1
|
Foerster H, Battey JND, Sierro N, Ivanov NV, Mueller LA. Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook. Brief Bioinform 2021; 22:bbaa136. [PMID: 32662816 PMCID: PMC8138835 DOI: 10.1093/bib/bbaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023] Open
Abstract
Manually curated metabolic databases residing at the Sol Genomics Network comprise two taxon-specific databases for the Solanaceae family, i.e. SolanaCyc and the genus Nicotiana, i.e. NicotianaCyc as well as six species-specific databases for Nicotiana tabacum TN90, N. tabacum K326, Nicotiana benthamiana, N. sylvestris, N. tomentosiformis and N. attenuata. New pathways were created through the extraction, examination and verification of related data from the literature and the aid of external database guided by an expert-led curation process. Here we describe the curation progress that has been achieved in these databases since the first release version 1.0 in 2016, the curation flow and the curation process using the example metabolic pathway for cholesterol in plants. The current content of our databases comprises 266 pathways and 36 superpathways in SolanaCyc and 143 pathways plus 21 superpathways in NicotianaCyc, manually curated and validated specifically for the Solanaceae family and Nicotiana genus, respectively. The curated data have been propagated to the respective Nicotiana-specific databases, which resulted in the enrichment and more accurate presentation of their metabolic networks. The quality and coverage in those databases have been compared with related external databases and discussed in terms of literature support and metabolic content.
Collapse
|
2
|
Sun F, Chen H, Chen D, Tan H, Huang Y, Cozzolino D. Lipidomic Changes in Banana ( Musa cavendish) during Ripening and Comparison of Extraction by Folch and Bligh-Dyer Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11309-11316. [PMID: 32907317 DOI: 10.1021/acs.jafc.0c04236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Banana (Musa cavendish) is one of the most popular fruits globally and is an important foodstuff in many regions, attributed to its high nutritional value. Contrast to its high consumption volume, relatively little research has been conducted on banana lipidome. In this study, two classic lipid extraction methods, Folch and Bligh-Dyer, were compared for studying the banana lipidome in both the peel and pulp by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lipidomic profiles were also investigated to understand the changes of lipid molecules during three ripening stages (unripe, ripe, and overripe), and differences in lipids from different origins were also compared. This study suggested that although both Folch and Bligh-Dyer methods allow lipidome investigation, the latter demonstrated advantage in rendering higher extraction efficiency for the majority of lipid molecules in banana samples, particularly in the pulp. In peel, there were differences in the trends of each lipid classes at various stages of maturity, while the majority of lipid classes in pulp reached the highest levels with reduced desaturation at ripe stage, consistent with previous studies. Moreover, the lipidomic profiles of bananas in different habitats differed significantly according to partial least-squares discriminant analysis. This study for the first time provided comprehensive atlas of lipidomic changes of Musa cavendish during maturity and in different origins. These findings will facilitate better understanding of biochemical changes in banana and offer new tools for food chemical analyses in the understanding of mechanisms underlying lipid metabolism.
Collapse
Affiliation(s)
- Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Kessels Rd, Coopers Plains, Queensland 4108, Australia
| |
Collapse
|
3
|
Göring H. Vitamin D in Nature: A Product of Synthesis and/or Degradation of Cell Membrane Components. BIOCHEMISTRY (MOSCOW) 2018; 83:1350-1357. [DOI: 10.1134/s0006297918110056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Lara JA, Burciaga-Monge A, Chávez A, Revés M, Lavilla R, Arró M, Boronat A, Altabella T, Ferrer A. Identification and Characterization of Sterol Acyltransferases Responsible for Steryl Ester Biosynthesis in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:588. [PMID: 29868054 PMCID: PMC5952233 DOI: 10.3389/fpls.2018.00588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/16/2018] [Indexed: 05/17/2023]
Abstract
Steryl esters (SEs) serve as a storage pool of sterols that helps to maintain proper levels of free sterols (FSs) in cell membranes throughout plant growth and development, and participates in the recycling of FSs and fatty acids released from cell membranes in aging tissues. SEs are synthesized by sterol acyltransferases, a family of enzymes that catalyze the transfer of fatty acil groups to the hydroxyl group at C-3 position of the sterol backbone. Sterol acyltransferases are categorized into acyl-CoA:sterol acyltransferases (ASAT) and phospholipid:sterol acyltransferases (PSAT) depending on whether the fatty acyl donor substrate is a long-chain acyl-CoA or a phospolipid. Until now, only Arabidopsis ASAT and PSAT enzymes (AtASAT1 and AtPSAT1) have been cloned and characterized in plants. Here we report the identification, cloning, and functional characterization of the tomato (Solanum lycopersicum cv. Micro-Tom) orthologs. SlPSAT1 and SlASAT1 were able to restore SE to wild type levels in the Arabidopsis psat1-2 and asat1-1 knock-out mutants, respectively. Expression of SlPSAT1 in the psat1-2 background also prevented the toxicity caused by an external supply of mevalonate and the early senescence phenotype observed in detached leaves of this mutant, whereas expression of SlASAT1 in the asat1-1 mutant revealed a clear substrate preference of the tomato enzyme for the sterol precursors cycloartenol and 24-methylene cycloartanol. Subcellular localization studies using fluorescently tagged SlPSAT1 and SlASAT1 proteins revealed that SlPSAT1 localize in cytoplasmic lipid droplets (LDs) while, in contrast to the endoplasmic reticulum (ER) localization of AtASAT1, SlASAT1 resides in the plasma membrane (PM). The possibility that PM-localized SlASAT1 may act catalytically in trans on their sterol substrates, which are presumably embedded in the ER membrane, is discussed. The widespread expression of SlPSAT1 and SlASAT1 genes in different tomato organs together with their moderate transcriptional response to several stresses suggests a dual role of SlPSAT1 and SlASAT1 in tomato plant and fruit development and the adaptive responses to stress. Overall, this study contributes to enlarge the current knowledge on plant sterol acyltransferases and set the basis for further studies aimed at understanding the role of SE metabolism in tomato plant growth and development.
Collapse
Affiliation(s)
- Juan A. Lara
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
- Present address: Juan A. Lara, School of Agritechnological Sciences (Extensión Cuauhtémoc), Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Alma Burciaga-Monge
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Angel Chávez
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Revés
- Laboratory of Medicinal Chemistry, Institute of Biomedicine University of Barcelona, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Institute of Biomedicine University of Barcelona, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Monserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
- Department of Biology, Healthcare, and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| |
Collapse
|
5
|
Ferrer A, Altabella T, Arró M, Boronat A. Emerging roles for conjugated sterols in plants. Prog Lipid Res 2017; 67:27-37. [DOI: 10.1016/j.plipres.2017.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
6
|
Ramirez-Estrada K, Castillo N, Lara JA, Arró M, Boronat A, Ferrer A, Altabella T. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28649260 PMCID: PMC5465953 DOI: 10.3389/fpls.2017.00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.
Collapse
Affiliation(s)
- Karla Ramirez-Estrada
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Nídia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Juan A. Lara
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Monserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of BarcelonaBarcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| |
Collapse
|
7
|
Ramos-Bueno RP, Romero-González R, González-Fernández MJ, Guil-Guerrero JL. Phytochemical composition and in vitro anti-tumour activities of selected tomato varieties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:488-496. [PMID: 27060896 DOI: 10.1002/jsfa.7750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Previous studies indicated that tomato is a rich source of phytochemicals that act on different tumours. In this research, the phytochemical composition of selected tomato varieties was assessed by GLC and UHPLC/HPLC-MS, as well as their anti-tumour activities on HT-29 colorectal cancer cells. RESULTS Significant differences were found among tomato varieties; lycopene was high in Racimo, phenolics in Pera, sterols in Cherry, and linoleic acid predominated in all varieties. The MTT and LDH assays showed significant time- and concentration-dependent inhibitory/cytotoxic effects of all tomato varieties on HT-29 cells. Furthermore, the joint addition of tomato carotenoids and olive oil to HT-29 cell cultures induced inhibitory effects significantly higher than those obtained from each of them acting separately, while no actions were exercised in CCD-18 normal cells. CONCLUSION Tomato fruits constitute a healthy source of phytochemicals, although differences exist among varieties. In vitro, all of them inhibit colorectal cancer cell proliferation with Racimo variety at the top, and exercising a selective action on cancer cells by considering the lack of effects on CCD-18 cells. Furthermore, synergy was observed between olive oil and tomato carotenoids in inhibiting HT-29 cancer cell proliferation; conversely, phenolics showed no significant effects and hindered carotenoids actions. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rebeca P Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-04071, Almería, Spain
| | - Roberto Romero-González
- Research Group 'Analytical Chemistry of Contaminants', Department of Chemistry and Physics, Research Centre for Agricultural and Food Biotechnology (BITAL), University of Almería, Agrifood Campus of International Excellence, ceiA3, E-04071, Almeria, Spain
| | - María J González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-04071, Almería, Spain
| | - José L Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-04071, Almería, Spain
| |
Collapse
|
8
|
Kulkarni R, Pandit S, Chidley H, Nagel R, Schmidt A, Gershenzon J, Pujari K, Giri A, Gupta V. Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:121-31. [PMID: 23911730 DOI: 10.1016/j.plaphy.2013.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/11/2013] [Indexed: 05/18/2023]
Abstract
Mango (cv. Alphonso) is popular due to its highly attractive, terpenoid-rich flavor. Although Alphonso is clonally propagated, its fruit-flavor composition varies when plants are grown in different geo-climatic zones. Isoprenyl diphosphate synthases catalyze important branch-point reactions in terpenoid biosynthesis, providing precursors for common terpenoids such as volatile terpenes, sterols and carotenoids. Two geranyl diphosphate synthases and a farnesyl diphosphate synthase were isolated from Alphonso fruits, cloned for recombinant expression and found to produce the respective products. Although, one of the geranyl diphosphate synthases showed high sequence similarity to the geranylgeranyl diphosphate synthases, it did not exhibit geranylgeranyl diphosphate synthesizing activity. When modeled, this geranyl diphosphate synthase and farnesyl diphosphate synthase structures were found to be homologous with the reference structures, having all the catalytic side chains appropriately oriented. The optimum temperature for both the geranyl diphosphate synthases was 40 °C and that for farnesyl diphosphate synthase was 25 °C. This finding correlated well with the dominance of monoterpenes in comparison to sesquiterpenes in the fruits of Alphonso mango in which the mesocarp temperature is higher during ripening than development. The absence of activity of these enzymes with the divalent metal ion other than Mg(2+) indicated their adaptation to the Mg(2+) rich mesocarp. The typical expression pattern of these genes through the ripening stages of fruits from different cultivation localities depicting the highest transcript levels of these genes in the stage preceding the maximum terpene accumulation indicated the involvement of these genes in the biosynthesis of volatile terpenes.
Collapse
Affiliation(s)
- Ram Kulkarni
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nadella KD, Marla SS, Kumar PA. Metabolomics in agriculture. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:149-59. [PMID: 22433073 DOI: 10.1089/omi.2011.0067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolome refers to the complete set of metabolites synthesized through a series of multiple enzymatic steps from various biochemical pathways processing the information encrypted in the plant genome. Knowledge about synthesis and regulation of various plant metabolic substances has improved substantially with availability of Omics data originating from sequencing of plant genomes. Metabolic profiling of crops is increasingly becoming popular in assessing plant phenotypes and genetic diversity. Metabolic compositional changes vividly reflect the changes occurring during plant growth, development, and in response to stress. Hence, study of plant metabolic pathways, the interconnections between them in context of systems biology is increasingly becoming popular in identification of candidate genes. The present article reviews recent developments in analysis of plant metabolomics, available bioinformatics techniques and databases employed for comparative pathway analysis, metabolic QTLs, and their application in plants.
Collapse
Affiliation(s)
- K D Nadella
- National Bureau of Plant Genetic Resources, ICAR, New Delhi, India
| | | | | |
Collapse
|
10
|
Rudell DR, Buchanan DA, Leisso RS, Whitaker BD, Mattheis JP, Zhu Y, Varanasi V. Ripening, storage temperature, ethylene action, and oxidative stress alter apple peel phytosterol metabolism. PHYTOCHEMISTRY 2011; 72:1328-40. [PMID: 21665233 DOI: 10.1016/j.phytochem.2011.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/21/2011] [Accepted: 04/25/2011] [Indexed: 05/06/2023]
Abstract
The chilling conditions of apple cold storage can provoke an economically significant necrotic peel disorder called superficial scald (scald) in susceptible cultivars. Disorder development can be reduced by inhibiting ethylene action or oxidative stress as well as intermittent warming. It was previously demonstrated that scald is preceded by a metabolomic shift that results in altered levels of various classes of triterpenoids, including metabolites with mass spectral features similar to β-sitosterol. In this study, a key class of phytosterol metabolites was identified. Changes in peel tissue levels of conjugates of β-sitosterol and campesterol, including acylated steryl glycosides (ASG), steryl glycosides (SG) and steryl esters (SE), as well as free sterols (FS), were determined during the period of scald development. Responses to pre-storage treatment with the ethylene action inhibitor, 1-methylcyclopropene, or an antioxidant (diphenylamine), rapid temperature elevation, and cold acclimation using intermittent warming treatments were evaluated. Diphenylamine, 1-MCP, and intermittent warming all reduced or prevented scald development. ASG levels increased and SE levels decreased in untreated control fruit during storage. Removing fruit from cold storage to ambient temperature induced rapid shifts in ASG and SE fatty acyl moieties from unsaturated to saturated. FS and SG levels remained relatively stable during storage but SG levels increased following a temperature increase after storage. ASG, SE, and SG levels did not increase during 6 months cold storage in fruit subjected to intermittent warming treatment. Overall, the results show that apple peel phytosteryl conjugate metabolism is influenced by storage duration, oxidative stress, ethylene action/ripening, and storage temperature.
Collapse
Affiliation(s)
- David R Rudell
- USDA-ARS, Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Whitaker BD, Gapper NE. Ripening-Specific Stigmasterol Increase in Tomato Fruit Is Associated with Increased Sterol C-22 Desaturase ( CYP710A11) Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3828-35. [PMID: 0 DOI: 10.1021/jf7037983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Bruce D. Whitaker
- Produce Quality and Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, and Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853
| | - Nigel E. Gapper
- Produce Quality and Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, and Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853
| |
Collapse
|
12
|
|
13
|
Sato M, Saito N, Seki K, Nishikoori M, Tokuji Y, Ohnishi M. Effects of exogenous mevalonic acid on sterol lipid classes in Larix kaempferi callus. J Oleo Sci 2007; 56:25-8. [PMID: 17693695 DOI: 10.5650/jos.56.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Japanese larch (Larix kaempferi (Lamb.) Carr.) calli, free sterol (FS), acylsterol (AS) and glycosylsterol, including the acylated type, were found in the proportion of 1.0:0.1:0.8. When the calli were cultured in the presence of 10 mM mevalonic acid (MVA), the content of AS, but not FS and glycosylsterol, was increased remarkably. The major component sterol in each sterol lipid class was usually sitosterol (more than 90%) with campesterol as a minor one. There were no differences on the sterol compositions between the calli cultured with or without MVA. When the calli cultured with 10 mM MVA for 6 weeks were transferred to the control medium without exogenous MVA, AS contents decreased to the level of the control calli. Thus, it was shown that sterol lipids, such as FS and glycosylsterols, with the structural functions was maintained in the constant content and the excess sterol biosynthesized from exogenous MVA was esterified to form AS for storage of sterol components.
Collapse
Affiliation(s)
- Mayumi Sato
- Hokkaido Forest Products Research Institute, Asahikawa, Hokkaido, JAPAN.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Moreau RA, Whitaker BD, Hicks KB. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 2002; 41:457-500. [PMID: 12169300 DOI: 10.1016/s0163-7827(02)00006-1] [Citation(s) in RCA: 611] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phytosterols (plant sterols) are triterpenes that are important structural components of plant membranes, and free phytosterols serve to stabilize phospholipid bilayers in plant cell membranes just as cholesterol does in animal cell membranes. Most phytosterols contain 28 or 29 carbons and one or two carbon-carbon double bonds, typically one in the sterol nucleus and sometimes a second in the alkyl side chain. Phytostanols are a fully-saturated subgroup of phytosterols (contain no double bonds). Phytostanols occur in trace levels in many plant species and they occur in high levels in tissues of only in a few cereal species. Phytosterols can be converted to phytostanols by chemical hydrogenation. More than 200 different types of phytosterols have been reported in plant species. In addition to the free form, phytosterols occur as four types of "conjugates," in which the 3beta-OH group is esterified to a fatty acid or a hydroxycinnamic acid, or glycosylated with a hexose (usually glucose) or a 6-fatty-acyl hexose. The most popular methods for phytosterol analysis involve hydrolysis of the esters (and sometimes the glycosides) and capillary GLC of the total phytosterols, either in the free form or as TMS or acetylated derivatives. Several alternative methods have been reported for analysis of free phytosterols and intact phytosteryl conjugates. Phytosterols and phytostanols have received much attention in the last five years because of their cholesterol-lowering properties. Early phytosterol-enriched products contained free phytosterols and relatively large dosages were required to significantly lower serum cholesterol. In the last several years two spreads, one containing phytostanyl fatty-acid esters and the other phytosteryl fatty-acid esters, have been commercialized and were shown to significantly lower serum cholesterol at dosages of 1-3 g per day. The popularity of these products has caused the medical and biochemical community to focus much attention on phytosterols and consequently research activity on phytosterols has increased dramatically.
Collapse
Affiliation(s)
- Robert A Moreau
- Crop Conversion Science and Technology Research Unit, Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | |
Collapse
|
16
|
PICCHIONI G, WATADA A, ROY S, WHITAKER B, WERGIN W. Membrane Lipid Metabolism, Cell Permeability, and Ultrastructural Changes in Lightly Processed Carrots. J Food Sci 1994. [DOI: 10.1111/j.1365-2621.1994.tb05571.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
|