1
|
Gencturk S, Unal G. Rodent tests of depression and anxiety: Construct validity and translational relevance. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:191-224. [PMID: 38413466 PMCID: PMC11039509 DOI: 10.3758/s13415-024-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Behavioral testing constitutes the primary method to measure the emotional states of nonhuman animals in preclinical research. Emerging as the characteristic tool of the behaviorist school of psychology, behavioral testing of animals, particularly rodents, is employed to understand the complex cognitive and affective symptoms of neuropsychiatric disorders. Following the symptom-based diagnosis model of the DSM, rodent models and tests of depression and anxiety focus on behavioral patterns that resemble the superficial symptoms of these disorders. While these practices provided researchers with a platform to screen novel antidepressant and anxiolytic drug candidates, their construct validity-involving relevant underlying mechanisms-has been questioned. In this review, we present the laboratory procedures used to assess depressive- and anxiety-like behaviors in rats and mice. These include constructs that rely on stress-triggered responses, such as behavioral despair, and those that emerge with nonaversive training, such as cognitive bias. We describe the specific behavioral tests that are used to assess these constructs and discuss the criticisms on their theoretical background. We review specific concerns about the construct validity and translational relevance of individual behavioral tests, outline the limitations of the traditional, symptom-based interpretation, and introduce novel, ethologically relevant frameworks that emphasize simple behavioral patterns. Finally, we explore behavioral monitoring and morphological analysis methods that can be integrated into behavioral testing and discuss how they can enhance the construct validity of these tests.
Collapse
Affiliation(s)
- Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
2
|
Portalés A, Sánchez-Aguilera A, Royo M, Jurado S. Assessment of social behavior and chemosensory cue detection in an animal model of neurodegeneration. Methods Cell Biol 2024; 185:137-150. [PMID: 38556445 DOI: 10.1016/bs.mcb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Numerous studies have shown that aging in humans leads to a decline in olfactory function, resulting in deficits in acuity, detection threshold, discrimination, and olfactory-associated memories. Furthermore, impaired olfaction has been identified as a potential indicator for the onset of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Studies conducted on mouse models of AD have largely mirrored the findings in humans, thus providing a valuable system to investigate the cellular and circuit adaptations of the olfactory system during natural and pathological aging. However, the majority of previous research has focused on assessing the detection of neutral or synthetic odors, with little attention given to the impact of aging and neurodegeneration on the recognition of social cues-a critical feature for the survival of mammalian species. Therefore, in this study, we present a battery of olfactory tests that use conspecific urine samples to examine the changes in social odor recognition in a mouse model of neurodegeneration.
Collapse
Affiliation(s)
- Adrián Portalés
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain.
| | - Alberto Sánchez-Aguilera
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Maria Royo
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Goikolea-Vives A, Fernandes C, Thomas MSC, Thornton C, Stolp HB. Sex-specific behavioural deficits in adulthood following acute activation of the GABAA receptor in the neonatal mouse. Dev Neurosci 2024:000536641. [PMID: 38325353 DOI: 10.1159/000536641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs. METHODS Male and female C57BL/6J mice received intraperitoneal injections of 0.5mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light dark box, marble burying, sucralose preference, social interaction and olfactory habituation/dishabituation tests between P60-90. RESULTS Early postnatal administration of muscimol resulted in reduced anxiety in the light dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour. CONCLUSIONS We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.
Collapse
|
4
|
Rørvang MV, Schild SLA, Stenfelt J, Grut R, Gadri MA, Valros A, Nielsen BL, Wallenbeck A. Odor exploration behavior of the domestic pig ( Sus scrofa) as indicator of enriching properties of odors. Front Behav Neurosci 2023; 17:1173298. [PMID: 37214639 PMCID: PMC10196037 DOI: 10.3389/fnbeh.2023.1173298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction and aim Although the sense of smell in pigs is widely recognized as being highly developed, surprisingly little is known about their sensory ability. This study aimed to (a) identify which non-social odors pigs were able to detect and distinguish between, (b) investigate the types of behavior expressed when exploring odors and, (c) compare pigs' responses to the different odors to evaluate their interest in the odors. Methods Growing pigs (N = 192) of crossbred commercial breeds were enrolled in the experiment (32-110 days of age, weighing 64.9 ± 10.1kg). Littermate pairs of opposite sex were tested in test pens with two odor insertion points in the pen wall, 55 cm apart. All pigs were habituated to the test pens and experimenters. Twelve odors were tested (eight essential oils and four synthetic perfumes) in groups of three odors, with each pig pair tested once with one set of three odors (all possible orders of the three odors were tested on 24 pairs in total), always against a non-odor control (demineralized water). In a test, each of the three odors were presented during three trials in a row (a total of 9 trials per test; trial duration: 1 min; inter-trial breaks: 2 min; total test duration: 25 min). Response variables included: duration of sniffing, feeding-related behavior (licking, biting and rooting), agonistic behavior (biting, displacement and pushing) and no approach of the odor or control, recorded throughout each 1-min odor presentation. Results All pigs sniffed an odor less when repeatedly presented (LMM: all odors P < 0.05), and significantly longer at the subsequent presentation of a new odor [LMM (3rd vs. 1st presentations): P < 0.001]. Specific odor and odor type (essential oil vs. synthetic perfume) had no significant effect on sniffing duration. Overall, feeding-related behavior and agonistic behavior were expressed significantly more when pigs explored the odor compared with the control insertion point (Paired t-tests: P < 0.001), and specific odor only affected the expression of feeding-related behavior. Conclusion Collectively, pigs express sniffing, agonistic, and feeding-related behavior when exploring odors, which suggests that pigs perceive odors of non-social origin as a resource. Odors may thus constitute relevant enrichment material for pigs.
Collapse
Affiliation(s)
- Maria Vilain Rørvang
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Johanna Stenfelt
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Rebecca Grut
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Moses A. Gadri
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anna Valros
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| | - Birte L. Nielsen
- Universities Federation for Animal Welfare (UFAW), Wheathampstead, United Kingdom
| | - Anna Wallenbeck
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| |
Collapse
|
5
|
Moser AY, Brown WY, Bizo LA. Use of a habituation-dishabituation test to determine canine olfactory sensitivity. J Exp Anal Behav 2022; 118:316-326. [PMID: 36121596 PMCID: PMC9804587 DOI: 10.1002/jeab.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 01/05/2023]
Abstract
The habituation-dishabituation (H-D) paradigm is an established measure of sensory perception in animals. However, it has rarely been applied to canine olfaction. It proposes that animals will lose interest in, or habituate to, a stimulus after successive exposures but will regain interest in, or dishabituate to, a novel stimulus if they can perceive it. This study assessed an H-D test's practicability to determine dogs' olfactory detection thresholds (ODTs) for a neutral odorant. A random selection of mixed-breed pet dogs (n = 26) participated in two H-D tests in a repeated-measures crossover design. They were first habituated to a carrier odor and then presented with either ascending concentrations of n-amyl acetate in the known ODT range (experimental condition) or repeated carrier odor presentations (control condition). No single odor concentration elicited dishabituation in the majority of the dogs. However, individual dogs dishabituated at differing experimental concentrations significantly more often than in the control condition (p = .012). These findings provide some tentative support for using this method in studying canine olfaction. However, further assessment and refinement are needed before it can be a viable alternative to traditional ODT measurement.
Collapse
Affiliation(s)
- Ariella Y. Moser
- Canine and Equine Research Group, School of Environmental and Rural ScienceUniversity of New EnglandAustralia
| | - Wendy Y. Brown
- Canine and Equine Research Group, School of Environmental and Rural ScienceUniversity of New EnglandAustralia
| | - Lewis A. Bizo
- School of PsychologyUniversity of New EnglandAustralia,Faculty of Arts and Social SciencesUniversity of Technology SydneyAustralia,Faculty of Business, Justice, and Behavioural SciencesCharles Sturt UniversityAustralia
| |
Collapse
|
6
|
Rørvang MV, Nicova K, Yngvesson J. Horse odor exploration behavior is influenced by pregnancy and age. Front Behav Neurosci 2022; 16:941517. [PMID: 35967896 PMCID: PMC9366077 DOI: 10.3389/fnbeh.2022.941517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In spite of a highly developed olfactory apparatus of horses, implying a high adaptive value, research on equine olfaction is sparse. Our limited knowledge on equine olfaction poses a risk that horse behavior does not match human expectations, as horses might react fearful when exposed to certain odors, which humans do not consider as frightening. The benefit of acquiring more knowledge of equine olfaction is therefore twofold; (1) it can aid the understanding of horse behavior and hence reduce the risk of dangerous situations, and (2) there may be unexplored potential of using odors in several practical situations where humans interact with horses. This study investigated behavior and olfactory sensitivity of 35 Icelandic horses who were presented with four odors: peppermint, orange, lavender and cedar wood in a Habituation/Dishabituation paradigm. The response variables were sniffing duration per presentation and behavioral reaction (licking, biting, snorting, and backing), and data were analyzed for potential effects of age, sex and pregnancy. Results showed that habituation occurred between successive odor presentations (1st vs. 2nd and 2nd vs. 3rd presentations: P < 0.001), and dishabituation occurred when a new odor was presented (1st vs. 3rd presentations: P < 0.001). Horses were thus able to detect and distinguish between all four odors, but expressed significantly longer sniffing duration when exposed to peppermint (peppermint vs. orange, lavender and cedar wood: P < 0.001). More horses expressed licking when presented to peppermint compared to cedar wood and lavender (P = 0.0068). Pregnant mares sniffed odors less than non-pregnant mares (P = 0.030), young horses (age 0-5 years) sniffed cedar wood for longer than old horses (P = 0.030), whereas sex had no effect (P > 0.050). The results show that horses’ odor exploration behavior and interest in odors varies with age and pregnancy and that horses naïve to the taste of a substrate, may be able to link smell with taste, which has not been described before. These results can aid our understanding of horses’ behavioral reactions to odors, and in the future, it may be possible to relate these to the physiology and health of horses.
Collapse
Affiliation(s)
- Maria Vilain Rørvang
- Department Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Maria Vilain Rørvang,
| | - Klára Nicova
- Department of Ethology, Institute of Animal Science, Prague, Czechia
| | - Jenny Yngvesson
- Department Biosystems and Technology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
7
|
Freeman AR, Ophir AG. Sex differences in social odor discrimination by southern giant pouched rats (
Cricetomys ansorgei
). Ethology 2021. [DOI: 10.1111/eth.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angela R. Freeman
- Department of Psychology Cornell University Ithaca New York USA
- Department of Biological Sciences Salisbury University Salisbury Maryland USA
| | | |
Collapse
|
8
|
Environmental enrichment ameliorates high-fat diet induced olfactory deficit and decrease of parvalbumin neurons in the olfactory bulb in mice. Brain Res Bull 2021; 179:13-24. [PMID: 34848271 DOI: 10.1016/j.brainresbull.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022]
Abstract
Overweight induced by high-fat diet (HFD) represents one of the major health concerns in modern societies, which can cause lasting peripheral and central metabolic disorders in all age groups. Specifically, childhood obesity could lead to life-long impact on brain development and functioning. On the other hand, environmental enrichment (EE) has been demonstrated to be beneficial for learning and memory. Here, we explored the impact of high-fat diet on olfaction and organization of olfactory bulb cells in adolescent mice, and the effect of EE intervention thereon. Puberty mice (3-week-old) fed with HFD for 10 weeks exhibited poorer odor sensitivity and olfactory memory relative to controls consuming standard chows. The behavioral deficits were rescued in the HFD group with EE intervention. Neuroanatomically, parvalbumin (PV) interneurons in the olfactory bulb (OB) were reduced in the HFD-fed animals relative to control, while EE intervention also normalized this alteration. In contrast, cells expressing calbindin (CB), doublecortin (DCX) in the OB were not altered. Our findings suggest that PV interneurons may play a crucial role in mediating the HFD-induced olfactory deficit in adolescent mice, and can also serve a protective effect of EE against the functional deficit.
Collapse
|
9
|
Kollikowski A, Jeschke S, Radespiel U. Experimental Evaluation of Spontaneous Olfactory Discrimination in Two Nocturnal Primates (Microcebus murinus and M. lehilahytsara). Chem Senses 2021; 45:581-592. [PMID: 32710747 DOI: 10.1093/chemse/bjaa051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solitary species often employ chemocommunication to facilitate mate localization. In the solitarily foraging, nocturnal mouse lemurs (Microcebus spp.), females advertise their short period of estrus acoustically and by increased scent marking, whereas males search widely for receptive females. Both sexes can be trained by operant conditioning to discriminate conspecific from heterospecific urine scent. However, it is not known, if males during and outside the reproductive season show different spontaneous interest in conspecific female urine, and if urine from estrous females elicits a higher investigation response than that from diestrous females. We established a spontaneous discrimination paradigm and quantified olfactory investigation responses of 21 captive male mouse lemurs of M. lehilahytsara and M. murinus when presenting 1 conspecific and 1 heterospecific female urine odor sample simultaneously. Overall, M. murinus investigated stimuli significantly longer than M. lehilahytsara. Moreover, males of M. murinus showed significantly longer olfactory investigation at conspecific urine samples during but not outside the reproductive season. This indicates that female urinary cues are spontaneously discriminated by male M. murinus and that this discrimination is more relevant during the reproductive season. However, males of both species did not show different responses toward urine samples from estrous versus diestrous females. Finally, male age did not correlate with the overall duration of olfactory investigation, and investigation levels were similar when testing with fresh or frozen urine samples. In conclusion, this new spontaneous discrimination paradigm provides a useful additional tool to study olfactory communication of nocturnal primates from the receiver's perspective.
Collapse
Affiliation(s)
- Annika Kollikowski
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg, Hannover, Germany
| | - Selina Jeschke
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg, Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg, Hannover, Germany
| |
Collapse
|
10
|
Orexinergic descending inhibitory pathway mediates linalool odor-induced analgesia in mice. Sci Rep 2021; 11:9224. [PMID: 33927235 PMCID: PMC8085205 DOI: 10.1038/s41598-021-88359-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Linalool odor exposure induces an analgesic effect in mice. This effect disappeared in the anosmic model mice, indicating that olfactory input evoked by linalool odor triggered this effect. Furthermore, hypothalamic orexinergic neurons play a pivotal role in this effect. However, the neuronal circuit mechanisms underlying this effect have not been fully addressed. In this study, we focused on the descending orexinergic projection to the spinal cord and examined whether this pathway contributes to the effect. We assessed the effect of intrathecal administration of orexin receptor antagonists on linalool odor-induced analgesia in the tail capsaicin test. We found that the selective orexin type 1 receptor antagonist, but not the selective orexin type 2 receptor antagonist, prevented the odor-induced analgesic effect. Furthermore, immunohistochemical analyses of c-Fos expression induced by the capsaicin test revealed that neuronal activity of spinal cord neurons was suppressed by linalool odor exposure, which was prevented by intrathecal administration of the orexin 1 receptor antagonist. These results indicate that linalool odor exposure drives the orexinergic descending pathway and suppresses nociceptive information flow at the spinal level.
Collapse
|
11
|
Valera-Marín G, Young LJ, Camacho F, Paredes RG, Rodríguez VM, Díaz NF, Portillo W. Raised without a father: monoparental care effects over development, sexual behavior, sexual reward, and pair bonding in prairie voles. Behav Brain Res 2021; 408:113264. [PMID: 33775781 DOI: 10.1016/j.bbr.2021.113264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Around 5 % of mammals are socially monogamous and both parents provide care to the pups (biparental, BP). Prairie voles are socially monogamous rodents extensively used to understand the neurobiological basis of pair bond formation and the consequences that the absence of one parent has in the offspring. Pair bonding, characterized by selective affiliation with a sexual partner, is facilitated in prairie voles by mating for 6 h or cohabitation without mating for 24 h. It was previously shown that prairie voles raised by their mother alone (monoparental, MP) show delayed pair bond formation upon reaching adulthood. In this study we evaluated the effects of BP and MP care provided on the offspring's development, ability to detect olfactory cues, preference for sexually relevant odors, display of sexual behavior, as well as the rewarding effects of mating. We also measured dopamine and serotonin concentration in the nucleus accumbens (ventral striatum) and dorsal striatum after cohabitation and mating (CM) to determine if differences in these neurotransmitters could underlie the delay in pair bond formation in MP voles. Our data showed that MP voles received less licking/grooming than BP voles, but no developmental differences between groups were found. No differences were found in the detection and discrimination of olfactory cues or preference for sexually relevant odors, as all groups innately preferred opposite sex odors. No differences were found in the display of sexual behavior. However, CM induced reinforcing properties only in BP males, followed by a preference for their sexual partner in BP but not MP males. BP males showed an increase in dopamine turnover (DOPAC/DA and HVA/DA) in the nucleus accumbens in comparison to MP voles. No differences in dopamine, serotonin or their metabolites were found in the dorsal striatum. Our results indicate that MP voles that received less licking behavior exhibit a delay in pair bond formation possibly because the sexual interaction is not rewarding enough.
Collapse
Affiliation(s)
- Guillermo Valera-Marín
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd., Atlanta, GA, 30329, United States
| | - Francisco Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Mexico
| | - Verónica M Rodríguez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Néstor F Díaz
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Col. Lomas Virreyes, Del. Miguel Hidalgo, Ciudad de México, 11000, Mexico.
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
12
|
Klaey-Tassone M, Durand K, Damon F, Heyers K, Mezrai N, Patris B, Sagot P, Soussignan R, Schaal B. Human neonates prefer colostrum to mature milk: Evidence for an olfactory bias toward the "initial milk"? Am J Hum Biol 2020; 33:e23521. [PMID: 33151021 DOI: 10.1002/ajhb.23521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Colostrum is the initial milk secretion which ingestion by neonates warrants their adaptive start in life. Colostrum is accordingly expected to be attractive to newborns. The present study aims to assess whether colostrum is olfactorily attractive for 2-day-old newborns when presented against mature milk or a control. METHODS The head-orientation of waking newborns was videotaped in three experiments pairing the odors of: (a) colostrum (sampled on postpartum day 2, not from own mother) and mature milk (sampled on average on postpartum day 32, not from own mother) (n tested newborns = 15); (b) Colostrum and control (water; n = 9); and (c) Mature milk and control (n = 13). RESULTS When facing the odors of colostrum and mature milk, the infants turned their nose significantly longer toward former (32.8 vs 17.7% of a 120-s test). When exposed to colostrum against the control, they responded in favor of colostrum (32.9 vs 16.6%). Finally, when the odor of mature milk was presented against the control, their response appeared undifferentiated (26.7 vs 28.6%). CONCLUSIONS These results indicate that human newborns can olfactorily differentiate conspecific lacteal fluids sampled at different lactation stages. They prefer the odor of the mammary secretion - colostrum - collected at the lactation stage that best matches the postpartum age of their own mother. These results are discussed in the context of the earliest mother-infant chemo-communication. Coinciding maternal emission and offspring reception of chemosignals conveyed in colostrum may be part of the sensory precursors of attunement between mothers and infants.
Collapse
Affiliation(s)
- Magali Klaey-Tassone
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | - Karine Durand
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | - Fabrice Damon
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | - Katrin Heyers
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | - Nawel Mezrai
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | - Bruno Patris
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | - Paul Sagot
- Service de Gynécologie, Obstétrique et Biologie de la Reproduction, Centre Hospitalier Universitaire François Mitterrand, and Université de Bourgogne, Dijon, France
| | - Robert Soussignan
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | - Benoist Schaal
- Developmental Ethology & Cognitive Psychology Laboratory, Centre for Smell, Taste and Feeding Behavior Science, UMR 6265 CNRS, Université de Bourgogne-Franche-Comté-Inrae-AgroSupDijon, Dijon, France
| | | |
Collapse
|
13
|
3Rs-based optimization of mice behavioral testing: The habituation/dishabituation olfactory test. J Neurosci Methods 2020; 332:108550. [PMID: 31838181 DOI: 10.1016/j.jneumeth.2019.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is clear evidence that most of the paradigms that are used in the field of behavioral neuroscience suffer from a lack of reliability mainly because of oversimplification of both testing procedures and interpretations. In the present study we show how an already existing behavioral test, the olfactory habituation / dishabituation task, can be optimized in such a way that animal number and animal distress could be minimized, number/confidence of behavioral outcomes and number of explored behavioral dimensions could be increased. NEW METHOD We used ethologically relevant technical and procedural changes associated with videotracking-based automated quantification of sniffing behavior to validate our new setup. Mainly internal and construct validity were challenged through the implementation of a series of simple experiments. RESULTS We show that the new version of the test: 1) has very good within and inter laboratory replicability, 2) is sensitive to some environmental / experimental factors while insensitive to others, 3) allows investigating hedonism, both state and trait anxiety, efficacy of anxiolytic molecules, acute stress, mental retardation-related social impairments and learning and memory. 4) We also show that interest for both nonsocial and social odors is stable over time which makes repetitive testing possible. CONCLUSIONS This work paves the way for future studies showing how behavioral tests / procedures may be improved by using ethologically relevant changes, in order to question laboratory animals more adequately. Refining behavioral tests may considerably increase predictivity of preclinical tests and, ultimately, help reinforcing translational research.
Collapse
|
14
|
Harada H, Kashiwadani H, Kanmura Y, Kuwaki T. Linalool Odor-Induced Anxiolytic Effects in Mice. Front Behav Neurosci 2018; 12:241. [PMID: 30405369 PMCID: PMC6206409 DOI: 10.3389/fnbeh.2018.00241] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
In folk medicine, it has long been believed that odorous compounds derived from plant extracts can have anxiolytic effects. Among them, linalool, one of the terpene alcohols in lavender extracts, has been reported to have the anxiolytic effects. However, the anxiolytic nature of the linalool odor itself as well as its potential action through the olfactory system has not been thoroughly examined. In this study, we examined the anxiolytic effects of linalool odor with light/dark box test and with elevated plus maze (EPM), and found that linalool odor has an anxiolytic effect without motor impairment in mice. The effect was not observed in anosmic mice, indicating that it was triggered by olfactory input evoked by linalool odor. Furthermore, the effect was antagonized by flumazenil, indicating that the linalool odor-induced anxiolytic effect was mediated by γ-aminobutyric acid (GABA)ergic transmission via benzodiazepine (BDZ)-responsive GABAA receptors. These results provide information about the potential central neuronal mechanisms underlying the odor-induced anxiolytic effects and the foundation for exploring clinical application of linalool odor in anxiety treatments.
Collapse
Affiliation(s)
- Hiroki Harada
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Kanmura
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
15
|
Male rats treated with subchronic PCP show intact olfaction and enhanced interest for a social odour in the olfactory habituation/dishabituation test. Behav Brain Res 2018; 345:13-20. [PMID: 29477413 DOI: 10.1016/j.bbr.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
The olfactory system participates in many sensory processes, and olfactory endophenotypes appear in a variety of neurological disorders such as Alzheimer's and Parkinson's disease, depression and schizophrenia. Social withdrawal is a core negative symptom of schizophrenia and animal models have proven to be invaluable for studying the neurobiological mechanisms and cognitive processes behind the formation of social relationships. The subchronic phencyclidine (PCP) rat model is a validated model for negative symptoms of schizophrenia, such as impaired sociability. However, the complete range of social behaviour and deficits in the model are still not fully understood. Intact rodent olfaction is essential for a wide range of social behaviour and disrupted olfactory function could have severe effects on social communication and recognition. In order to examine the olfactory ability of male rats treated with subchronic PCP, we conducted an olfactory habituation/dishabituation test including both non-social and social odours. The subchronic PCP-treated rats successfully recognized and discriminated among the odours, indicative of intact olfaction. Interestingly, the subchronic PCP-treated rats showed greater interest for a novel social odour compared to the saline-treated rats and the rationale remains to be elucidated. Our data indicate that subchronic PCP treatment does not disrupt olfactory function in male rats. By ruling out impaired olfaction as cause for the poor social interaction performance in subchronic PCP-treated rats, our data supports the use of NMDA receptor antagonists to model the negative symptoms of schizophrenia.
Collapse
|
16
|
Sexual divergence in microtubule function: the novel intranasal microtubule targeting SKIP normalizes axonal transport and enhances memory. Mol Psychiatry 2016; 21:1467-76. [PMID: 26782054 DOI: 10.1038/mp.2015.208] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP), essential for brain formation, is a frequent autism spectrum disorder (ASD)-mutated gene. ADNP associates with microtubule end-binding proteins (EBs) through its SxIP motif, to regulate dendritic spine formation and brain plasticity. Here, we reveal SKIP, a novel four-amino-acid peptide representing an EB-binding site, as a replacement therapy in an outbred Adnp-deficient mouse model. We discovered, for the first time, axonal transport deficits in Adnp(+/-) mice (measured by manganese-enhanced magnetic resonance imaging), with significant male-female differences. RNA sequencing evaluations showed major age, sex and genotype differences. Function enrichment and focus on major gene expression changes further implicated channel/transporter function and the cytoskeleton. In particular, a significant maturation change (1 month-five months) was observed in beta1 tubulin (Tubb1) mRNA, only in Adnp(+/+) males, and sex-dependent increase in calcium channel mRNA (Cacna1e) in Adnp(+/+) males compared with females. At the protein level, the Adnp(+/-) mice exhibited impaired hippocampal expression of the calcium channel (voltage-dependent calcium channel, Cacnb1) as well as other key ASD-linked genes including the serotonin transporter (Slc6a4), and the autophagy regulator, BECN1 (Beclin1), in a sex-dependent manner. Intranasal SKIP treatment normalized social memory in 8- to 9-month-old Adnp(+/-)-treated mice to placebo-control levels, while protecting axonal transport and ameliorating changes in ASD-like gene expression. The control, all d-amino analog D-SKIP, did not mimic SKIP activity. SKIP presents a novel prototype for potential ASD drug development, a prevalent unmet medical need.
Collapse
|
17
|
Rivière S, Soubeyre V, Jarriault D, Molinas A, Léger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 2016; 6:34011. [PMID: 27659313 PMCID: PMC5034277 DOI: 10.1038/srep34011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Type 2 Diabetes (T2D), a major public health issue reaching worldwide epidemic, has been correlated with lower olfactory abilities in humans. As olfaction represents a major component of feeding behavior, its alteration may have drastic consequences on feeding behaviors that may in turn aggravates T2D. In order to decipher the impact of T2D on the olfactory epithelium, we fed mice with a high fructose diet (HFruD) inducing early diabetic state in 4 to 8 weeks. After only 4 weeks of this diet, mice exhibited a dramatic decrease in olfactory behavioral capacities. Consistently, this decline in olfactory behavior was correlated to decreased electrophysiological responses of olfactory neurons recorded as a population and individually. Our results demonstrate that, in rodents, olfaction is modified by HFruD-induced diabetes. Functional, anatomical and behavioral changes occurred in the olfactory system at a very early stage of the disease.
Collapse
Affiliation(s)
- Sébastien Rivière
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Vanessa Soubeyre
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - David Jarriault
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Adrien Molinas
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Elise Léger-Charnay
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Lucie Desmoulins
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Denise Grebert
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Domaine de Vilvert, F-78350 Jouy-en-Josas, IFR 144 Neuro-Sud Paris, France
| | - Nicolas Meunier
- INRA, UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Domaine de Vilvert, F-78350 Jouy-en-Josas, IFR 144 Neuro-Sud Paris, France.,Université de Versailles Saint Quentin en Yvelines, F-78000 Versailles, France
| | - Xavier Grosmaitre
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France.,Université de Bourgogne-Franche Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| |
Collapse
|
18
|
Arbuckle EP, Smith GD, Gomez MC, Lugo JN. Testing for odor discrimination and habituation in mice. J Vis Exp 2015:e52615. [PMID: 25992586 DOI: 10.3791/52615] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This video demonstrates a technique to establish the presence of a normally functioning olfactory system in a mouse. The test helps determine whether the mouse can discriminate between non-social odors and social odors, whether the mouse habituates to a repeatedly presented odor, and whether the mouse demonstrates dishabituation when presented with a novel odor. Since many social behavior tests measure the experimental animal's response to a familiar or novel mouse, false positives can be avoided by establishing that the animals can detect and discriminate between social odors. There are similar considerations in learning tests such as fear conditioning that use odor to create a novel environment or olfactory cues as an associative stimulus. Deficits in the olfactory system would impair the ability to distinguish between contexts and to form an association with an olfactory cue during fear conditioning. In the odor habitation/dishabituation test, the mouse is repeatedly presented with several odors. Each odor is presented three times for two minutes. The investigator records the sniffing time directed towards the odor as the measurement of olfactory responsiveness. A typical mouse shows a decrease in response to the odor over repeated presentations (habituation). The experimenter then presents a novel odor that elicits increased sniffing towards the new odor (dishabituation). After repeated presentation of the novel odor the animal again shows habituation. This protocol involves the presentation of water, two or more non-social odors, and two social odors. In addition to reducing experimental confounds, this test can provide information on the function of the olfactory systems of new knockout, knock-in, and conditional knockout mouse lines.
Collapse
Affiliation(s)
| | | | - Maribel C Gomez
- Department of Psychology and Neuroscience, Baylor University
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University;
| |
Collapse
|
19
|
Zou J, Wang W, Pan YW, Lu S, Xia Z. Methods to measure olfactory behavior in mice. ACTA ACUST UNITED AC 2015; 63:11.18.1-11.18.21. [PMID: 25645244 DOI: 10.1002/0471140856.tx1118s63] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice, including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors, especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, with respect to both social and nonsocial odors.
Collapse
Affiliation(s)
- Junhui Zou
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Wenbin Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Yung-Wei Pan
- Graduate Program, Molecular and Cellular Biology, University of Washington, Seattle, Washington
| | - Song Lu
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington.,Graduate Program, Molecular and Cellular Biology, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Steuer E, Schaefer ML, Belluscio L. Using the olfactory system as an in vivo model to study traumatic brain injury and repair. J Neurotrauma 2014; 31:1277-91. [PMID: 24694002 DOI: 10.1089/neu.2013.3296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of olfactory function is an early indicator of traumatic brain injury (TBI). The regenerative capacity and well-defined neural maps of the mammalian olfactory system enable investigations into the degeneration and recovery of neural circuits after injury. Here, we introduce a unique olfactory-based model of TBI that reproduces many hallmarks associated with human brain trauma. We performed a unilateral penetrating impact to the mouse olfactory bulb and observed a significant loss of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) ipsilateral to the injury, but not contralateral. By comparison, we detected the injury markers p75(NTR), β-APP, and activated caspase-3 in both the ipsi- and contralateral OE. In the olfactory bulb (OB), we observed a graded cell loss, with ipsilateral showing a greater reduction than contralateral and both significantly less than sham. Similar to OE, injury markers in the OB were primarily detected on the ipsilateral side, but also observed contralaterally. Behavioral experiments measured 4 days after impact also demonstrated loss of olfactory function, yet following a 30-day recovery period, we observed a significant improvement in olfactory function and partial recovery of olfactory circuitry, despite the persistence of TBI markers. Interestingly, by using the M71-IRES-tauLacZ reporter line to track OSN organization, we further determined that inducing neural activity during the recovery period with intense odor conditioning did not enhance the recovery process. Together, these data establish the mouse olfactory system as a new model to study TBI, serving as a platform to understand neural disruption and the potential for circuit restoration.
Collapse
Affiliation(s)
- Elizabeth Steuer
- 1 Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|
21
|
Coronas-Sámano G, Portillo W, Beltrán Campos V, Medina-Aguirre GI, Paredes RG, Diaz-Cintra S. Deficits in odor-guided behaviors in the transgenic 3xTg-AD female mouse model of Alzheimer׳s disease. Brain Res 2014; 1572:18-25. [PMID: 24842003 DOI: 10.1016/j.brainres.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/15/2022]
Abstract
Alzheimer׳s disease (AD) is characterized by a number of alterations including those in cognition and olfaction. An early symptom of AD is decreased olfactory ability, which may affect odor-guided behaviors. To test this possibility we evaluated alterations in sexual incentive motivation, sexual olfactory preference, sexual olfactory discrimination, nursing-relevant olfactory preference and olfactory discrimination in female mice. We tested 3xTg-AD (a triple transgenic model, which is a "knock in" of PS1M146V, APPSwe, and tauP300L) and wild type (WT) female mice when receptive (estrous) and non-receptive (anestrous). Subjects were divided into three groups of different ages: (1) 4-5 months, (2) 10-11 months, and (3) 16-18 months. In the sexual incentive motivation task, the receptive 3xTg-AD females showed no preference for a sexually active male at any age studied, in contrast to the WT females. In the sexual olfactory preference test, the receptive WT females were able to identify sexually active male secretions at all ages, but the oldest (16-18 months old) 3xTg-AD females could not. In addition, the oldest 3xTg-AD females showed no preference for nursing-relevant odors in dam secretions and were unable to discriminate between cinnamon and strawberry odors, indicating olfactory alterations. Thus, the present study suggests that the olfactory deficits in this mouse model are associated with changes in sexual incentive motivation and discrimination of food-related odors.
Collapse
Affiliation(s)
- G Coronas-Sámano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - V Beltrán Campos
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Campus Celaya Salvatierra, Mexico
| | - G I Medina-Aguirre
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico
| | - S Diaz-Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Mexico.
| |
Collapse
|
22
|
Malkesman O, Tucker LB, Ozl J, McCabe JT. Traumatic brain injury - modeling neuropsychiatric symptoms in rodents. Front Neurol 2013; 4:157. [PMID: 24109476 PMCID: PMC3791674 DOI: 10.3389/fneur.2013.00157] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
Each year in the US, ∼1.5 million people sustain a traumatic brain injury (TBI). Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms - and why some patients experience differing assortments of persistent maladies - are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory, and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential.
Collapse
Affiliation(s)
- Oz Malkesman
- Department of Anatomy, Physiology and Genetics, Pre-Clinical Models for TBI and Behavioral Assessments Core, The Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Laura B. Tucker
- Department of Anatomy, Physiology and Genetics, Pre-Clinical Models for TBI and Behavioral Assessments Core, The Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Jessica Ozl
- Department of Anatomy, Physiology and Genetics, Pre-Clinical Models for TBI and Behavioral Assessments Core, The Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| | - Joseph T. McCabe
- Department of Anatomy, Physiology and Genetics, Pre-Clinical Models for TBI and Behavioral Assessments Core, The Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, USA
| |
Collapse
|
23
|
Portillo W, Antonio-Cabrera E, Camacho FJ, Díaz NF, Paredes RG. Behavioral characterization of non-copulating male mice. Horm Behav 2013; 64:70-80. [PMID: 23673371 DOI: 10.1016/j.yhbeh.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 11/26/2022]
Abstract
Non-copulating (NC) males are those animals that do not mate in spite of repeated testing with sexually receptive females. They have been observed in several species including rats and mice. The present experiment was designed to perform a detailed behavioral characterization of NC male mice. Thus, we evaluated their sexual incentive motivation for a sexually receptive female or a sexually active male, olfactory preference for volatile and non-volatile odors from females or males, and olfactory discrimination between female and male volatile odors and food related odors (milk versus vinegar). We compared the activity of the accessory olfactory system (AOS) in copulating (C) and NC males in response to estrous bedding using the induction of Fos-immunoreactivity (Fos-IR) as a measure of neuronal activation. We also determined if estradiol or dopamine treatment could induce sexual behavior in NC males. Finally, we compared the testis weight and the number of penile spines in C, NC, and gonadectomized males. In the sexual incentive motivation test C males spend significantly more time in the female incentive zone than in the male incentive zone. On the other hand, NC males spend the same amount of time in both incentive zones. In tests of olfactory preference, NC males spent less time investigating estrous odors than C males. As well, NC males discriminate urine from conspecifics but they spend less time smelling these odors than C males. In addition, no increase in Fos expression is observed in NC males when they are exposed to odors from estrous females. Our data also suggest that the deficits observed in NC males are not due to lower circulating levels of gonadal hormones, because estradiol supplementation does not induce sexual behavior in these animals, and their testis weight and the number of penile spines are normal. The results suggest that NC males are not sexually motivated by the receptive females and their odors.
Collapse
Affiliation(s)
- W Portillo
- Instituto de Neurobiología Universidad Nacional Autónoma de México, México.
| | | | | | | | | |
Collapse
|
24
|
Fanjul MS, Zenuto RR. When allowed, females prefer novel males in the polygynous subterranean rodent Ctenomys talarum (tuco-tuco). Behav Processes 2012; 92:71-8. [PMID: 23164625 DOI: 10.1016/j.beproc.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 10/04/2012] [Accepted: 10/23/2012] [Indexed: 11/24/2022]
Abstract
The ability to recognize familiar conspecifics plays an important role at the time of choosing a mating partner in rodents. A laboratory study using preference test was used in order to test the hypothesis that, in the polygynous subterranean rodent Ctenomys talarum, females prefer novel males when offered two odors, or individuals (one familiar and one novel) limited in their movements so that male aggression is prevented. Our findings show that females prefer novel tuco-tucos at three levels of male assessment: odor samples (consisting of shavings soiled with urine, feces, and presumably, other body secretions collected from the male home cage), confined males behind a wire mesh, and full contact with tethered males. Previous studies of this species demonstrated that in the wild, male-male competition and male coercion severely limit the possibility of females mating non-neighbors, i.e. novel males. Females mating neighbors to whom they are familiarized, obtain high quality mating since they are territorial, highly competitive males. Nonetheless, when females have the opportunity, as shown in the two-choice experiments, they choose novel males, probably benefiting their progeny from novel genetic combinations. Hence, combining evidence from laboratory and field studies in C. talarum, it is possible to better understand female preferences in modeling individual reproductive strategies.
Collapse
Affiliation(s)
- Maria Sol Fanjul
- Grupo Ecología fisiológica y del comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Box 1245, 7600 Mar del Plata, Argentina.
| | | |
Collapse
|
25
|
Kiyokawa Y, Wakabayashi Y, Takeuchi Y, Mori Y. The neural pathway underlying social buffering of conditioned fear responses in male rats. Eur J Neurosci 2012; 36:3429-37. [DOI: 10.1111/j.1460-9568.2012.08257.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Malkesman O, Scattoni ML, Paredes D, Tragon T, Pearson B, Shaltiel G, Chen G, Crawley JN, Manji HK. The female urine sniffing test: a novel approach for assessing reward-seeking behavior in rodents. Biol Psychiatry 2010; 67:864-71. [PMID: 20034613 PMCID: PMC2922846 DOI: 10.1016/j.biopsych.2009.10.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 01/17/2023]
Abstract
BACKGROUND Abnormal hedonic behavior is a key feature of many psychiatric disorders. Several paradigms measure reward-seeking behavior in rodents, but each has limitations. We describe a novel approach for monitoring reward-seeking behavior in rodents: sniffing of estrus female urine by male mice, along with number of ultrasonic vocalizations (USVs) emitted during the test. METHODS The female urine sniffing test (FUST) was designed to monitor reward-seeking activity in rodents together with tests of helplessness and sweet solution preference. USVs and dopamine release from the nucleus accumbens (NAc) were recorded. Sniffing activity was measured in 1) manipulation-naive C57BL/6J and 129S1/SVImJ mice and Wistar-Kyoto rats; 2) stressed mice; 3) two groups of mice that underwent the learned helplessness paradigm-one untreated, and one treated with the SSRI citalopram; and 4) GluR6 knockout mice, known to display lithium-responsive, mania-related behaviors. RESULTS Males from all three strains spent significantly longer sniffing female urine than sniffing water. Males emitted USVs and showed significantly elevated NAc dopamine levels while sniffing urine. Foot-shock stress significantly reduced female urine sniffing time. Compared with mice that did not undergo the LH paradigm, LH males spent less time sniffing female urine, and citalopram treatment alleviated this reduction. Compared with their wildtype littermates, GluR6KO males sniffed female urine longer and showed enhanced saccharin preference. CONCLUSIONS In rodents, sniffing female urine is a preferred activity accompanied by biological changes previously linked to reward-seeking activities. The FUST is sensitive to behavioral and genetic manipulation and to relevant drug treatment.
Collapse
Affiliation(s)
- Oz Malkesman
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
This unit presents two basic protocols that offer rapid assessments of anosmia (the absence of a sense of smell) in mice. The buried food test is used to check for the ability to smell volatile odors. The olfactory habituation/dishabituation test is used to test whether the animal can detect and differentiate different odors, including both nonsocial and social odors. A non-contact method of odor presentation, along with a general method for collecting urine samples, is given as an alternate protocol. The tests described in this unit only require simple equipment and can be adopted readily by most laboratories.
Collapse
Affiliation(s)
- Mu Yang
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
28
|
Olfactory discrimination and incentive value of non copulating and sexually sluggish male rats. Physiol Behav 2007; 93:742-7. [PMID: 18155100 DOI: 10.1016/j.physbeh.2007.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 11/01/2007] [Accepted: 11/20/2007] [Indexed: 11/24/2022]
Abstract
Some apparently healthy male rats fail to copulate despite being tested on repeated occasions with receptive females and are called non copulating (NC) rats. NC rats sniff and lick the female genitals, and show normal erectile and ejaculatory functions and hormonal levels. Sexually sluggish (S) male rats take a long time to ejaculate or sometimes they don't achieve ejaculation when tested repeatedly with receptive females. The aim of the present study was to determine if NC and S males can discriminate sexually relevant olfactory cues such as urine from estrous or anestrous female and urine from sexually experienced males. We also tested odors like amyl acetate and mint using an olfactory discrimination test. In a second experiment we evaluated if a sexually receptive female has a preference for a copulating (C) male, for a NC male, or for a S male in a sexual incentive motivation test. This would let us determine if a NC and an S male are equally attractive than a C male to a sexually receptive female. The olfactory test revealed that C, NC and S males have the same ability to discriminate sexually relevant odors. As well, all males clearly discriminate non sexual odors like amyl acetate and mint suggesting that NC and S male rats do not have alterations in their olfactory system. With respect to the sexual incentive motivation test, females spend the same time in the incentive zone of the NC and C males. As well, females spent the same time in the incentive zone of S and C males. These results demonstrate that NC, S and C males are equally attractive to receptive females.
Collapse
|
29
|
Shimozuru M, Kikusui T, Takeuchi Y, Mori Y. Discrimination of individuals by odor in male Mongolian gerbils, Meriones unguiculatus. Zoolog Sci 2007; 24:427-33. [PMID: 17867841 DOI: 10.2108/zsj.24.427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 12/14/2006] [Indexed: 11/17/2022]
Abstract
The ability to discriminate among individuals plays a fundamental role in the establishment of social relationships in animals. We examined how Mongolian gerbils (Meriones unguiculatus) discriminate among individuals using odor. In the first experiment, the ability of male gerbils to discriminate among five odor sources from different individuals was investigated using a habituation-dishabituation paradigm. After male gerbils had been habituated to a scent from one individual, they were exposed to familiar and unfamiliar scents from different donors simultaneously. Where urine and ventral gland secretions were used, the subjects spent more time investigating novel odors than familiar ones, suggesting that they were able to discriminate individual differences in these odor sources. However, with the scents of feces and saliva, they could detect, but could not discriminate individual differences; with scent from inside the pinnae, they could not even detect. In the second experiment, we tested whether cross-habituation occurred between the scents of urine and ventral gland secretions. A male was exposed repeatedly to urine from one of two familiar donor males during four habituation trials, and was then exposed to the ventral gland secretions from two donors simultaneously. The subject males spent more time investigating scents of ventral gland secretions, but there was no difference in the investigation time between ventral gland scents from the two donors. These results suggest that male gerbils discriminate among individuals using odors from urine and ventral gland secretions and that cross-habituation may not occur between these scents during social-memory formation.
Collapse
Affiliation(s)
- Michito Shimozuru
- Laboratory of Veterinary Ethology, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
30
|
Wang Z, Balet Sindreu C, Li V, Nudelman A, Chan GCK, Storm DR. Pheromone detection in male mice depends on signaling through the type 3 adenylyl cyclase in the main olfactory epithelium. J Neurosci 2006; 26:7375-9. [PMID: 16837584 PMCID: PMC6674185 DOI: 10.1523/jneurosci.1967-06.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Terrestrial vertebrates have evolved two anatomically and mechanistically distinct chemosensory structures: the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). Although it has been generally thought that pheromones are detected through the VNO, whereas other chemicals are sensed by the MOE, recent evidence suggests that some pheromones may be detected through the MOE. Odorant receptors in the MOE are coupled to the type 3 adenylyl cyclase (AC3), an enzyme not expressed in the VNO. Consequently, odorants and pheromones do not elicit electrophysiological responses in the MOE of AC3-/- mice, although VNO function is intact. Here we report that AC3-/- mice cannot detect mouse milk, urine, or mouse pheromones. Inter-male aggressiveness and male sexual behaviors are absent in AC3-/- mice. Furthermore, adenylyl cyclase activity in membranes prepared from the MOE of wild-type mice, but not AC3-/- mice, is stimulated by 2-heptanone, a mouse pheromone. We conclude that signaling through AC3 in the MOE is obligatory for male sexual behavior, male-male aggressiveness, and the detection of some pheromones.
Collapse
|
31
|
Pillay N, Eborall J, Ganem G. Divergence of mate recognition in the African striped mouse (Rhabdomys). Behav Ecol 2006. [DOI: 10.1093/beheco/arl014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Pierman S, Douhard Q, Balthazart J, Baum MJ, Bakker J. Attraction thresholds and sex discrimination of urinary odorants in male and female aromatase knockout (ArKO) mice. Horm Behav 2006; 49:96-104. [PMID: 15961088 DOI: 10.1016/j.yhbeh.2005.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/19/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
We previously found that both male and female aromatase knockout (ArKO) mice, which cannot synthesize estrogens due to a targeted mutation of the aromatase gene, showed less investigation of volatile body odors from anesthetized conspecifics of both sexes in Y-maze tests. We now ask whether ArKO mice are in fact capable of discriminating between and/or responding to volatile odors. Using habituation/dishabituation tests, we found that gonadectomized ArKO and wild-type (WT) mice of both sexes, which were tested without any sex hormone replacement, reliably distinguished between undiluted volatile urinary odors of either adult males or estrous females versus deionized water as well as between these two urinary odors themselves. However, ArKO mice of both sexes were less motivated than WT controls to investigate same-sex odors when they were presented last in the sequence of stimuli. In a second experiment, we compared the ability of ArKO and WT mice to respond to decreasing concentrations of either male or female urinary odors. We found a clear-cut sex difference in urinary odor attraction thresholds among WT mice: WT males failed to respond to urine dilutions higher than 1:20 by volume, whereas WT females continued to respond to urine dilutions up to 1:80. Male ArKO mice resembled WT females in their ability to respond to lower concentrations of urinary odors, raising the possibility that the observed sex difference among WT mice in urine attraction thresholds results from the perinatal actions of estrogen in the male nervous system. Female ArKO mice failed to show significant dishabituation responses to two (1:20 and 1:80) dilutions of female urine, perhaps, again, because of a reduced motivation to investigate less salient, same-sex urinary odors. Previously observed deficits in the preference of ArKO male and female mice to approach volatile body odors from conspecifics of either sex cannot be attributed to an inability of ArKO subjects to discriminate these odors according to sex but instead may reflect a deficient motivation to approach same-sex odors, especially when their concentration is low.
Collapse
Affiliation(s)
- Sylvie Pierman
- Center for Cellular and Molecular Neurobiology, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
33
|
Pankevich DE, Deedy EM, Cherry JA, Baum MJ. Interactive effects of testosterone and superior cervical ganglionectomy on attraction thresholds to volatile urinary odors in gonadectomized mice. Behav Brain Res 2003; 144:157-65. [PMID: 12946606 DOI: 10.1016/s0166-4328(03)00073-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Volatile urinary odors contribute to mate recognition in mice after their detection by the main olfactory epithelium (MOE). We used a habituation/dishabitution task to ask whether the capacity of gonadectomized mice of both sexes to detect and investigate decreasing concentrations of volatile urinary odors from either breeding males or estrous females is modulated by administering androgen or estrogen and if so, whether any effects of these sex steroids are altered by disrupting the sympathetic innervation of the MOE via bilateral superior cervical ganglionectomy (SCGx). In tests given, beginning 51 days after gonadectomy without steroid treatment both male and female subjects detected even the lowest concentrations (1:120 and 1:160 dilutions by volume) of male urinary odors, provided they were SCGx as opposed to sham operated. In subsequent tests given after estradiol benzoate (EB) followed later by 5alpha-dihydrotestosterone (DHT) treatments, neither male nor female subjects detected low concentrations of male urinary odors regardless of whether or not their SCG's were intact. Administration of testosterone (T) prior to a final series of tests restored the ability of gonadectomized subjects of both sexes to detect low concentrations of male urinary odors regardless of their SCG status. This suggests that T, but not its neural metabolites estradiol, or DHT, facilitates responsiveness to low concentrations of male odors in mice of both sexes. In tests given 51 days after gonadectomy without steroid treatment most male and female subjects readily detected the three highest concentrations of estrous female urinary odors whereas SCGx males and females failed to detect the lowest concentrations of these odors. After treatment with EB and then with DHT, gonadectomized mice of both sexes generally failed to detect the three lowest concentrations of estrous female urinary odors regardless of their SCG status. After T treatment; however, subjects of both sexes again detected most dilutions of estrous female urine, provided their SCG's were intact. Again, these results suggest that T, but not estradiol or DHT, facilitates responsiveness to estrous female urinary odors. Provided such an activational effect of T is present, sympathetic, noradrenergic inputs to the MOE may enhance odorant contrast, as previously suggested [Nat. Neurosci. 2 (1999) 106], by reducing the responsiveness of olfactory neurons to low (1:120 and 1:160 dilutions) concentrations of some biologically significant odorants (e.g. male urinary odors) while facilitating their responsiveness to low to moderate (1:80 dilution) concentrations of others (e.g. estrous female urinary odors).
Collapse
Affiliation(s)
- D E Pankevich
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
34
|
Trinh K, Storm DR. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 2003; 6:519-25. [PMID: 12665798 DOI: 10.1038/nn1039] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 02/28/2003] [Indexed: 11/08/2022]
Abstract
It is commonly assumed that odorants are detected by the main olfactory epithelium (MOE) and pheromones are sensed through the vomeronasal organ (VNO). The complete loss of MOE-mediated olfaction in type-3 adenylyl cyclase knockout mice (AC3-/-) allowed us to examine chemosensory functions of the VNO in the absence of signaling through the MOE. Here we report that AC3-/- mice are able to detect certain volatile odorants via the VNO. These same odorants elicited electro-olfactogram transients in the VNO and MOE of wild-type mice, but only VNO responses in AC3-/- mice. This indicates that some odorants are detected through an AC3-independent pathway in the VNO.
Collapse
Affiliation(s)
- Kien Trinh
- Molecular and Cellular Biology Program and Department of Pharmacology, University of Washington, Box 357750, 1959 NE Pacific St., Seattle, Washington 98195, USA
| | | |
Collapse
|
35
|
Luo AH, Cannon EH, Wekesa KS, Lyman RF, Vandenbergh JG, Anholt RRH. Impaired olfactory behavior in mice deficient in the alpha subunit of G(o). Brain Res 2002; 941:62-71. [PMID: 12031548 DOI: 10.1016/s0006-8993(02)02566-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to respond to chemical signals is essential for the survival and reproduction of most organisms. Olfactory signaling involves odorant receptor-mediated activation of G(olf), a homologue of G(s), on the dendrites of olfactory neurons. Olfactory receptor cells, however, also express Galpha(i2) and Galpha(o) on their axons, with all neurons expressing G(o) and a subset G(i2). Despite their abundance, possible contributions of G(o) and G(i2) to chemoreception remain unexplored. We investigated whether homologous recombinant mice deficient in the alpha subunit of G(o) are able to respond to odorants, whether possible olfactory impairments are dependent on genetic background, and whether formation of glomeruli in their olfactory bulbs is compromised. In an olfactory habituation/dishabituation test, G(o)-/- mice were unresponsive when exposed to odorants. Analysis of variance shows that performance of G(o)+/- mice crossed into the CD-1 background is also diminished in this test compared to their G(o)+/+ counterparts. Following food deprivation, G(o)-/- mice in the 129 Sv-ter/C57BL/6 genetic background were unable to locate a buried food pellet until they were approximately 10 weeks of age after which they performed as well as their litter mate controls. However, CD-1 G(o)-/- mice could locate a buried food pellet even when tested immediately after weaning. Despite their compromised olfactory responsiveness, histological examination did not reveal gross alterations in the olfactory bulbs of G(o)-/- mice. Thus, Galpha(o) is necessary for the expression of olfactory behavior under normal conditions and dependent on genetic background, but is not essential for the formation and maintenance of glomeruli.
Collapse
Affiliation(s)
- Alice H Luo
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | |
Collapse
|
36
|
Isles AR, Baum MJ, Ma D, Szeto A, Keverne EB, Allen ND. A possible role for imprinted genes in inbreeding avoidance and dispersal from the natal area in mice. Proc Biol Sci 2002; 269:665-70. [PMID: 11934356 PMCID: PMC1690950 DOI: 10.1098/rspb.2001.1911] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The expression of a subset of mammalian genes is subject to parent of origin effects (POE), most of which can be explained by genomic imprinting. Analysis of mutant animals has demonstrated that a number of imprinted genes influence brain development and behaviour. Here we provide evidence for POE on olfactory related behaviour and sensitivity to maternal odour cues. This was investigated by examining the odour preference behaviour of reciprocal cross F(1) mice made by embryo transfer to genetically unrelated foster parents. We determined that both adult males and females show an avoidance of female urinary odours of their genetic maternal but not paternal origin. This was found not to be due to any previous exposure to these odours or due to self-learning, but may be related to direct effects on the olfactory system, as reciprocal F(1) males show differential sensitivity to female odour cues. Currently the most robust theory to explain the evolution of imprinting is the conflict hypothesis that focuses on maternal resource allocation to the developing foetus. Kinship considerations are also likely to be important in the selection of imprinted genes and we discuss our findings within this context, suggesting that imprinted genes act directly on the olfactory system to promote post-weaning dispersal from the natal area.
Collapse
Affiliation(s)
- Anthony R Isles
- Sub-department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK
| | | | | | | | | | | |
Collapse
|
37
|
Baum MJ, Keverne EB. Sex difference in attraction thresholds for volatile odors from male and estrous female mouse urine. Horm Behav 2002; 41:213-9. [PMID: 11855906 DOI: 10.1006/hbeh.2001.1749] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volatile urinary odors from opposite sex conspecifics contribute to mate recognition in numerous mammalian species, including mice. We used a simple habituation/dishabituation testing procedure to ask whether the capacity to detect and investigate decreasing concentrations of volatile urinary odors is sexually differentiated in mice. Beginning 2 months after gonadectomy and in the absence of any sex steroid treatment, adult, sexually naive male and female CBA x C57Bl/6 F1 hybrid mice received two series of daily tests that involved the presentation of different dilutions of urine from C57Bl/6 males followed by urine from estrous females. Each test session began with three consecutive presentations of deionized water (10 microl on filter paper for 2 min, behind a mesh barrier which prevented direct physical access, in the home cage at 1-min intervals) followed by three presentations of one of five different dilutions of urine (a different dilution on each test day). Males and females showed equivalent, significant habituation/dishabituation responses (low investigation times for successive water presentations; increased investigation of the first urine stimulus, followed by a decline in successive urine investigation times) to both male and female urine/water dilutions of 1:1, 1:10, and 1:20. However, only female mice responded reliably to 1:40 and 1:80 dilutions of both types of urine, pointing to a sex dimorphism in the detection and/or processing of biologically relevant, volatile urinary odors by the main olfactory system.
Collapse
Affiliation(s)
- M J Baum
- Subdepartment of Animal Behaviour, University of Cambridge, Cambridge, CB3 8AA, United Kingdom
| | | |
Collapse
|
38
|
Carroll LS, Penn DJ, Potts WK. Discrimination of MHC-derived odors by untrained mice is consistent with divergence in peptide-binding region residues. Proc Natl Acad Sci U S A 2002; 99:2187-92. [PMID: 11842193 PMCID: PMC122340 DOI: 10.1073/pnas.042244899] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) play a central role in immune recognition, yet they also influence the odor of individuals. Mice can be trained to distinguish odors mediated by classical MHC loci; however, training can introduce confounding behavioral artifacts. This study demonstrates that mice can distinguish some, but not all, naturally occurring allelic variants at classical MHC loci without prior training. This result suggests that MHC-disassortative mating preferences might operate by means of small MHC-based odor differences, and could therefore contribute to diversifying selection acting on MHC loci. Here we show that odors of two MHC mutant mouse strains (bm1 and bm3) can be distinguished, even after genetic background is controlled by intercrossing strains. These two strains differ by five amino acids, three of which are predicted to chemically contact peptides bound to the peptide-binding region (PBR), the site of antigen presentation for T cell recognition. However, the odors of neither bm1 nor bm3 were distinguished from their parental B6 haplotype after randomizing genomic background, despite discrimination of pure-bred B6 and bm1 strain odors. These combined results suggest that (i) there may be an MHC odor discrimination threshold based on divergence in PBR residues, providing a more logical pattern of MHC-based odor discrimination than found in previous training studies, where discrimination ability was not correlated with PBR divergence; and (ii) additional (non-MHC) mutations that influence odor have accumulated in these strains during the 100 generations of divergence between pure B6 and bm1 strains.
Collapse
Affiliation(s)
- Lara S Carroll
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0841, USA.
| | | | | |
Collapse
|
39
|
Isles AR, Ma D, Milsom C, Skynner MJ, Cui W, Clark J, Keverne EB, Allen ND. Conditional ablation of neurones in transgenic mice. JOURNAL OF NEUROBIOLOGY 2001; 47:183-93. [PMID: 11333400 DOI: 10.1002/neu.1026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conditional targeted ablation of specific cell populations in living transgenic animals is a very powerful strategy to determine cell functions in vivo. This approach would be of particular value to study the functions of distinct neuronal populations; however, the transgene of choice for conditional cell ablation studies in mice, the herpes simplex virus thymidine kinase gene, cannot be used to ablate neurones as its principal mode of action relies on cell proliferation. Here we report that expression of the E.coli nitroreductase gene (Ntr) and metabolism of the prodrug CB1954 (5-aziridin-1-yl-2-4-dinitrobenzamide) to its cytotoxic derivative can be used to conditionally and acutely ablate specific neuronal populations in vivo. As proof of principal, we have ablated olfactory and vomeronasal receptor neurones by expressing Ntr under the control of the olfactory marker protein (OMP) gene promoter. We demonstrate that following CB1954 administration, olfactory and vomeronasal receptor neurones expressing the transgene were selectively eliminated from the olfactory epithelium (OE), and projections to the olfactory bulb (OB) were lost. The functional efficacy of cell ablation was demonstrated using a highly sensitive behavioural test to show that ablated mice had lost the olfactory ability to discriminate distinct odors and were consequently rendered anosmic. Targeted expression of Ntr to specific neuronal populations using conventional transgenes, as described here, or by "knock-in" gene targeting using embryonic stem cells may be of significant value to address the functions of distinct neuronal populations in vivo.
Collapse
Affiliation(s)
- A R Isles
- Laboratory of Cognitive and Developmental Neuroscience, Neurobiology Programme, The Babraham Institute, Babraham, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Immune recognition occurs when foreign antigens are presented to T-lymphocytes by molecules encoded by the highly polymorphic genes of the major histocompatibility complex (MHC). House mice (Mus musculus) prefer to mate with individuals that have dissimilar MHC genes. Numerous studies indicate that mice recognize MHC identity through chemosensory cues; however, it is unclear whether odor is determined by classical, antigen-presenting MHC loci or closely linked genes. Previous studies have relied on training laboratory mice and rats to distinguish MHC-associated odors, but there are several reasons why training experiments may be inappropriate assays for testing if MHC genes affect odor. The aim of this study was to determine whether classical MHC genes affect individual odors and whether wild-derived mice can detect MHC-associated odors without training. In the first experiment, we found that wild-derived mice can be trained in a Y-maze to detect the odors of mice that differ genetically only in the MHC region. In the second and third experiments, we used a naturalistic habituation assay and found that wild-derived mice can, without training, distinguish the odors of mice that differ genetically only at one classical MHC locus (dm2 mutants).
Collapse
Affiliation(s)
- D Penn
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | |
Collapse
|
41
|
Brown RE, Singh PB, Roser B. The major histocompatibility complex and the chemosensory recognition of individuality in rats. Physiol Behav 1987; 40:65-73. [PMID: 3615656 DOI: 10.1016/0031-9384(87)90186-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present experiments provide the first evidence that congenic strains of rats, which differ only in the MHC, produce discriminably different urinary chemosignals. Urine from adult male PVG and PVG.R1 rats, which differ only in the A region (class 1) of the MHC, was used in a habituation-dishabituation task, with male PVG-RTlu, Wistar albino, and Lister hooded rats as subjects. Urine from PVG males was easily distinguished from that of PVG.R1 males by all three strains. Individual PVG males were not distinguished by their urine odours, but individual PVG.R1 males appeared to have discriminably different odours. A repetition of this experiment indicated that this discrimination may have been due to impurities in the urine. Odours from serum were not sufficient for discrimination between the two strains, nor was the class 1 molecule purified from the urine. Urine with the class 1 molecule removed (remainder fraction) could, however, be used to distinguish between the strains. The chemicals in the urine which give this distinctive odour may be fragments of the class 1 molecule or small molecules associated with the class 1 molecule. The MHC appears to control the odour cues which are used by mammals for individual recognition and may provide an olfactory basis for kin recognition but the mechanism by which the MHC controls these olfactory signals is unknown.
Collapse
|