1
|
Hernández-Munive AK, Fernández-Guasti A. Chronic moderate hyperglycemia does not alter sexual motivation in the female rat. Physiol Behav 2024; 282:114584. [PMID: 38789068 DOI: 10.1016/j.physbeh.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The relationship between diabetes mellitus type 2 (DM2) and sexual desire in women has not been systematically studied, therefore, animal models have been used for this purpose. When streptozotocin (STZ) is administered in the neonatal stage, the rat shows moderate chronic hyperglycemia and glucose intolerance in adulthood, resembling a DM2 model. These females show less alterations of sexual behavior (a slight decreased proceptivity and loss of paced mating) than their counterpart with severe hyperglycemia. However, the motivational components of copulation in female rats in this DM2 model have not been examined. The aim of this study was to evaluate female sexual motivation in a model of DM2 in three behavioral paradigms: the partner preference (PP), the sexual incentive motivation (SIM) and the odor preference test (OPT) tests. Neonatal females (3-4 days) were administered with streptozotocin (STZ, 70 mg/kg, intraperitoneally) or citrate buffer. At week 8, a glucose tolerance test was performed, females with blood glucose levels ≥ 250 mg/dl 60 min after a sucrose load (2 g/kg) were considered for the study. Behavioral tests were conducted at week 12, when the females were in natural proestrus. For PP we registered the time in each compartment and the sexual behavior, while in the SIM test, we calculated the time the females remained in each incentive zone. In these tests a castrated male and a sexually experienced male were used as stimuli. In OPT we evaluated the time the females spent sniffing the sawdust coming from cages housing these stimuli. In the PP and OPT hyperglycemic females behave similarly than controls, i.e., they retain a preference for sexually active males. In the SIM test there was a decrease in the time the hyperglycemic females remain in the vicinity of the sexually expert male. Data are discussed on the bases of the accessibility of the females to the stimuli.
Collapse
Affiliation(s)
- Abigail K Hernández-Munive
- Departamento de Farmacobiología, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Departamento de Neurociencia Cognitiva, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico.
| | - Alonso Fernández-Guasti
- Departamento de Farmacobiología, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
2
|
Su WJ, Li JM, Zhang T, Cao ZY, Hu T, Zhong SY, Xu ZY, Gong H, Jiang CL. Microglial NLRP3 inflammasome activation mediates diabetes-induced depression-like behavior via triggering neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110796. [PMID: 37209992 DOI: 10.1016/j.pnpbp.2023.110796] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Abundant evidence suggests that the prevalence and risk of depression in people with diabetes is high. However, the pathogenesis of diabetes-related depression remains unclear. Since neuroinflammation is associated with the pathophysiology of diabetic complications and depression, this study aims to elucidate the neuroimmune mechanism of diabetes-related depression. METHODS Male C57BL/6 mice were injected with streptozotocin to establish a diabetes model. After screening, diabetic mice were treated with the NLRP3 inhibitor MCC950. Then, metabolic indicators and depression-like behaviors were evaluated in these mice, as well as their central and peripheral inflammation. To explore the mechanism of high glucose-induced microglial NLRP3 inflammasome activation, we performed in vitro studies focusing on its canonical upstream signal I (TLR4/MyD88/NF-κB) and signal II (ROS/PKR/P2X7R/TXNIP). RESULTS Diabetic mice exhibited depression-like behaviors and activation of NLRP3 inflammasome in hippocampus. In vitro high-glucose (50 mM) environment primed microglial NLRP3 inflammasome by promoting NF-κB phosphorylation in a TLR4/MyD88-independent manner. Subsequently, high glucose activated the NLRP3 inflammasome via enhancing intracellular ROS accumulation, upregulating P2X7R, as well as promoting PKR phosphorylation and TXNIP expression, thereby facilitating the production and secretion of IL-1β. Inhibition of NLRP3 with MCC950 significantly restored hyperglycemia-induced depression-like behavior and reversed the increase in IL-1β levels in the hippocampus and serum. CONCLUSION The activation of NLRP3 inflammasome, probably mainly in hippocampal microglia, mediates the development of depression-like behaviors in STZ-induced diabetic mice. Targeting the microglial inflammasome is a feasible strategy for the treatment of diabetes-related depression.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China.
| | - Jia-Mei Li
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; The 971st Hospital of PLA Navy, Qingdao 266072, China
| | - Ting Zhang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Zhi-Yong Cao
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; Department of Psychiatry and Sleep Disorder, The 904th Hospital of PLA, Changzhou 213004, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Shi-Yang Zhong
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Zhang-Yang Xu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; The Battalion 3 of Cadet Brigade, School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Hong Gong
- Department of Developmental Neuropsychology, Faculty of Medical Psychology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Interactions of Apigenin and Safranal with the 5HT1A and 5HT2A Receptors and Behavioral Effects in Depression and Anxiety: A Molecular Docking, Lipid-Mediated Molecular Dynamics, and In Vivo Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248658. [PMID: 36557792 PMCID: PMC9783496 DOI: 10.3390/molecules27248658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The current study utilizes in silico molecular docking/molecular dynamics to evaluate the binding affinity of apigenin and safranal with 5HT1AR/5HT2AR, followed by assessment of in vivo effects of these compounds on depressive and anxious behavior. METHODS The docking between apigenin and safranal and the 5HT1A and 5HT2A receptors was performed utilizing AutoDock Vina software, while MD and protein-lipid molecular dynamics simulations were executed by AMBER16 software. For in vivo analysis, healthy control (HC), disease control (DC), fluoxetine-, and apigenin-safranal-treated rats were tested for changes in depression and anxiety using the forced swim test (FST) and the elevated plus-maze test (EPMT), respectively. RESULTS The binding affinity estimations identified the superior interacting capacity of apigenin over safranal for 5HT1A/5HT2A receptors over 200 ns MD simulations. Both compounds exhibit oral bioavailability and absorbance. In the rodent model, there was a significant increase in the overall mobility time in the FST, while in the EPMT, there was a decrease in latency and an increase in the number of entries for the treated and HC rats compared with the DC rats, suggesting a reduction in depressive/anxiety symptoms after treatment. CONCLUSIONS Our analyses suggest apigenin and safranal as prospective medication options to treat depression and anxiety.
Collapse
|
4
|
Orumiyehei A, Khoramipour K, Rezaei MH, Madadizadeh E, Meymandi MS, Mohammadi F, Chamanara M, Bashiri H, Suzuki K. High-Intensity Interval Training-Induced Hippocampal Molecular Changes Associated with Improvement in Anxiety-like Behavior but Not Cognitive Function in Rats with Type 2 Diabetes. Brain Sci 2022; 12:1280. [PMID: 36291214 PMCID: PMC9599079 DOI: 10.3390/brainsci12101280] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Exercise exerts many neuroprotective effects in diabetes-induced brain disorders. In this study, we investigated the effect of high-intensity interval training (HIIT) on brain molecular changes and cognitive and anxiety-like behaviors in rats with type 2 diabetes. (2) Methods: Twenty-eight adult male rats were divided into four groups (n = 7): control (C), exercise + control (C+EX), diabetes (DM), and diabetes + exercise (DM+EX). Diabetes was induced using a two-month high-fat diet and a single dose of streptozotocin (35 mg/kg) in the DM and DM+EX groups. After, the C+EX and DM+EX groups performed HIIT for eight weeks (five sessions per week, running at 80-100% of VMax, 4-10 intervals) on a motorized treadmill. Then, the elevated plus maze (EPM) and open field test (OFT) were performed to evaluate anxiety-like behaviors. The Morris water maze (MWM) and shuttle box were used to assess cognitive function. The hippocampal levels of beta-amyloid and tau protein were also assessed using Western blot. (3) Results: The hippocampal levels of beta-amyloid and tau protein were increased in the DM group, but HIIT restored these changes. While diabetes led to a significant decrease in open arm time percentage (%OAT) and open arm enters percentage (%OAE) in the EPM, indicating anxiety-like behavior, HIIT restored them. In the OFT, grooming was decreased in diabetic rats, which was restored by HIIT. No significant difference between groups was seen in the latency time in the shuttle box or for learning and memory in the MWM. (4) Conclusions: HIIT-induced hippocampal molecular changes were associated with anxiety-like behavior improvement but not cognitive function in rats with type 2 diabetes.
Collapse
Affiliation(s)
- Amin Orumiyehei
- Toxicology Research Center, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran
| | - Manzumeh Shamsi Meymandi
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | | | - Mohsen Chamanara
- Toxicology Research Center, Aja University of Medical Sciences, Tehran 1411718541, Iran
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran 1411718541, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Institute of Sports Nutrition, Waseda University, Saitama 359-1192, Japan
| |
Collapse
|
5
|
Gutiérrez-García AG, Contreras CM. Putative Anti-Immobility Action of Acute Insulin Is Attributable to an Increase in Locomotor Activity in Healthy Wistar Rats. Neuropsychobiology 2022; 80:483-492. [PMID: 33827082 DOI: 10.1159/000515141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Anti-immobility actions of insulin in diabetic rats that are subjected to the forced swim test (FST) have been reported. In this test, low doses of antidepressants exert actions after long-term treatment, without affecting locomotor activity in healthy rats. Few studies have compared acute and chronic actions of insulin with antidepressants in healthy rats. METHODS We hypothesized that if insulin exerts a true anti-immobility action, then its effects must be comparable to fluoxetine in both a 1-day treatment regimen and a 21-day treatment regimen in healthy, gonadally intact female Wistar rats. RESULTS The results showed that low levels of glycemia were produced by all treatments, including fluoxetine, and glycemia was lower in proestrus-estrus than in diestrus-metestrus. None of the treatments or regimens produced actions on indicators of anxiety in the elevated plus maze. Insulin in the 1-day regimen increased the number of crossings and rearings in the open field test and caused a low cumulative immobility time in the FST. These actions disappeared in the 21-day regimen. Compared with the other treatments, fluoxetine treatment alone or combined with insulin produced a longer latency to the first period of immobility and a shorter immobility time in the chronic regimen in the FST, without affecting locomotor activity, and more pronounced actions were observed in proestrus-estrus (i.e., a true anti-immobility effect). CONCLUSION These results indicate that insulin does not produce a true antidepressant action in healthy rats. The purported antidepressant effects that were observed were instead attributable to an increase in locomotor activity only in the 1-day regimen.
Collapse
Affiliation(s)
- Ana G Gutiérrez-García
- Instituto de Neuroetología, Laboratorio de Neurofarmacología, Universidad Veracruzana, Xalapa, Mexico
| | - Carlos M Contreras
- Instituto de Neuroetología, Laboratorio de Neurofarmacología, Universidad Veracruzana, Xalapa, Mexico.,Instituto de Investigaciones Biomédicas, Unidad Periférica Xalapa, Universidad Nacional Autónoma de México, Xalapa, Mexico
| |
Collapse
|
6
|
Rajab E, Keogh MB, Laiva AL, Al Hannan F, Fateel M, Abdulwahab F, Al Madhoob F, AlHamer B, Ghazzal SY, Dawaishan A, Mahdi S, Qareeballa A, Almosawi SM, Falamarzi F, ElMusharaf K, Kamal A. Gum Arabic supplementation prevents loss of learning and memory through stimulation of mitochondrial function in the hippocampus of type 2 diabetic rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Zeng Q, Shan W, Zhang H, Yang J, Zuo Z. Paraventricular thalamic nucleus plays a critical role in consolation and anxious behaviors of familiar observers exposed to surgery mice. Am J Cancer Res 2021; 11:3813-3829. [PMID: 33664863 PMCID: PMC7914349 DOI: 10.7150/thno.45690] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Consolation behaviors toward the sick are common in humans. Anxiety in the relatives of the sick is also common. Anxiety can cause detrimental effects on multiple systems. However, our understanding on the neural mechanisms of these behaviors is limited because of the lack of small animal models. Methods: Five of 6- to 8-week-old CD-1 male mice were housed in a cage. Among them, 2 mice had right common artery exposure (surgery) and the rest were without surgery. Allo-grooming and performance in light and dark box and elevated plus maze tests of the mice were determined. Results: Mice without surgery had increased allo-grooming toward mice with surgery but decreased allo-grooming toward non-surgery intruders. This increased allo-grooming toward surgery mice was higher in familiar observers of surgery mice than that of mice that were not cage-mates of surgery mice before the surgery. Familiar observers developed anxious behavior after being with surgery mice. Surgery mice with familiar observers had less anxious behavior than surgery mice without interacting with familiar observers. Multiple brain regions including paraventricular thalamic nucleus (PVT) were activated in familiar observers. The activated cells in PVT contained orexin receptors. Injuring the neurons with ibotenic acid, antagonizing orexin signaling with an anti-orexin antibody or inhibiting neurons by chemogenetic approach in PVT abolished the consolation and anxious behaviors of familiar observers. Conclusions: Mice show consolation behavior toward the sick. This behavior attenuates the anxious behavior of surgery mice. The orexin signaling in the PVT neurons play a critical role in the consolation of familiar observers toward surgery mice and their anxious behavior. Considering that about 50 million patients have surgery annually in the United States, our study represents the initial attempt to understand neural mechanisms for consolation and anxiety of a large number of people.
Collapse
|
8
|
Evaluation of Antidiabetic Activity of Ajuga integrifolia (Lamiaceae) Root Extract and Solvent Fractions in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:6642588. [PMID: 33424989 PMCID: PMC7772015 DOI: 10.1155/2020/6642588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 11/28/2022]
Abstract
Traditional healers and the community have used the roots of Ajuga integrifolia for the treatment of diabetes mellitus. It is not scientifically validated for its antidiabetic activity previously. Therefore, the objective of the present study was to determine the hypoglycemic and antidiabetic activity of Ajuga integrifolia. Ajuga integrifolia roots' crude extract and solvent fractions were prepared. The doses of 100 mg/kg, 200 mg/kg, and 400 mg/kg of crude root extract and solvent fractions were used on normoglycemic, oral glucose loaded, and streptozotocin-induced diabetic mice models to determine their hypoglycemic and antihyperglycemic activities. The crude extract and solvent fractions' effect on bodyweight was also evaluated on streptozotocin-induced diabetic mice. A standard drug in all cases was glibenclamide (5 mg/kg), and the blood glucose level was measured by using a glucose meter. Data analysis was performed by using Statistical Package for Social Sciences version 21. One-way analysis of variance followed by Tukey's post hoc multiple comparison test was used to analyze the data. p value < 0.05 was considered statistically significant. Hydromethanolic crude extract and its aqueous fraction of Ajuga integrifolia root showed a considerable blood glucose lowering activity at all doses. Both the repeated daily doses of the crude extract and the repeated daily doses of the aqueous fraction of Ajuga integrifolia root extract revealed the similar effect in lowering the fasting blood glucose level in streptozotocin-induced diabetic mice models. It was also found that groups treated with the Ajuga integrifolia at the doses of 200 mg/kg and 400 mg/kg showed significant (p < 0.05) bodyweight improvement at the 14th day of treatment compared to the respective baseline bodyweight, and the diabetic control group showed significant (p < 0.01) reduction in bodyweight at the 14th day compared to the baseline. This study revealed that crude extract and solvent fractions of Ajuga integrifolia root possess significant antidiabetic activity which supports its traditional use for the treatment of diabetes mellitus.
Collapse
|
9
|
Essmat N, Soliman E, Mahmoud MF, Mahmoud AAA. Antidepressant activity of anti-hyperglycemic agents in experimental models: A review. Diabetes Metab Syndr 2020; 14:1179-1186. [PMID: 32673838 DOI: 10.1016/j.dsx.2020.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Diabetes Mellitus (DM) and depression occur comorbidly and share some pathophysiological mechanisms. The course of depression in patients with the two conditions is severe. Treatment of depression in diabetic patients requires special attention because most of psychopharmacological agents can worsen glycemic control. This article aims to review studies evaluating the antidepressant effect of anti-hyperglycemic agents from preclinical perspective. METHODS A literature search was performed with PubMed and Google Scholar using relevant keywords (antidiabetic; diabetes; depression; antidepressant; animals) to extract relevant studies evaluating the antidepressant activity of anti-hyperglycemic agents in experimental models. RESULTS Several studies have reported that some traditional anti-hyperglycemic agents reduce depression-like behavior in the absence or presence of diabetes. These drugs include insulin, glyburide, metformin, pioglitazone, vildagliptin, liraglutide, and exenatide. The antidepressant activity of anti-hyperglycemic agents may be mediated by reducing the blood glucose level, ameliorating the central oxidative stress and inflammation, and regulating the hypothalamic-pituitary-adrenal axis (HPAA). CONCLUSIONS Drugs which have both antidiabetic and antidepressant activities can provide better treatment strategy for patients with diabetes-associated depression. However, further research studies are still required in human subjects.
Collapse
Affiliation(s)
- Nariman Essmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Department of Pharmacology, Pharmacy Program, Oman College of Health Sciences, Muscat, 114, Oman
| |
Collapse
|
10
|
Bampi SR, Casaril AM, Domingues M, de Andrade Lourenço D, Pesarico AP, Vieira B, Begnini KR, Seixas FK, Collares TV, Lenardão EJ, Savegnago L. Depression-like behavior, hyperglycemia, oxidative stress, and neuroinflammation presented in diabetic mice are reversed by the administration of 1-methyl-3-(phenylselanyl)-1H-indole. J Psychiatr Res 2020; 120:91-102. [PMID: 31654972 DOI: 10.1016/j.jpsychires.2019.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023]
Abstract
Oxidative stress and neuroinflammation are found both in diabetes mellitus and major depressive disorder (MDD). In addition to damage in peripheral organs, such as liver and kidney, diabetic patients have a higher risk of developing depression. In this sense, the objective of the present study was to characterize the antidepressant-like effect of a selenium-containing compound, the 1-methyl-3-(phenylselanyl)-1H-indole (MFSeI), in streptozotocin (STZ)-induced diabetic mice. STZ (200 mg/kg, i.p.) was used to induce diabetes mellitus type I, and after seven days, the administration of MFSeI (10 mg/kg, i.g.) was initiated and followed for the next 14 days. Twenty-four hours after the last administration of MFSeI, the behavioral tests were performed, followed by euthanasia. The treatment with MFSeI was able to reverse the hyperglycemia induced by STZ. MFSeI also decreased the plasma levels of biomarkers of liver and kidney damage. Importantly, MFSeI reversed the depression-like behavior induced by STZ in the tail suspension test and forced swimming test without promoting locomotor alterations. Furthermore, MFSeI reversed the increased levels of reactive species and lipid peroxidation in the prefrontal cortex (PFC), hippocampus (HC), liver, and kidney of STZ-treated mice. Treatment with MFSeI also decreased the expression of tumor necrosis factor-alpha, inducible nitric oxide synthase and indoleamine 2,3-dioxygenase, while increasing the expression of interleukin-10, insulin receptor substrate-1 and glucose transport-4 in the PFC and HC of mice. Taken together, the results indicate the effectiveness of MFSeI against depression-like behavior and central and peripheral complications caused by diabetes in mice.
Collapse
Affiliation(s)
- Suely Ribeiro Bampi
- Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Angela Maria Casaril
- Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Micaela Domingues
- Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | | | - Ana Paula Pesarico
- Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Beatriz Vieira
- Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Karine Rech Begnini
- Cellular and Molecular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Cellular and Molecular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Tiago Veiras Collares
- Cellular and Molecular Oncology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis, Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, RS, Brazil.
| |
Collapse
|
11
|
Caliskan H, Akat F, Omercioglu G, Bastug G, Ficicilar H, Bastug M. Aerobic exercise has an anxiolytic effect on streptozotocin-induced diabetic rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Safhi MM, Qumayri HM, Masmali AUM, Siddiqui R, Alam MF, Khan G, Anwer T. Thymoquinone and fluoxetine alleviate depression via attenuating oxidative damage and inflammatory markers in type-2 diabetic rats. Arch Physiol Biochem 2019; 125:150-155. [PMID: 29482373 DOI: 10.1080/13813455.2018.1443141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study was designed to find out the effect of thymoquinone (TQ) alone and combination of TQ + fluoxetine in depression of type-2 diabetic rats. Glucose level was significantly decreased in TQ alone treated group, whereas no significant change was recorded when TQ was combined with fluoxetine. Administration of TQ alone and combination of TQ and fluoxetine significantly decreased immobility time, increased latency to immobility and increased locomotor activity. Treatment with TQ alone significantly decreased level of TBARS, increased GSH and restored the activities of antioxidant enzymes (GPx, GR & CAT). However, TQ and fluoxetine combination reduced TBARS level, increased GSH content but no change in the antioxidant enzymes activities. Inflammatory markers (IL-1β, IL-6 & TNF-α) levels were significantly reduced after the administration of TQ alone and TQ + fluoxetine. The study suggests that combination of TQ and fluoxetine can be used to control depression in type-2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohammed M Safhi
- a Department of Pharmacology & Toxicology , College of Pharmacy, Jazan University , Gizan , K.S.A
| | | | | | - Rahimullah Siddiqui
- a Department of Pharmacology & Toxicology , College of Pharmacy, Jazan University , Gizan , K.S.A
| | - Mohammad Firoz Alam
- a Department of Pharmacology & Toxicology , College of Pharmacy, Jazan University , Gizan , K.S.A
| | - Gyas Khan
- a Department of Pharmacology & Toxicology , College of Pharmacy, Jazan University , Gizan , K.S.A
| | - Tarique Anwer
- a Department of Pharmacology & Toxicology , College of Pharmacy, Jazan University , Gizan , K.S.A
| |
Collapse
|
13
|
Rebolledo-Solleiro D, Fernández-Guasti A. Influence of sex and estrous cycle on blood glucose levels, body weight gain, and depressive-like behavior in streptozotocin-induced diabetic rats. Physiol Behav 2018; 194:560-567. [DOI: 10.1016/j.physbeh.2018.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/10/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
|
14
|
de Souza CP, Gambeta E, Stern CAJ, Zanoveli JM. Posttraumatic stress disorder-type behaviors in streptozotocin-induced diabetic rats can be prevented by prolonged treatment with vitamin E. Behav Brain Res 2018; 359:749-754. [PMID: 30219262 DOI: 10.1016/j.bbr.2018.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023]
Abstract
Anxiety and stress disorders, such as posttraumatic stress disorder (PTSD) have been described as debilitating comorbidities of diabetes. In the present study, we aimed to investigate anxiety-like behavior and the extinction and generalization of aversive memories in fear conditioning using a streptozotocin-induced model of diabetes (DBT). Moreover, considering that DBT animals present increased oxidative stress in brain areas related to anxiety and memory, we aimed to evaluate the effect of prolonged treatment with antioxidant vitamin E on behavioral parameters of anxiety and fear memory and on the diabetic condition. It was observed that DBT animals showed a deficiency in extinguishing the aversive memory in a fear conditioning test, along with a generalization of the fear memory. They also present a more pronounced anxiety-like behavior in the elevated plus maze test. VIT E treatment (300 mg/kg, p.o.) was not able to reduce hyperglycemia; however, it was able to block the anxiogenic-like behavior, also improving the deficit in the extinction of the aversive memory as well as blocking the generalization of such memory in a different context. Taken together, our data suggest that DBT animals are prone to extinction deficits and generalization of fear memories, behaviors which are observed in models of PTSD. Lastly, prolonged VIT E supplementation may be effective in the treatment of anxiety, extinction deficit and generalization of fear memories induced by the diabetic condition.
Collapse
Affiliation(s)
- Camila Pasquini de Souza
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Eder Gambeta
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
15
|
Can ÖD, Üçel Uİ, Demir Özkay Ü, Ulupınar E. The Effect of Agomelatine Treatment on Diabetes-Induced Cognitive Impairments in Rats: Concomitant Alterations in the Hippocampal Neuron Numbers. Int J Mol Sci 2018; 19:ijms19082461. [PMID: 30127276 PMCID: PMC6121488 DOI: 10.3390/ijms19082461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/05/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022] Open
Abstract
Researches that are related to the central nervous system complications of diabetes have indicated higher incidence of cognitive disorders in patients. Since the variety of nootropic drugs used in clinics is limited and none of them consistently improves the outcomes, new and effective drug alternatives are needed for the treatment of diabetes-induced cognitive disorders. Based on the nootropic potential of agomelatine, the promising efficacy of this drug on cognitive impairments of diabetic rats was investigated in the current study. Experimental diabetes model was induced by streptozotocin. After development of diabetes-related cognitive impairments in rats, agomelatine (40 and 80 mg/kg) was administrated orally for two weeks. Cognitive performance was assessed by Morris water-maze and passive avoidance tests. Then, the total numbers of neurons in both dentate gyrus and Cornu Ammonis (CA) 1–3 subfields of the hippocampus were estimated by the optical fractionator method. Agomelatine treatment induced notable enhancement in the learning and memory performance of diabetic rats. Moreover, it reversed the neuronal loss in the hippocampal subregions of diabetic animals. Obtained results suggest that agomelatine has a significant potential for the treatment of diabetes-induced cognitive impairments. However, therapeutic efficacy of this drug in diabetic patients suffering from cognitive dysfunctions needs to be confirmed by further clinical trials.
Collapse
Affiliation(s)
- Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Umut İrfan Üçel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Emel Ulupınar
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey.
- Interdisciplinary Neuroscience Department, Health Science Institute of Eskişehir Osmangazi University, 26480 Eskisehir, Turkey.
| |
Collapse
|
16
|
Hernández-Munive AK, Rebolledo-Solleiro D, Ventura-Aquino E, Fernández-Guasti A. Reduced Lordosis and Enhanced Aggression in Paced and Non-Paced Mating in Diabetic Female Rats. J Sex Med 2018; 15:124-135. [DOI: 10.1016/j.jsxm.2017.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 02/08/2023]
|
17
|
Telmisartan attenuates diabetes induced depression in rats. Pharmacol Rep 2017; 69:358-364. [DOI: 10.1016/j.pharep.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 12/08/2016] [Indexed: 01/19/2023]
|
18
|
Huang CW, Hong TW, Wang YJ, Chen KC, Pei JC, Chuang TY, Lai WS, Tsai SH, Chu R, Chen WC, Sheen LY, Takahashi S, Ding ST, Shen TL. Ophiocordyceps formosana improves hyperglycemia and depression-like behavior in an STZ-induced diabetic mouse model. Altern Ther Health Med 2016; 16:310. [PMID: 27553852 PMCID: PMC4995616 DOI: 10.1186/s12906-016-1278-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 08/11/2016] [Indexed: 12/27/2022]
Abstract
Background A newly defined Cordyceps species, Ophiocordyceps formosana (O. formosana) has been implicated in multitudinous bioactivities, including lowering glucose and cholesterol levels and modulating the immune system. However, few literatures demonstrate sufficient evidence to support these proposed functions. Although the use of Cordyceps spp. has been previously addressed to improve insulin insensitivity and improve the detrimental symptoms of depression; its mechanistic nature remains unsettled. Herein, we reveal the effects of O. formosana in ameliorating hyperglycemia accompanied with depression. Methods Diabetes was induced in mice by employing streptozotocin(STZ), a chemical that is toxic to insulin-producing β cells of the pancreas. These streptozotocin (STZ)-induced diabetic mice showed combined symptoms of hyperglycemia and depressive behaviors. Twenty-four STZ-induced mice were randomly divided into 3 groups subjected to oral gavage with 100 μL solution of either PBS or 25 mg/mL Ophiocordyceps formosana extract (OFE) or 2 mg/mL rosiglitazone (Rosi, positive control group). Treatments were administered once per day for 28 days. An additional 6 mice without STZ induction were treated with PBS to serve as the control group. Insulin sensitivity was measured by a glucose tolerance test and levels of adiponectin in plasma and adipose tissue were also quantified. Behavioral tests were conducted and levels of monoamines in various brain regions relating to depression were evaluated. Results HPLC analysis uncovered three major constituents, adenosine, D-mannitol and cordycepin, within O. formosana similar to other prestigious medicinal Cordyceps spp.. STZ-induced diabetic mice demonstrated decreased body weight and subcutaneous adipose tissue, while these symptoms were recovered in mice receiving OFE treatment. Moreover, the OFE group displayed improved insulin sensitivity and elevated adiponectin within the plasma and adipose tissue. The anti-depressive effect of OFE was observed in various depression-related behavior tests. Concurrently, neurotransmitters, like 5-HT and dopamine in the frontal cortex, striatum and hippocampus were found to be up-regulated in OFE-treated mice. Conclusions Our findings illustrated, for the first time, the medicinal merits of O. formosana on Type I diabetes and hyperglycemia-induced depression. OFE were found to promote the expression of adiponectin, which is an adipokine involved in insulin sensitivity and hold anti-depressive effects. In addition, OFE administration also displayed altered levels of neurotransmitters in certain brain regions that may have contributed to its anti-depressive effect. Collectively, this current study provided insights to the potential therapeutic effects of O. formosana extracts in regards to hyperglycemia and its depressive complications.
Collapse
|
19
|
Rosa PB, Neis VB, Ribeiro CM, Moretti M, Rodrigues ALS. Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. Pharmacol Rep 2016; 68:996-1001. [PMID: 27423525 DOI: 10.1016/j.pharep.2016.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of γ-aminobutyric acid (GABA)-mediated neurotransmission is involved in the etiology of major depressive disorder and in the action of the fast-acting antidepressant ketamine. Considering that recent evidence has suggested that ascorbic acid may exert an antidepressant-like effect through mechanisms similar to ketamine, this study evaluated the involvement of GABAA and GABAB receptors in the antidepressant-like effect of ascorbic acid, comparing the results with those obtained with ketamine. METHODS To investigate the involvement of GABAA in the antidepressant-like effect of ascorbic acid and ketamine in the tail suspension test (TST), mice were treated with a sub-effective dose of ascorbic acid (0.1mg/kg, po), ketamine (0.1mg/kg, ip) or vehicle and 30minutes later, a sub-effective dose of muscimol (0.1mg/kg, ip, GABAA receptor agonist) or vehicle was administered. In another set of experiments, mice were treated with ascorbic acid (1mg/kg, po, active dose in the TST) or vehicle and 30minutes later, baclofen (1mg/kg, ip, GABAB receptor agonist) was administered. A similar experimental protocol was performed with ketamine (1mg/kg, ip). RESULTS The administration of muscimol combined with ascorbic acid or ketamine produced a synergistic antidepressant-like effect in the TST. Moreover, the antidepressant-like effects of ascorbic acid and ketamine were abolished by baclofen. There was no alteration in spontaneous locomotion in any experimental group. CONCLUSIONS Results indicate that the anti-immobility effect of ascorbic acid and ketamine in TST may involve an activation of GABAA receptors and a possible inhibition of GABAB receptors.
Collapse
Affiliation(s)
- Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Camille M Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Morgana Moretti
- Post-Graduate Nutrition Program, Center of Health Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
20
|
Gupta D, Thangaraj D, Radhakrishnan M. A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behav Brain Res 2015; 297:41-50. [PMID: 26454237 DOI: 10.1016/j.bbr.2015.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
Despite the presence of a multitudinous pharmacotherapy, diabetes-induced depressive disorder remains undertreated. Evidence suggests that brain serotonergic deficits are associated with depressive-like behavior in diabetes and that 5HT3 receptor (5HT3R) antagonists have serotonergic facilitatory effects. This study examined the effects of a novel 5HT3R antagonist, 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide), in diabetes-induced depressive phenotypes. Experimentally, (1) to evaluate the effects of 4i, mice with 8-weeks of diabetes (induced by streptozotocin, 200mg/kg, i.p.) were treated with vehicle, 4i (0.5 and 1mg/kg/day, i.p.), fluoxetine (10mg/kg/day, i.p.) for 4-weeks and subjected to neurobehavioral assays, followed by biochemical estimation of serotonin levels in midbrain, prefrontal-cortex and cerebellum. (2) To evaluate the role of 5HT3R in the postulated effect of 4i, diabetic mice were given 4i (1mg/kg/day, i.p.) after 1h of 1-(m-chlorophenyl)-biguanide (mCPBG, a 5HT3R agonist, 10mg/kg/day, i.p.) treatment and subjected to the same protocol. The results showed that diabetic mice exhibited a significant behavioral deficit, including depression-like behavior in forced swim test, anxiety-like in open field test and sociability deficits in social interaction test, along with a significant decrease in serotonin level in these brain regions. 4i (1mg/kg), similar to fluoxetine, prevented these behavioral abnormalities and normalized brain serotonin levels. 4i (0.5mg/kg) ameliorated only diabetes-induced depressive-like behavior and serotonin deficits, but not anxiety-like effects. mCPBG blunted 4i-mediated behavioral response and increase in brain serotonin levels. Altogether, this study suggests that 4i prevents diabetes-induced depressive phenotypes in mice, which may involve antagonism of 5HT3Rs and increase in serotonin levels in discrete brain regions.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India.
| | - Devadoss Thangaraj
- KVSR Siddhartha College of Pharmaceutical Sciences, Vijaywada, Andhra Pradesh 520001, India
| | - Mahesh Radhakrishnan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| |
Collapse
|
21
|
|
22
|
Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp 2015:52587. [PMID: 25867960 PMCID: PMC4401172 DOI: 10.3791/52587] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The goal of the present protocol is to describe the forced swim test (FST), which is one of the most commonly used assays for the study of depressive-like behavior in rodents. The FST is based on the assumption that when placing an animal in a container filled with water, it will first make efforts to escape but eventually will exhibit immobility that may be considered to reflect a measure of behavioral despair. This test has been extensively used because it involves the exposure of the animals to stress, which was shown to have a role in the tendency for major depression. Additionally, the FST has been shown to share some of the factors that are influenced or altered by depression in humans, including changes in food consumption, sleep abnormalities and drug-withdrawal-induced anhedonia. The main advantages of this procedure are that it is relatively easy to perform and that its results are easily and quickly analyzed. Moreover, its sensitivity to a broad range of antidepressant drugs that makes it a suitable screening test is one of the most important features leading to its high predictive validity. Despite its appeal, this model has a number of disadvantages. First, the issue of chronic augmentation is problematic in this test because in real life patients need to be treated for at least several weeks before they experience any relief from their symptoms. Last, due to the aversiveness of the FST, it is important to take into account possible influences it might have on brain structure/function if brain analyses are to be carried out following this procedure.
Collapse
Affiliation(s)
- Roni Yankelevitch-Yahav
- School of Psychological Sciences, Tel-Aviv University; School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo
| | - Motty Franko
- School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo
| | - Avrham Huly
- School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo
| | - Ravid Doron
- School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo; Department of Education and Psychology, The Open University of Israel; School of Health and Life Sciences, Hadassah Academic College;
| |
Collapse
|
23
|
Antidepressant dose of taurine increases mRNA expression of GABAA receptor α2 subunit and BDNF in the hippocampus of diabetic rats. Behav Brain Res 2015; 283:11-5. [PMID: 25612506 DOI: 10.1016/j.bbr.2015.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 11/24/2022]
Abstract
Diabetes mellitus is a metabolic disorder associated with higher risk for depression. Diabetic rats present depressive-like behaviors and taurine, one of the most abundant free amino acids in the brain, reverses this depressive behaviors. Because taurine is a GABAA agonist modulator, we hypothesize that its antidepressant effect results from the interaction on this system by changing α2 GABAA receptor subunit expression, beside changes on BDNF mRNA, and memory in diabetic rats. Streptozotocin-diabetic and non-diabetic Wistar rats were daily injected with 100mg/kg of taurine or saline, intraperitoneally, for 30 days. At the end of the experiment, rats were exposed to the novel object recognition memory. Later they were euthanized, the brains were weighed, and the hippocampus was dissected for α2 GABAA subunit and BDNF mRNA expression. Real-time quantitative PCR (qPCR) showed that diabetic rats presented lower α2 GABAA subunit and BDNF mRNA expression than non-diabetic rats and taurine increased both parameters in these sick rats. Taurine also reversed the lower brain weight and improved the short-term memory in diabetic rats. Thus, the taurine antidepressant effect may be explained by interference with the GABA system, in line to its neuroprotective effect showed here by preventing brain weight loss and improving memory in diabetic rats.
Collapse
|
24
|
Wayhs CAY, Mescka CP, Guerreiro G, Moraes TB, Jacques CED, Rosa AP, Ferri MK, Nin MS, Dutra-Filho CS, Barros HMT, Vargas CR. Diabetic encephalopathy-related depression: experimental evidence that insulin and clonazepam restore antioxidant status in rat brain. Cell Biochem Funct 2014; 32:711-9. [PMID: 25431174 DOI: 10.1002/cbf.3076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/18/2014] [Indexed: 01/22/2023]
Abstract
There is increasing evidence suggesting that oxidative stress plays an important role in the development of many chronic and degenerative conditions such as diabetic encephalopathy and depression. Considering that diabetic rats and mice present higher depressive-like behaviour when submitted to the forced swimming test and that treatment with insulin and/or clonazepam is able to reverse the behavioural changes of the diabetic rats, the present work investigated the antioxidant status, specifically total antioxidant reactivity and antioxidant potential of insulin and clonazepam, as well as the effect of this drugs upon protein oxidative damage and reactive species formation in cortex, hippocampus and striatum from diabetic rats submitted to forced swimming test. It was verified that longer immobility time in diabetic rats and insulin plus clonazepam treatment reversed this depressive-like behaviour. Moreover, data obtained in this study allowed to demonstrate through different parameters such as protein carbonyl content, 2'7'-dichlorofluorescein oxidation, catalase, superoxide dismutase, glutathione peroxidase assay, total radical-trapping antioxidant potential and total antioxidant reactivity that there is oxidative stress in cortex, hippocampus and striatum from diabetic rats under depressive-like behaviour and highlight the insulin and/or clonazepam effect in these different brain areas, restoring antioxidant status and protein damage.
Collapse
Affiliation(s)
- Carlos Alberto Yasin Wayhs
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gupta D, Radhakrishnan M, Kurhe Y. Insulin reverses anxiety-like behavior evoked by streptozotocin-induced diabetes in mice. Metab Brain Dis 2014; 29:737-46. [PMID: 24763911 DOI: 10.1007/s11011-014-9540-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Clinical and preclinical data suggest that diabetes is often associated with anxiety. Insulin, a peptide hormone has been reported to have key functions in the brain and in alleviating several psychological impairments, occur as a consequence of diabetes. However, its effects in diabetes-induced anxiety are scanty. The present study examined whether; insulin can reverse the anxiety-like behavior in streptozotocin (STZ)-induced diabetes in mice. After 8-weeks of diabetes induced by STZ (200 mg/kg, intraperitoneally (i.p.)), mice were given insulin (1-2 IU/kg/day, i.p.)/ diazepam (1 mg/kg/day, i.p.)/ vehicle for 14 days and evaluated for behavioral effects in three validated models of anxiety viz. elevated plus maze (EPM), light-dark (L/D) and hole board (HB) tests. STZ-induced diabetic mice elicited significant behavioral effects which include, decreased percentage open arm entries and time in EPM, reduced latency and time spent in light chamber in L/D, decreased number of head dips, squares crossed and rearings in HB tests respectively. Insulin treatment attenuated the behavioral effects evoked by STZ-induced diabetes in mice as indicated by increased open arms activity in EPM, decreased aversion in light chamber during L/D test and increased exploratory behavior in HB test. In conclusion, this study revealed that insulin can reverse anxiety-like behavior in STZ-induced diabetes in mice.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India,
| | | | | |
Collapse
|
26
|
Papazoglou IK, Jean A, Gertler A, Taouis M, Vacher CM. Hippocampal GSK3β as a Molecular Link Between Obesity and Depression. Mol Neurobiol 2014; 52:363-74. [PMID: 25169083 DOI: 10.1007/s12035-014-8863-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/13/2014] [Indexed: 01/08/2023]
Abstract
Obesity is considered as a risk factor for mood disorders including depression. Nevertheless, the mechanisms underlying this association are not clearly understood. To address this issue, we investigated the impact of high-fat (HF)-diet-induced obesity on depressive-like behavior and on serotonin (5-HT)-dependent Akt/glycogen synthase kinase 3β (GSK3β) signaling in the dentate gyrus (DG) of the hippocampus, which has been associated with mood regulation. We first showed that a HF diet induced significant overweight and hyperglycemia as well as a depressive-like behavior in adult Wistar rats. By using an ex vivo approach on brain slices, we demonstrated that 5-HT activates the Akt/GSK3β cascade in the DG of control chow (C) diet-fed animals and that a 16-week HF diet feeding abolishes this activation, concurrently with a desensitization of leptin and insulin signaling in the same region. Furthermore, depressive-like behavior inversely correlated with 5-HT-induced phosphorylation of GSK3β in the subgranular neurons of the DG. Interestingly, a substitution of HF with C diet for 6 weeks induced a total loss of depressive symptoms, whereas body weight and glycemia remained significantly higher compared to control rats. In addition, food restoration led to a recovery of the Akt/GSK3β signaling pathway activation in the DG. In parallel, we observed a negative correlation between body weight and cell proliferation in the subgranular zone of the DG. To conclude, we provide evidence for a desensitization of 5-HT-induced Akt/GSK3β signaling and an impaired cell proliferation in the DG by HF diet, suggesting novel molecular mechanisms linking obesity to depression.
Collapse
Affiliation(s)
- Ioannis K Papazoglou
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud 11, UMR 8195, F-91405, Orsay, France
| | | | | | | | | |
Collapse
|
27
|
Diazepam potentiates the antidiabetic, antistress and anxiolytic activities of metformin in type-2 diabetes mellitus with cooccurring stress in experimental animals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:693074. [PMID: 24995322 PMCID: PMC4065719 DOI: 10.1155/2014/693074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 01/03/2023]
Abstract
Psychological stress is considered as one of the limiting factors in the management of type-2 diabetes mellitus (T2DM). Therefore, the basic objective of the present study was to evaluate the antidiabetic effect of metformin, diazepam, and their combination in cooccurring T2DM and stress condition (DMS). T2DM was induced in the male rats by administering streptozotocin (45 mg/kg, i.p.) and nicotinamide (110 mg/kg, i.p.) with time lag of 15 min. Rats were subjected to two sessions of cold restraint stress paradigm for one hour on the sixth and seventh day after streptozotocin injection. Administration of metformin (25 mg/kg, p.o.) and diazepam (1 mg/kg, p.o.) in combination from the seventh to thirteenth day after streptozotocin injection showed better improvement in glucose tolerance and insulin sensitivity compared to monotherapy of either drug. In addition, the combination significantly attenuated DMS-induced hyperglycemia, hypertriglyceridaemia, hypercorticosteronemia, anxiety-like behavior, and insulin resistance through modulating insulin signaling pathway in the liver compared to monotherapy. Further, improvement of mitochondrial function, integrity, and oxidative stress in hippocampus, hypothalamus, prefrontal cortex, striatum, amygdala, and nucleus accumbens was observed with the combination. Therefore, metformin in combination with diazepam may be a better therapeutic option in the management of T2DM with cooccurring stress condition.
Collapse
|
28
|
Valencia-Torres L, Bradshaw CM, Bouzas A, Hong E, Orduña V. Effect of streptozotocin-induced diabetes on performance on a progressive ratio schedule. Psychopharmacology (Berl) 2014; 231:2375-84. [PMID: 24402135 DOI: 10.1007/s00213-013-3401-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/02/2013] [Indexed: 12/29/2022]
Abstract
RATIONALE It has been suggested that streptozotocin (STZ)-induced diabetes causes a motivational deficit in rodents. However, some of the evidence adduced in support of this suggestion may be interpreted in terms of a motor impairment rather than a motivational deficit. OBJECTIVE This experiment examined the effect of STZ-induced diabetes on performance on a progressive ratio schedule. The data were analysed using a new model derived from Killeen's (Behav Brain Sci 17:105-172, 1994) Mathematical Principles of Reinforcement model which enables the effects of interventions on motivation or incentive value to be separated from effects on motor function. METHOD Animals were trained under a progressive ratio schedule using food-pellet reinforcement. Then they received a single intraperitoneal injection of 50 mg/kg of STZ or the vehicle. Training continued for 30 sessions after treatment. Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model's parameters were compared between groups. RESULTS The parameter expressing incentive value was reduced in the group treated with STZ, whereas the parameters expressing motor capacity and post-reinforcement pausing were not affected by the treatment. Blood glucose concentration was significantly elevated in the STZ-treated group compared to the vehicle-treated group. CONCLUSIONS The results are consistent with the suggestion that STZ-induced diabetes is associated with a reduction of the incentive value of food.
Collapse
|
29
|
Luedtke K, Bouchard SM, Woller SA, Funk MK, Aceves M, Hook MA. Assessment of depression in a rodent model of spinal cord injury. J Neurotrauma 2014; 31:1107-21. [PMID: 24564232 DOI: 10.1089/neu.2013.3204] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite an increased incidence of depression in patients after spinal cord injury (SCI), there is no animal model of depression after SCI. To address this, we used a battery of established tests to assess depression after a rodent contusion injury. Subjects were acclimated to the tasks, and baseline scores were collected before SCI. Testing was conducted on days 9-10 (acute) and 19-20 (chronic) postinjury. To categorize depression, subjects' scores on each behavioral measure were averaged across the acute and chronic stages of injury and subjected to a principal component analysis. This analysis revealed a two-component structure, which explained 72.2% of between-subjects variance. The data were then analyzed with a hierarchical cluster analysis, identifying two clusters that differed significantly on the sucrose preference, open field, social exploration, and burrowing tasks. One cluster (9 of 26 subjects) displayed characteristics of depression. Using these data, a discriminant function analysis was conducted to derive an equation that could classify subjects as "depressed" on days 9-10. The discriminant function was used in a second experiment examining whether the depression-like symptoms could be reversed with the antidepressant, fluoxetine. Fluoxetine significantly decreased immobility in the forced swim test (FST) in depressed subjects identified with the equation. Subjects that were depressed and treated with saline displayed significantly increased immobility on the FST, relative to not depressed, saline-treated controls. These initial experiments validate our tests of depression, generating a powerful model system for further understanding the relationships between molecular changes induced by SCI and the development of depression.
Collapse
Affiliation(s)
- Kelsey Luedtke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center , Bryan, Texas
| | | | | | | | | | | |
Collapse
|
30
|
Wayhs CAY, Mescka CP, Vanzin CS, Ribas GS, Guerreiro G, Nin MS, Manfredini V, Barros HMT, Vargas CR. Brain effect of insulin and clonazepam in diabetic rats under depressive-like behavior. Metab Brain Dis 2013; 28:563-70. [PMID: 23532706 DOI: 10.1007/s11011-013-9397-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/10/2013] [Indexed: 11/28/2022]
Abstract
Diabetes mellitus is characterized by hyperglycemia resulting from defects on insulin secretion, insulin action, or both. It has recently become clear that the central nervous system is not spared from the deleterious effects of diabetes, since diabetic encephalopathy was recognized as a complication of this heterogeneous metabolic disorder. There is a well recognized association between depression and diabetes, once prevalence of depression in diabetic patients is higher than in general population, and clonazepam is being used to treat this complication. Oxidative stress is widely accepted as playing a key mediatory role in the development and progression of diabetes and its complications. In this work we analyzed DNA damage by comet assay and lipid damage in prefrontal cortex, hippocampus and striatum of streptozotocin-induced diabetic rats submitted to the forced swimming test. It was verified that the diabetic group presented DNA and lipid damage in the brain areas evaluated, when compared to the control groups. Additionally, a significant reduction of the DNA and lipid damage in animals treated with insulin and/or clonazepam was observed. These data suggest that the association of these two drugs could protect against DNA and lipid damage in diabetic rats submitted to the forced swimming test, an animal model of depression.
Collapse
|
31
|
Rebolledo-Solleiro D, Crespo-Ramírez M, Roldán-Roldán G, Hiriart M, Pérez de la Mora M. Role of thirst and visual barriers in the differential behavior displayed by streptozotocin-treated rats in the elevated plus-maze and the open field test. Physiol Behav 2013; 120:130-5. [DOI: 10.1016/j.physbeh.2013.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 04/09/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
|
32
|
Wayhs CAY, Tortato C, Mescka CP, Pasquali MA, Schnorr CE, Nin MS, Barros HMT, Moreira JCF, Vargas CR. The association effect of insulin and clonazepam on oxidative stress in liver of an experimental animal model of diabetes and depression. PHARMACEUTICAL BIOLOGY 2013; 51:533-538. [PMID: 23368939 DOI: 10.3109/13880209.2012.747544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT It is known that oxidative stress occurs in peripheral blood in an experimental animal model of diabetes and depression, and acute treatment with insulin and clonazepam (CNZ) has a protective effect on oxidative stress in this model. OBJECTIVE This study evaluated the effect of insulin plus CNZ on oxidative stress parameters in the liver of diabetic male rats induced with streptozotocin (STZ) and subjected to forced swimming test (FST). MATERIALS AND METHODS Diabetes was induced by a single intraperitoneal (i.p.) dose of STZ 60 mg/kg in male Wistar rats. Insulin (4 IU/kg) plus CNZ acute i.p. treatment (0.25 mg/kg) was administered 24, 5 and 1 h before the FST. Nondiabetic control rats received i.p. injections of saline (1 mL/kg). Protein oxidative damage was evaluated by carbonyl formation and the antioxidant redox parameters were analyzed by the measurements of enzymatic activities of the superoxide dismutase (SOD), catalase and glyoxalase I (GLO). Glycemia levels also were determined. RESULTS Our present study has shown an increase in carbonyl content from diabetic rats subjected to FST (2.04 ± 0.55), while the activity of catalase (51.83 ± 19.02) and SOD (2.30 ± 1.23) were significantly decreased in liver from these animals, which were reverted by the treatment. Also, the activity of GLO (0.15 ± 0.02) in the liver of the animals was decreased. DISCUSSION AND CONCLUSION Our findings showed that insulin plus CNZ acute treatment ameliorate the antioxidant redox parameters and protect against protein oxidative damage in the liver of diabetic rats subjected to FST.
Collapse
|
33
|
Depressive-like behaviour induced by an intracerebroventricular injection of streptozotocin in mice. Behav Pharmacol 2013; 24:79-86. [DOI: 10.1097/fbp.0b013e32835efc2f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Yin SH, Wang CC, Cheng TJ, Chang CY, Lin KC, Kan WC, Wang HY, Kao WMW, Kuo YL, Chen JC, Li SL, Cheng CH, Chuu JJ. Room-temperature super-extraction system (RTSES) optimizes the anxiolytic- and antidepressant-like behavioural effects of traditional Xiao-Yao-San in mice. Chin Med 2012; 7:24. [PMID: 23134744 PMCID: PMC3582554 DOI: 10.1186/1749-8546-7-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/24/2012] [Indexed: 12/31/2022] Open
Abstract
Background Xiao-Yao-San (XYS) is a Chinese medicinal formula for treating anxiety and depression. This study aims to evaluate the use of a room-temperature super-extraction system (RTSES) to extract the major active components of XYS and enhance their psycho-pharmacological effects. Methods The neuroprotective roles of XYS/RTSES against reserpine-derived neurotoxicity were evaluated using a glial cell injury system (in vitro) and a depression-like C57BL/6 J mouse model (in vivo). The anxiolytic-behavioural effects were measured by the elevated plus-maze (EPM) test and the antidepressant effects were evaluated by the forced swimming test (FST) and tail suspension test (TST). Glucose tolerance and insulin resistance were assayed by ELISA. The expression of 5-HT1A receptors in the prefrontal cortex was examined by western blotting. Results XYS/RTSES (300 μg/mL) diminished reserpine-induced glial cell death more effectively than either XYS (300 μg/mL) or fluoxetine (30 μM) at 24 h (P = 0.0481 and P = 0.054, respectively). Oral administration of XYS/RTSES (500 mg/kg/day) for 4 consecutive weeks significantly elevated the ratios of entries (open arms/closed arms; P = 0.0177) and shuttle activity (P = 0.00149) on the EPM test, and reduced the immobility time by 90% on the TST (P = 0.00000538) and FST (P = 0.0000053839). XYS/RTSES also improved the regulation of blood glucose (P = 0.0305) and increased the insulin sensitivity (P = 0.0093). The Western blot results indicated that the activation of cerebral 5-HT1A receptors may be involved in the mechanisms of XYS/RTSES actions. Conclusion The RTSES could provide a novel method for extracting effective anxiolytic- and antidepressant-like substances. XYS/RTSES improved the regulation of blood glucose and increased the insulin sensitivity in reserpine-induced anxiety and depression. Neuroprotection of glial cells and activation of cerebral 5-HT1A receptors were also involved.
Collapse
Affiliation(s)
- Shih-Hsi Yin
- Institute of Biotechnology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sharma AN, Elased KM, Lucot JB. Rosiglitazone treatment reversed depression- but not psychosis-like behavior of db/db diabetic mice. J Psychopharmacol 2012; 26:724-32. [PMID: 22331176 DOI: 10.1177/0269881111434620] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The objective of the present study was to examine the effect of long-term management of insulin resistance and hyperglycemia on neurobehavioral deficits in db/db mice. In this study, 5-week-old db/db and lean control mice were fed with rosiglitazone (20 mg/kg/day) mixed or standard chow for a duration of 5 weeks. Mice were monitored weekly for blood glucose concentration. Five weeks after the onset of treatment, they were subjected to the forced swim test (FST), pre-pulse inhibition (PPI), open field test (OFT) and fear-potentiated startle (FPS) test to examine for depression, psychosis-like behavior, locomotor activity and emotional learning, respectively. Rosiglitazone normalized hyperglycemia and improved glucose tolerance. Rosiglitazone significantly reduced immobility time in the FST in db/db mice, suggesting an antidepressant-like effect. However, rosiglitazone failed to reverse disruption of PPI in db/db mice, indicating its ineffectiveness against psychosis-like behavior. In the OFT, rosiglitazone did not affect the activity of db/db mice, suggesting its antidepressant-like effect was independent of changes in locomotor activity. In the FPS test, db/db mice showed impaired emotional learning and rosiglitazone failed to correct it. In conclusion, long-term blood glucose management in type-2 diabetics may help to limit the co-occurrence of depression but not the psychotic symptoms and ability to cope with stress.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | | | | |
Collapse
|
36
|
Ceretta LB, Réus GZ, Stringari RB, Ribeiro KF, Zappellini G, Aguiar BW, Pfaffenseller B, Lersh C, Kapczinski F, Quevedo J. Imipramine treatment reverses depressive-like behavior in alloxan-diabetic rats. Diabetes Metab Res Rev 2012; 28:139-44. [PMID: 22423384 DOI: 10.1002/dmrr.1285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND A growing body of evidence has shown an association between diabetes and depression, as well a role of brain-derived neurotrophic factor (BDNF) in diabetes and depression. The present study was designed to evaluate the behavioural and molecular effects of the anti-depressant imipramine in diabetic rats. METHODS To this aim, after induction of diabetes by alloxan (150 mg/kg), Wistar rats were treated with imipramine (30 mg/kg) once a day for 14 days and then subjected to behavioural tests. BDNF was then assessed in the prefrontal cortex, hippocampus and amygdala. RESULTS In diabetic rats treated with saline, we observed an increase in the immobility time, compared with control rats treated with saline. Treatment with imipramine decreased the immobility time in nondiabetic and diabetic rats, compared with both nondiabetic and diabetic rats treated with saline. In the open-field test, it was observed that treatment with imipramine reduced the number of crossings the diabetic rats performed, compared with nondiabetic rats treated with saline. The number of rearings did not alter in any of the groups. Diabetic rats injected with saline did not show altered BDNF levels in the prefrontal cortex, hippocampus or amygdala, but interestingly, the treatment with imipramine in diabetic animals increased BDNF levels in the prefrontal cortex. CONCLUSIONS In conclusion, this study demonstartes a link between diabetes and depression in rats and that imipramine exerted antidepressant effects in diabetic animals.
Collapse
Affiliation(s)
- Luciane B Ceretta
- Laboratório de Neurociências and Instituto Nacional de Ciência eTecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica deCiências da Saúde, Universidade do ExtremoSul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Barat P, Tastet S, Vautier V. Impact neuropsychologique à long terme du diabète de type 1 chez l’enfant. Arch Pediatr 2011; 18:432-40. [DOI: 10.1016/j.arcped.2011.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/28/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
38
|
Wayhs CAY, Manfredini V, Sitta A, Deon M, Ribas GS, Vanzin CS, Biancini GB, Nin MS, Barros HM, Vargas CR. Effects of insulin and clonazepam on DNA damage in diabetic rats submitted to the forced swimming test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 703:187-90. [DOI: 10.1016/j.mrgentox.2010.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/18/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
39
|
Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J Neurosci 2010; 30:11305-16. [PMID: 20739551 DOI: 10.1523/jneurosci.0126-10.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Noradrenergic signaling in the CNS plays an essential role in circuits involving attention, mood, memory, and stress as well as providing pivotal support for autonomic function in the peripheral nervous system. The high-affinity norepinephrine (NE) transporter (NET) is the primary mechanism by which noradrenergic synaptic transmission is terminated. Data indicate that NET function is regulated by insulin, a hormone critical for the regulation of metabolism. Given the high comorbidity of metabolic disorders such as diabetes and obesity with mental disorders such as depression and schizophrenia, we sought to determine how insulin signaling regulates NET function and thus noradrenergic homeostasis. Here, we show that acute insulin treatment, through the downstream kinase protein kinase B (Akt), significantly decreases NET surface expression in mouse hippocampal slices and superior cervical ganglion neuron boutons (sites of synaptic NE release). In vivo manipulation of insulin/Akt signaling, with streptozotocin, a drug that induces a type 1-like diabetic state in mice, also results in aberrant NET function and NE homeostasis. Notably, we also demonstrate that Akt inhibition or stimulation, independent of insulin, is capable of altering NET surface availability. These data suggest that aberrant states of Akt signaling such as in diabetes and obesity have the potential to alter NET function and noradrenergic tone in the brain. Furthermore, they provide one potential molecular mechanism by which Akt, a candidate gene for mood disorders such as schizophrenia and depression, can impact brain monoamine homeostasis.
Collapse
|
40
|
Wayhs CAY, Manfredini V, Sitta A, Deon M, Ribas G, Vanzin C, Biancini G, Ferri M, Nin M, Barros HMT, Vargas CR. Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect. Metab Brain Dis 2010; 25:297-304. [PMID: 20838862 DOI: 10.1007/s11011-010-9211-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/20/2010] [Indexed: 12/13/2022]
Abstract
Diabetes may modify central nervous system functions and is associated with moderate cognitive deficits and changes in the brain, a condition that may be referred to as diabetic encephalopathy. The prevalence of depression in diabetic patients is higher than in the general population, and clonazepam is being used to treat this complication. Oxidative stress may play a role in the development of diabetes complications. We investigated oxidative stress parameters in streptozotocin-induced diabetic rats submitted to forced swimming test (STZ) and evaluated the effect of insulin (STZ-INS) and/or clonazepam (STZ-CNZ and STZ-INS-CNZ) acute treatment on these animal model. Oxidative damage to proteins measured as carbonyl content in plasma was significantly increased in STZ group compared to STZ treated groups. Malondialdehyde plasma levels were significantly reduced in STZ-INS and STZ-INS-CNZ groups when compared to STZ rats, being significantly reduced in STZ-INS-CNZ than STZ-INS rats. The activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase showed no significant differences among all groups of animals. These findings showed that protein and lipid damage occurs in this diabetes/depression animal model and that the associated treatment of insulin and clonazepam is capable to protect against oxidative damage in this experimental model.
Collapse
|
41
|
Misumi Y, Yamato T, Obata T, Aomine M. Effects of Ion Channel Blockers on Basal Hippocampal Monoamine Levels in Freely Moving Diabetic and Non-Diabetic Rats. Int J Neurosci 2009; 118:761-80. [DOI: 10.1080/00207450600941106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Cognitive dysfunction and hippocampal changes in experimental type 1 diabetes. Behav Brain Res 2009; 198:224-30. [DOI: 10.1016/j.bbr.2008.11.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/28/2008] [Accepted: 11/02/2008] [Indexed: 11/23/2022]
|
43
|
Shinbori C, Shirayama Y, Mitani H, Saito M, Satoh K. Effects of Cyclohexanonic Long-Chain Fatty Alcohol, tCFA15 on Amino Acids in Diabetic Rat Brain: A Preliminary Study. Neurochem Res 2008; 33:1189-95. [DOI: 10.1007/s11064-008-9611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
44
|
da Silva Haeser A, Sitta A, Barschak AG, Deon M, Barden AT, Schmitt GO, Landgraff S, Gomez R, Barros HMT, Vargas CR. Oxidative stress parameters in diabetic rats submitted to forced swimming test: the clonazepam effect. Brain Res 2007; 1154:137-43. [PMID: 17490624 DOI: 10.1016/j.brainres.2007.03.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/18/2007] [Accepted: 03/31/2007] [Indexed: 11/30/2022]
Abstract
Diabetes-associated depression may occur due to changes in the quality of life imposed by treatment, or may be a consequence of the biochemical changes accompanying the disease. We evaluated the oxidative stress from diabetic animals submitted to an experimental model of depression and the effects of clonazepam. Male Wistar rats were induced to diabetes with streptozotocin and submitted to forced swimming test. Clonazepam was administered 24, 5 and 1 h before test. The animals were sacrificed by decapitation, and plasma and erythrocytes were separated, as well as hippocampus, cortex and striatum. Reactive species of thiobarbituric acid (TBARS) and total antioxidant reactivity (TAR) as well as antioxidant enzyme activities catalase (CAT) and superoxide dismutase (SOD) were evaluated. Results showed a significant increase of TBARS and a significant decrease of TAR in plasma from diabetic animals, which was altered by clonazepam. There were no effects of CAT and SOD activities in erythrocytes from tested animals. The results observed in hippocampus showed a significant increase of TBARS from diabetic rats, altered by clonazepam, and no one alteration was verified in TAR. The significant increase of TBARS and the significant decrease of TAR in cortex from diabetic rats were not altered by clonazepam administration. There were no alterations of TBARS and TAR in striatum from tested animals. Besides, clonazepam reverses the immobility in diabetic rats. Considering the action of clonazepam, it is suggested that it could be an alternative therapeutic for depression to diabetic patients, once it could give a protection against free radicals.
Collapse
|
45
|
Miyata S, Yamada N, Hirano S, Tanaka SI, Kamei J. Diabetes attenuates psychological stress-elicited 5-HT secretion in the prefrontal cortex but not in the amygdala of mice. Brain Res 2007; 1147:233-9. [PMID: 17320057 DOI: 10.1016/j.brainres.2007.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/22/2022]
Abstract
It is well established that diabetes widely affects the functioning of the central nervous system. However, no in vivo study assessed the serotonin (5-HT)-releasing system in the prefrontal cortex (PFC) and amygdala--the crucial regions regulating emotion. We investigated the effects of streptozotocin (STZ)-induced diabetes on the levels of extracellular 5-HT in the PFC and amygdala by using an in vivo microdialysis technique in mice. In addition, the effects of psychological stress on 5-HT secretion were also examined. The basal and the selective 5-HT reuptake inhibitor citalopram (1 microM)-accumulated 5-HT levels remained unchanged in both the PFC and amygdala of diabetic mice. The elevated open platform stress-elicited 5-HT secretion was significantly decreased in the PFC of diabetic mice, and this blunted response was normalized by sub-chronic pretreatment with insulin (5 U/kg, s.c., twice daily). Diabetes had no significant effect on the KCl (100 mM)-stimulated 5-HT release in the PFC. In the amygdala, diabetes had no effect on the stress-elicited 5-HT secretion. Diabetic mice exhibited prolonged freezing as compared to the non-diabetic mice in the elevated open-platform test. In addition, insulin-treated diabetic mice showed the significant shorter duration of freezing than that in diabetic mice. In conclusion, our present findings indicate that diabetes attenuates the serotonergic response to stressful stimuli in a site-specific fashion. In addition, we suggest the possibility that the dysfunction of stress-elicited 5-HT release, but not basal 5-HT release, causes the increased expression of fear-related behavior in diabetic mice.
Collapse
Affiliation(s)
- Shigeo Miyata
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-chome, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
46
|
Hirano S, Miyata S, Kamei J. Antidepressant-like effect of leptin in streptozotocin-induced diabetic mice. Pharmacol Biochem Behav 2007; 86:27-31. [PMID: 17258301 DOI: 10.1016/j.pbb.2006.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 11/26/2022]
Abstract
We previously reported that streptozotocin (STZ)-induced diabetic mice showed the depressive-like behavior in the tail suspension test. It has also been reported that leptin-deficient obese mice demonstrate the depressive-like behavior. Since STZ-induced diabetes causes a marked decrease in plasma leptin levels, it is possible that decrease in leptin levels and the depressive-like behavior may somehow be related. Therefore, we examined the effect of leptin on the depressive-like behavior of STZ-induced diabetic mice in the tail suspension test. The prolonged duration of immobility in diabetic mice was dose-dependently and significantly suppressed by single treatment with leptin (0.1-1 mg/kg, i.p.) without affecting on the locomotor activity. Leptin did not affect either the duration of immobility or the locomotor activity in non-diabetic mice. The anti-immobility effect of leptin (1 mg/kg, i.p.) in diabetic mice was significantly antagonized by the selective serotonin2 (5-HT2) receptor antagonist LY53,857 (0.03 mg/kg, s.c.), but not by the selective 5-HT1A receptor antagonist WAY-100635 (0.03 mg/kg, s.c.). Antagonists administered alone did not affect either the duration of immobility or the locomotor activity in diabetic mice. In conclusion, we suggest that leptin exerts the antidepressant-like effect in diabetic mice mediated by, at least in part, 5-HT2 receptors.
Collapse
Affiliation(s)
- Shoko Hirano
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-chome, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | |
Collapse
|
47
|
Ramadan W, Dewasmes G, Petitjean M, Loos N, Delanaud S, Geloen A, Libert JP. Spontaneous motor activity in fat-fed, streptozotocin-treated rats: A nonobese model of type 2 diabetes. Physiol Behav 2006; 87:765-72. [PMID: 16516253 DOI: 10.1016/j.physbeh.2006.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 01/03/2006] [Accepted: 01/20/2006] [Indexed: 11/17/2022]
Abstract
We investigated the effects of diabetes on the spontaneous motor activities (SMA) of streptozotocin-treated rats fed a high-fat diet (HFD), a new nonobese model of type 2 diabetes. The daily changes in the duration of SMA were assessed via infrared cells, which detected all movements of rats that had been fed for 3 weeks with a standard or HFD and then injected with vehicle or 50 mg/kg of streptozotocin. Five to six days after streptozotocin injection, the daily body weight and the levels of duration of SMA of the diabetic rats were depressed, manifest by a substantial decline in the frequency of occurrence of nocturnal SMA episodes. The dramatic depression of daily duration of SMA levels observed in the rats given a HFD and treated with streptozotocin appears to be related solely to the diabetic state and not to body weight and/or HFD consumption, since the HFD (and/or related metabolic effects) remained ineffective in altering this feature in rats that grow normally. By thoroughly separating the prediabetic and the diabetic phases, we have been able to more readily explore the deleterious effects of the stages of both of these phases on changes in daily SMA levels.
Collapse
Affiliation(s)
- Wiâm Ramadan
- EA 3901, Dysrégulations métaboliques acquises et génétiques (DMAG-INERIS), Université de Picardie-Jules Verne, Amiens, Faculté de Médecine, 3 Rue des Louvels, 80 036 Amiens Cedex 1, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Hirano S, Miyata S, Onodera K, Kamei J. Effects of histamine H1 receptor antagonists on depressive-like behavior in diabetic mice. Pharmacol Biochem Behav 2006; 83:214-20. [PMID: 16530255 DOI: 10.1016/j.pbb.2006.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 01/19/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
We previously reported that streptozotocin-induced diabetic mice showed depressive-like behavior in the tail suspension test. It is well known that the central histaminergic system regulates many physiological functions including emotional behaviors. In this study, we examined the role of the central histaminergic system in the diabetes-induced depressive-like behavior in the mouse tail suspension test. The histamine contents in the hypothalamus were significantly higher in diabetic mice than in non-diabetic mice. The histamine H(1) receptor antagonist chlorpheniramine (1-10 mg/kg, s.c.) dose-dependently and significantly reduced the duration of immobility in both non-diabetic and diabetic mice. In contrast, the selective histamine H(1) receptor antagonists epinastine (0.03-0.3 microg/mouse, i.c.v.) and cetirizine (0.01-0.1 microg/mouse, i.c.v.) dose-dependently and significantly suppressed the duration of immobility in diabetic mice, but not in non-diabetic mice. Spontaneous locomotor activity was not affected by histamine H(1) receptor antagonists in either non-diabetic or diabetic mice. In addition, the number and affinity of histamine H(1) receptors in the frontal cortex were not affected by diabetes. In conclusion, we suggest that the altered neuronal system mediated by the activation of histamine H(1) receptors is involved, at least in part, in the depressive-like behavior seen in diabetic mice.
Collapse
Affiliation(s)
- Shoko Hirano
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
49
|
Miyata S, Hirano S, Kamei J. Abnormal benzodiazepine receptor function in the depressive-like behavior of diabetic mice. Pharmacol Biochem Behav 2005; 82:615-20. [PMID: 16325247 DOI: 10.1016/j.pbb.2005.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/29/2005] [Accepted: 10/29/2005] [Indexed: 11/29/2022]
Abstract
We previously reported that streptozotocin (STZ)-induced diabetic mice exhibited depressive-like behavior in the tail suspension test. In this study, we examined the involvement of benzodiazepine receptor functions in this diabetes-induced depressive-like behavior in mice. STZ-induced diabetes significantly increased the duration of immobility without affecting spontaneous locomotor activity. This increase was dose-dependently and significantly suppressed by a benzodiazepine receptor antagonist, flumazenil (0.1-1 mg/kg, i.v.). However, flumazenil (0.1-1 mg/kg, i.v.) did not affect the duration of immobility in non-diabetic mice. Furthermore, flumazenil (1 mg/kg, i.v.) had no significant effect on spontaneous locomotor activity in either non-diabetic or diabetic mice. The benzodiazepine receptor inverse agonist methyl beta-carboline-3-carboxylate (beta-CCM; 0.03-0.3 mg/kg, i.v.) dose-dependently and significantly increased the duration of immobility in non-diabetic mice, but not in diabetic mice. beta-CCM (0.3 mg/kg, i.v.) significantly suppressed spontaneous locomotor activity in non-diabetic mice, but not in diabetic mice. These results indicate that diabetic mice may have enhanced negative allosteric modulation by benzodiazepine receptor ligands, such as diazepam binding inhibitors, under stressful conditions, but not free-moving conditions, and this abnormal function of benzodiazepine receptors may cause, at least in part, the expression of depressive-like behavior in diabetic mice.
Collapse
Affiliation(s)
- Shigeo Miyata
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005; 29:547-69. [PMID: 15893822 DOI: 10.1016/j.neubiorev.2005.03.008] [Citation(s) in RCA: 836] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed antidepressant class today and exert their antidepressant-like effects by increasing synaptic concentrations of serotonin (5-HT). The rat forced swim test (FST) is the most widely used animal test predictive of antidepressant action. Procedural modifications recently introduced by our laboratory have enabled SSRI-induced behavioral responses to be measured in the modified FST. The use of this model to understand the pharmacological and physiological mechanisms underlying the role of 5-HT in the behavioral effects of antidepressant drugs is reviewed. Although all antidepressants reduced behavioral immobility, those antidepressants that increase serotonergic neurotransmission predominantly increase swimming behavior whereas those that increase catacholaminergic neurotransmission increase climbing behavior. The 5-HT(1A), 5-HT(1B/1D) and 5-HT(2C) receptors are the 5-HT receptors most important to the therapeutic effects of SSRIs, based on extensive evaluation of agonists and antagonists of individual 5-HT receptor subtypes. Studies involving chronic administration have shown that the effects of antidepressants are augmented following chronic treatment. Other studies have demonstrated strain differences in the response to serotonergic compounds. Finally, a physiological model of performance in the rat FST has been proposed involving the regulation of 5-HT transmission by corticotropin releasing factor (CRF).
Collapse
Affiliation(s)
- John F Cryan
- Department of Psychiatry and Pharmacology, University of Pennsylvania, 538A Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|