1
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Prefrontal NMDA-receptor antagonism disrupts encoding or consolidation but not retrieval of incidental context learning. Behav Brain Res 2021; 405:113175. [PMID: 33596432 DOI: 10.1016/j.bbr.2021.113175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/12/2021] [Accepted: 02/07/2021] [Indexed: 01/27/2023]
Abstract
The Context Preexposure Facilitation Effect (CPFE) is a variant of contextual fear conditioning in which learning about the context, acquiring a context-shock association, and retrieval of this association occur separately across three phases (context preexposure, immediate-shock training, and retention). We have shown that prefrontal inactivation or muscarinic-receptor antagonism prior to any phase disrupts retention test freezing during the CPFE in adolescent rats (Heroux et al., 2017; Robinson-Drummer et al., 2017). Furthermore, the medial prefrontal cortex (mPFC) is the only region in which robust learning-related expression of the immediate early genes c-Fos, Arc, Egr-1 and Npas4 is observed during immediate-shock training in the CPFE (Asok et al., 2013; Heroux et al., 2018; Schreiber et al., 2014). However, the role of prefrontal NMDA-receptor plasticity in supporting preexposure- and training-day processes of the CPFE is not known. Therefore, the current study examined the effects of intra-mPFC infusion of the NMDA-receptor antagonist MK-801 or saline vehicle prior to context preexposure (Experiment 1) or immediate-shock training (Experiment 2) in adolescent Long-Evans male and female rats. This infusion given prior to context preexposure but not training abolished retention test freezing, with no difference between MK-801-infused rats and non-associative controls preexposed to an alternative context (pooled across drug). These results demonstrate a role of prefrontal NMDA-receptor plasticity in the acquisition and/or consolidation of incidental context learning (i.e., encoded in the absence of reinforcement). In contrast, this plasticity is not required for context retrieval, or acquisition, expression, or consolidation of a context-shock association during immediate-shock training in the CPFE. These experiments add to a growing body of work implicating the mPFC in Pavlovian contextual fear conditioning processes in rodents.
Collapse
|
3
|
Franco LO, Carvalho MJ, Costa J, Ferreira PA, Guedes JR, Sousa R, Edfawy M, Seabra CM, Cardoso AL, Peça J. Social subordination induced by early life adversity rewires inhibitory control of the prefrontal cortex via enhanced Npy1r signaling. Neuropsychopharmacology 2020; 45:1438-1447. [PMID: 32492699 PMCID: PMC7360628 DOI: 10.1038/s41386-020-0727-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023]
Abstract
Social hierarchies are present in most mammalian species. In nature, hierarchies offer a tradeoff between reduction of in-group fighting between males, at the expense of an asymmetric sharing of resources. Early life experiences and stress are known to influence the rank an individual attains in adulthood, but the associated cellular and synaptic alterations are poorly understood. Using a maternal separation protocol, we show that care-deprived mice display a long-lasting submissive phenotype, increased social recognition, and enhanced explorative behavior. These alterations are consistent with an adaptation that favors exploration rather than confrontation within a group setting. At the neuronal level, these animals display dendritic atrophy and enhanced inhibitory synaptic inputs in medial prefrontal cortex (mPFC) neurons. To determine what could underlie this synaptic modification, we first assessed global gene expression changes via RNAseq, and next focused on a smaller subset of putatively altered synaptic receptors that could explain the changes in synaptic inhibition. Using different cohorts of maternally deprived mice, we validated a significant increase in the expression of Npy1r, a receptor known to play a role in maternal care, anxiety, foraging, and regulation of group behavior. Using electrophysiological recordings in adult mice while blocking NPY1R signaling, we determined that this receptor plays a key role in enhancing GABAergic currents in mice that experience maternal deprivation. Taken together, our work highlights the potential of regulating NPY1R in social anxiety disorders and the alterations induced in brain circuitry as a consequence of early life stress and adversity.
Collapse
Affiliation(s)
- Lara O. Franco
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cPhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Mário J. Carvalho
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,MIT-Portugal Bioengineering Systems Doctoral Program, Coimbra, Portugal
| | - Jéssica Costa
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cPhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Pedro A. Ferreira
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joana R. Guedes
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Renato Sousa
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mohamed Edfawy
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Catarina M. Seabra
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana L. Cardoso
- 0000 0000 9511 4342grid.8051.cCNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
El Boukhari H, Ouhaz Z, Ba-M'hamed S, Bennis M. Early lesion of the reticular thalamic nucleus disrupts the structure and function of the mediodorsal thalamus and prefrontal cortex. Dev Neurobiol 2020; 79:913-933. [PMID: 31976624 DOI: 10.1002/dneu.22733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/19/2020] [Indexed: 11/07/2022]
Abstract
The thalamic reticular nucleus (TRN), part of the thalamus, is a thin GABAergic cell layer adjacent to the relay nuclei of the dorsal thalamus. It receives input from the cortex and other thalamic nuclei and provides major inhibitory input to each thalamic nucleus, particularly the mediodorsal nucleus (MD). As the MD is important for supporting optimal cortico-thalamo-cortical interactions during brain maturation, we hypothesized that that early damage to the TRN will cause major disturbances to the development and the functioning of the prefrontal cortex (PFC) and the MD. Rat pups at P4 were randomized in three groups: electrolytic lesion of TRN, TRN-sham-lesion group, and the classical control group. Seven weeks later, all rats were tested with several behavioral and cognitive paradigms, and then perfused for histological and immunohistochemical studies. Results showed that TRN lesion rats exhibited reduced spontaneous activity, high level of anxiety, learning and recognition memory impairments. Besides the behavioral effects observed after early TRN lesions, our study showed significant cytoarchitectural and functional changes in the cingulate cortex, the dorsolateral and prelimbic subdivisions of the PFC, as well as in the MD. The assessment of the basal levels of neuronal activity revealed a significant reduction of the basal expression of C-Fos levels in the PFC. These experiments, which are the first to highlight the effects of early TRN lesions, provided evidence that early damage of the anterior part of the TRN leads to alterations that may control the development of the thalamocortical-corticothalamic pathways.
Collapse
Affiliation(s)
- Hasna El Boukhari
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Zakaria Ouhaz
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
5
|
Heroux NA, Robinson-Drummer PA, Sanders HR, Rosen JB, Stanton ME. Differential involvement of the medial prefrontal cortex across variants of contextual fear conditioning. ACTA ACUST UNITED AC 2017; 24:322-330. [PMID: 28716952 PMCID: PMC5516685 DOI: 10.1101/lm.045286.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a contextual fear conditioning paradigm in which learning about the context, acquiring the context-shock association, and retrieving/expressing contextual fear are temporally dissociated into three distinct phases. In contrast, learning about the context and the context-shock association happens concurrently in standard contextual fear conditioning (sCFC). By infusing the GABAA receptor agonist muscimol into medial prefrontal cortex (mPFC) in adolescent Long-Evans rats, the current set of experiments examined the functional role of the mPFC in each phase of the CPFE and sCFC. In the CPFE, the mPFC is necessary for the following: acquisition and/or consolidation of context memory (Experiment 1), reconsolidation of a context memory to include shock (Experiment 2), and expression of contextual fear memory during a retention test (Experiment 3). In contrast to the CPFE, inactivation of the mPFC prior to conditioning in sCFC has no effect on acquisition, consolidation, or retention of a contextual fear memory (Experiment 4). Interestingly, the mPFC is not required for acquiring a context-shock association (measured by post-shock freezing) in the CPFE or sCFC (Experiment 2b and 4). Taken together, these results indicate that the mPFC is differentially recruited across stages of learning and variants of contextual fear conditioning (CPFE versus sCFC). More specifically, separating out learning about the context and the context-shock association necessitates activation of the medial prefrontal cortex during early learning and/or consolidation.
Collapse
Affiliation(s)
- Nicholas A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | - Hollie R Sanders
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Mark E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
6
|
Neurobehavioral changes and activation of neurodegenerative apoptosis on long-term consumption of aspartame in the rat brain. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2015. [DOI: 10.1016/j.jnim.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Syed H, Ikram MF, Yaqinuddin A, Ahmed T. Cyclooxygenase I and II inhibitors distinctly enhance hippocampal- and cortex-dependent cognitive functions in mice. Mol Med Rep 2015; 12:7649-56. [PMID: 26398269 DOI: 10.3892/mmr.2015.4351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
Cyclooxygenase (COX) enzymes are expressed in the brain; however, their role in hippocampus-dependent and cortex-dependent cognitive functions remains to be fully elucidated. The aim of the present study was to comparatively investigate the effects of piroxicam, a selective COX-I inhibitor, and celecoxib, a selective COX‑II inhibitor, on cognitive functions in an AlCl3‑induced neurotoxicity mouse model to understand the specific role of each COX enzyme in the hippocampus and cortex. The AlCl3 (250 mg/kg) was administered to the mice in drinking water and the drugs were administered in feed for 30 days. Assessments of memory, including a Morris water maze, social behavior and nesting behavior were performed in control and treated mice. The RNA expression of the COX enzymes were analyzed using reverse transcription‑quantitative polymerase chain reaction analysis. An ex‑vivo 2,2‑Diphenyl‑1‑picrylhydrazyl assay was performed in the hippocampus and cortex. Following 30 days of treatment with thedrugs, the mice in the celecoxib‑ and piroxicam‑treated groups exhibited enhanced learning (6.84 ± 0.76 and 9.20 ± 1.08, respectively), compared with the AlCl3‑induced neurotoxicity group (21.14 ± 0.76) on the fifth day of the Morris water maze test. Celecoxib treatment improved social affiliation in the AlCl3‑induced neurotoxicity group, the results of which were superior to piroxicam. Piroxicam led to better improvement in nesting score in the AlCl3‑induced neurotoxicity group. Both drugs decreased the expression levels of COX‑I and COX‑II in the hippocampus and cortex, and rescued oxidative stress levels. These findings suggested that each drug distinctly affected cognitive functions, highlighting the distinctive roles of COX-I and COX-II in learning and memory.
Collapse
Affiliation(s)
- Huma Syed
- Neurobiology Laboratory, Atta‑ur‑Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | | | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Touqeer Ahmed
- Neurobiology Laboratory, Atta‑ur‑Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Miller MM, Morrison JH, McEwen BS. Basal anxiety-like behavior predicts differences in dendritic morphology in the medial prefrontal cortex in two strains of rats. Behav Brain Res 2012; 229:280-8. [PMID: 22285422 DOI: 10.1016/j.bbr.2012.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/26/2022]
Abstract
Basal differences in the brain may account for why some individuals are more vulnerable to stress than others. Although trait anxiety behavior varies greatly in human populations, most animal models of anxiety disorders tend to focus on the development of anxiety after a stressful experience. In this study, adult male Sprague-Dawley and Lewis rats were grouped according to baseline anxiety-like behavior in the open field, measured by time spent and distance traveled in the center. Individuals that fell one standard deviation above and below the mean, approximately the top and bottom 15%, were selected for the Low and High Anxiety groups. Pyramidal neurons from layer II/III of the prelimbic region of the medial prefrontal cortex were iontophoretically loaded with Lucifer yellow dye and reconstructed. In both strains, animals in the High Anxiety group had smaller apical dendrites than those in the Low Anxiety group. No difference was found in basal dendrites. Sholl analysis revealed a strain difference in the distribution of dendritic material between anxiety groups. These results illustrate significant variability in dendritic morphology in the prefrontal cortex of healthy adult male rats prior to experimental manipulation that correlates with baseline levels of anxiety-like behavior.
Collapse
Affiliation(s)
- Melinda M Miller
- Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, 1230 York Ave, New York, NY 10065, USA.
| | | | | |
Collapse
|
9
|
Britton GB, Segan AT, Sejour J, Mancebo SE. Early exposure to methylphenidate increases fear responses in an aversive context in adult rats. Dev Psychobiol 2007; 49:265-75. [PMID: 17380504 DOI: 10.1002/dev.20213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of methylphenidate hydrochloride (MPH) administration during development on fear acquisition and retention in adulthood were examined using classical fear conditioning. Male Sprague-Dawley rats were administered MPH (2 mg/kg) or saline twice daily from postnatal day (PD) 25 to 39, and were trained and tested on PD 81 and 82. During training, shock unconditioned stimulus (US) presentations were explicitly paired with an auditory conditioned stimulus (CS) or occurred unsignaled in the training context. No effect of MPH treatment was found during fear acquisition when shock was signaled or unsignaled during training, but 24 h retention tests in the training context revealed enhanced fear responses in MPH-treated animals that received unsignaled training. These results support recent reports of enhanced anxiety-like behaviors in adult rats caused by early developmental MPH treatment and highlight the need for further research into the long-term effects of developmental exposure to stimulants aimed at pediatric populations.
Collapse
Affiliation(s)
- Gabrielle B Britton
- Institute for Advanced Scientific Investigations and High Technology Services, National Secretariat for Science, Technology, and Innovation, Panama City, Panama.
| | | | | | | |
Collapse
|
10
|
Ennaceur A, Michalikova S, Chazot PL. Models of anxiety: responses of rats to novelty in an open space and an enclosed space. Behav Brain Res 2006; 171:26-49. [PMID: 16678277 DOI: 10.1016/j.bbr.2006.03.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/06/2006] [Accepted: 03/14/2006] [Indexed: 01/01/2023]
Abstract
Exposure to novelty has been shown to induce anxiety responses in a variety of behavioural paradigms. The purpose of the present study was to investigate whether exposition of naïve rats to novelty would result in a comparable or a different pattern of responses in an open space versus enclosed space with or without the presence of an object in the centre of the field. Lewis and Wistar rats of both genders were used to illustrate and discuss the value and validity of these anxiety paradigms. We examined a wide range of measures, which cover several aspects of animals' responses. The results of this study revealed significant differences between the behaviour of animals in an open space and in the enclosed space. It also revealed significant differences in animal's responses to the presence and absence of an object in the open space and in the enclosed space. In the enclosed space, rats spent most of their time in the outer area with lower number of exits and avoided the object area except when there was an object, while in the open space rats displayed frequent short duration re-entries in the outer area and spent longer time in the object area in presence of an object. The time spent in the inner area (away from the outer area and the object area) was significantly longer and the number of faecal boli was significantly higher in the open space than in the enclosed space. In the present report, we will discuss the fundamental differences between enclosed space and open space models, and we will examine some methodological issues related to the current animal models of human behaviour in anxiety. In the enclosed space, animals can avoid the potential threat associated with the centre area of a box and chose the safety of walls and corners, whereas, in the open space animals have to avoid every parts of the field from which there was no safe escape. The response of animals to novelty in an open space model appears more relevant to anxiety than in an enclosed space. The present studies revealed no correlations between the measures of behaviour in enclosed space and the measures of behaviour in open space, which suggest that these two models do not involve the same construct. Our results suggest that the enclosed space model involves avoidance responses while the open space model involves anxiety responses. The open space model can be very useful in understanding the underlying neural mechanisms of anxiety responses, and in assessing the effects of potential anxiolytic drugs.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Sunderland Pharmacy School, UK.
| | | | | |
Collapse
|
11
|
Shah AA, Treit D. Infusions of midazolam into the medial prefrontal cortex produce anxiolytic effects in the elevated plus-maze and shock-probe burying tests. Brain Res 2004; 996:31-40. [PMID: 14670628 DOI: 10.1016/j.brainres.2003.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous research has shown that lesions of the medial prefrontal cortex (MPFC) inhibit fear-related behavior in rats (Brain Res. 969 (2003) 183-194). However, at present little is known about the role of specific neurotransmitter receptor systems within the MPFC in the mediation of fear and anxiety. For example, extensive research has demonstrated the effectiveness of benzodiazepines in decreasing fear-related behavior. However, no research has yet been published regarding the effects of micro-infusions of benzodiazepines, or any other GABA-A receptor agonist, into the MPFC. In addition, previous work has suggested that there may be functional differences between the dorsal and ventral subregions of the MPFC in regard to fear and anxiety. Therefore, the present study examined the effects of dorsal and ventral MPFC infusions of the benzodiazepine midazolam in two well-validated animal models of anxiety, the elevated plus maze and the shock probe burying test. The results showed that bilateral (5 microg/side) infusions of midazolam into the MPFC produced anxiolytic effects in both behavioural tests, without affecting general activity or pain sensitivity. Furthermore, these anxiolytic effects were found in both the dorsal and ventral regions of the MPFC. The present findings indicate that the benzodiazepine receptors of the MPFC are capable of modulating fear-related behaviors.
Collapse
Affiliation(s)
- Akeel A Shah
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, T6G 2E9, Edmonton, AB, Canada.
| | | |
Collapse
|
12
|
Shah AA, Treit D. Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res 2003; 969:183-94. [PMID: 12676379 DOI: 10.1016/s0006-8993(03)02299-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous research investigating the effects of medial prefrontal cortex (MPFC) lesions on fear- and anxiety-related behavior has yielded an inconsistent body of findings. Behavioral studies have reported increases, decreases, and no effect on anxiety. In addition, many studies are complicated by the use of lesioning techniques that destroy fibers of passage, and the use of conditioned fear tests, which may introduce the confounding effects of learning and memory. Therefore, the present study examined the effects of ibotenic acid lesions of the MPFC (including prelimbic, infralimbic and anterior cingulate) on three wide-ranging and well-validated behavioral assays of anxiety: the elevated plus maze (EPM), social interaction (SI) and the shock-probe tests (SP). In the EPM test, lesioned rats showed a significantly higher percentage of open arm entries and open arm time than controls. In a version of the SI test sensitive to anxiolytic effects, lesioned rats were found to spend a significantly greater amount of time in active interaction with a conspecific; while another version of the SI test sensitive to anxiogenic effects did not show any differences between lesioned and non-lesioned controls. In the SP test, lesioned rats exhibited significantly lower rates of burying. In contrast, retention of shock probe avoidance was not affected. No effects of lesions on measures of locomotor activity or shock reactivity were found. The concordant anxiolytic-like effects found in the three behavioral assays strongly suggests a general reduction in fear responsiveness in MPFC lesioned rats.
Collapse
Affiliation(s)
- Akeel A Shah
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, AB, T6H 2E9, Edmonton, Canada
| | | |
Collapse
|
13
|
Abstract
The social interaction test of anxiety was developed 25 years ago to provide an ethologically based test that was sensitive to both anxiolytic and anxiogenic effects. It is sensitive to a number of environmental and physiological factors that can affect anxiety. It has detected anxiogenic effects of peptides such as corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and anxiolytic effects of neuropeptide Y and substance P receptor antagonists. It has successfully identified neuropharmacological sites of action of anxiogenic compounds and drug withdrawal. Effects of compounds acting on the gamma-aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) systems have been extensively investigated after both systemic administration and microinjection into specific brain regions. The use of this test has, thus, played a crucial role in unravelling the neural basis of anxiety. It is hoped that in the next 25 years, the test will play a crucial role in determining the genetic basis of anxiety disorders.
Collapse
Affiliation(s)
- Sandra E File
- Psychopharmacology Research Unit, Centre for Neuroscience, King's College London, Guy's Campus, UK
| | | |
Collapse
|
14
|
Abstract
Mice (C57BL/6J strain, females) with cytotoxic lesions of the medial wall of the prefrontal cortex were given a battery of tests to assess emotional, species-typical, cognitive, motor and other behaviours. Lesioned mice showed a profile of reduced anxiety, both on a plus-maze, and a similar, novel test, the successive alleys. There was no evidence, however, for attenuation of anxiety in tests of hyponeophagia, and lesioned mice, like controls, preferred the black to the white area of an enclosed alley. Their locomotor activity tended to be higher than that of the controls, particularly when the test surroundings were novel or relatively so. Species-typical behaviours were similar to those of control mice, except lesioned mice displaced ('burrowed') less food pellets from a tube in their home cage. They were not impaired at learning a spatial Y-maze reference memory task, which is profoundly affected by cytotoxic hippocampal lesions in the same strain, or at learning a multi-trial passive avoidance test. Their strength and co-ordination in motor performance tests was also normal. The results show that cytotoxic medial prefrontal cortex lesions in mice produce a clear but restricted anxiolytic action. The marked reduction in burrowing, in the absence of any detectable impairment of motor ability, demonstrates the sensitivity of this behavioural index.
Collapse
Affiliation(s)
- Robert M J Deacon
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, United Kingdom.
| | | | | |
Collapse
|
15
|
Abstract
Novelty-seeking personality traits have been implicated in substance abuse and psychiatric disorders in humans. Novelty-seeking behaviors are also observed in rats, and individual rats exhibit substantial differences in expression of these behaviors. Thus, some rats exhibit low reactivity to novelty and high anxiety-like behavior and are termed low responders, while others are hyperresponsive to novelty and exhibit low anxiety-like behavior and are termed high responders. While we and others had shown differences in patterns of gene expression in high and low responding animals at rest, no studies have described their brain activation following an anxiety test. We report here that a 5-min exposure to an anxiogenic stressor induced distinct patterns of c-fos expression in the brains of high and low responding rats. When compared to low responders, high responding rats showed low expression of c-fos mRNA in the CA1 area of the hippocampus, but high c-fos mRNA levels in the olfactory area, the orbital cortex, the cingulate cortex, the dorsal striatum and the paraventricular nucleus of the hypothalamus. Given that c-fos is a trans-acting factor, we suggest that the short- and long-term consequences of the exposure to the anxiogenic stressor may also be quantitatively and anatomically different in these two groups of animals. Thus, these c-fos results demonstrate how experience may further exaggerate individual differences. Animals that differ in emotional reactivity not only exhibit basal differences in gene expression, but also react to novelty with different molecular responses, further increasing the neuronal differences between them.
Collapse
Affiliation(s)
- M Kabbaj
- Mental Health Research Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA.
| | | |
Collapse
|
16
|
Feenstra MG. Dopamine and noradrenaline release in the prefrontal cortex in relation to unconditioned and conditioned stress and reward. PROGRESS IN BRAIN RESEARCH 2001; 126:133-63. [PMID: 11105645 DOI: 10.1016/s0079-6123(00)26012-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M G Feenstra
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Gonzalez LE, Rujano M, Tucci S, Paredes D, Silva E, Alba G, Hernandez L. Medial prefrontal transection enhances social interaction. I: behavioral studies. Brain Res 2000; 887:7-15. [PMID: 11134584 DOI: 10.1016/s0006-8993(00)02931-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Behavioral effects of a medial prefrontal cortex (MPFC) transection were assessed in animal tests of anxiety. Social investigation and plus-maze open arm exploration increased in MPFC damaged animals relative to sham ones. MPFC lesions prevented D-amphetamine (2 mg/kg, i.p.) induced social investigation decrease and exaggerated general locomotion increase. Diazepam (1 mg/kg, i.p.) and MPFC synergistically increased open arm exploration on a second (repeated) plus-maze trial. These results suggest that the MPFC would be implicated in a generalized mechanism of warning enabling emission of appropriate responses to anxiogenic stimuli. Although, this lesion did not modify motor activity itself, the pattern of the motor activation induced by amphetamine was altered. The role of the MPFC areas in the behavioral response associated with fear is discussed.
Collapse
Affiliation(s)
- L E Gonzalez
- Laboratory of Behavioral Physiology, Department of Physiology, School of Medicine, Los Andes University, Merida, Venezuela.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lacroix L, Spinelli S, Heidbreder CA, Feldon J. Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behav Neurosci 2000; 114:1119-30. [PMID: 11142644 DOI: 10.1037/0735-7044.114.6.1119] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the rat, both the medial and lateral prefrontal cortices (PFC; mPFC and lPFC, respectively) have direct connections with limbic structures that are important in the expression of fear and anxiety. The present study investigated the behavioral effects of excitotoxic lesions of either the mPFC or the lPFC on conditioned and unconditioned fear paradigms. In both unconditioned fear paradigms (open field, elevated plus-maze), lesions of the mPFC decreased anxiety. In fear conditioning, lPFC lesions substantially increased freezing throughout the different phases of the experiment, whereas mPFC lesions increased freezing to contextual cues and showed reduced freezing to discrete cues. These results support the functional role of the PFC in mediating or modulating central states of fear and anxiety and suggest a functional dissociation between the lPFC and mPFC in their role in fear and anxiety.
Collapse
Affiliation(s)
- L Lacroix
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology, Zurich, Schwerzenbach
| | | | | | | |
Collapse
|
19
|
Boksa P, Wilson D, Rochford J. Responses to stress and novelty in adult rats born vaginally, by cesarean section or by cesarean section with acute anoxia. BIOLOGY OF THE NEONATE 2000; 74:48-59. [PMID: 9657669 DOI: 10.1159/000014010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to test the hypothesis that alterations in birth conditions, specifically vaginal birth vs. birth by Cesarean section (C-section) vs. birth by C-section with an added period of acute global anoxia, produces long-term differences in behavioral responses to stress or novelty in the rat at adulthood. In comparison to animals born by rapid C-section alone, animals born by C-section with 10 or 15 min of added anoxia were significantly more immobile during forced swim stress administered for 6 trials over several weeks. In a step-down passive avoidance task, there were no group differences in acquisition or retention of the avoidance response. However, when initially placed in the passive avoidance apparatus before delivery of shock, animals born by C-section with 15 min of anoxia required significantly more pretrials to step down from the wooden platform, than did vaginally born or C-sectioned animals. No group differences were observed on measures of exploratory behavior in an elevated plus-maze or of approach behavior either to food or to a novel object in an open field. These findings suggest that birth conditions which include a degree of perinatal hypoxia can contribute to variability in selective responses to stress and novelty in the adult rat.
Collapse
Affiliation(s)
- P Boksa
- Department of Psychiatry, McGill University, and Douglas Hospital Research Centre, Montreal, Quebec, Canada
| | | | | |
Collapse
|
20
|
Lacroix L, Spinelli S, White W, Feldon J. The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience 2000; 97:459-68. [PMID: 10828529 DOI: 10.1016/s0306-4522(00)00013-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypofunction of prefrontal cortical regions, such as dorsolateral and orbital regions, has been suggested to contribute to the symptomatology of schizophrenia. In the rat, the medial and the lateral prefrontal cortices are considered as homologs of the primate dorsolateral and orbital prefrontal cortices, respectively. The present study investigated in rats the effects of lesions of the medial and lateral prefrontal cortices on latent inhibition, prepulse inhibition and amphetamine-induced activity. These paradigms are known to be modulated by the mesolimbic dopaminergic system, a system that has been suggested to be involved in the symptomatology of schizophrenia. Latent inhibition and prepulse inhibition are disrupted in schizophrenic patients as well as in rats treated with amphetamine. Amphetamine-induced activity was tested under dim light (low stress) and bright light (high stress) because stressful situations selectively increase mesocortical dopamine activity. Lateral prefrontal cortex lesioned animals did not differ in their behavior from control animals in any of the paradigms used in this study. Medial prefrontal cortex lesions did not affect latent inhibition but increased prepulse inhibition. In the amphetamine-induced activity experiment, prior to drug administration, open field locomotion was reduced under bright illumination for all lesion groups. After amphetamine administration, medial prefrontal cortex lesions attenuated the hyperlocomotor effect of the drug under the dim light condition and potentiated it under the bright light condition. The results indicate that medial and lateral prefrontal cortex can be functionally differentiated by their involvement in the modulation of behavior requiring mesocorticolimbic dopamine activation. The results in amphetamine induced activity suggest that the behavioral outcomes associated with medial prefrontal cortex depend on the background (stress) against which the evaluation is made. The results also support the notion that prepulse inhibition may be a better model than latent inhibition of the symptoms of schizophrenia associated with dysfunctional prefrontal activity.
Collapse
Affiliation(s)
- L Lacroix
- Behavioural Neurobiology Laboratory, The Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
21
|
Mathangi DC, Namasivayam A. Effect of cassava consumption on open-field behavior and brain neurotransmitters in albino rats. Physiol Behav 2000; 70:89-93. [PMID: 10978482 DOI: 10.1016/s0031-9384(00)00252-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diet exerts a critical influence on human biology and thus studies on the interrelationship of nutrition and behavior continues to be a major and important focus of research in the natural experimental sciences. Cassava is known to cause metabolic and neurological derangement on long-term consumption as a staple diet in the tropics. In this article we present the effects of cassava consumption on open-field behavior and catecholamine levels in the hypothalamus of albino rats. Cassava consumption for 30 days alters the emotional status of the rats, with changes in the basal neurotransmitter levels in the hypothalamus. The role of the cyanide (liberated from cassava) and protein deficiency (associated with cassava consumption) has been discussed.
Collapse
Affiliation(s)
- D C Mathangi
- Department of Physiology, Dr.ALM.Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani, 600 113, Madras, India
| | | |
Collapse
|
22
|
Adler A, Vescovo P, Robinson JK, Kritzer MF. Gonadectomy in adult life increases tyrosine hydroxylase immunoreactivity in the prefrontal cortex and decreases open field activity in male rats. Neuroscience 1999; 89:939-54. [PMID: 10199626 DOI: 10.1016/s0306-4522(98)00341-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The prefrontal cortices in rats participate in a range of cognitive, emotional, and locomotor functions that are dependent on its rich catecholamine innervation. Sex differences identified in many of these functions suggest that the prefrontal cortex is also influenced by gonadal hormones. Previous studies have shown that prefrontal catecholamines can be modified by changes in the hormone environment in developing animals. The present analyses, carried out in male rats gonadectomized as adults, with and without supplementation with testosterone proprionate, and examined at intervals from two days to 10 weeks after surgery, revealed that both the anatomical organization of prefrontal catecholamine afferents, and a behavioral measure sensitive to their selective lesioning remain highly responsive to changes in testicular hormones in adulthood. Thus, gonadectomy in adult male rats rapidly led to a large but transient decrease in the density of tyrosine hydroxylase immunoreactivity in all layers of the dorsal anterior cingulate cortex. This was followed by a sustained period in which immunoreactivity in the supragranular layers returned to levels that were just below normal (between 72 and 79% of normal), and labeling in deep laminae stabilized at considerably elevated innervation densities (approximately 150% of normal). Neither the acute decrease nor the chronic over-innervation characteristic of gonadectomized animals was observed in rats that were gonadectomized and supplemented with testosterone proprionate. Open field activity assessed along a corresponding 10 week timeline showed that gonadectomized animals were significantly less active than hormonally intact controls, a behavioral pattern opposite to the hyperactivity which persists following prefrontal dopamine lesions. Gonadectomized animals supplemented with testosterone proprionate, on the other hand, had open field scores that were not significantly different from controls. Taken together, these findings indicate that the adult hormone environment provides a significant, and seemingly functionally significant influence over the catecholamine innervation of the rat prefrontal cortex. Such lifelong responsiveness of the prefrontal cortical catecholamines to circulating hormones suggests that gonadal steroids are an active component of the biology of normal adult cognition, and may also have relevance for cortical dysfunction in disorders such as schizophrenia which are not only strongly tied to the catecholamines, but exhibit considerable biases among men and women as well.
Collapse
Affiliation(s)
- A Adler
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794, USA
| | | | | | | |
Collapse
|
23
|
Lacroix L, Broersen LM, Weiner I, Feldon J. The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 1998; 84:431-42. [PMID: 9539214 DOI: 10.1016/s0306-4522(97)00521-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Latent inhibition is a measure of retarded conditioning to a previously presented nonreinforced stimulus that is impaired in schizophrenic patients and in rats treated with amphetamine. In terms of neural substrates, latent inhibition depends on the integrity of the nucleus accumbens and the inputs to this structure from the hippocampal formation and adjacent cortical areas. Since another major source of input to the nucleus accumbens is the medial prefrontal cortex, and there are numerous demonstrations that manipulations of this region can modify ventral striatal dopamine, we investigated the effects of N-methyl-D-aspartate lesion to the medial prefrontal cortex on latent inhibition, assessed in an off-baseline conditioned emotional response procedure in rats licking for water. In addition, the effects of the medial prefrontal cortex lesion were assessed on a battery of tasks potentially sensitive to medial prefrontal cortex damage, including spontaneous and amphetamine-induced activity, elevated plus maze exploration, food hoarding, prepulse inhibition, and active avoidance. The lesion decreased hoarding behaviour and increased spontaneous exploratory activity in the open field, while exerting only mild effects on amphetamine-induced activity. Prepulse inhibition, exploration of the elevated plus maze, and the acquisition of two-way active avoidance were unaffected by the lesion. Likewise, latent inhibition was left intact following the lesion, suggesting that neither the destruction of the intrinsic cells of the medial prefrontal cortex nor any potential lesion-induced changes in subcortical dopamine, affect latent inhibition.
Collapse
Affiliation(s)
- L Lacroix
- Laboratory of Behavioural Biology, Institute of Toxicology, Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
24
|
Joel D, Tarrasch R, Feldon J, Weiner I. Effects of electrolytic lesions of the medial prefrontal cortex or its subfields on 4-arm baited, 8-arm radial maze, two-way active avoidance and conditioned fear tasks in the rat. Brain Res 1997; 765:37-50. [PMID: 9310392 DOI: 10.1016/s0006-8993(97)00334-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study tested the effects of electrolytic lesions in two mPFC subregions, the dorsal anterior cingulate area (dACA) and prelimbic cortex, as well as the effects of a larger medial prefrontal cortex (mPFC) lesion which included both subregions, on 4-arm baited, 4-arm unbaited, 8-arm radial maze task and its reversal (Experiments 1 and 4), two-way active avoidance (Experiments 2 and 5) and conditioned emotional response (Experiments 3 and 6). Rats with large or small lesions of the mPFC learned the location of the 4 baited arms in the training and reversal stages of the radial maze task similarly to sham rats, indicating that these lesions did not affect animals' capacity to process and remember spatial information. dACA and mPFC lesions produced a transient deficit in the acquisition of the radial maze task, suggestive of an involvement of these regions in mnemonic processes. However, in view of the normal performance of these groups by the end of training and during reversal, this deficit is better interpreted as stemming from a difficulty to learn the memory-based strategy used to solve the task. Only mPFC lesion led to better avoidance performance at the beginning of training and tended to increase response during the presentation of a stimulus previously paired with shock, compared to sham rats. Both effects can be taken as an indication of reduced emotionality following mPFC lesion. The results are discussed in relation to known behavioral functions of the mPFC and the suggested functional specialization within this region.
Collapse
Affiliation(s)
- D Joel
- Department of Psychology, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | |
Collapse
|
25
|
Abstract
Electrical stimulation of area infraradiata in the rat evokes transient changes in arterial pressure, but the locations that evoke these responses have not been mapped by neurochemical methods. To localize more specifically the regions of area infraradiata that modify cardiovascular activity, the present study measured cardiovascular responses to localized chemical stimulation of neurons in area infraradiata of urethane-anesthetized rats (n = 21). Microinjections (50-200 nl) of the glutamate agonist D,L-homocysteic acid into area infraradiata evoked both increases and decreases in arterial pressure and heart rate. Injections in the ventral subdivisions of rostral area infraradiata (IRa alpha and IRb alpha) produced cardiovascular responses with the highest probability and greatest magnitude. Of 53 injections in this area, 18 decreased arterial pressure and heart rate, whereas 4 increased arterial pressure and heart rate. In contrast to the results from the ventral subdivision of rostral infraradiata cortex, injections of D,L-homocysteic acid in the dorsal subdivision of rostral infraradiata cortex (IRc alpha) or any of the caudal subdivisions of area infraradiata (IR beta) produced less consistent changes in arterial pressure. To demonstrate that the general anesthesia did not significantly alter the evoked responses in this study, similar injections of D,L-homocysteic acid were made into area infraradiata of unrestrained, conscious rats (n = 10) and the responses were similar to the responses evoked in urethane-anesthetized rats. These results indicate that the ventral subdivisions of rostral area infraradiata (IRa alpha and IRb alpha) are more involved in cardiovascular regulation than other areas of infraradiata cortex (IRc alpha and IR beta), and that both pressor and depressor sites are present in both areas.
Collapse
Affiliation(s)
- G D Fisk
- Department of Psychology, The University of Alabama at Birmingham, USA.
| | | |
Collapse
|
26
|
Maaswinkel H, Gispen WH, Spruijt BM. Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat. Behav Brain Res 1996; 79:51-9. [PMID: 8883816 DOI: 10.1016/0166-4328(95)00261-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this paper was to study the role of the prelimbic area of rats in response selection. A bilateral electrolytic lesion was made in the prelimbic area. The rats were tested in the Morris water-maze, the conditioned shock-prod burying test, the elevated plus-maze, a modified open field test, and the step-through passive avoidance test. In the water-maze during initial acquisition, the latency times of the lesioned rats were not different from those of the controls, but they found the platform faster than the sham operated rats after the platform was placed in a new position. The lesion did not affect performance in the shock-prod burying test. In the elevated plus-maze the lesioned rats were more active than the sham-operated rats and spent more time on the open arms. In the open field there was no difference between lesioned and sham-operated rats with regard to distance travelled or the time spent near the object in the center of the open field. In the passive avoidance test the lesioned rats had a shorter latency time to enter the shock compartment during the retention trial than the sham-operated rats did. The results were discussed in relation to those of similar studies. The extent and precise localisation of the lesion seems to be crucial for the outcome: lesions confined to the prelimbic area may have the opposite effects of larger lesions. Furthermore, it may well be that the prelimbic area is only involved in processing of stimuli of a specific sensory modality, as made probable by the results of different conditioned reinforcement tasks. Finally, it was stated that we still lack a hypothesis about the precise role of the prelimbic area in response selections.
Collapse
Affiliation(s)
- H Maaswinkel
- Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Utrecht University, The Netherlands
| | | | | |
Collapse
|
27
|
Agmo A, Villalpando A, Picker Z, Fernández H. Lesions of the medial prefrontal cortex and sexual behavior in the male rat. Brain Res 1995; 696:177-86. [PMID: 8574667 DOI: 10.1016/0006-8993(95)00852-h] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lesions of the cerebral cortex near the midline in the frontal region appearing to destroy most of the cingulate cortex and adjacent prefrontal areas had profound effects on male rat sexual behavior. At the first postoperative tests, one week after the lesion, the mount and intromission latencies were extremely long (> 60 min). They continued elevated at every fortnightly test until postlesion week 13, when they were no longer different from controls. However, the proportion of animals that intromitted or ejaculated was reduced at this time. The lesion had a slight effect on the number of intromissions and on the intromission ratio, but did not reliably modify other parameters of sexual behavior in those males that copulated after operation. These data suggest that the medial prefrontal cortex is important for the initiation of sexual behaviour but less so for its execution. It is proposed that the elaboration and/or interpretation of environmental stimuli are rendered deficient by the lesion. Consequently, sexual behavior is activated only with difficulty. This coincides with the arousal hypothesis proposed by Beach [8]. There appears to exist a spontaneous recovery of the mechanisms responsible for the activation of sex behavior because the lesioned group was not different from the sham or intact groups 13 weeks postlesion. Remaining cortical tissue or other brain structures may compensate for the initial deficiencies. However, the lesion's effect on intromission behavior did not diminish with time. This could suggest that possible motor deficiencies produced by the lesion are irreversible.
Collapse
Affiliation(s)
- A Agmo
- Department of Psychology, Universidad Anáhuac, Mexico City, Mexico
| | | | | | | |
Collapse
|
28
|
Braun AR, Jaskiw GE, Vladar K, Sexton RH, Kolachana BS, Weinberger DR. Effects of ibotenic acid lesion of the medial prefrontal cortex on dopamine agonist-related behaviors in the rat. Pharmacol Biochem Behav 1993; 46:51-60. [PMID: 7902985 DOI: 10.1016/0091-3057(93)90316-l] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Behavioral responses to apomorphine and to the selective D1 and D2 dopamine receptor agonists SK&F38393 and quinpirole were evaluated in rats following ibotenic acid (IA) or sham lesion of the medial prefrontal cortex (MPFC). IA-lesioned rats showed an increased responsiveness to the postsynaptic effects of all of the dopamine agonists. Patterns of the responses to the selective agonists administered alone and in combination suggest that these effects might be due to selective increases in the sensitivity of postsynaptic D1 receptor-associated mechanisms. In addition, IA-lesioned rats pretreated with saline were hyperactive in comparison to sham-lesioned rats when animals were exposed to a novel open field, but spontaneous motor activity did not differ between these two groups when animals were pretreated with low doses (0.03 mg/kg) of quinpirole. The fact that hyperreactivity observed in lesioned animals is inhibited by a dose of quinpirole that is felt to act presynaptically, selectively attenuating endogenous dopaminergic tone, suggests that effects of the MPFC lesion may be mediated presynaptically as well.
Collapse
Affiliation(s)
- A R Braun
- Voice, Speech and Language Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
29
|
Neafsey EJ. Prefrontal cortical control of the autonomic nervous system: anatomical and physiological observations. PROGRESS IN BRAIN RESEARCH 1991; 85:147-65; discussion 165-6. [PMID: 2094892 DOI: 10.1016/s0079-6123(08)62679-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E J Neafsey
- Department of Anatomy, Loyola University Stritch School of Medicine, Maywood, IL 60153
| |
Collapse
|
30
|
Jaskiw GE, Karoum F, Freed WJ, Phillips I, Kleinman JE, Weinberger DR. Effect of ibotenic acid lesions of the medial prefrontal cortex on amphetamine-induced locomotion and regional brain catecholamine concentrations in the rat. Brain Res 1990; 534:263-72. [PMID: 2073588 DOI: 10.1016/0006-8993(90)90138-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To determine the influence of intrinsic medial prefrontal cortex (MPFC) neurons on regional brain catecholamine turnover, dopamine (DA) and its metabolites were assayed in several brain areas 14 and 28 days after bilateral ibotenic acid (IA) lesions of the MPFC in the rat. The locomotor response to D-amphetamine was also assessed. On the 14th postoperative day levels of DA, homovanillic acid concentrations and 3,4-dihydroxyphenylacetic acid were elevated in the anterior striatum of IA-lesioned animals. Spontaneous and amphetamine-induced locomotion were also increased. These changes disappeared by the 28th postoperative day. It is concluded that destruction of the efferents of the MPFC induces transient increases in DA turnover within the medial striatum and transiently increases spontaneous and amphetamine-induced locomotion.
Collapse
Affiliation(s)
- G E Jaskiw
- Clinical Brain Disorders Branch, National Institutes of Mental Health, St. Elizabeths Hospital, Washington, DC 20032
| | | | | | | | | | | |
Collapse
|
31
|
Holson RR. Mesial prefrontal cortical lesions and timidity in rats. III. Behavior in a semi-natural environment. Physiol Behav 1986; 37:239-47. [PMID: 3737733 DOI: 10.1016/0031-9384(86)90226-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Behavior of adult male rats with and without lesions in mesial prefrontal cortex (MFC) was studied in a large (72 m2) semi-natural environment (SNE) equipped with numerous wooden nest boxes. The experiment was conducted in 2 partial replicates, one in summer, one in mid-winter. Subjects were introduced to this environment 11 days after surgery, in groups. In the first replication, control and lesioned rats were subjected to mild food deprivation, beginning two weeks after introduction into the SNE. In the second replication, rats were first restricted to separate areas of the SNE, then later allowed full run of the environment. This procedure was then repeated. Summarizing the findings of both replicates, MFC rats were more likely to be found inside nest boxes than controls, changed nest boxes less often, and were less likely to obtain or hoard food from the daily feeding sessions, or to hoard and use nesting material. MFC rats were lower in social rank than controls, and lost less weight during the initial two weeks in replicate one, perhaps due to their relative inactivity. These differences waned over time when MFC rats were competing only within their group, but not when the brain damaged rats were forced to compete with intact controls. It is concluded that the timidity previously described in studies of MFC rats in a laboratory setting (Holson, Holson and Walker) has ethological validity, in that it is also evident in an SNE. The implications of these findings for an understanding of the evolution and function of prefrontal cortex are briefly discussed.
Collapse
|