1
|
Kang YP, Mockabee-Macias A, Jiang C, Falzone A, Prieto-Farigua N, Stone E, Harris IS, DeNicola GM. Non-canonical Glutamate-Cysteine Ligase Activity Protects against Ferroptosis. Cell Metab 2021; 33:174-189.e7. [PMID: 33357455 PMCID: PMC7839835 DOI: 10.1016/j.cmet.2020.12.007] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Cysteine is required for maintaining cellular redox homeostasis in both normal and transformed cells. Deprivation of cysteine induces the iron-dependent form of cell death known as ferroptosis; however, the metabolic consequences of cysteine starvation beyond impairment of glutathione synthesis are poorly characterized. Here, we find that cystine starvation of non-small-cell lung cancer cell lines induces an unexpected accumulation of γ-glutamyl-peptides, which are produced due to a non-canonical activity of glutamate-cysteine ligase catalytic subunit (GCLC). This activity is enriched in cell lines with high levels of NRF2, a key transcriptional regulator of GCLC, but is also inducible in healthy murine tissues following cysteine limitation. γ-glutamyl-peptide synthesis limits the accumulation of glutamate, thereby protecting against ferroptosis. These results indicate that GCLC has a glutathione-independent, non-canonical role in the protection against ferroptosis by maintaining glutamate homeostasis under cystine starvation.
Collapse
Affiliation(s)
- Yun Pyo Kang
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Chang Jiang
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Aimee Falzone
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Everett Stone
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac S Harris
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Zavala-Franco A, Arámbula-Villa G, Ramírez-Noguera P, Salazar AM, Sordo M, Marroquín-Cardona A, Figueroa-Cárdenas JDD, Méndez-Albores A. Aflatoxin detoxification in tortillas using an infrared radiation thermo-alkaline process: Cytotoxic and genotoxic evaluation. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Madrigal-Santillán E, Madrigal-Bujaidar E, Reyes-Arellano A, Morales-González JA, Álvarez-González I, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Calzada-Mendoza CC, Anguiano-Robledo L, Morales-González Á. Supramolecular complex formation, a possible antigenotoxic mechanism of glucomannan against aflatoxin B1. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1080/02772248.2020.1715410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | - Alicia Reyes-Arellano
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | | | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| | | | | | - Claudia C. Calzada-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Liliana Anguiano-Robledo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Ciudad de México, México
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Ciudad de México, México
| |
Collapse
|
4
|
Madrigal-Bujaidar E, Morales-González JA, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Reyes-Arellano A, Álvarez-González I, Pérez-Pasten R, Madrigal-Santillán E. Prevention of Aflatoxin B₁-Induced DNA Breaks by β-D-Glucan. Toxins (Basel) 2015; 7:2145-58. [PMID: 26110504 PMCID: PMC4488695 DOI: 10.3390/toxins7062145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023] Open
Abstract
Aflatoxins are a group of naturally-occurring carcinogens that are known to contaminate different human and animal foodstuffs. Aflatoxin B1 (AFB1) is the most genotoxic hepatocarcinogenic compound of all of the aflatoxins. In this report, we explore the capacity of β-D-glucan (Glu) to reduce the DNA damage induced by AFB1 in mouse hepatocytes. For this purpose, we applied the comet assay to groups of animals that were first administered Glu in three doses (100, 400 and 700 mg/kg bw, respectively) and, 20 min later, 1.0 mg/kg of AFB1. Liver cells were obtained at 4, 10 and 16 h after the chemical administration and examined. The results showed no protection of the damage induced by AFB1 with the low dose of the polysaccharide, but they did reveal antigenotoxic activity exerted by the two high doses. In addition, we induced a co-crystallization between both compounds, determined their fusion points and analyzed the molecules by UV spectroscopy. The data suggested the formation of a supramolecular complex between AFB1 and β-D-glucan.
Collapse
Affiliation(s)
- Eduardo Madrigal-Bujaidar
- Genetics Laboratory, National School of Biological Sciences, IPN. "Unidad A. López Mateos". Av. Wilfrido Massieu. Zacatenco, México, DF 07738, Mexico.
| | - José Antonio Morales-González
- Conservation Medicine Laboratory, Superior School of Medicine, IPN. "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón. México, DF 11340, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Institute of Health Sciences, Autonomous University of Hidalgo State, Ex-Hacienda de la Concepción, Tilcuautla, Hidalgo 42160, Mexico.
| | - Jeannett A Izquierdo-Vega
- Institute of Health Sciences, Autonomous University of Hidalgo State, Ex-Hacienda de la Concepción, Tilcuautla, Hidalgo 42160, Mexico.
| | - Alicia Reyes-Arellano
- Organic Chemistry Department, National School of Biological Sciences, IPN. "Unidad Casco de Santo Tomas". Carpio y Plan de Ayala. México, DF 11340, Mexico.
| | - Isela Álvarez-González
- Genetics Laboratory, National School of Biological Sciences, IPN. "Unidad A. López Mateos". Av. Wilfrido Massieu. Zacatenco, México, DF 07738, Mexico.
| | - Ricardo Pérez-Pasten
- Preclinical Toxicology Laboratory, National School of Biological Sciences, IPN. "Unidad A. López Mateos". Av. Wilfrido Massieu. Zacatenco, México, DF 07738, Mexico.
| | - Eduardo Madrigal-Santillán
- Conservation Medicine Laboratory, Superior School of Medicine, IPN. "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón. México, DF 11340, Mexico.
- Institute of Health Sciences, Autonomous University of Hidalgo State, Ex-Hacienda de la Concepción, Tilcuautla, Hidalgo 42160, Mexico.
| |
Collapse
|
5
|
Bunderson BR, Kim JE, Croasdell A, Mendoza KM, Reed KM, Coulombe RA. Heterologous expression and functional characterization of avian mu-class glutathione S-transferases. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:109-16. [PMID: 23712008 DOI: 10.1016/j.cbpc.2013.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
Hepatic glutathione S-transferases (GSTs: EC2.5.1.1.8) catalyze the detoxification of reactive electrophilic compounds, many of which are toxic and carcinogenic intermediates, via conjugation with the endogenous tripeptide glutathione (GSH). Glutathione S-transferase (GST)-mediated detoxification is a critical determinant of species susceptibility to the toxic and carcinogenic mycotoxin aflatoxin B1 (AFB1), which in resistant animals efficiently detoxifies the toxic intermediate produced by hepatic cytochrome P450 bioactivation, the exo-AFB1-8,9-epoxide (AFBO). Domestic turkeys (Meleagris gallopavo) are one of the most sensitive animals known to AFB1, a condition associated with a deficiency of hepatic GST-mediated detoxification of AFBO. We have recently shown that unlike their domestic counterparts, wild turkeys (Meleagris gallopavo silvestris), which are relatively resistant, express hepatic GST-mediated detoxification activity toward AFBO. Because of the importance of GSTs in species susceptibility, and to explore possible GST classes involved in AFB1 detoxification, we amplified, cloned, expressed and functionally characterized the hepatic mu-class GSTs tGSTM3 (GenBank accession no. JF340152), tGSTM4 (JF340153) from domestic turkeys, and a GSTM4 variant (ewGSTM4, JF340154) from Eastern wild turkeys. Predicted molecular masses of tGSTM3 and two tGSTM4 variants were 25.6 and 25.8kDa, respectively. Multiple sequence comparisons revealed four GSTM motifs and the mu-loop in both proteins. tGSTM4 has 89% amino acid sequence identity to chicken GSTM2, while tGSTM3 has 73% sequence identity to human GSTM3 (hGSTM3). Specific activities of Escherichia coli-expressed tGSTM3 toward 1-chloro-2,4-dinitrobenzene (CDNB) and peroxidase activity toward cumene hydroperoxide were five-fold greater than tGSTM4 while tGSTM4 possessed more than three-fold greater activity toward 1,2-dichloro-4-nitrobenzene (DCNB). The two enzymes displayed equal activity toward ethacrynic acid (ECA). However, none of the GSTM proteins had AFBO detoxification capability, in contrast to recombinant alpha-class GSTs shown in our recent study to possess this important activity. In total, our data indicate that although turkey hepatic GSTMs may contribute to xenobiotic detoxification, they probably play no role in detoxification of AFBO in the liver.
Collapse
Affiliation(s)
- Brett R Bunderson
- Graduate Toxicology Program, Department of Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | | | | | | | | | | |
Collapse
|
6
|
Kim JE, Bunderson BR, Croasdell A, Coulombe RA. Functional characterization of alpha-class glutathione s-transferases from the Turkey (meleagris gallopavo). Toxicol Sci 2011; 124:45-53. [PMID: 21876218 DOI: 10.1093/toxsci/kfr212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Six Alpha-class glutathione S-transferase (GST) subunits were cloned from domestic turkey livers, which are one of the most susceptible animals known to the carcinogenic mycotoxin aflatoxin B₁. In most animals, GST dysfunction is a risk factor for susceptibility toward AFB₁, and we have shown that turkeys lack GSTs with affinity toward the carcinogenic intermediate exo-aflatoxin B(1)-8-9-epoxide (AFBO). Conversely, mice are resistant to AFB₁ carcinogenesis, due to high constitutive expression of mGSTA3 that has high affinity toward AFBO. When expressed in Escherichia coli, all six tGSTA subunits possessed conjugating activities toward substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA), and cumene hydroperoxide (CHP) with tGSTA1.2 appearing most active. Interestingly, tGSTA1.1, which lacks one of the four Alpha-class signature motifs, possessed enzymatic activities toward all substrates. All had comparable activities toward AFBO conjugation, an activity absent in turkey liver cytosols. E. coli-expressed mGSTA3 conjugated AFBO with more than 3-fold greater activity than that of tGSTAs and had higher activity toward GST prototype substrates. Mouse hepatic cytosols had approximately 900-fold higher catalytic activity toward AFBO compared with those from turkey. There was no apparent amino acid profile in tGSTAs that might correspond to specificity toward AFBO, although tGSTA1.2, which had slightly higher AFBO-trapping ability, shared Tyr¹⁰⁸ with mGSTA3, a residue postulated to be critical for AFBO trapping activity in mammalian systems. The observation that recombinant tGSTAs detoxify AFBO, whereas their hepatic forms do not, implies that the hepatic forms of these enzymes are silenced by one or more regulatory mechanisms.
Collapse
Affiliation(s)
- Ji Eun Kim
- Graduate Toxicology Program, Department of Veterinary Sciences, School of Veterinary Medicine, Utah State University, Logan, Utah, 84322-4620
| | | | | | | |
Collapse
|
7
|
Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010; 13:1713-48. [PMID: 20446772 DOI: 10.1089/ars.2010.3221] [Citation(s) in RCA: 424] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cap'n'collar (CNC) bZIP transcription factor Nrf2 controls expression of genes for antioxidant enzymes, metal-binding proteins, drug-metabolising enzymes, drug transporters, and molecular chaperones. Many chemicals that protect against carcinogenesis induce Nrf2-target genes. These compounds are all thiol-reactive and stimulate an adaptive response to redox stress in cells. Such agents induce the expression of genes that posses an antioxidant response element (ARE) in their regulatory regions. Under normal homeostatic conditions, Nrf2 activity is restricted through a Keap1-dependent ubiquitylation by Cul3-Rbx1, which targets the CNC-bZIP transcription factor for proteasomal degradation. However, as the substrate adaptor function of Keap1 is redox-sensitive, Nrf2 protein evades ubiquitylation by Cul3-Rbx1 when cells are treated with chemopreventive agents. As a consequence, Nrf2 accumulates in the nucleus where it heterodimerizes with small Maf proteins and transactivates genes regulated through an ARE. In this review, we describe synthetic compounds and phytochemicals from edible plants that induce Nrf2-target genes. We also discuss evidence for the existence of different classes of ARE (a 16-bp 5'-TMAnnRTGABnnnGCR-3' versus an 11-bp 5'-RTGABnnnGCR-3', with or without the embedded activator protein 1-binding site 5'-TGASTCA-3'), species differences in the ARE-gene battery, and the identity of critical Cys residues in Keap1 required for de-repression of Nrf2 by chemopreventive agents.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Institute, Ninewells Hospital, University of Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Comparative toxicity of mycotoxins to navel orangeworm (Amyelois transitella) and corn earworm (Helicoverpa zea). J Chem Ecol 2009; 35:951-7. [PMID: 19680726 DOI: 10.1007/s10886-009-9675-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/09/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
Mycotoxins, such as aflatoxins and ochratoxins, are widely distributed in nature and are frequently problematic crop contaminants that cause millions of dollars of annual losses in the United States. Insect infestations of crop plants significantly exacerbate mycotoxin contamination. Damage to a variety of nut species by Amyelois transitella Walker (navel orangeworm, NOW) is associated with infection by Aspergillus species and concomitant production of aflatoxins and ochratoxins. Resistance to aflatoxins in this lepidopteran is compared here with the levels of resistance in Helicoverpa zea (corn earworm, CEW), another lepidopteran that routinely encounters aflatoxins in its diet, albeit at lower levels. Measured as the developmental delay caused by aflatoxin B1 (AFB1), it is apparent that the LC(50) (defined as the concentration preventing 50% of newly hatched larvae from entering the 2nd instar within 48 h) for AFB1 is 100 times greater for A. transitella than for H. zea. Similarly, A. transitella 1st instars display substantially higher tolerance to ochratoxin A, another mycotoxin contaminant produced by Aspergillus species, than do H. zea. Our studies indicate that A. transitella, although a hostplant generalist, may well be highly specialized for mycotoxin detoxification.
Collapse
|
9
|
Hamel DM, White C, Eaton DL. Determination of γ-Glutamylcysteine Synthetase and Glutathione Synthetase Activity by HPLC. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15376519109050858] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Evaluation of the efficacy of whey protein to ameliorate the toxic effects of aflatoxins in rats. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2006.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Bedard LL, Massey TE. Aflatoxin B1-induced DNA damage and its repair. Cancer Lett 2006; 241:174-83. [PMID: 16458422 DOI: 10.1016/j.canlet.2005.11.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 01/09/2023]
Abstract
Aflatoxin B(1) (AFB(1))-N(7)-guanine is the predominant adduct formed upon the reaction of AFB(1)-8,9-exo-epoxide with guanine residues in DNA. AFB(1)-N(7)-guanine can convert to the ring-opened formamidopyrimidine, or the adducted strand can undergo depurination. AFB(1)-N(7)-guanine and AFB(1)-formamidopyrimidine are thought to be predominantly repaired by nucleotide excision repair in bacteria, yeast and mammals. Although AFB(1)-formamidopyrimidine is removed less efficiently than AFB(1)-N(7)-guanine in mammals, both lesions are repaired with equal efficiencies in bacteria, reflecting differences in damage recognition between bacterial and mammalian repair systems. Furthermore, DNA repair activity and modulation of repair by AFB(1) seem to be major determinants of susceptibility to AFB(1)-induced carcinogenesis.
Collapse
Affiliation(s)
- Leanne L Bedard
- Department of Pharmacology and Toxicology, Queen's University, Botterell Hall, Kingston, Ont., Canada K7L 3N6
| | | |
Collapse
|
12
|
Kanz MF, Dugas TR, Liu H, Santa Cruz V. Glutathione depletion exacerbates methylenedianiline toxicity to biliary epithelial cells and hepatocytes in rats. Toxicol Sci 2003; 74:447-56. [PMID: 12773769 DOI: 10.1093/toxsci/kfg125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylenedianiline (DAPM) initially injures epithelial cells of major bile ducts, which is followed by cholestasis, cholangitis, and hepatocellular damage. This pattern of biliary injury resembles that produced by alpha-naphthylisothiocyanate (ANIT), a classic bile duct toxicant. Our goal was to determine whether prior depletion of hepatic total glutathione (GSx), a condition reported to protect against biliary tract injury by ANIT, would also protect against DAPM-induced bile duct injury. A new protocol for extensive, sustained depletion of GSx was established. We found that administration of 1-bromoheptane followed 1 h later by buthionine sulfoximine resulted in an approximately 96% depletion of hepatic GSx that persisted through 6 h without biochemical or morphological signs of hepatic injury. Treatment of rats with a minimally hepatotoxic dose of DAPM (without GSx depletion) produced at 6 h injury similar to previous studies: moderate oncosis of biliary epithelial cells (BEC), mild edema of portal triads, and increases in glutathione S-transferase (GST) activities without alterations in hepatic GSx/glutathione disulfide (GSSG), coenzyme A (CoASH)/coenzyme A-glutathione disulfide (CoASSG), or thiobarbituric acid-reactive substances (TBARS). In contrast, DAPM treatment of GSx-depleted rats produced severe oncosis of BEC, marked inflammatory and edematous alterations to portal tracts, and oncosis/apoptosis in scattered hepatocytes. The observed acceleration and enhancement of DAPM-induced liver injury by GSx depletion was associated with a concurrent sevenfold increase in hepatic CoASSG and a fourfold decrease in the ratio of CoASH to CoASSG, compounds presumably localized to mitochondria and a purported index of mitochondrial thiol/disulfide status. These results indicate that: (1) GSx depletion exacerbates BEC and hepatocellular injury induced by DAPM, and (2) the mechanism by which DAPM causes liver injury is likely different from that of the classic bile duct toxicant, ANIT.
Collapse
Affiliation(s)
- Mary F Kanz
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | | | | | |
Collapse
|
13
|
Eaton DL, Bammler TK, Kelly EJ. Interindividual differences in response to chemoprotection against aflatoxin-induced hepatocarcinogenesis: implications for human biotransformation enzyme polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:559-76. [PMID: 11764998 DOI: 10.1007/978-1-4615-0667-6_85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is now evident that most, if not all, of the remarkable species differences in susceptibility to AFB hepatocarcinogenesis is due in large part, if not exclusively, to differences in biotransformation. Certainly the relative rate of oxidative formation of the proximate carcinogen, AFB-8,9-exo-epoxide, is an important determinant of species and interindividual differences in susceptibility to AFB. However, mice produce relatively large amounts of exo-AFBO, yet are highly resistant to AFB-hepatocarcinogenesis because they express a particular form of GST with remarkably high catalytic activity toward the exo-epoxide of AFB. Rats, which are highly susceptible to AFB hepatocarcinogenesis,can be made resistant through dietary induction of an orthologous form of GST that is normally expressed in only very small amounts. Based on these findings in laboratory animal models, there is great interest in identifying chemicals and/or specific dietary constituents that could offer protection against AFB-hepatocarcinogenesis to humans. Current experimental strategies have focused on the antiparasitic drug, oltipraz, which induces protection in rats and has also shown some promise in humans. The mechanism of protection in rats appears to be via induction of an alpha class GST with high catalytic activity toward AFBO (rGSTA5-5). vet human alpha class GST proteins that are constitutively expressed in the liver (hGSTA1 and hGSTA2) have little, if any activity toward AFBO. Rather, it appears that mu class GSTs may be responsible for the very low, but potentially significant, detoxification activity toward AFBO. Oltipraz and certain dietary constituents may induce mu class GSTs in human liver, and this could afford some protection against the genotoxic effects of AFBO. However, it also appears that oltipraz, and perhaps certain dietary constituents, act as competitive inhibitors of human CYP1A2. As CYP1A2 appears to mediate most of the activation of AFB to exo-AFBO in human liver at low dietary concentrations of AFB encountered in the human diet, much of the putative protective effects of oltipraz could be mediated via inhibition of CYP1A2 rather than induction of GSTs. There is now evidence that human microsomal epoxide hydrolase (mEH) could play a role in protecting human DNA from the genotoxic effects of AFB, although the importance of this detoxification pathway, relative to mu class GSTs, remains to be elucidated. Oltipraz is an effective inducer of mEH in rats (Lamb Franklin, 2000), and thus induction of this pathway in humans could also potentially contribute to the protective effects of this drug toward AFB genotoxicity. Because the dihydrodiol of AFB may contribute indirectly to the carcinogenic effects of AFB via protein adduction and subsequent hepatotoxicity, the recently characterized human aflatoxin aldehyde reductase (AFAR) may also offer some protection against AFB-induced carcinogenicity in humans. Current and future dietary and/or chemointervention strategies aimed at reducing the carcinogenic effects of AFB in humans should consider all of the possible mechanistic approaches for modifying AFB-induced genotoxicity.
Collapse
Affiliation(s)
- D L Eaton
- Center for Ecogenetics and Environmental Health, Department of Environmental Health, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
14
|
Doi AM, Patterson PE, Gallagher EP. Variability in aflatoxin B(1)-macromolecular binding and relationship to biotransformation enzyme expression in human prenatal and adult liver. Toxicol Appl Pharmacol 2002; 181:48-59. [PMID: 12030842 DOI: 10.1006/taap.2002.9399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of transplacental transfer of aflatoxin B(1) (AFB(1)) suggest that the developing human fetus may be a sensitive target for AFB(1) injury. Because AFB(1) requires metabolic activation to the reactive AFB(1)-8,9-exo-epoxide (AFBO) to exert its carcinogenic effects, ontogenic and interindividual differences in AFB(1) biotransformation enzymes may underlie susceptibility to AFB(1)-induced cell injury. The present study was initiated to compare the rates of in vitro AFB(1)-DNA and AFB(1)-protein adduct formation among a panel of 10 adult and 10 second-trimester prenatal livers and to examine the relationship among AFB(1) metabolizing enzyme expression and AFB(1) binding. Mixtures of cytosolic and microsomal proteins from prenatal and adult livers catalyzed the formation of AFB(1)-DNA and AFB(1)-protein adducts at relatively similar rates, although greater individual variability in AFB(1) adduct formation was observed in adult tissues. Extensive interindividual variation among adult tissues was observed in the expression of the AFB(1) activation enzymes cytochrome P4501A2 (CYP1A2), CYP3A4/5, and lipoxygenase (LO). Prenatal CYP3A7 expression was also highly variable. LO expression was eightfold higher in prenatal liver tissues than adults, whereas the expression of the AFBO detoxification enzyme microsomal epoxide hydrolase was twofold higher in adult liver. The levels of the polymorphic glutathione S-transferase M1 (hGSTM1-1), which may potentially protect against AFBO injury, were higher in the hGSTM1-1-expressing tissues of adults in relation to prenatal livers. In general, there was not a strong relationship among AFB(1)-DNA or AFB(1)-protein adduct formation and expression levels of individual AFB(1) metabolizing enzymes. In summary, despite the presence of marked individual and ontogenic differences in the expression of AFB(1) metabolizing enzymes, human second trimester prenatal liver tissues compared to adults do not exhibit a marked sensitivity to the in vitro formation of macromolecular AFB(1) adducts.
Collapse
Affiliation(s)
- Adriana M Doi
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
15
|
Smela ME, Currier SS, Bailey EA, Essigmann JM. The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis 2001; 22:535-45. [PMID: 11285186 DOI: 10.1093/carcin/22.4.535] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dietary exposure to aflatoxin B(1) (AFB(1)) is associated with an increased incidence of hepatocellular carcinoma (HCC), especially in populations in which exposure to hepatitis B virus (HBV) is a common occurrence. Most HCC samples from people living where HBV is prevalent have one striking mutational hotspot: a GC-->TA transversion at the third position of codon 249 of the p53 gene. In this review, the chemical reaction of an electrophilic derivative of aflatoxin with specific DNA sequences is examined, along with the types of mutations caused by AFB(1) and the sequence context dependence of those mutations. An attempt is made to assign the source of these mutations to specific chemical forms of AFB(1)-DNA damage. In addition, epidemiological and experimental data are examined regarding the synergistic effects of AFB(1) and HBV on HCC formation and the predominance of one hotspot GC-->TA transversion in the p53 gene of affected individuals.
Collapse
Affiliation(s)
- M E Smela
- Department of Chemistry and Division of Bioengineering and Environmental Health Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
16
|
Lin YS, Kuo HL, Kuo CF, Wang ST, Yang BC, Chen HI. Antioxidant administration inhibits exercise-induced thymocyte apoptosis in rats. Med Sci Sports Exerc 1999; 31:1594-8. [PMID: 10589862 DOI: 10.1097/00005768-199911000-00015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to investigate the effect of antioxidant on exercise-induced apoptosis in rat thymocytes. METHODS After exercise at 13.8 m x min(-1) for 60-90 min x d(-1) on a motor-driven drum exerciser for 2 consecutive days, rat thymocyte apoptosis was monitored by the feature of DNA fragmentation. To study the effect of antioxidant, rats were administered with butylated hydroxyanisole (BHA) for 7 d before exercise. RESULTS Exercise could induce thymocyte DNA fragmentation as detected on electrophoretic gel and by cell death detection ELISA kit. Further studies indicated that pretreatment with antioxidant BHA to rats resulted in a blockage of exercise-induced DNA fragmentation. The concentrations of glutathione (GSH) were not significantly changed in rat thymocytes after exercise with or without BHA treatment. CONCLUSION These results suggest that reactive oxygen species may play a role in thymocyte apoptosis induced by exercise. However, changes in GSH levels were not observed in this exercise model.
Collapse
Affiliation(s)
- Y S Lin
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
Hayes JD, Pulford DJ, Ellis EM, McLeod R, James RF, Seidegård J, Mosialou E, Jernström B, Neal GE. Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: mechanisms of inducible resistance to aflatoxin B1. Chem Biol Interact 1998; 111-112:51-67. [PMID: 9679543 DOI: 10.1016/s0009-2797(97)00151-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The rat can be protected against aflatoxin B1 (AFB1) hepatocarcinogenesis by being fed on a diet containing the synthetic antioxidant ethoxyquin. Evidence suggests that chemoprotection against AFB1 is due to increased detoxification of the mycotoxin by one or more inducible drug-metabolising enzymes. The glutathione S-transferase (GST) isoenzymes in rat liver that contribute to ethoxyquin-induced chemoprotection against AFB1 have been identified by protein purification. This approach resulted in the isolation of several heterodimeric class alpha GST, all of which contained the A5 subunit and possessed at least 50-fold greater activity towards AFB1-8,9-epoxide than previously studied transferases. Molecular cloning and heterologous expression of rat GSTA5-5 has led to the demonstration that it exhibits substantially greater activity for AFB1-8,9-epoxide than other rat transferases. The A5 homodimer can also catalyse the conjugation of glutathione with other epoxides, such as trans-stilbene oxide and 1,2-epoxy-3-(4'-nitrophenoxy)propane, and possesses high catalytic activity for the reactive aldehyde 4-hydroxynonenal. Western blotting has shown that the A5 subunit is not only induced by ethoxyquin but that it is also induced by other cancer chemopreventive agents, such as butylated hydroxyanisole, oltipraz, benzyl isothiocyanate, indole-3-carbinol and coumarin. In addition to GSTA5, we have identified a novel aflatoxin-aldehyde reductase (AFAR) that is similarly induced by ethoxyquin. However, immunoblotting has shown that GSTA5 and AFAR are not always co-ordinately regulated by chemoprotectors. In order to gain a better understanding of the mechanisms responsible for the induction of GSTA5 protein, the GSTA5 gene has been cloned. It was isolated on two overlapping bacteriophage lambda clones and found to be approximately 12 kb in length. The transcriptional start site of GSTA5 has been identified 228 bp upstream from the ATG translational initiation codon. Computer-assisted analysis of the upstream sequence has indicated the presence of a putative antioxidant responsive element (located between -421 and -429 bp) which may be responsible for the induction of GSTA5 by chemopreventive agents.
Collapse
Affiliation(s)
- J D Hayes
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Loe DW, Stewart RK, Massey TE, Deeley RG, Cole SP. ATP-dependent transport of aflatoxin B1 and its glutathione conjugates by the product of the multidrug resistance protein (MRP) gene. Mol Pharmacol 1997; 51:1034-41. [PMID: 9187270 DOI: 10.1124/mol.51.6.1034] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glutathione-S-transferase-catalyzed conjugation of glutathione (GSH) to aflatoxin B1-8,9-epoxide plays an important role in preventing binding of this ultimate carcinogen to target macromolecules. Once formed, the aflatoxin B1-epoxide-GSH conjugates are actively extruded from the cell by an unidentified ATP-dependent export pump or pumps. Two possible candidates for this GSH conjugate pump are the 190-kDa multidrug resistance protein (MRP) and the 170-kDa P-glycoprotein. Both proteins belong to the ATP-binding cassette superfamily of transmembrane transport proteins and confer resistance to a similar spectrum of natural-product drugs. Using membrane vesicles from MRP-transfected cells, we found that MRP transports GSH conjugates of both the endo-isomers and exo-isomers of aflatoxin B1-8,9-epoxide in an ATP-dependent, osmotically sensitive manner (V(max) = 180 pmol/mg/min, K(m) = 189 nM). Membrane vesicles from P-glycoprotein-overexpressing cells showed very low levels of transport. MRP-mediated transport was inhibited by an MRP-specific monoclonal antibody and by a variety of GSH derivatives and cholestatic steroid glucuronides. ATP-dependent transport of unmodified aflatoxin B1 by MRP-enriched membrane vesicles was low but markedly enhanced in the presence of 5 mM GSH, even though GSH conjugates of aflatoxin B1 were not formed by the vesicles. These data demonstrate that MRP is capable of energy-dependent transport of aflatoxin B1 and its GSH conjugates and suggest a potential protective role for MRP in mammalian chemical carcinogenesis.
Collapse
Affiliation(s)
- D W Loe
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Physiologically based pharmacodynamic modeling of an interaction threshold between trichloroethylene and 1,1-dichloroethylene in fischer 344 rats. Toxicol Appl Pharmacol 1996. [DOI: 10.1016/s0041-008x(96)80017-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
McHugh TE, Atkins WM, Racha JK, Kunze KL, Eaton DL. Binding of the aflatoxin-glutathione conjugate to mouse glutathione S-transferase A3-3 is saturated at only one ligand per dimer. J Biol Chem 1996; 271:27470-4. [PMID: 8910329 DOI: 10.1074/jbc.271.44.27470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The binding of two different reaction products (p-nitrobenzyl glutathione and the aflatoxin-glutathione conjugate) to mouse glutathione S-transferase A3-3 (mGSTA3-3) has been measured using equilibrium dialysis and a direct fluorescence quenching technique. As expected, p-nitrobenzyl glutathione was found to bind with a stoichiometry of 2.24 +/- 0.17 mol/mol of dimeric enzyme. However, the much larger aflatoxin-glutathione conjugate, 8, 9-dihydro-8-(S-glutathionyl)-9-hydroxyl-aflatoxin B1 (AFB-GSH), was found to bind with a stoichiometry of 1.12 +/- 0.08 mol/mol of dimeric enzyme. p-Nitrobenzyl glutathione bound mGSTA3-3 with a dissociation constant (Kd) of 59 +/- 17 microM while the aflatoxin-glutathione conjugate bound the enzyme with a Kd of 0.86 +/- 0.19 microM. Glutathione competitively inhibited binding of AFB-GSH to mGSTA3-3 with a Ki of 1.5 mM, suggesting that AFB-GSH was binding to the enzyme active site. Although AFB-GSH bound to mGSTA3-3 with a stoichiometry of 1 mol/mol of dimeric enzyme, AFB-GSH completely inhibited activity toward 1-chloro-2, 4-dinitrobenzene, indicating that AFB-GSH binding to one active site alters affinity for 1-chloro-2,4-dinitrobenzene in the active site of the other subunit. To our knowledge, this is the first report of a glutathione S-transferase reaction product which binds to the enzyme with a stoichiometry of 1 mol/mol of dimer.
Collapse
Affiliation(s)
- T E McHugh
- Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
21
|
Hayes J, Nguyen T, Judah D, Petersson D, Neal G. Cloning of cDNAs from fetal rat liver encoding glutathione S-transferase Yc polypeptides. The Yc2 subunit is expressed in adult rat liver resistant to the hepatocarcinogen aflatoxin B1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32050-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Abstract
Mycotoxins are ubiquitous, mold-produced toxins that contaminate a wide variety of foods and feeds. Ingestion of mycotoxins cause a range of toxic responses, from acute toxicity to long-term or chronic health disorders. Some mycotoxins have caused outbreaks of human toxicoses, and at least one mycotoxin, aflatoxin B1, is a presumed human hepatocarcinogen. As part of a comprehensive effort to curtail the adverse health effects posed by mycotoxins, substantial research has been conducted to determine the mechanism of action of mycotoxins in animals. This review presents some of the current knowledge on the biological action of four diverse classes of mycotoxins--aflatoxin B1, tricothecenes, zearalenone, and fumonisin B1--with particular emphasis on mechanisms of action.
Collapse
Affiliation(s)
- R A Coulombe
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan 84322-4620
| |
Collapse
|
23
|
Jurima-Romet M, Huang HS. Enalapril hepatotoxicity in the rat. Effects of modulators of cytochrome P450 and glutathione. Biochem Pharmacol 1992; 44:1803-10. [PMID: 1449535 DOI: 10.1016/0006-2952(92)90075-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of modulators of cytochrome P450 and reduced glutathione (GSH) on the hepatotoxicity of enalapril maleate (EN) were investigated in Fischer 344 rats. Twenty-four hours following the administration of EN (1.5 to 1.8 g/kg), increased serum transaminases (ALT and AST) and hepatic necrosis were observed. Pretreatment of the animals with pregnenolone-16 alpha-carbonitrile, a selective inducer of the cytochrome P450IIIA gene subfamily, enhanced EN-induced hepatotoxicity, whereas pretreatment with the cytochrome P450 inhibitor, cobalt protoporphyrin, reduced the liver injury. Depletion of hepatic non-protein sulfhydryls (NPSHs), an indicator of GSH, by combined treatment with buthionine sulfoximine (BSO) and diethyl maleate (DEM) produced marked elevations in serum transaminases by 6 hr after EN treatment. Administered on its own, EN decreased hepatic NPSH content and when combined with the BSO/DEM pretreatment, the liver was nearly completely devoid of NPSHs. Protection from EN-induced hepatotoxicity was observed in animals administered L-2-oxothiazolidine-4-carboxylic acid, a cysteine precursor. Together, these observations suggest the involvement of cytochrome P450 in EN bioactivation and GSH in detoxification. The results corroborate previous in vitro observations pertaining to the mechanism of EN-induced cytotoxicity towards primary cultures of rat hepatocytes. Although the doses of EN used in this study were far in excess of therapeutic doses, under certain circumstances, this metabolism-mediated toxicologic mechanism could form the basis for idiosyncratic liver injury in patients receiving EN therapy.
Collapse
|
24
|
Behroozikha M, Saidee M, Allameh A. Comparison of aflatoxin B1-DNA binding and glutathione conjugate formation by liver preparations from rats of different ages. Cancer Lett 1992; 66:69-76. [PMID: 1451098 DOI: 10.1016/0304-3835(92)90282-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The capability of the newborn rat liver to detoxify aflatoxin B1 (AFB1), a potent hepatocarcinogen is not well understood. Our present results show that immature rats are deficient in the hepatic key factors involved in biotransformation of AFB1. The activities of cytosolic glutathione S-transferases and microsomal cytochrome P-450 along with cellular glutathione (GSH) content show postnatal developmental changes. The ability of hepatic subcellular preparation from newborn rats to convert AFB1 to its reactive epoxide form, is reported for the first time in this communication. Epoxidation of [3H]AFB1 in the presence of liver microsomes from different age-groups as measured by its adduct formation to calf thymus DNA in vitro shows that newborn rats are capable of catalyzing only minimal AFB1-DNA binding compared with that of adults. Addition of cytosolic fraction of various age groups to the system suggests that young rats are less efficient in modulating the binding as compared with adults. The amount of AFB1-GSH conjugate formed is also significantly higher when adult GSH S-transferase is involved in the system. These observations show that immature liver is less efficient than a mature organ in handling a chemical carcinogen and the metabolism of AFB1 by neonatal liver differs from that in the adult.
Collapse
Affiliation(s)
- M Behroozikha
- Department of Biochemistry, Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, Iran
| | | | | |
Collapse
|
25
|
Hayes JD, Judah DJ, Neal GE, Nguyen T. Molecular cloning and heterologous expression of a cDNA encoding a mouse glutathione S-transferase Yc subunit possessing high catalytic activity for aflatoxin B1-8,9-epoxide. Biochem J 1992; 285 ( Pt 1):173-80. [PMID: 1637297 PMCID: PMC1132762 DOI: 10.1042/bj2850173] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resistance to the carcinogenic effects of aflatoxin B1 (AFB1) in the mouse is due to the constitutive expression of an Alpha-class glutathione S-transferase (GST), YcYc, with high detoxification activity towards AFB1-8,9-epoxide. A cDNA clone (pmusGST Yc) for a murine GST Yc polypeptide has been isolated. Sequencing has shown the cDNA insert of pmusGST Yc to be 922 bp in length, with an open reading frame of 663 bp that encodes a polypeptide of M(r) 25358. The primary structure of the murine GST Yc subunit predicted by pmusGST Yc is in complete agreement with the partial amino acid sequence of the aflatoxin-metabolizing mouse liver GST described previously [McLellan, Kerr, Cronshaw & Hayes (1991) Biochem. J. 276, 461-469]. A plasmid, termed pKK-musGST Yc, which permits the expression of the murine Yc subunit in Escherichia coli, has been constructed. The murine GST expressed in E. coli was purified and found to be catalytically active towards several GST substrates, including AFB1-8,9-epoxide. This enzyme was also found to possess electrophoretic and immunochemical properties closely similar to those of the GST Yc subunit from mouse liver. However, the GST synthesized in E. coli and the constitutive mouse liver Alpha-class GST exhibited small differences in their chromatographic behaviour during reverse-phase h.p.l.c. Automated Edman degradation revealed alanine to be the N-terminal amino acid in the GST Yc subunit expressed in E. coli, whereas the enzyme in mouse liver possesses a blocked N-terminus. Although sequencing showed that the purified Yc subunit from E. coli lacked the initiator methionine, the amino acid sequence obtained over the first eleven N-terminal residues agreed with that predicted from the cDNA clone, pmusGST Yc. Comparison of the deduced amino acid sequence of the mouse Yc polypeptide with the primary structures of the rat Alpha-class GST enzymes revealed that it is more closely related to the ethoxyquin-induced rat liver Yc2 subunit than to the constitutively expressed rat liver Yc1 subunit. The significance of the fact that both mouse Yc and rat Yc2 exhibit high catalytic activity towards AFB1-8,9-epoxide, whereas rat Yc1 possesses little activity towards this compound, is discussed in terms of structure/function.
Collapse
Affiliation(s)
- J D Hayes
- Department of Molecular Biology, Merck Frosst Center for Therapeutic Research, Merck Frosst Canada Inc, Pointe Claire-Dorval, Quebec, Canada
| | | | | | | |
Collapse
|
26
|
Gallagher EP, Di Giulio RT. A comparison of glutathione-dependent enzymes in liver, gills and posterior kidney of channel catfish (ictalurus punctatus). ACTA ACUST UNITED AC 1992; 102:543-7. [PMID: 1360360 DOI: 10.1016/0742-8413(92)90156-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Six enzymes which collectively catalyze a number of glutathione-dependent synthetic, catabolic and detoxification reactions were examined along with glutathione status in liver, gills, and posterior kidney of channel catfish (Ictalurus punctatus). 2. Hepatic GSH concentrations were higher than those in kidney or gills. Oxidized glutathione (GSSG) concentrations were similar among the three tissues. 3. Specific (per unit protein) gamma-glutamylcysteine synthetase (GCS) activity was greater in the gills than in liver or posterior kidney. However, total organ GCS activity was greatest in the liver. 4. Specific and total hepatic glutathione peroxidase (GSH peroxidase) activities were substantially greater than those of gills or kidney. 5. Similar specific glutathione reductase (GSSG reductase) activities were observed among all three tissues. 6. All three tissues exhibited glutathione S-transferase (GST) activity towards 1-chloro-2,4-dinitrobenzene (CDNB). Specific and total organ GST activities were highest in the liver, followed by the posterior kidney and gills. 7. Gamma-glutamyltranspeptidase (GGT) activity was present in the posterior kidney, but was undetectable in the gills or liver.
Collapse
Affiliation(s)
- E P Gallagher
- Ecotoxicology Laboratory, School of the Environment, Duke University, Durham, NC 27706
| | | |
Collapse
|
27
|
Gallagher EP, Hasspieler BM, Di Giulio RT. Effects of buthionine sulfoximine and diethyl maleate on glutathione turnover in the channel catfish. Biochem Pharmacol 1992; 43:2209-15. [PMID: 1350905 DOI: 10.1016/0006-2952(92)90180-q] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the growing use of fish in toxicological studies, little is known regarding glutathione (GSH) metabolism and turnover in these aquatic species. Therefore, we examined GSH metabolism in the liver and gills of channel catfish (Ictalurus punctatus), a commonly employed aquatic toxicological model. Treatment of channel catfish with L-buthionine-S,R-sulfoximine (BSO, 400 or 1000 mg/kg, i.p.), an inhibitor of GSH biosynthesis, did not deplete hepatic GSH in channel catfish. In addition, hepatic GSH concentrations did not fluctuate in catfish starved for 3 days, indicating relatively slow turnover of hepatic GSH. However, hepatic GSH concentrations were reduced significantly (P less than 0.05) after 7 days of starvation. Administration of the thiol alkylating agent diethyl maleate (DEM, 0.6 mL/kg, i.p.) resulted in depletion of 85% of hepatic GSH at 6 hr post-DEM, with complete GSH recovery observed at 24 hr post-DEM. Co-administration of BSO and DEM (1000 mg/kg, 0.6 mL/kg, respectively) substantially depleted gill GSH and eliminated detectable liver GSH. Following BSO/DEM, GSH recovery in hepatic mitochondria occurred more rapidly than did liver cytosolic GSH. gamma-Glutamylcysteine synthetase (GCS) activities were comparable in the 10,000 g supernatants of catfish liver and gills (204 +/- 21 and 268 +/- 20 nmol/min/mg protein, respectively) whereas gamma-glutamyltranspeptidase (GGT) activity was not detected in the 600 g post-nuclear fraction of either liver or gills. In conclusion, i.p. administration of DEM was an effective means for achieving short-term hepatic GSH depletion in channel catfish, whereas co-administration of BSO and DEM elicited prolonged and extensive hepatic GSH depletion in this species. Like rodents, channel catfish maintained physiologically distinct hepatic mitochondrial and cytosolic GSH pools, and also regulated hepatic GSH levels by in situ hepatic GSH biosynthesis. However, unlike rodents, there was no evidence for a labile hepatic cytosolic GSH pool in channel catfish. These similarities and differences need to be considered when designing toxicological studies involving the GSH pathway in channel catfish and possibly other fish species.
Collapse
Affiliation(s)
- E P Gallagher
- Department of Environmental Health, University of Washington, Seattle 98195
| | | | | |
Collapse
|
28
|
Beers KW, Nejad H, Bottje WG. Aflatoxin and glutathione in domestic fowl (Gallus domesticus)—I. Glutathione elevation and attenuation by high dietary methionine. ACTA ACUST UNITED AC 1992; 101:239-44. [PMID: 1354097 DOI: 10.1016/0742-8413(92)90267-b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1. Changes in hepatic and renal glutathione (GSH) and plasma aspartate aminotransferase (AST) following single or daily oral doses of aflatoxin B1 (AFB1, 2 mg/kg BW) or corn oil vehicle (1 ml/kg BW) were determined in male chickens (14-21-day-old). 2. Plasma AST and hepatic GSH increased 2 and 8 hr, respectively, following a single AFB1 dose. 3. Hepatic GSH continued to increase through 5 daily doses of AFB1, but there were no differences in AST levels on days 1-5. Feeding a diet containing 150% of NRC requirement for methionine attenuated the AFB1-induced increase in hepatic GSH. Renal GSH was unaffected by AFB1 or dietary treatment.
Collapse
Affiliation(s)
- K W Beers
- Department of Animal and Poultry Science, University of Arkansas, Fayetteville 72701
| | | | | |
Collapse
|
29
|
Hatori Y, Sharma RP, Warren RP. Resistance of C57Bl/6 mice to immunosuppressive effects of aflatoxin B1 and relationship with neuroendocrine mechanisms. IMMUNOPHARMACOLOGY 1991; 22:127-36. [PMID: 1761400 DOI: 10.1016/0162-3109(91)90037-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aflatoxin B1 (AFB1) a secondary metabolite of Aspergillus flavus and A. parasiticus, is known for its carcinogenicity and immunosuppressive effects. We previously reported on the immunosuppressive effects of AFB1 in Swiss and CD-1 mice. This study concerned the involvement of the hypothalamus-pituitary-adrenal gland axis in the immunosuppressive effects of AFB1 in C57Bl/6 mice. Animals were treated orally with 30, 150 or 750 micrograms/kg AFB1 daily for four weeks. Splenic lymphocytes were assayed to investigate their phenotyping using flow cytometry, proliferative response against mitogens and allogeneic lymphocytes, cytolytic cell activity, and IL-2 production. Antibody-mediated immunocompetence was checked using sheep red blood cell (SRBC)-challenged animals by plaque-forming cell assay and enzyme-linked immunosorbent assay. The dose of AFB1 for the immunosuppressive effects on blastogenic response, IL-2 production, and primary antibody production of splenic cells was much higher than previous studies involving other mice strains. AFB1 decreased the amount of circulating anti-SRBC antibody, and the helper-T cell and B cell populations in phenotyping splenic lymphocytes. There were no significant changes in natural killer cell activity, mixed lymphocyte response, hypothalamic biogenic amine concentrations, and corticotropin releasing factor, and of adrenocorticotropic hormone and corticosterone in plasma. Results were confirmed using adrenalectomized mice. The hypothalamic-pituitary-adrenal axis does not appear to have a major role in AFB1-induced immunotoxicity.
Collapse
Affiliation(s)
- Y Hatori
- Department of Animal Sciences, Utah State University, Logan 84322-5600
| | | | | |
Collapse
|
30
|
Borroz KI, Ramsdell HS, Eaton DL. Mouse strain differences in glutathione S-transferase activity and aflatoxin B1 biotransformation. Toxicol Lett 1991; 58:97-105. [PMID: 1910216 DOI: 10.1016/0378-4274(91)90195-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have suggested that mice are resistant to the carcinogenic effects of aflatoxin B1 (AFB1) and that this resistance is largely the result of expression of an isoenzyme of glutathione S-transferase (GST) with high activity toward AFB1-8,9-epoxide. Significant interstrain differences in cytosolic GST activities toward a variety of substrates have been reported in mice. If such differences exist for the conjugation of AFB1-8,9-epoxide, then there may be significant mouse strain differences in susceptibility to AFB1-induced hepatocarcinogenicity. The hepatic microsomal and cytosolic biotransformation of AFB1 was studied in 8 different strains of mice fed a purified diet. GST-mediated conjugation of AFB1-8,9-epoxide with glutathione and GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA) and cumene hydroperoxide (CHP) were determined with cytosolic fractions from 8-10 pooled livers. Specific activities of cytochrome-P-450-mediated oxidation of AFB1 to aflatoxin Q1 (AFQ1), aflatoxin M1 (AFM1), and aflatoxin P1 (AFP1), as well as the reactive intermediate AFB1-8,9-epoxide, were determined with hepatic microsomal fractions from each mouse strain. No striking differences in specific activity between mouse strains were observed for any of the P-450- or GST-mediated enzymatic pathways measured, although some statistically significant differences were found. GST specific activities toward AFB1-8,9-epoxide, CDNB, DCNB, ECA and CHP ranged from 1.5-2.1, 2,830-5,370, 81-144, 38-69 and 32-73 nmol/mg protein/min, respectively. The rate of formation of AFB1-8,9-epoxide ranged from 208 to 465 pmol/mg protein/min. The specific activities of AFQ1,AFM1, and AFP1 formation by microsomes ranged from 36-70, 161-326, and 252-426 pmol/mg protein/min, respectively. Mice fed a standard rodent chow diet showed evidence of microsomal and cytosolic enzyme induction when compared to mice fed a purified diet. The lack of substantial differences in enzyme specific activities between mouse strains suggests that interstrain variations in the hepatocarcinogenic effects of AFB1 in mice should not be large.
Collapse
Affiliation(s)
- K I Borroz
- Department of Environmental Health, University of Washington, Seattle 98195
| | | | | |
Collapse
|
31
|
Zeilmaker MJ, van Teylingen CM, van Helten JB, Mohn GR. The use of EDTA-permeabilized E. coli cells as indicators of aflatoxin B1-induced differential lethality in the DNA repair host-mediated assay. Mutat Res 1991; 263:137-42. [PMID: 1906132 DOI: 10.1016/0165-7992(91)90053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M J Zeilmaker
- Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratory, University of Leiden, The Netherlands
| | | | | | | |
Collapse
|
32
|
Standeven AM, Wetterhahn KE. Tissue-specific changes in glutathione and cysteine after buthionine sulfoximine treatment of rats and the potential for artifacts in thiol levels resulting from tissue preparation. Toxicol Appl Pharmacol 1991; 107:269-84. [PMID: 1994510 DOI: 10.1016/0041-008x(91)90208-v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
L-Buthionine-S,R-sulfoximine (BSO), a potent inhibitor of gamma-glutamylcysteine synthetase, is commonly used as an experimental tool for the specific depletion of glutathione. Since cysteine is a key precursor for glutathione biosynthesis, we investigated the possibility that BSO might also affect the free cysteine pool in rat liver and kidney tissues in vivo. Male CD(SD)BR rats (150-200 g) were injected ip with various doses of BSO (0.25-4.0 mmol/kg), and glutathione and cysteine were measured in liver and kidney using HPLC with electrochemical detection and/or spectroscopic techniques. No hepatotoxicity or nephrotoxicity was observed at the highest BSO dose (4.0 mmol/kg) used. BSO caused the expected decreases of hepatic and renal glutathione at all doses, although glutathione depletion was more rapid, was achieved at a lower BSO dose, and was more sustained in kidney than in liver. Hepatic cysteine levels nearly doubled 20 min after BSO treatment (1.0 mmol/kg, ip), but were not significantly different from control at later time points. In contrast, renal cysteine was significantly depleted from 20 min to 25 hr postinjection with a time course closely paralleling that of renal glutathione depletion. These changes are discussed in the context of models for inter- and intraorgan transport of glutathione and cysteine. We also provide evidence that an artifact, most likely the gamma-glutamyltranspeptidase (GGT)-initiated breakdown of glutathione, leads to a rapid postmortem increase of cysteine levels in liver and particularly in kidney of rats. Simultaneous decreases in GSH levels can be demonstrated in kidney. This artifact needs to be minimized in toxicological studies of glutathione and cysteine in kidney and other GGT-rich organs, as the measured levels of these thiols may not reflect the true concentrations occurring in vivo.
Collapse
Affiliation(s)
- A M Standeven
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire
| | | |
Collapse
|
33
|
Ramsdell HS, Eaton DL. Mouse liver glutathione S-transferase isoenzyme activity toward aflatoxin B1-8,9-epoxide and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide. Toxicol Appl Pharmacol 1990; 105:216-25. [PMID: 2120795 DOI: 10.1016/0041-008x(90)90183-u] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As part of the studies of the biochemical basis for species differences in biotransformation of the carcinogen aflatoxin B1 (AFB1) and its modulation by phenolic antioxidants, we have investigated the role of mouse liver glutathione S-transferase (GST) isoenzymes in the conjugation of AFB1-8,9-epoxide. Isoenzymes of GST were purified to electrophoretic homogeneity from Swiss-Webster mouse liver cytosol by affinity chromatography and chromatofocusing. The isoenzyme fractions were characterized in terms of activity toward surrogate substrates and immunologic cross-reactivity with antisera to rat GSTs. The major isoenzymes were identified as SW 4-4, SW 3-3, and SW 1-1. The specific activity of SW 4-4 toward AFB1-8,9-epoxide was at least 50- and 150-fold greater than that of SW 3-3 and SW 1-1, respectively. Relatively high activity toward another epoxide carcinogen, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, was observed with both SW 4-4 and SW 3-3. SW 1-1 had the highest activity toward 1-chloro-2,4-dinitrobenzene (CDNB) whereas SW 4-4 had relatively low CDNB activity. Following pretreatment with 0.75% butylated hydroxyanisole in the diet, the fraction of total GST contributed by SW 1-1 appeared to increase dramatically, whereas in control mice SW 3-3 constituted the predominant isoenzyme. The high GST activity of mouse liver cytosol toward AFB1-8,9-epoxide is apparently due to an isoenzyme that contributes little to the overall cytosolic CDNB activity.
Collapse
Affiliation(s)
- H S Ramsdell
- Department of Environmental Health, University of Washington, Seattle 98195
| | | |
Collapse
|