1
|
Thalberg K. New theory to explain the effect of lactose fines on the performance of adhesive mixtures for inhalation. Int J Pharm 2024; 663:124549. [PMID: 39128621 DOI: 10.1016/j.ijpharm.2024.124549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
A new theory for the dispersibility enhancing effect of excipient fines for adhesive mixtures for inhalation is presented in this paper, while at the same time the shortcomings of current hypotheses are discussed. The proposed mechanism, denoted the 'viscoelastic damping effect', states that the presence of fines particles acts to dampen the collisions between carrier particles during mixing. As a consequence, fewer fine particles are 'irreversibly' pressed into the carriers, which in turn entails a higher fine particle fraction. The mechanism was demonstrated experimentally at different levels of added lactose fines by studying the influence of processing on fine particle fraction. This approach furthermore enabled quantification of the effect. All fine particles present in the blend (APIs and excipient fines) act together to exert the damping effect. The proposed mechanism is able to explain the main body of published data, including the effect of added excipient fines, the effect of an increased drug load, and the effect of removal of carrier fines. The viscoelastic damping mechanism is general in nature and conveys a broader and more general understanding of the behavior of adhesive mixtures for inhalation.
Collapse
Affiliation(s)
- Kyrre Thalberg
- Food and Pharma Division, Department of Process and Life Science Engineering, Lund University, Lund, Sweden; Emmace Consulting AB, Lund, Sweden.
| |
Collapse
|
2
|
Salústio PJ, Amaral MH, Costa PC. Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39120712 DOI: 10.1089/jamp.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
In contemporary times, there has been a rise in the utilization of dry powder inhalers (DPIs) in the management of pulmonary and systemic diseases. These devices underwent a swift advancement in terms of both the equipment utilized and the formulation process. In this review, the carrier physicochemical characteristics that influence DPI performance are discussed, focusing its shape, morphology, size distribution, texture, aerodynamic diameter, density, moisture, adhesive and detachment forces between particles, fine carrier particles, and dry powder aerosolization. To promote the deposition of the active principal ingredient deep within the pulmonary system, advancements have been made in enhancing these factors and surface properties through the application of novel technologies that encompass particle engineering. So far, the most used carrier is lactose showing some advantages and disadvantages, but other substances and systems are being studied with the intention of replacing it. The final objective of this review is to analyze the physicochemical and mechanical characteristics of the different carriers or new delivery systems used in DPI formulations, whether already on the market or still under investigation. [Figure: see text].
Collapse
Affiliation(s)
- P J Salústio
- Research Institute for Medicines (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - M H Amaral
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - P C Costa
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
4
|
Friebel JM, Ditscherlein R, Ditscherlein L, Peuker UA. Three-Dimensional Characterization of Dry Particle Coating Structures Originating from the Mechano-fusion Process. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:179-191. [PMID: 38457218 DOI: 10.1093/mam/ozae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/09/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024]
Abstract
Dry particle coating processes are of key importance for creating functionalized materials. By a change in surface structure, initiated during coating, a surface property change and thus functionalization can be achieved. This study introduces an innovative approach employing 3D X-ray micro-computed tomography (micro-CT) to characterize coated particles, consisting of spherical alumina particles (d50 = 45.64 μm), called hosts, surrounded by spherical polystyrene particles (d50 = 3.5 μm), called guests. The formed structures, hetero-aggregates, are generated by dry particle coating using mechano-fusion (MF). A deeper understanding of the influence of MF process parameters on the coating structures is a crucial step toward tailoring of coating structure, resulting surface property and functionalization. Therefore, the influence of rotational speed, process time, and total mechanical energy input during MF is explored. Leveraging micro-CT data, acquired of coated particles, enables non-stereologically biased and quantitative coating structure analysis. The guest's coating thickness is analyzed using the maximum inscribed sphere and ray method, two different local thickness measurement approaches. Particle-discrete information of the coating structure are available after a proper image processing workflow is implemented. Coating efficiency and guest's neighboring relations (nearest neighbor distance and number of neighbors inside search radius) are evaluated.
Collapse
Affiliation(s)
- Judith M Friebel
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, Agricolastraße 1, Freiberg 09599, Germany
| | - Ralf Ditscherlein
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, Agricolastraße 1, Freiberg 09599, Germany
| | - Lisa Ditscherlein
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, Agricolastraße 1, Freiberg 09599, Germany
| | - Urs A Peuker
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, Agricolastraße 1, Freiberg 09599, Germany
| |
Collapse
|
5
|
Morton DAV, Barling D. Developing Dry Powder Inhaler Formulations. J Aerosol Med Pulm Drug Deliv 2024; 37:90-99. [PMID: 38640447 DOI: 10.1089/jamp.2024.29109.davm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
This section aims to provide a concise and contemporary technical perspective and reference resource covering dry powder inhaler (DPI) formulations. While DPI products are currently the leading inhaled products in terms of sales value, a number of confounding perspectives are presented to illustrate why they are considered surprisingly, and often frustratingly, poorly understood on a fundamental scientific level, and most challenging to design from first principles. At the core of this issue is the immense complexity of fine cohesive powder systems. This review emphasizes that the difficulty of successful DPI product development should not be underestimated and is best achieved with a well-coordinated team who respect the challenges and who work in parallel on device and formulation and with an appreciation of the handling environment faced by the patient. The general different DPI formulation types, which have evolved to address the challenges of aerosolizing fine cohesive drug-containing particles to create consistent and effective DPI products, are described. This section reviews the range of particle engineering processes that may produce micron-sized drug-containing particles and their subsequent assembly as either carrier-based or carrier-free compositions. The creation of such formulations is then discussed in the context of the material, bulk, interfacial and ultimately drug-delivery properties that are considered to affect formulation performance. A brief conclusion then considers the future DPI product choices, notably the issue of technology versus affordability in the evolving inhaler market.
Collapse
Affiliation(s)
- David A V Morton
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
| | - David Barling
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Gajjar P, Styliari ID, Legh-Land V, Bale H, Tordoff B, Withers PJ, Murnane D. Microstructural insight into inhalation powder blends through correlative multi-scale X-ray computed tomography. Eur J Pharm Biopharm 2023; 191:265-275. [PMID: 37657613 DOI: 10.1016/j.ejpb.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Dry powder inhalers (DPI) are important for topical drug delivery to the lungs, but characterising the pre-aerosolised powder microstructure is a key initial step in understanding the post-aerosolised blend performance. In this work, we characterise the pre-aerosolised 3D microstructure of an inhalation blend using correlative multi-scale X-ray Computed Tomography (XCT), identifying lactose and drug-rich phases at multiple length scales on the same sample. The drug-rich phase distribution across the sample is shown to be homogeneous on a bulk scale but heterogeneous on a particulate scale, with individual clusters containing different amounts of drug-rich phase, and different parts of a carrier particle coated with different amounts of drug-rich phase. Simple scalings of the drug-rich phase thickness with carrier particle size are used to derive the drug-proportion to carrier particle size relationship. This work opens new doors to micro-structural assessment of inhalation powders that could be invaluable for bioequivalence assessment of dry powder inhalers.
Collapse
Affiliation(s)
- Parmesh Gajjar
- Henry Moseley X-ray Imaging Facility, Department of Materials, The University of Manchester, Manchester M13 9PL, UK; National Facility for Laboratory X-ray Computed Tomography, The University of Manchester, Manchester M13 9PL, UK; Henry Royce Institute for Advanced Materials, Oxford Road, Manchester M13 9PL, UK; Seda Pharmaceutical Development Services, Unit D, Oakfield Road, Cheadle Royal Business Park, Stockport SK8 3GX, UK.
| | - Ioanna Danai Styliari
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - Victoria Legh-Land
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - Hrishikesh Bale
- Carl Zeiss X-ray Microscopy, 5300 Central Parkway, Dublin, CA 94568, USA
| | - Benjamin Tordoff
- Carl Zeiss Microscopy GmbH, Carl-Zeiss-Straße 22, 73447 Oberkochen, Germany
| | - Philip J Withers
- Henry Moseley X-ray Imaging Facility, Department of Materials, The University of Manchester, Manchester M13 9PL, UK; National Facility for Laboratory X-ray Computed Tomography, The University of Manchester, Manchester M13 9PL, UK; Henry Royce Institute for Advanced Materials, Oxford Road, Manchester M13 9PL, UK
| | - Darragh Murnane
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| |
Collapse
|
7
|
Chendo C, Pinto JF, Paisana MC. Comprehensive powder flow characterization with reduced testing. Int J Pharm 2023:123107. [PMID: 37279868 DOI: 10.1016/j.ijpharm.2023.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Powder flow is a critical attribute of pharmaceutical blends to ensure tablet weight uniformity and production of tablets with consistent and reproducible properties. This study aims at characterizing different powder blends with a number of different rheologic techniques, in order to understand how particles' attributes and interaction between components within the formulation generate different responses when analysed by different rheological tests. Furthermore, this study intends on reducing the number of tests in early development phases, by selecting the ones that provide the best information about the flowability attributes of the pharmaceutical blends. This work considered two cohesive powders - spray-dried hydroxypropyl cellulose (SD HPMC) and micronized indomethacin (IND) - formulated with other four commonly used excipients [(lactose monohydrated (LAC), microcrystalline cellulose (MCC), magnesium stearate (MgSt) and colloidal silica (CS)]. The experimental results showed that powder flowability may be affected by materials particles' size, bulk density, morphology, and interactions with lubricant. In detail, parameters, such as angle of repose (AoR), compressibility percentage (CPS), and flow function coefficient (ffc) have shown to be highly affected by the particle size of the materials present in the blends. On the other hand, the Specific Energy (SE) and the effective angle of internal friction (φe) showed to be more related with particle morphology and materials interaction with the lubricant. Since both ffc and φe parameters are generated from the yield locus test, data suggest that a number of different powder flow features may be understood only by applying this test, avoiding redundant powder flow characterization, as well as extensive time and material spent in early development formulation stages.
Collapse
Affiliation(s)
- Catarina Chendo
- R&D Analytical Development, Hovione Farmaciência S.A., 1649-038 Lisboa, Portugal
| | - João F Pinto
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria C Paisana
- R&D Analytical Development, Hovione Farmaciência S.A., 1649-038 Lisboa, Portugal.
| |
Collapse
|
8
|
Karas J, Pavloková S, Hořavová H, Gajdziok J. Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design. Pharmaceutics 2023; 15:pharmaceutics15020496. [PMID: 36839819 PMCID: PMC9960250 DOI: 10.3390/pharmaceutics15020496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Inhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of <0.4 g/cm3 can avoid protective lung mechanisms. Their suitable aerodynamic properties make them perspective formulations for deep lung deposition. This experiment studied the effect of spray-drying process parameters on LPP properties. An experimental design of twelve experiments with a central point was realized using the Box-Behnken method. Three process parameters (drying temperature, pump speed, and air speed) were combined on three levels. Particles were formed from a D-mannitol solution, representing a perspective material for lung microparticles. The microparticles were characterized in terms of physical size (laser diffraction), aerodynamic diameter (aerodynamic particle sizer), morphology (SEM), and densities. The novelty and main goal of this research were to describe how the complex parameters of the spray-drying process affect the properties of mannitol LPPs. New findings can provide valuable data to other researchers, leading to the easy tuning of the properties of spray-dried particles by changing the process setup.
Collapse
|
9
|
Advanced image analytics to study powder mixing in a novel laboratory scale agitated filter dryer. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Hiew TN, Saboo S, Zemlyanov DY, Punia A, Wang M, Smith D, Lowinger M, Solomos MA, Schenck L, Taylor LS. Improving Dissolution Performance and Drug Loading of Amorphous Dispersions Through a Hierarchical Particle Approach. J Pharm Sci 2022:S0022-3549(22)00583-4. [PMID: 36574837 DOI: 10.1016/j.xphs.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 12/26/2022]
Abstract
Co-precipitation is an emerging manufacturing strategy for amorphous solid dispersions (ASDs). Herein, the interplay between processing conditions, surface composition, and release performance was evaluated using grazoprevir and hypromellose acetate succinate as the model drug and polymer, respectively. Co-precipitated amorphous dispersion (cPAD) particles were produced in the presence and absence of an additional polymer that was either dissolved or dispersed in the anti-solvent. This additional polymer in the anti-solvent was deposited on the surfaces of the cPAD particles during isolation and drying to create hierarchical particles, which we define here as a core ASD particle with an additional water soluble component that is coating the particle surfaces. The resultant hierarchical particles were characterized using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Release performance was evaluated using a two-stage dissolution test. XPS analysis revealed a trend whereby cPAD particles with a lower surface drug concentration showed improved release relative to particles with a higher surface drug concentration, for nominally similar drug loadings. This surface drug concentration could be impacted by whether the secondary polymer was dissolved in the anti-solvent or dispersed in the anti-solvent prior to isolating final dried hierarchical cPAD powders. Grazoprevir exposure in dogs was higher when the hierarchical cPAD was dosed, with ∼1.8 fold increase in AUC compared to the binary cPAD. These observations highlight the important interplay between processing conditions and ASD performance in the context of cPAD particles and illustrate a hierarchical particle design as a successful approach to alter ASD surface chemistry to improve dissolution performance.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Sugandha Saboo
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Wang
- Biopharmaceutics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel Smith
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Lowinger
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marina A Solomos
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
11
|
Kim SS, Castillo C, Sayedahmed M, Davé RN. Reduced Fine API Agglomeration After Dry Coating for Enhanced Blend Uniformity and Processability of Low Drug Loaded Blends. Pharm Res 2022; 39:3155-3174. [PMID: 35882741 DOI: 10.1007/s11095-022-03343-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The impact of dry coating on reduced API agglomeration remains underexplored. Therefore, this work quantified fine cohesive API agglomeration reduction through dry coating and its impact on enhanced blend uniformity and processability, i.e., flowability and bulk density of multi-component blends API loading as low as 1 wt%. METHODS The impact of dry coating with two different types and amounts of silica was assessed on cohesion, agglomeration, flowability, bulk density, wettability, and surface energy of fine milled ibuprofen (~ 10 µm). API agglomeration, measured using Gradis/QicPic employing gentler gravity-based dispersion, resulted in excellent size resolution. Multi-component blends with fine-sized excipients, selected for reduced segregation potential, were tested for bulk density, cohesion, flowability, and blend content uniformity. Tablets formed using these blends were tested for tensile strength and dissolution. RESULT All dry coated ibuprofen powders exhibited dramatic agglomeration reduction, corroborated by corresponding decreased cohesion, unconfined yield strength, and improved flowability, regardless of the type and amount of silica coating. Their blends exhibited profound enhancement in flowability and bulk density even at low API loadings, as well as the content uniformity for the lowest drug loading. Moreover, hydrophobic silica coating improved drug dissolution rate without appreciably reducing tablet tensile strength. CONCLUSION The dry coating based reduced agglomeration of fine APIs for all three low drug loadings improved overall blend properties (uniformity, flowability, API release rate) due to the synergistic impact of a minute amount of silica (0.007 wt %), potentially enabling direct compression tableting and aiding manufacturing of other forms of solid dosing.
Collapse
Affiliation(s)
- Sangah S Kim
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Chelsea Castillo
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Muhammad Sayedahmed
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
12
|
Hebbink GA, Jaspers M, Peters HJW, Dickhoff BHJ. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv Drug Deliv Rev 2022; 189:114527. [PMID: 36070848 DOI: 10.1016/j.addr.2022.114527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Lactose is the most commonly used excipient in carrier-based dry powder inhalation (DPI) formulations. Numerous inhalation therapies have been developed using lactose as a carrier material. Several theories have described the role of carriers in DPI formulations. Although these theories are valuable, each DPI formulation is unique and are not described by any single theory. For each new formulation, a specific development trajectory is required, and the versatility of lactose can be exploited to optimize each formulation. In this review, recent developments in lactose-based DPI formulations are discussed. The effects of varying the material properties of lactose carrier particles, such as particle size, shape, and morphology are reviewed. Owing to the complex interactions between the particles in a formulation, processing adhesive mixtures of lactose with the active ingredient is crucial. Therefore, blending and filling processes for DPI formulations are also reviewed. While the role of ternary agents, such as magnesium stearate, has increased, lactose remains the excipient of choice in carrier-based DPI formulations. Therefore, new developments in lactose-based DPI formulations are crucial in the optimization of inhalable medicine performance.
Collapse
|
13
|
de Boer AH, Hagedoorn P, Grasmeijer F. Dry powder inhalation, part 2: the present and future. Expert Opin Drug Deliv 2022; 19:1045-1059. [PMID: 35984322 DOI: 10.1080/17425247.2022.2112570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The manufacture of modern dry powder inhalers (DPIs), starting with the Spinhaler (Fisons) in 1967, was only possible thanks to a series of technological developments in the 20th century, of which many started first around 1950. Not until then, it became possible to design and develop effective, cheap and mass-produced DPIs. The link between these technological developments and DPI development has never been presented and discussed before in reviews about the past and present of DPI technology. AREAS COVERED The diversity of currently used DPIs with single dose, multiple-unit dose and multi-dose DPIs is discussed, including the benefits and drawbacks of this diversity for correct use and the efficacy of the therapy. No specific databases or search engines otherwise than PubMed and Google have been used. EXPERT OPINION Considering the relatively poor efficacy regarding lung deposition of currently used DPIs, the high rates of incorrect inhaler use and inhalation errors and the poor adherence to the therapy with inhalers, much effort must be put in improving these shortcomings for future DPI designs. Delivered fine particle doses must be increased, correct inhaler handling must become more intuitive and simpler to perform, and the use of multiple inhalers must be avoided.
Collapse
Affiliation(s)
- Anne Haaije de Boer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,PureIMS B.V, Roden, The Netherlands
| |
Collapse
|
14
|
Spahn JE, Zhang F, Smyth HDC. Mixing of dry powders for inhalation: A review. Int J Pharm 2022; 619:121736. [PMID: 35405281 DOI: 10.1016/j.ijpharm.2022.121736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
The process of solids mixing is applied across a considerable range of industries. Pharmaceutical science is one of those industries that utilizes solids mixing extensively. Specifically, solids mixing as a key factor in the preparation of dry powder inhalers using the ordered mixing process will be discussed here. This review opens with a history of dry powder mixing theory, continues to ordered mixing in the preparation for dry powder inhalers, details key interparticulate interactions, explains formulation components for dry powder blends, and finally discusses different types of mixers used in the production of dry powder blends for inhalation. Lastly, the authors offer some suggestions for future work on this topic.
Collapse
Affiliation(s)
- Jamie E Spahn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| |
Collapse
|
15
|
Precise Dosing of Pramipexole for Low-Dosed Filament Production by Hot Melt Extrusion Applying Various Feeding Methods. Pharmaceutics 2022; 14:pharmaceutics14010216. [PMID: 35057112 PMCID: PMC8779137 DOI: 10.3390/pharmaceutics14010216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this research was the production of low-dosed filaments via hot-melt extrusion (HME) with the model drug pramipexole for the treatment of Parkinson’s disease. The active pharmaceutical ingredient (API) and one of the polymers polyvinyl alcohol (PVA) or basic butylated methacrylate copolymer (bPMMA) were fed by various dosing techniques with the aim of achieving the smallest deviation (RSD) from the target concentration of 0.1% (w/w) pramipexole. It was found that deviation from target pramipexole concentration occurred due to degradation products in bPMMA formulations. Additionally, material temperature above 120 °C led to the formation of the anhydrous form of pramipexole within the extruded filaments and need to be considered in the calculation of the recovered API. This study clearly shows that even if equilibrium state of the extrusion parameters was reached, equilibrium condition for drug content was reached relatively late in the process. In addition, the RSD calculated by the Stange–Poole equation was proposed by us to predict the final content uniformity considering the sample size of the analyzed filament. The calculated RSD, depending on sample size and drug load, can serve as upper and lower limits of variation from target concentration and can be used to evaluate the deviations of drug content in equilibrium conditions of the HME process. The lowest deviations from target concentration in equilibrium condition for drug content were obtained in filaments extruded from previously prepared granule mixtures (RSD = 6.00%, acceptance value = 12.2). These promising results can be transferred to other API–excipient combinations to produce low-dosed filaments, which can be used for, e.g., fused filament 3D printing. The introduced calculation of the RSD by Stange–Poole equation can be used for precise determination of the homogeneity of an extruded batch.
Collapse
|
16
|
Lamešić D, Grilc B, Roškar R, Kolokytha S, Hofmann J, Malekos A, Kaufmann R, Planinšek O. Spherical Agglomerates of Lactose Reduce Segregation in Powder Blends and Improve Uniformity of Tablet Content at High Drug Loads. AAPS PharmSciTech 2021; 23:17. [PMID: 34893932 DOI: 10.1208/s12249-021-02150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
We report here on improved uniformity of blends of micronised active pharmaceutical ingredients (APIs) using addition of spherical agglomerates of lactose and enhanced blend flow to improve tablet content uniformity with higher API loads. Micromeritic properties and intra-particle porosity (using nano-computed X-ray tomography) of recently introduced spherical agglomerates of lactose and two standard lactose grades for the direct compression processes were compared. Powder blends of the individual lactose types and different micronised API drug loads were prepared and subjected to specific conditions that can induce API segregation. Tablet content uniformity during direct compression was related to the lactose material attributes. The distinctive micromeritic properties of the lactose types showed that spherical agglomerates of lactose had high intra-particle porosity and increased specific surface area. The stability of binary blends after intense sieving was governed by the intra-particle porosity and surface roughness of the lactose particles, which determined the retention of the model substance. Greater intra-particle porosity, powder specific surface area, and particle size of the spherical agglomerates provided greater adhesion of micronised particles, compared to granulated and spray-dried lactose. Thus the spherical agglomerates provided enhanced final blend flow and uniformity of tablet content at higher drug loads.
Collapse
|
17
|
Yasunaga T, Andoh T, Ogawa N, Yamamoto H, Ichikawa H. Design and preparation of nanocomposite acrylate coating agents for binder-free dry coating of 100 µm-sized drug-containing particles and their coating performance. Eur J Pharm Biopharm 2021; 170:133-143. [PMID: 34864196 DOI: 10.1016/j.ejpb.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/10/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
For binder-free dry particulate coating to prepare controlled-release micron-sized particles, we designed nanocomposite coating agents with the intention to form a core-shell structure composed of two types of acrylic polymers with different glass transition temperatures (Tg) and evaluated their coating performance. A series of nanocomposite acrylic latexes synthesized by emulsion polymerization was freeze-dried after salting-out to create the powder form. An ion-exchange resin loaded with diclofenac sodium (DS, a model drug) (IER-DS) with a median diameter of approximately 100 µm was used as the core particle. Dry coating of the IER-DS with nanocomposite coating agents was carried out using a laboratory-made coating apparatus assisted with mild-intensity vibration and zirconia bead impaction. The coated particles were cured by heating at a temperature 20 °C higher than the Tg for 12 h to complete the film-forming process. It was found that the highest coating efficiency (more than 70%) and a remarkably prolonged release period of the drug (the time required for 50% release reached approximately 12 h) could be achieved when nanocomposite coating agents with a soft polymeric core (Tg = 30 °C) and a hard polymeric shell (Tg = 80 °C) were applied. In contrast, nanocomposite coating agents with a combination of a hard polymeric core and a soft polymeric shell resulted in lower coating efficiency. These results demonstrate that nanocomposite polymeric coating agents composed of a soft core and hard shell are effective for the production of drug-loaded microparticles with a prolonged release function by a binder-free dry-coating process.
Collapse
Affiliation(s)
- Toshiya Yasunaga
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan.
| | - Tooru Andoh
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Noriko Ogawa
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, Nagoya 464-0037, Japan
| | - Hiromitsu Yamamoto
- Laboratory of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, Nagoya 464-0037, Japan
| | - Hideki Ichikawa
- Laboratory of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan; Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan.
| |
Collapse
|
18
|
|
19
|
Jaspers M, de Wit MT, Kulkarni SS, Meir B, Janssen PH, van Haandel MM, Dickhoff BH. Impact of excipients on batch and continuous powder blending. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Lapshin OV, Boldyreva EV, Boldyrev VV. Role of Mixing and Milling in Mechanochemical Synthesis (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621030116] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Douafer H, Andrieu V, Wafo E, Sergent M, Brunel JM. Feasibility of an inhaled antibiotic/adjuvant dry powder combination using an experimental design approach. Int J Pharm 2021; 599:120414. [PMID: 33647405 DOI: 10.1016/j.ijpharm.2021.120414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
The global increase of multidrug resistant bacteria and the lack of new classes of antibiotic especially those targeting Gram-negative pathogens are leaving the clinicians disarmed to treat numerous bacterial infections. Recently, the design of adjuvants able to enhance antibiotics activities appears to be one of the most promising investigated solutions to circumvent this problem. In this context, we have recently identified a new polyamino-isoprenyl derivative NV716 able to potentiate, at a very low concentration the activity of doxycycline against resistant P. aeruginosa bacterial strains by increasing its intracellular concentration. In this study we will report an experimental protocol to optimize a dry powder for inhalation ensuring the simultaneous delivery of an antibiotic (doxycycline) and an adjuvant (the polyaminoisoprenyl derivative NV716 since aerosol therapy could allow a rapid drug administration and target the respiratory system by avoiding the first pass effect and minimizing undesirable systemic effects. Thus, an experimental design was carried out permitting to identify the influence of several factors on the aerosolization efficiency of our combination and allowing us to find the right composition and manufacture leading to the best optimization of the simultaneous delivery of the two compounds in the form of an inhalable powder. More precisely, the powders of the two active ingredients were prepared by freeze drying and their aerosolization was improved by the addition of carrier particles of lactose inhalation grade. Under these conditions, the best formulation was defined by combining the optimal factors leading to the best aerodynamic properties' values (the lowest MMAD (Mass Median Aerodynamic Diameter) and the highest FPF (Fraction of Fine Particles)) without even using sophisticated engineering techniques. Finally, our results suggest that these molecules could be successfully delivered at the requested concentration in the lungs and then able to decrease drug consumption as well as increase treatment efficacy.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | - Emmanuel Wafo
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Michelle Sergent
- Aix Marseille Univ, IMBE, UMR CNRS IRD Avignon Université, Site de l'Etoile, Marseille, France
| | | |
Collapse
|
22
|
Hellberg E, Westberg A, Appelblad P, Mattsson S. Evaluation of dissolution techniques for orally disintegrating mini-tablets. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Saeki I, Kondo K, Furukoshi Y, Watanabe Y, Niwa T. Design of taste-masked swellable drug particles using dry-coating technology with mechanical curing. Eur J Pharm Biopharm 2021; 160:9-22. [PMID: 33472100 DOI: 10.1016/j.ejpb.2020.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
A novel dry coating technique for fine particles that does not require any liquids has been developed. Swellable ordered-mixed drug particles (Swell-OM-spheres, SOS), using a modified starch as the core particle and a drug coating layer have been previously developed. In the present work, SOS particles were further processed to generate 100-μm taste-masking particles using an all dry coating processes. SOS particles were coated with a gastric-soluble powder using a mechanical powder processor. The coated particles (CPs) were subsequently heated while rotating in the same powder processor, completing film formation by a process termed dynamic curing. As a control, conventional film formation (static curing) was performed using a drying oven. The CPs obtained by these two curing processes had distinct appearances, but exhibited equivalent dissolution suppression effects in a medium at pH 6.8 (the pH of the oral cavity). The suppression effect was further improved by adding a plasticizer to the coating powder, even though a lower heating temperature was required. Orally disintegrating tablets incorporating these CPs exhibited excellent taste-masking performance, i.e., suppressing taste in saliva while accelerating dissolution in gastric juice. The dissolution behavior indicated that the CPs can provide an ON/OFF switching function in drug release.
Collapse
Affiliation(s)
- Isamu Saeki
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan
| | - Keita Kondo
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan
| | - Yumi Furukoshi
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan
| | - Yui Watanabe
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan
| | - Toshiyuki Niwa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468-8503, Japan.
| |
Collapse
|
24
|
Sibum I, Hagedoorn P, Botterman CO, Frijlink HW, Grasmeijer F. Automated Filling Equipment Allows Increase in the Maximum Dose to Be Filled in the Cyclops ® High Dose Dry Powder Inhalation Device While Maintaining Dispersibility. Pharmaceutics 2020; 12:pharmaceutics12070645. [PMID: 32659899 PMCID: PMC7407802 DOI: 10.3390/pharmaceutics12070645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years there has been increasing interest in the pulmonary delivery of high dose dry powder drugs, such as antibiotics. Drugs in this class need to be dosed in doses far over 2.5 mg, and the use of excipients should therefore be minimized. To our knowledge, the effect of the automatic filling of high dose drug formulations on the maximum dose that can be filled in powder inhalers, and on the dispersion behavior of the powder, have not been described so far. In this study, we aimed to investigate these effects after filling with an Omnidose, a vacuum drum filler. Furthermore, the precision and accuracy of the filling process were investigated. Two formulations were used—an isoniazid formulation we reported previously and an amikacin formulation. Both formulations could be precisely and accurately dosed in a vacuum pressure range of 200 to 600 mbar. No change in dispersion was seen after automatic filling. Retention was decreased, with an optimum vacuum pressure range found from 400 to 600 mbar. The nominal dose for amikacin was 57 mg, which resulted in a fine particle dose of 47.26 ± 1.72 mg. The nominal dose for isoniazid could be increased to 150 mg, resulting in a fine particle dose of 107.35 ± 13.52 mg. These findings may contribute to the understanding of the upscaling of high dose dry powder inhalation products.
Collapse
|
25
|
Fathollahi S, Faulhammer E, Glasser BJ, Khinast JG. Impact of powder composition on processing-relevant properties of pharmaceutical materials: An experimental study. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Zheng K, Kunnath K, Ling Z, Chen L, Davé RN. Influence of guest and host particle sizes on dry coating effectiveness: When not to use high mixing intensity. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Design of swellable ordered-mixed spherical drug particles (Swell-OM-spheres) using a dry powder milling and coating technique to improve dissolution behavior. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Sharma R, Setia G. Mechanical dry particle coating on cohesive pharmaceutical powders for improving flowability - A review. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Roopwani R, Buckner IS. Co-Processed Particles: An Approach to Transform Poor Tableting Properties. J Pharm Sci 2019; 108:3209-3217. [DOI: 10.1016/j.xphs.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
30
|
Yasunaga T, Nakamura K, Andoh T, Ichikawa H. Binder-free dry particulate coating process using a mild vibration field: Effects of glass-transition temperature and powdering method of polymeric coating agents on coating performance. Int J Pharm 2019; 561:206-218. [PMID: 30822506 DOI: 10.1016/j.ijpharm.2019.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
We employed a new dry coating process with mild-intensity vibration to prepare a 100-µm-sized microparticle capable of prolonged release of a drug. To accomplish this without using a binder, a series of laboratory-made acrylic latexes with different glass transition temperatures (Tg) ranging from 30 °C to 80 °C were employed as coating agents, and the effects of Tg and powdering method of the coating agents on coating performance were investigated. The laboratory-made acrylic latexes were powdered by spray-drying (SD) or freeze-drying (FD). Diclofenac sodium (DS)-loaded ion-exchange-resin with particle size ∼100 µm was used as a core particle. The process utilized vibrations with amplitude of 0.5 mm and frequency of 90 Hz to form an ordered mixture composed of the core particles with the loosely-layered coating agents. Subsequently, the coating agents were fixed mechanically on the core particle by impaction of zirconia beads. The coating agents powdered by FD showed higher coating efficiencies than those powdered by SD, irrespective of the differences in Tg values. Among the coating agents powdered by FD, the particles coated at Tg = 60 °C exhibited the most prolonged drug-release, although the coating efficiency was not the highest. In our proposed process utilizing mild vibration, we demonstrated that adjusting the Tg of the coating agents is crucial to the formation of binder-free multiple coating layers for prolonged drug release.
Collapse
Affiliation(s)
- Toshiya Yasunaga
- Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan.
| | - Kazukiyo Nakamura
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Tooru Andoh
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Hideki Ichikawa
- Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan; Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan.
| |
Collapse
|
31
|
Rudén J, Frenning G, Bramer T, Thalberg K, An J, Alderborn G. Linking carrier morphology to the powder mechanics of adhesive mixtures for dry powder inhalers via a blend-state model. Int J Pharm 2019; 561:148-160. [PMID: 30825556 DOI: 10.1016/j.ijpharm.2019.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate how the carrier morphology affects the expression of blend states in adhesive mixtures as a function of surface coverage ratio (SCR) and to identify where transitions between the different states occur. Adhesive mixtures of five lactose carriers with varying contents of lactose fines, corresponding to blends with different SCR ranging from 0 to 6, were produced by low-shear mixing. The powder mechanics of the mixtures were characterized by bulk density, compressibility and permeability. The appearance of the carriers and blends was studied by scanning electron microscopy, light microscopy and atomic force microscopy. The size and morphology of the carriers had a crucial impact on the evolution of the blend state, and affected the powder mechanical properties of the mixtures. It was found that smaller carriers with little or no surface irregularities were more sensitive to additions of fines resulting in self-agglomeration of fines at relatively low SCR values. On the contrary, carriers with irregular surface structures and larger sizes were able to reach higher SCR values before self-agglomeration of fines occurred. This could be attributed to an increased deagglomeration efficiency of irregular and larger carriers and to fines predominantly adhering to open pores.
Collapse
Affiliation(s)
- Jonas Rudén
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden.
| | - Göran Frenning
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| | - Tobias Bramer
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kyrre Thalberg
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | - Junxue An
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| | - Göran Alderborn
- Department of Pharmacy and the Swedish Drug Delivery Forum (SDDF), Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
32
|
Matsumoto A, Ono A, Murao S, Murakami M. Microparticles for sustained release of water-soluble drug based on a containment, dry coating technology. Drug Discov Ther 2019; 12:347-354. [PMID: 30674769 DOI: 10.5582/ddt.2018.01082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Controlled release microparticles in a sub-gram-scale batch were fabricated using a ball mill, dry coating technique, to coat the water-soluble core material. This process also guaranteed the maintenance of the containment's integrity during the dry coating process. Quinine (average diameter, ca. 10 μm) and carnauba wax were used as the core and coating material, respectively. We evaluated the influence of process time, milling speed, and quinine-to-carnauba wax ratio on the particle size of the coated particles and their in vitro drug release profiles. Scanning electron microscopic observations suggested that the small wax particles attached to the core (quinine) particles resulted in a smooth film during the dry coating process. The size distribution of the coated particles agreed with the theoretically estimated size distribution. The in vitro release test demonstrated that the coated particles released quinine over 2 h in a biphasic mode. These results suggest that dry coating of microparticles less than 50 µm (D99) is feasible on a several-grams-batch scale. This new ball mill-coating technique also enables a guaranteed containment, a prerequisite for the manufacturing of highly bioactive or biohazard substances.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University
| | - Akira Ono
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University
| | - Satoshi Murao
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University
| | - Masahiro Murakami
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
33
|
Pinto JT, Stranzinger S, Kruschitz A, Faulhammer E, Stegemann S, Roblegg E, Paudel A. Insights into the processability and performance of adhesive blends of inhalable jet-milled and spray dried salbutamol sulphate at different drug loads. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Dahmash EZ, Al-khattawi A, Iyire A, Al-Yami H, Dennison TJ, Mohammed AR. Quality by Design (QbD) based process optimisation to develop functionalised particles with modified release properties using novel dry particle coating technique. PLoS One 2018; 13:e0206651. [PMID: 30383810 PMCID: PMC6211725 DOI: 10.1371/journal.pone.0206651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/17/2018] [Indexed: 11/21/2022] Open
Abstract
Quality by Design (QbD), a current trend employed to develop and optimise various critical pharmaceutical processes, is a systematic approach based on the ethos that quality should be designed into the product itself, not just end tested after manufacture. The present work details a step-wise application of QbD principles to optimise process parameters for production of particles with modified functionalities, using dry particle coating technology. Initial risk assessment identified speed, air pressure, processing time and batch size (independent factors) as having high-to-medium impact on the dry coating process. A design of experiments (DOE) using MODDE software employed a D-optimal design to determine the effect of variations in these factors on identified responses (content uniformity, dissolution rate, particle size and intensity of Fourier transform infrared (FTIR) C = O spectrum). Results showed that batch size had the most significant effect on dissolution rate, particle size and FTIR; with an increase in batch size enhancing dissolution rate, decreasing particle size (depicting absence of coated particles) and increasing the FTIR intensity. While content uniformity was affected by various interaction terms, with speed and batch size having the highest negative effect. Optimal design space for producing functionalised particles with optimal properties required maximum air pressure (40psi), low batch size (6g), speed between 850 to 1500 rpm and processing times between 15 to 60 minutes. The validity and predictive ability of the revised model demonstrated reliability for all experiments. Overall, QbD was demonstrated to provide an expedient and cost effective tool for developing and optimising processes in the pharmaceutical industry.
Collapse
Affiliation(s)
- Eman Z. Dahmash
- Aston School of Pharmacy, Aston University, Birmingham, United Kingdom
| | - Ali Al-khattawi
- Aston School of Pharmacy, Aston University, Birmingham, United Kingdom
| | - Affiong Iyire
- Aston School of Pharmacy, Aston University, Birmingham, United Kingdom
| | - Hamad Al-Yami
- Aston School of Pharmacy, Aston University, Birmingham, United Kingdom
| | | | - Afzal R. Mohammed
- Aston School of Pharmacy, Aston University, Birmingham, United Kingdom
| |
Collapse
|
35
|
Deng X, Zheng K, Davé RN. Discrete element method based analysis of mixing and collision dynamics in adhesive mixing process. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Evaluation of a Dry Coating Technology as a Substitute for Roller Compaction for Dry Agglomeration Applications in the Pharmaceutical Industry. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9353-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
The influence of particle interfacial energies and mixing energy on the mixture quality of the dry-coating process. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Towards quantitative prediction of the performance of dry powder inhalers by multi-scale simulations and experiments. Int J Pharm 2018; 547:31-43. [DOI: 10.1016/j.ijpharm.2018.05.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 02/02/2023]
|
39
|
Sibum I, Hagedoorn P, de Boer AH, Frijlink HW, Grasmeijer F. Challenges for pulmonary delivery of high powder doses. Int J Pharm 2018; 548:325-336. [PMID: 29991452 DOI: 10.1016/j.ijpharm.2018.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
In recent years there is an increasing interest in the pulmonary delivery of large cohesive powder doses, i.e. drugs with a low potency such as antibiotics or drugs with a high potency that need a substantial fraction of excipient(s) such as vaccines stabilized in sugar glasses. The pulmonary delivery of high powder doses comes with unique challenges. For low potency drugs, the use of excipients should be minimized to limit the powder mass to be inhaled as much as possible. To achieve this objective the inhaler design should be adapted to the properties of the API in order to achieve a compatible combination of the drug formulation and inhaler device. The inhaler should have an appropriate powder dosing principle for which prefilled compartments seem most appropriate. The drug formulation should not only allow for accurate filling of these compartments but also enable efficient compartment emptying during inhalation. The dispersion principle must have the capacity to disperse considerable amounts of powder in a short time frame that allows the powder to reach the deep lung. Last, but not least, the inhaler should be simple and intuitive in use, be cost-effective and exhibit accurate and consistent, preferably patient independent, pulmonary delivery performance.
Collapse
Affiliation(s)
- Imco Sibum
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| | - Paul Hagedoorn
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Anne Haaije de Boer
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Henderik Willem Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Floris Grasmeijer
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Abi-Mansour A, McClure S, Gentzler M. XRCT characterization of mesoscopic structure in poured and tapped cohesive powders and prediction by DEM. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.01.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Rudén J, Frenning G, Bramer T, Thalberg K, Alderborn G. Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers. Int J Pharm 2018; 541:143-156. [PMID: 29454905 DOI: 10.1016/j.ijpharm.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures.
Collapse
Affiliation(s)
- Jonas Rudén
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden.
| | - Göran Frenning
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| | - Tobias Bramer
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kyrre Thalberg
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, Sweden
| | - Göran Alderborn
- Department of Pharmacy, Uppsala University, Husargatan 3, Box 580, SE-751 23 Uppsala, Sweden
| |
Collapse
|
42
|
The influence of high shear mixing on ternary dry powder inhaler formulations. Int J Pharm 2017; 534:242-250. [DOI: 10.1016/j.ijpharm.2017.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 11/24/2022]
|
43
|
Hertel M, Schwarz E, Kobler M, Hauptstein S, Steckel H, Scherließ R. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations. Int J Pharm 2017; 535:59-67. [PMID: 29100914 DOI: 10.1016/j.ijpharm.2017.10.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Many efforts have been made in the past to understand the function of lactose fines which are given as a ternary component to carrier-based dry powder inhaler formulations. It is undisputed that fines can significantly improve the performance of such formulations, but choosing the right amount of fines is a crucial point, because too high concentrations can have negative effects on the dispersion performance. The aim of this study was to indicate the optimal concentration of fines with a simple test method. For this purpose, mixtures with salbutamol sulfate and two different lactose carriers were prepared with a high shear mixer, measured with a FT4 powder rheometer and tested for fine particle delivery with two different inhaler devices. A correlation between the fluidization energy, measured with the aeration test set up, and the fine particle fractions (FPF) could be proven. This also applied for the aeration ratio, as well as the permeability of the powder samples. In addition, drug-free mixtures hardly differed in their rheological properties from mixtures containing the active pharmaceutical ingredient (API), which indicates that the method could be suitable for cost-saving screening trials. Furthermore, important aspects that explain the function of fines, such as the saturation of active sites, the formation of agglomerates and an increase in fluidization energy, could be shown in this study.
Collapse
Affiliation(s)
- Mats Hertel
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Eugen Schwarz
- MEGGLE Excipients and Technology, Wasserburg, Germany
| | - Mirjam Kobler
- MEGGLE Excipients and Technology, Wasserburg, Germany
| | | | | | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany.
| |
Collapse
|
44
|
Lau M, Young PM, Traini D. Investigation into the Manufacture and Properties of Inhalable High-Dose Dry Powders Produced by Comilling API and Lactose with Magnesium Stearate. AAPS PharmSciTech 2017; 18:2248-2259. [PMID: 28070849 DOI: 10.1208/s12249-016-0708-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.
Collapse
|
45
|
An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. PLoS One 2017; 12:e0178772. [PMID: 28609454 PMCID: PMC5469472 DOI: 10.1371/journal.pone.0178772] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/18/2017] [Indexed: 11/19/2022] Open
Abstract
Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation.
Collapse
|
46
|
Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 2017; 38:782-797. [PMID: 28504252 DOI: 10.1038/aps.2017.34] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/04/2017] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the second most prevalent and the deadliest among all cancer types. Chemotherapy is recommended for lung cancers to control tumor growth and to prolong patient survival. Systemic chemotherapy typically has very limited efficacy as well as severe systemic adverse effects, which are often attributed to the distribution of anticancer drugs to non-targeted sites. In contrast, inhalation routes permit the delivery of drugs directly to the lungs providing high local concentrations that may enhance the anti-tumor effect while alleviating systemic adverse effects. Preliminary studies in animals and humans have suggested that most inhaled chemotherapies are tolerable with manageable pulmonary adverse effects, including cough and bronchospasm. Promoting the deposition of anticancer drugs in tumorous cells and minimizing access to healthy lung cells can further augment the efficacy and reduce the risk of local toxicities caused by inhaled chemotherapy. Sustained release and tumor localization characteristics make nanoparticle formulations a promising candidate for the inhaled delivery of chemotherapeutic agents against lung cancers. However, the physiology of respiratory tracts and lung clearance mechanisms present key barriers for the effective deposition and retention of inhaled nanoparticle formulations in the lungs. Recent research has focused on the development of novel formulations to maximize lung deposition and to minimize pulmonary clearance of inhaled nanoparticles. This article systematically reviews the challenges and opportunities for the pulmonary delivery of nanoparticle formulations for the treatment of lung cancers.
Collapse
|
47
|
Tong Z, Yang R, Yu A. CFD-DEM study of the aerosolisation mechanism of carrier-based formulations with high drug loadings. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Huang Z, Xiong W, Kunnath K, Bhaumik S, Davé RN. Improving blend content uniformity via dry particle coating of micronized drug powders. Eur J Pharm Sci 2017; 104:344-355. [DOI: 10.1016/j.ejps.2017.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/11/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
49
|
Tamadondar MR, Rasmuson A, Thalberg K, Niklasson Björn I. Numerical modeling of adhesive particle mixing. AIChE J 2017. [DOI: 10.1002/aic.15654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad R. Tamadondar
- Dept. of Chemistry and Chemical Engineering; Chalmers University of Technology; Gothenburg Sweden
| | - Anders Rasmuson
- Dept. of Chemistry and Chemical Engineering; Chalmers University of Technology; Gothenburg Sweden
| | - Kyrre Thalberg
- Astra Zeneca Pharmaceutical Development R&D Mölndal; Mölndal SE-431 83 Sweden
| | | |
Collapse
|
50
|
Renner N, Steckel H, Urbanetz N, Scherließ R. Nano- and Microstructured model carrier surfaces to alter dry powder inhaler performance. Int J Pharm 2016; 518:20-28. [PMID: 28025073 DOI: 10.1016/j.ijpharm.2016.12.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
Abstract
The present study investigates the effect of different carrier surface modifications on the aerosolisation performance and on the effective carrier payload of interactive blends for inhalation. Two different active pharmaceutical ingredients (APIs) were used: Formoterol fumarate dihydrate (FF) and budesonide (BUD). Blends were prepared with glass beads as model carriers which have been subjected to mechanical surface modifications in order to introduce surface roughness via treatment with hydrofluoric acid (HF) and/or milling with tungsten carbide (TC). As far as effective carrier payload, in this study expressed as true surface coverage (TSC), is concerned, surface modification had varying effects on blends containing BUD or FF. Aerodynamic characterisation in vitro showed a significant decrease in respirable fraction for glass beads treated with HF (40.2-50.1%), due to the presence of clefts and cavities, where drug particles were sheltered during inhalation. In contrast, grinding with TC leads to surface roughness on a nano scale, ultimately increasing aerodynamic performance up to 20.0-38.1%. These findings are true for both APIs, regardless of their chemical properties.
Collapse
Affiliation(s)
- Niklas Renner
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | | | | | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany.
| |
Collapse
|