serve as a critical benchmark against which to compare (1) developmental change in social brain topology over time (from infancy through adolescence and beyond) and (2) atypical network topologies that may be a sign or symptom of disorder (as in conditions such as autism, Williams syndrome, schizophrenia, and others).
Collapse
Affiliation(s)
- Longchuan Li
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia .,3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia
| | - Jocelyne Bachevalier
- 4 Department of Psychology, Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Xiaoping Hu
- 5 Department of Bioengineering, University of California Riverside , California
| | - Ami Klin
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia .,3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia
| | - Todd M Preuss
- 3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia .,4 Department of Psychology, Yerkes National Primate Research Center, Emory University , Atlanta, Georgia .,6 Department of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center , Atlanta, Georgia
| | - Sarah Shultz
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia
| | - Warren Jones
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia .,3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia
| |
Collapse
|
13
|
The atypical social brain network in autism: advances in structural and functional MRI studies. Curr Opin Neurol 2019; 32:617-621. [DOI: 10.1097/wco.0000000000000713] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Weston CSE. Four Social Brain Regions, Their Dysfunctions, and Sequelae, Extensively Explain Autism Spectrum Disorder Symptomatology. Brain Sci 2019; 9:E130. [PMID: 31167459 PMCID: PMC6627615 DOI: 10.3390/brainsci9060130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a challenging neurodevelopmental disorder with symptoms in social, language, sensory, motor, cognitive, emotional, repetitive behavior, and self-sufficient living domains. The important research question examined is the elucidation of the pathogenic neurocircuitry that underlies ASD symptomatology in all its richness and heterogeneity. The presented model builds on earlier social brain research, and hypothesizes that four social brain regions largely drive ASD symptomatology: amygdala, orbitofrontal cortex (OFC), temporoparietal cortex (TPC), and insula. The amygdala's contributions to ASD largely derive from its major involvement in fine-grained intangible knowledge representations and high-level guidance of gaze. In addition, disrupted brain regions can drive disturbance of strongly interconnected brain regions to produce further symptoms. These and related effects are proposed to underlie abnormalities of the visual cortex, inferior frontal gyrus (IFG), caudate nucleus, and hippocampus as well as associated symptoms. The model is supported by neuroimaging, neuropsychological, neuroanatomical, cellular, physiological, and behavioral evidence. Collectively, the model proposes a novel, parsimonious, and empirically testable account of the pathogenic neurocircuitry of ASD, an extensive account of its symptomatology, a novel physiological biomarker with potential for earlier diagnosis, and novel experiments to further elucidate the mechanisms of brain abnormalities and symptomatology in ASD.
Collapse
|
15
|
Qin D, Wu S, Chen Y, Hu X. Behavioral screening tools for identifying autism in macaques: existing and promising tests. Brain Res Bull 2019; 146:87-93. [PMID: 30605712 DOI: 10.1016/j.brainresbull.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 02/05/2023]
|
16
|
Bouyeure A, Germanaud D, Bekha D, Delattre V, Lefèvre J, Pinabiaux C, Mangin JF, Rivière D, Fischer C, Chiron C, Hertz-Pannier L, Noulhiane M. Three-Dimensional Probabilistic Maps of Mesial Temporal Lobe Structures in Children and Adolescents' Brains. Front Neuroanat 2018; 12:98. [PMID: 30498435 PMCID: PMC6249374 DOI: 10.3389/fnana.2018.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
The hippocampus and the adjacent perirhinal, entorhinal, temporopolar, and parahippocampal cortices are interconnected in a hierarchical MTL system crucial for memory processes. A probabilistic description of the anatomical location and spatial variability of MTL cortices in the child and adolescent brain would help to assess structure-function relationships. The rhinal sulcus (RS) and the collateral sulcus (CS) that border MTL cortices and influence their morphology have never been described in these populations. In this study, we identified the aforementioned structures on magnetic resonance images of 38 healthy subjects aged 7-17 years old. Relative to sulcal morphometry in the MTL, we showed RS-CS conformation is an additional factor of variability in the MTL that is not explained by other variables such as age, sex and brain volume; with an innovative method using permutation testing of the extrema of structures of interest, we showed that RS-SC conformation was not associated with differences of location of MTL sulci. Relative to probabilistic maps, we offered for the first time a systematic mapping of MTL structures in children and adolescent, mapping all the structures of the MTL system while taking sulcal morphology into account. Our results, with the probabilistic maps described here being freely available for download, will help to understand the anatomy of this region and help functional and clinical studies to accurately test structure-function hypotheses in the MTL during development. Free access to MTL pediatric atlas: http://neurovault.org/collections/2381/.
Collapse
Affiliation(s)
- Antoine Bouyeure
- INSERM, CEA, Université Paris Descartes, Sorbonne Paris Cité, Neurospin, UNIACT, UMR1129, Gif-sur-Yvette, France
| | - David Germanaud
- INSERM, CEA, Université Paris Descartes, Sorbonne Paris Cité, Neurospin, UNIACT, UMR1129, Gif-sur-Yvette, France
- Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Robert-Debré, DHU Protect, Service de Neurologie Pédiatrique et des Maladies Métaboliques, Paris, France
| | - Dhaif Bekha
- INSERM, CEA, Université Paris Descartes, Sorbonne Paris Cité, Neurospin, UNIACT, UMR1129, Gif-sur-Yvette, France
| | - Victor Delattre
- INSERM, CEA, Université Paris Descartes, Sorbonne Paris Cité, Neurospin, UNIACT, UMR1129, Gif-sur-Yvette, France
| | - Julien Lefèvre
- CNRS, ENSAM, LSIS UMR 7296, Aix Marseille University, Toulon University, Toulon, France
| | - Charlotte Pinabiaux
- Université Paris Ouest Nanterre La Défense, Laboratoire CHArt (EA 4004), Nanterre, France
| | | | - Denis Rivière
- CEA, University Paris Saclay, NeuroSpin, UNATI, Gif-sur-Yvette, France
| | - Clara Fischer
- CEA, University Paris Saclay, NeuroSpin, UNATI, Gif-sur-Yvette, France
| | - Catherine Chiron
- INSERM, CEA, Université Paris Descartes, Sorbonne Paris Cité, Neurospin, UNIACT, UMR1129, Gif-sur-Yvette, France
| | - Lucie Hertz-Pannier
- INSERM, CEA, Université Paris Descartes, Sorbonne Paris Cité, Neurospin, UNIACT, UMR1129, Gif-sur-Yvette, France
| | - Marion Noulhiane
- INSERM, CEA, Université Paris Descartes, Sorbonne Paris Cité, Neurospin, UNIACT, UMR1129, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Lim YH, Lee HC, Falkmer T, Allison GT, Tan T, Lee WL, Morris SL. Effect of Optic Flow on Postural Control in Children and Adults with Autism Spectrum Disorder. Neuroscience 2018; 393:138-149. [PMID: 30312785 DOI: 10.1016/j.neuroscience.2018.09.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
Individuals with autism spectrum disorder (ASD) have been associated with sensorimotor difficulties, commonly presented by poor postural control. Postural control is necessary for all motor behaviors. However, findings concerning the effect of visual motion on postural control and the age progression of postural control in individuals with ASD are inconsistent. The aims of the present study were to examine postural responses to optic flow in children and adults with and without ASD, postural responses to optic flow in the central and peripheral visual fields, and the changes in postural responses between the child and adult groups. Thirty-three children (8-12 years old) and 33 adults (18-50 years old) with and without ASD were assessed on quiet standing for 60 seconds under conditions of varying optic flow illusions, consisting of different combinations of optic flow directions and visual field display. The results showed that postural responses to most optic flow conditions were comparable between children with and without ASD and between adults with and without ASD. However, adults with ASD appeared more responsive to forward-moving optic flow in the peripheral visual field compared with typically developed adults. The findings suggest that children and adults with ASD may not display maladaptive postural responses all the time. In addition, adults in the ASD group may have difficulties prioritizing visual information in the central visual field over visual information in the peripheral visual field when in unfamiliar environments, which may have implications in understanding their motor behaviors in new surroundings.
Collapse
Affiliation(s)
- Yi Huey Lim
- School of Occupational Therapy, Social Work and Speech Pathology, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Hoe C Lee
- School of Occupational Therapy, Social Work and Speech Pathology, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Torbjörn Falkmer
- School of Occupational Therapy, Social Work and Speech Pathology, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia; Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Garry T Allison
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Tele Tan
- School of Mechanical Engineering, Faculty of Science and Engineering, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Wee Lih Lee
- School of Occupational Therapy, Social Work and Speech Pathology, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Susan L Morris
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
18
|
Weston CSE. Amygdala Represents Diverse Forms of Intangible Knowledge, That Illuminate Social Processing and Major Clinical Disorders. Front Hum Neurosci 2018; 12:336. [PMID: 30186129 PMCID: PMC6113401 DOI: 10.3389/fnhum.2018.00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023] Open
Abstract
Amygdala is an intensively researched brain structure involved in social processing and multiple major clinical disorders, but its functions are not well understood. The functions of a brain structure are best hypothesized on the basis of neuroanatomical connectivity findings, and of behavioral, neuroimaging, neuropsychological and physiological findings. Among the heaviest neuroanatomical interconnections of amygdala are those with perirhinal cortex (PRC), but these are little considered in the theoretical literature. PRC integrates complex, multimodal, meaningful and fine-grained distributed representations of objects and conspecifics. Consistent with this connectivity, amygdala is hypothesized to contribute meaningful and fine-grained representations of intangible knowledge for integration by PRC. Behavioral, neuroimaging, neuropsychological and physiological findings further support amygdala mediation of a diversity of such representations. These representations include subjective valence, impact, economic value, noxiousness, importance, ingroup membership, social status, popularity, trustworthiness and moral features. Further, the formation of amygdala representations is little understood, and is proposed to be often implemented through embodied cognition mechanisms. The hypothesis builds on earlier work, and makes multiple novel contributions to the literature. It highlights intangible knowledge, which is an influential but insufficiently researched factor in social and other behaviors. It contributes to understanding the heavy but neglected amygdala-PRC interconnections, and the diversity of amygdala-mediated intangible knowledge representations. Amygdala is a social brain region, but it does not represent species-typical social behaviors. A novel proposal to clarify its role is postulated. The hypothesis is also suggested to illuminate amygdala's involvement in several core symptoms of autism spectrum disorder (ASD). Specifically, novel and testable explanations are proposed for the ASD symptoms of disorganized visual scanpaths, apparent social disinterest, preference for concrete cognition, aspects of the disorder's heterogeneity, and impairment in some activities of daily living. Together, the presented hypothesis demonstrates substantial explanatory potential in the neuroscience, social and clinical domains.
Collapse
|
19
|
Jia H, Li Y, Yu D. Attenuation of long-range temporal correlations of neuronal oscillations in young children with autism spectrum disorder. NEUROIMAGE-CLINICAL 2018; 20:424-432. [PMID: 30128281 PMCID: PMC6095951 DOI: 10.1016/j.nicl.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/12/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
Abstract
Although autism spectrum disorder (ASD) was previously found to be associated with aberrant brain structure, neuronal amplitudes and spatial neuronal interactions, surprisingly little is known about the temporal dynamics of neuronal oscillations in this disease. Here, the hemoglobin concentration signals (i.e., oxy-Hb and deoxy-Hb) of young children with ASD and typically developing (TD) children were recorded via functional near infrared spectroscopy (fNIRS) when they were watching a cartoon. The long-range temporal correlations (LRTCs) of hemoglobin concentration signals were quantified using detrended fluctuation analysis (DFA). Compared with TD group, the DFA exponents of young children with ASD were significantly smaller over left temporal region for oxy-Hb signal, and over bilateral temporo-occipital regions for deoxy-Hb signals, indicating a shift-to-randomness of brain oscillations in the children with ASD. Testing the relationship between age and DFA exponents revealed that this association could be modulated by autism. The correlation coefficients between age and DFA exponents were significantly more positive in TD group, compared to those in ASD group over several brain regions. Furthermore, the DFA exponents of oxy-Hb in left temporal region were negatively correlated with autistic symptom severity. These results suggest that the decreased DFA exponent of hemoglobin concentration signals may be one of the pathologic changes in ASD, and studying the temporal structure of brain activity via fNIRS technique may provide physiological indicators for autism. The LRTCs of fNIRS signals are attenuated in young children with ASD. Opposite relationships between age and LRTCs of fNIRS signals are revealed in young children with ASD and TD. The LRTCs of oxy-Hb in left temporal region are negatively correlated with autistic symptom severity.
Collapse
Affiliation(s)
- Huibin Jia
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yanwei Li
- College of Preschool Education, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Li Y, Jia H, Yu D. Novel analysis of fNIRS acquired dynamic hemoglobin concentrations: application in young children with autism spectrum disorder. BIOMEDICAL OPTICS EXPRESS 2018; 9:3694-3710. [PMID: 30338148 PMCID: PMC6191634 DOI: 10.1364/boe.9.003694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/27/2018] [Accepted: 07/07/2018] [Indexed: 05/11/2023]
Abstract
A novel analysis of the spatial complexity of functional connectivity (SCFC) was proposed to investigate the spatial complexity of multiple dynamic functional connectivity series in an fNIRS study, using an approach combining principal component analysis and normalized entropy. The analysis was designed to describe the complex spatial features of phase synchrony based dynamic functional connectivity (dFC), which are unexplained in traditional approaches. The feasibility and validity of this method were verified in a sample of young patients with autism spectrum disorders (ASD). Our results showed that there were information exchange deficits in the right prefrontal cortex (PFC) of children with ASD, with markedly higher interregion SCFCs between the right PFC and other brain regions than those of normal controls. Furthermore, the global SCFC was significantly higher in young patients with ASD, along with considerably higher intraregion SCFCs in the prefrontal and temporal lobes which represents more diverse information exchange in these areas. The study suggests a novel method to analyze the fNIRS required dynamic hemoglobin concentrations by using concepts of SCFC. Moreover, the clinical results extend our understanding of ASD pathology, suggesting the crucial role of the right PFC during the information exchange process.
Collapse
Affiliation(s)
- Yanwei Li
- College of Preschool Education, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
- Yanwei Li and Huibin Jia contributed equally to this work
| | - Huibin Jia
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210000, Jiangsu, China
- Yanwei Li and Huibin Jia contributed equally to this work
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210000, Jiangsu, China
| |
Collapse
|
21
|
Lim JA, Choi SH, Lee WJ, Jang JH, Moon JY, Kim YC, Kang DH. Cognitive-behavioral therapy for patients with chronic pain: Implications of gender differences in empathy. Medicine (Baltimore) 2018; 97:e10867. [PMID: 29879022 PMCID: PMC5999451 DOI: 10.1097/md.0000000000010867] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chronic pain is defined as persistent or recurrent pain lasting longer than 3 months; the severity of pain can be rated in terms of intensity, pain-related distress, and functional impairment. Researches have shown an association between psychosocial factors, such as empathic ability, and the severity of pain. Cognitive-behavioral therapy (CBT) is the most common psychologic intervention for individuals with chronic pain. The aim of this study was to investigate the effect of CBT on empathy in chronic pain patients, examining especially gender differences. In total, 89 patients with severe chronic pain (46 men and 43 women) underwent 8 sessions of CBT over the course of 4 weeks. Self-reported clinical symptoms were measured at the beginning and end of the CBT. Empathy was measured using the interpersonal reactivity index, and pain severity was assessed using the short-form McGill pain questionnaire. A comparison of male and female patients before CBT indicated that females showed higher levels of empathy in response to affective issues and reported greater affective pain than males. A mixed analysis of variance revealed that female patients showed higher levels of empathy than did male patients, both before and after CBT. We also found significant relationships between affective pain and empathy for others' personal distress in all patients. These results suggest that the effectiveness of CBT may be affected by chronic pain patients' level of empathy. Although the evident result was not shown in this study, the present findings imply that female patients may formulate excellent therapeutic alliance in CBT intervention that can lead to a clinical benefit.
Collapse
Affiliation(s)
- Jae-A Lim
- Department of Psychiatry, Seoul National University Hospital
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University Hospital
- Department of Psychiatry, Seoul National University College of Medicine, Seoul
| | - Won Joon Lee
- Department of Psychiatry, Armed Forces Capital Hospital, Seongnam
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University Hospital
- Department of Medicine, Seoul National University College of Medicine
| | - Jee Youn Moon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Hyung Kang
- Department of Psychiatry, Seoul National University Hospital
- Department of Psychiatry, Seoul National University College of Medicine, Seoul
| |
Collapse
|
22
|
Williams EI, Costall A, Reddy V. Autism and Triadic Play: An Object Lesson in the Mutuality of the Social and Material. ECOLOGICAL PSYCHOLOGY 2018. [DOI: 10.1080/10407413.2018.1439140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Alan Costall
- The Department of Psychology, University of Portsmouth
| | - Vasu Reddy
- The Department of Psychology, University of Portsmouth
| |
Collapse
|
23
|
Song MK, Choi SH, Lee DH, Lee KJ, Lee WJ, Kang DH. Effects of Cognitive-Behavioral Therapy on Empathy in Patients with Chronic Pain. Psychiatry Investig 2018; 15:285-291. [PMID: 29486544 PMCID: PMC5900372 DOI: 10.30773/pi.2017.07.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Cognitive-behavioral therapy (CBT) is effective in patients with chronic pain. However, the efficacy of CBT for impaired empathy has not been studied in this population. We investigated the effect of CBT on empathy in patients with chronic pain. METHODS Patients with severe chronic pain were recruited. Empathy was assessed before and after CBT using the Interpersonal Reactivity Index (IRI). The patients underwent eight sessions over the course of 1 month conducted. Additional symptoms were assessed using the Short-Form McGill Pain Questionnaire (SF-MPQ), Beck Depression Inventory, Beck Anxiety Inventory, World Health Organization Quality of Life Scale Abbreviated Version, and the Scale for Suicide Ideation. RESULTS A total of 26 participants were included. Pre-CBT pain severity assessed using the SF-MPQ was significantly correlated with the IRI-empathic concern subscale score (p=0.021), and the relationship remained significant after adjusting for sex, age, education level, and marital status. After CBT, the IRI-perspective-taking subscale scores (p=0.004) increased significantly and the IRI-personal distress subscale scores (p=0.013) decreased significantly in all participants. The SF-MPQ scores increased significantly (p=0.021). CONCLUSION CBT improved empathy in patients with chronic pain independent of its effect on pain, suggesting that CBT is useful for improving interpersonal relationships in patients with chronic pain.
Collapse
Affiliation(s)
- Man-Kyu Song
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo-Hee Choi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do-Hyeong Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Jun Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won Joon Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Hyung Kang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Li Y, Zhou Y, Peng L, Zhao Y. Reduced protein expressions of cytomembrane GABA ARβ3 at different postnatal developmental stages of rats exposed prenatally to valproic acid. Brain Res 2017; 1671:33-42. [PMID: 28641949 DOI: 10.1016/j.brainres.2017.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 11/20/2022]
Abstract
Decreased inhibition plays an extremely important role in pathogenesis of autism spectrum disorder (ASD). Therefore, we aimed to determine whether expression levels of the γ-aminobutyric acid type A receptor β3 subunit (GABAARβ3), K+-Cl- cotransporter 2 (KCC2), and Na+-K+-Cl- cotransporter 1 (NKCC1) related to inhibition transmission are changed in a sodium valproate-induced rat model of ASD. Decreased expression levels of membrane GABAARβ3 (m-GABAARβ3) and KCC2 as well as increased endocytosis of GABAARs were found in the model group. However, there were no significant differences in expression of total GABAARβ3 and NKCC1 between the control and model groups. In addition, we observed growth retardation, impaired spatial memory, limited exploration, increased anxiety, and reduced sociability in the model group. These results suggest alterations in m-GABAARβ3 levels, KCC2 levels, and trafficking of GABAARs in rats prenatally exposed to valproic acid and advance our understanding of the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yixin Li
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Peng
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing, People's Republic of China; Institute of Neuroscience, Chongqing Medical University, Chongqing, People's Republic of China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
25
|
Sato W, Kochiyama T, Uono S, Yoshimura S, Kubota Y, Sawada R, Sakihama M, Toichi M. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Front Hum Neurosci 2017; 11:395. [PMID: 28824399 PMCID: PMC5543091 DOI: 10.3389/fnhum.2017.00395] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, Advanced Telecommunications Research Institute InternationalKyoto, Japan
| | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga UniversityShiga, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | | | - Motomi Toichi
- Faculty of Human Health Science, Kyoto UniversityKyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder ResearchKyoto, Japan
| |
Collapse
|
26
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
27
|
Molenhuis RT, Bruining H, Kas MJ. Modelling Autistic Features in Mice Using Quantitative Genetic Approaches. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:65-84. [PMID: 28551751 DOI: 10.1007/978-3-319-52498-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animal studies provide a unique opportunity to study the consequences of genetic variants at the behavioural level. Human studies have identified hundreds of risk genes for autism spectrum disorder (ASD) that can lead to understanding on how genetic variation contributes to individual differences in social interaction and stereotyped behaviour in people with ASD. To develop rational therapeutic interventions, systematic animal model studies are needed to understand the relationships between genetic variation, pathogenic processes and the expression of autistic behaviours. Genetic and non-genetic animal model strategies are here reviewed in their propensity to study the underpinnings of behavioural trait variation. We conclude that an integration of reverse and forward genetic approaches may be essential to unravel the neurobiological mechanisms underlying ASD.
Collapse
Affiliation(s)
- Remco T Molenhuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
28
|
Devi U, Kumar V, Gupta PS, Dubey S, Singh M, Gautam S, Rawat JK, Roy S, Yadav RK, Ansari MN, Saeedan AS, Kaithwas G. Experimental Models for Autism Spectrum Disorder Follow-Up for the Validity. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2016. [DOI: 10.1007/s40489-016-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Abstract
Computational modeling has been useful for understanding processes of encoding and consolidation in cortical structures. In particular, this work suggests a role of neuromodulators in setting dynamics for consolidation processes during different stages of waking and sleep. Because autistic individuals show symptoms of a cognitive nature coupled with a high prevalence of comorbid conditions such as epileptiform discharge during sleep and sleep disorders, it is possible that autism could involve a breakdown in consolidation processes, which are essential to build effective cognitive representations of the environment on the basis of individual experiences. In this article, theories of consolidation during different stages of waking and sleep and the role of different neuromodulators in these consolidation processes are reviewed in conjunction with different features of autism, which may be understood in the context of these theories.
Collapse
|
30
|
Abstract
Social cognitive neuroscience is a rapidly emerging field that utilizes cognitive neuroscientific techniques (e.g., lesion studies, neuroimaging) to address concepts traditionally in the social psychological realm (e.g., attitudes, stereotypes). The purpose of this article is to review published neuroscientific and neuropsychological research into social cognition. The author focuses on the role of the prefrontal cortex in social behavior and presents a framework that provides cohesion of this research. The article proposes that this framework will be useful in guiding future social cognitive neuroscientific research.
Collapse
Affiliation(s)
- Jacqueline N. Wood
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
31
|
Ismail MMT, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel'farb GL, El-Baz A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front Hum Neurosci 2016; 10:211. [PMID: 27242476 PMCID: PMC4862981 DOI: 10.3389/fnhum.2016.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.
Collapse
Affiliation(s)
- Marwa M. T. Ismail
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Robert S. Keynton
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | | | - Ahmed H. ElTanboly
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Manuel F. Casanova
- Departments of Pediatrics and Biomedical Sciences, University of South CarolinaColumbia, SC, USA
| | | | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
32
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
33
|
Feczko EJ, Bliss-Moreau E, Walum H, Pruett JR, Parr LA. The Macaque Social Responsiveness Scale (mSRS): A Rapid Screening Tool for Assessing Variability in the Social Responsiveness of Rhesus Monkeys (Macaca mulatta). PLoS One 2016; 11:e0145956. [PMID: 26731103 PMCID: PMC4701177 DOI: 10.1371/journal.pone.0145956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
Understanding the biological mechanisms underlying human neuropsychiatric disorders, such as autism spectrum disorder (ASD), has been hindered by the lack of a robust, translational animal model. Rhesus monkeys (Macaca mulatta) display many of the same social behaviors that are affected in ASD, making them an excellent animal species in which to model social impairments. However, the social impairments associated with ASD may reflect extreme ends of a continuous distribution of traits. Thus, to validate the rhesus monkey as an animal model for studying social impairments that has strong translational relevance for ASD, researchers need an easily-implemented measurement tool that can quantify variation in social behavior dimensionally. The Social Responsiveness Scale (SRS) is a 65-item survey that identifies both typical and atypical social behaviors in humans that covary with ASD symptom severity. A chimpanzee SRS has already been validated and the current study adapted this tool for use in the rhesus monkey (mSRS). Fifteen raters completed the mSRS for 105 rhesus monkeys living at the Yerkes National Primate Research Center. The mSRS scores showed a unimodal distribution with a positive skew that identified 6 statistical outliers. Inter-rater reliability was very strong, but only 17 of the 36 questions showed positive intra-item reliability. The results of an exploratory factor analysis identified 3 factors that explained over 60% of the variance, with 12 items significantly loading onto the primary factor. These items reflected behaviors associated with social avoidance, social anxiety or inflexibility and social confidence. These initial findings are encouraging and suggest that variability in the social responsiveness of rhesus monkeys can be quantified using the mSRS: a tool that has strong translational relevance for human disorders. With further modification, the mSRS may provide an promising new direction for research on the biological mechanisms underlying social impairments.
Collapse
Affiliation(s)
- Eric J. Feczko
- Yerkes National Primate Research Center, Atlanta, GA 30329, United States of America
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, United States of America
| | - Eliza Bliss-Moreau
- Department of Psychiatry and Behavioral Science, California National Primate Research Center, University of California, Davis CA 95616, United States of America
| | - Hasse Walum
- Yerkes National Primate Research Center, Atlanta, GA 30329, United States of America
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, United States of America
| | - John R. Pruett
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, MO 63110, United States of America
| | - Lisa A. Parr
- Yerkes National Primate Research Center, Atlanta, GA 30329, United States of America
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, United States of America
- Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA 30322, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci 2016; 28:1-52. [PMID: 27305922 PMCID: PMC5116923 DOI: 10.1007/7854_2015_5003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Prescott T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Mu Yang
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jill L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Marjorie Solomon
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
35
|
Chong CYJ. Why art psychotherapy? Through the lens of interpersonal neurobiology: The distinctive role of art psychotherapy intervention for clients with early relational trauma. INTERNATIONAL JOURNAL OF ART THERAPY 2015. [DOI: 10.1080/17454832.2015.1079727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
|
37
|
Structural connectivity of the developing human amygdala. PLoS One 2015; 10:e0125170. [PMID: 25875758 PMCID: PMC4398350 DOI: 10.1371/journal.pone.0125170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/21/2015] [Indexed: 11/19/2022] Open
Abstract
A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.
Collapse
|
38
|
Chmielewski WX, Beste C. Action control processes in autism spectrum disorder – Insights from a neurobiological and neuroanatomical perspective. Prog Neurobiol 2015; 124:49-83. [DOI: 10.1016/j.pneurobio.2014.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/22/2022]
|
39
|
Koh JY, Lim JS, Byun HR, Yoo MH. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients. Mol Brain 2014; 7:64. [PMID: 25182223 PMCID: PMC4237964 DOI: 10.1186/s13041-014-0064-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/23/2014] [Indexed: 12/20/2022] Open
Abstract
Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD. We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BDNF levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the hyperconnectivity and large brain size observed in most young idiopathic ASD patients. To test this hypothesis, we propose to examine the ZMB axis in animal models of ASD. Synaptic zinc can be examined by fluorescence zinc staining. MMP activation can be measured by in situ zymography and Western blot analysis. Finally, regional levels of BDNF can be measured. Validating this hypothesis may shed light on the central pathogenic mechanism of ASD and aid in the identification of useful biomarkers and the development of preventive/therapeutic strategies.
Collapse
Affiliation(s)
- Jae-Young Koh
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
- Department of Neurology, University of Ulsan College of Medicine, 388-1 Poongnap-Dong Songpa-Gu, Seoul 138-736, Korea
| | - Joon Seo Lim
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyae-Ran Byun
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Heui Yoo
- Neural Injury Research Lab, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Chi RP, Snyder AW. Treating autism by targeting the temporal lobes. Med Hypotheses 2014; 83:614-8. [PMID: 25227333 DOI: 10.1016/j.mehy.2014.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/19/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
Compelling new findings suggest that an early core signature of autism is a deficient left anterior temporal lobe response to language and an atypical over-activation of the right anterior temporal lobe. Intriguingly, our recent results from an entirely different line of reasoning and experiments also show that applying cathodal stimulation (suppressing) at the left anterior temporal lobe together with anodal stimulation (facilitating) at the right anterior temporal lobe, by transcranial direct current stimulation (tDCS), can induce some autistic-like cognitive abilities in otherwise normal adults. If we could briefly induce autistic like cognitive abilities in healthy individuals, it follows that we might be able to mitigate some autistic traits by reversing the above stimulation protocol, in an attempt to restore the typical dominance of the left anterior temporal lobe. Accordingly, we hypothesize that at least some autistic traits can be mitigated, by applying anodal stimulation (facilitating) at the left anterior temporal lobe together with cathodal stimulation (suppressing) at the right anterior temporal lobe. Our hypothesis is supported by strong convergent evidence that autistic symptoms can emerge and later reverse due to the onset and subsequent recovery of various temporal lobe (predominantly the left) pathologies. It is also consistent with evidence that the temporal lobes (especially the left) are a conceptual hub, critical for extracting meaning from lower level sensory information to form a coherent representation, and that a deficit in the temporal lobes underlies autistic traits.
Collapse
Affiliation(s)
| | - Allan W Snyder
- Sydney Medical School, Medical Foundation Building (K25), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Sosa-Díaz N, Bringas ME, Atzori M, Flores G. Prefrontal cortex, hippocampus, and basolateral amygdala plasticity in a rat model of autism spectrum. Synapse 2014; 68:468-73. [PMID: 24985713 DOI: 10.1002/syn.21759] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022]
Abstract
We aimed to investigate the effect of prenatal administration of valproic acid (VPA) (500 mg/kg) at embryonic day 12.5 on the anatomical properties of the prefrontal cortex, hippocampus, and basolateral amygdala, at three different ages: immediately after weaning (postnatal day 21 [PD21]), prepubertal (PD35), and postpubertal (PD70) ages in a rat model of autistic spectrum disorder. Quantitative analysis of the thickness of the prefrontal cortex revealed a reduced size at all study ages in the cingulate 1 area of the prefrontal cortex and CA1 of the dorsal hippocampus in prenatally exposed animals compared to controls. At the level of the basolateral amygdala, a reduction in the size was observed at PD35 and PD70 in the VPA group. In addition, a reduced thickness was observed in the prelimbic region of the prefrontal cortex in VPA animals at PD35. Interestingly, no differences in cortical thickness were observed between control and VPA animals in the infralimbic region of the prefrontal at any age. Our results suggest that prenatal exposure to VPA differentially alters cortical limbic regions anatomical parameters, with implication in the autistic spectrum disorder.
Collapse
Affiliation(s)
- Nuvia Sosa-Díaz
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, México
| | | | | | | |
Collapse
|
42
|
Raper J, Stephens SBZ, Sanchez M, Bachevalier J, Wallen K. Neonatal amygdala lesions alter mother-infant interactions in rhesus monkeys living in a species-typical social environment. Dev Psychobiol 2014; 56:1711-22. [PMID: 24986273 DOI: 10.1002/dev.21234] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 06/06/2014] [Indexed: 11/10/2022]
Abstract
The current study examined the effects of neonatal amygdala lesions on mother-infant interactions in rhesus monkeys reared in large species-typical social groups. Focal observations of mother-infant interactions were collected in their social group for the first 12 months postpartum on infants that had received amygdala lesions (Neo-A) at 24-25 days of age and control infants. Early amygdala lesions resulted in subtle behavioral alterations. Neo-A females exhibited earlier emergence of independence from the mother than did control females, spending more time away from their mother, whereas Neo-A males did not. Also, a set of behaviors, including coo vocalizations, time in contact, and time away from the mother, accurately discriminated Neo-A females from control females, but not Neo-A and control males. Data suggest that neonatal amygdalectomy either reduced fear, therefore increasing exploration in females, or reduced the positive reward value of maternal contact. Unlike females, neonatal amygdala lesions had little measurable effects on male mother-infant interactions. The source of this sex difference is unknown.
Collapse
Affiliation(s)
- Jessica Raper
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322; Yerkes National Primate Research Center, 954 Gatewood Rd NE, Atlanta, GA, 30329
| | | | | | | | | |
Collapse
|
43
|
Shah AH, Gordon CE, Bregy A, Shah N, Komotar RJ. Considering iatrogenic psychosis after malignant glioma resection. BMJ Case Rep 2014; 2014:bcr-2013-201318. [PMID: 24759157 DOI: 10.1136/bcr-2013-201318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
It is generally well known that medial temporal lobe resections have been associated with a variety of postoperative neuropsychiatric disturbances. Most of the neurosurgical literature on psychiatric disturbances after a temporal lobectomy concern patients with a strong history of epilepsy; however, relatively few articles have been reported due to a mesial temporal lobectomy following tumour removal. We report the case of a patient who underwent a gross total resection of a malignant astrocytoma in the temporal lobe who developed transient psychosis. Difficulties in diagnosing and predicting this condition are discussed as along with management considerations.
Collapse
Affiliation(s)
- Ashish Harish Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | |
Collapse
|
44
|
Corradi-Dell'acqua C, Schwartz S, Meaux E, Hubert B, Vuilleumier P, Deruelle C. Neural responses to emotional expression information in high- and low-spatial frequency in autism: evidence for a cortical dysfunction. Front Hum Neurosci 2014; 8:189. [PMID: 24782735 PMCID: PMC3988374 DOI: 10.3389/fnhum.2014.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/14/2014] [Indexed: 11/21/2022] Open
Abstract
Despite an overall consensus that Autism Spectrum Disorder (ASD) entails atypical processing of human faces and emotional expressions, the role of neural structures involved in early facial processing remains unresolved. An influential model for the neurotypical brain suggests that face processing in the fusiform gyrus and the amygdala is based on both high-spatial frequency (HSF) information carried by a parvocellular pathway, and low-spatial frequency (LSF) information separately conveyed by a magnocellular pathway. Here, we tested the fusiform gyrus and amygdala sensitivity to emotional face information conveyed by these distinct pathways in ASD individuals (and matched Controls). During functional Magnetical Resonance Imaging (fMRI), participants reported the apparent gender of hybrid face stimuli, made by merging two different faces (one in LSF and the other in HSF), out of which one displayed an emotional expression (fearful or happy) and the other was neutral. Controls exhibited increased fusiform activity to hybrid faces with an emotional expression (relative to hybrids composed only with neutral faces), regardless of whether this was conveyed by LSFs or HSFs in hybrid stimuli. ASD individuals showed intact fusiform response to LSF, but not HSF, expressions. Furthermore, the amygdala (and the ventral occipital cortex) was more sensitive to HSF than LSF expressions in Controls, but exhibited an opposite preference in ASD. Our data suggest spared LSF face processing in ASD, while cortical analysis of HSF expression cues appears affected. These findings converge with recent accounts suggesting that ASD might be characterized by a difficulty in integrating multiple local information and cause global processing troubles unexplained by losses in low spatial frequency inputs.
Collapse
Affiliation(s)
- Corrado Corradi-Dell'acqua
- Swiss Center for Affective Sciences, University of Geneva Geneva, Switzerland ; Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Sophie Schwartz
- Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Emilie Meaux
- Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Bénedicte Hubert
- Hôpital Rivière-de-Praires, University of Montréal Montréal, QC, Canada ; CNRS, Institut de Neurosciences de la Timone, Aix-Marseille Université Marseille, France
| | - Patrik Vuilleumier
- Swiss Center for Affective Sciences, University of Geneva Geneva, Switzerland ; Laboratory for Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University Medical Center Geneva, Switzerland
| | - Christine Deruelle
- CNRS, Institut de Neurosciences de la Timone, Aix-Marseille Université Marseille, France
| |
Collapse
|
45
|
Abstract
Autism is a behaviorally defined developmental disorder of the brain almost always presenting in infancy or the preschool years. Its symptoms persist life-long, although partial compensation is possible through targeted special education that addresses children's deficits in sociability, verbal and non-verbal communication, and atypical range of interests, activities, and cognitive skills. Although a majority of autistic individuals are mentally deficient, IQ is not a defining feature and verbal autistic persons of normal intelligence are increasingly being identified, referred to as Asperger syndrome. Meager neuropathologic data have disclosed subtle prenatal cellular limbic and cerebellar abnormalities. Autism is associated with a variety of defined genetic and acquired conditions, with multifactorial genetic traits, alone or interacting with environmental events, presumably responsible for most unexplained cases. Autistic regression is frequent and poorly understood and may be associated with clinical or subclinical epilepsy. Unravelling the neurobiologic basis of a disorder that may affect 1-2 in 1000 children will require a concerted multidisciplinary attack.
Collapse
Affiliation(s)
- I Rapin
- Saul R. Korey Department of Neurology, Department of Pediatrics, and Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
46
|
Gessaroli E, Santelli E, di Pellegrino G, Frassinetti F. Personal space regulation in childhood autism spectrum disorders. PLoS One 2013; 8:e74959. [PMID: 24086410 PMCID: PMC3781155 DOI: 10.1371/journal.pone.0074959] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
People appropriately adjust the distance between themselves and others during social interaction, and they may feel discomfort and move away when another person intrudes on their personal space. In the present study, we investigated personal space in children with persistent difficulties in the domain of social behavior, such as children with autism spectrum disorders (ASD), and in children with typical development (TD). The stop-distance paradigm was used to derive estimates of interpersonal distance, before and after a brief interaction with an unfamiliar adult confederate. The results showed that ASD children felt comfortable at a greater distance compared to TD children. Moreover, personal space shrunk after interaction with the confederate in TD children, but it failed to do so in ASD children. These findings reveal that autism deeply affects the regulation of personal space, influencing both its size and flexibility.
Collapse
Affiliation(s)
- Erica Gessaroli
- Department of Psychology, University of Bologna, Bologna, Italy ; Fondazione Salvatore Maugeri, Clinica del Lavoro e della Riabilitazione, Istituto di Ricovero e Cura a Carattere Scientifico, Mantova, Castel Goffredo, Italy
| | | | | | | |
Collapse
|
47
|
Bliss-Moreau E, Moadab G, Bauman MD, Amaral DG. The impact of early amygdala damage on juvenile rhesus macaque social behavior. J Cogn Neurosci 2013; 25:2124-40. [PMID: 24047387 DOI: 10.1162/jocn_a_00483] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present experiments continue a longitudinal study of rhesus macaque social behavior following bilateral neonatal ibotenic acid lesions of the amygdala or hippocampus, or sham operations. Juvenile animals (approximately 1.5-2.5 years) were tested in four different social contexts--alone, while interacting with one familiar peer, while interacting with one unfamiliar peer, and in their permanent social groups. During infancy, the amygdala-lesioned animals displayed more interest in conspecifics (indexed by increased affiliative signaling) and paradoxically demonstrated more submission or fear (Bauman, Lavenex, Mason, Capitanio, & Amaral, 2004a, this journal). When these animals were assessed as juveniles, differences were less striking. Amygdala-lesioned animals generated fewer aggressive and affiliative signals (e.g., vocalizations, facial displays) and spent less time in social interactions with familiar peers. When animals were observed alone or with an unfamiliar peer, amygdala-lesioned animals, compared with other subjects, spent more time being inactive and physically explored the environment less. Despite the subtle, lesion-based differences in the frequency and duration of specific social behaviors, there were lesion-based differences in the organization of behavior such that lesion groups could be identified based on the patterning of social behaviors in a discriminant function analysis. The findings indicate that, although overall frequencies of many of the observed behaviors do not differ between groups, the general patterning of social behavior may distinguish the amygdala-lesioned animals.
Collapse
|
48
|
Shastry BS. Recent Advances in the Genetics of Autism Spectrum Disorders: A Minireview. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/096979505799103704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
Gaigg SB, Bowler DM, Gardiner JM. Episodic but not semantic order memory difficulties in autism spectrum disorder: evidence from the Historical Figures Task. Memory 2013; 22:669-78. [PMID: 23815188 DOI: 10.1080/09658211.2013.811256] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Considerable evidence suggests that the episodic memory system operates abnormally in autism spectrum disorder (ASD) whereas the functions of the semantic memory system are relatively preserved. Here we show that the same dissociation also applies to the domain of order memory. We asked adult participants to order the names of famous historical figures either according to their chronological order in history (probing semantic memory) or according to a random sequence shown once on a screen (probing episodic memory). As predicted, adults with ASD performed less well than age- and IQ-matched comparison individuals only on the episodic task. This observation is of considerable importance in the context of developmental theory because semantic and episodic order memory abilities can be dissociated in typically developing infants before they reach the age at which the behavioural markers associated with ASD are first apparent. This raises the possibility that early emerging memory abnormalities play a role in shaping the developmental trajectory of the disorder. We discuss the broader implications of this possibility and highlight the urgent need for greater scrutiny of memory competences in ASD early in development.
Collapse
|
50
|
Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Res 2013; 1526:15-25. [PMID: 23806776 DOI: 10.1016/j.brainres.2013.06.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
Abstract
Autism is characterized by behavioral impairments in three main domains: social interaction; language, communication and imaginative play; and the range of interests and activities. However, neuronal processing studies have suggested that hyper-perception, hyper-attention, and enhanced memory, which may lie at the heart of most autistic symptoms. Pregnant Wistar rats were administered by either Valproic Acid (VPA, 500mg/kg) or Phosphate Buffer Saline (PBS) during fetal neural tube development on embryonic day 12.5. All offspring were subjected to various tests. The present study examined social interaction, repetitive behaviors, nociception and tactile threshold, anxiety as well as spatial memory. Histological analyses of cells in five regions of the hippocampus were done to determine neuronal density in both groups. A single intra-peritoneal injection of VPA to pregnant rats produced severe autistic-like symptoms in the offspring. The results showed significant behavioral impairments such as a lower tendency to initiate social interactions, enhanced stereotyped, repetitive behaviors, increased nociception threshold and anxiety at postnatal day (PND) 30 and PND 60. The Morris water maze learning paradigm revealed enhanced spatial memory at PND 60. Furthermore, histological analysis showed that the neuronal density in five separate regions of hippocampus (CA1, CA2, CA3, Dentate gyrus and Subiculum) were increased at PND 67. This work suggests that early embryonic exposure to VPA in rats provides a good model for several specific aspects of autism and should help to continue to explore pathophysiological and neuroanatomical hypotheses. This study provides further evidence to support the notion that spatial memory and hippocampal cell density are increased in this animal model of autism.
Collapse
|