1
|
Liang Z, Lin X, Sun L, Edwards KM, Song W, Sun H, Xie Y, Lin F, Ling S, Liang T, Xiao B, Wang J, Li M, Leung CY, Zhu H, Bhandari N, Varadarajan R, Levine MZ, Peiris M, Webster R, Dhanasekaran V, Leung NHL, Cowling BJ, Webby RJ, Ducatez M, Zanin M, Wong SS. A(H2N2) and A(H3N2) influenza pandemics elicited durable cross-reactive and protective antibodies against avian N2 neuraminidases. Nat Commun 2024; 15:5593. [PMID: 38961067 PMCID: PMC11222539 DOI: 10.1038/s41467-024-49884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.
Collapse
Affiliation(s)
- Zaolan Liang
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xia Lin
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Lihong Sun
- Guangzhou Institute for Respiratory Health and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kimberly M Edwards
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenjun Song
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanmin Xie
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fangmei Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shiman Ling
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tingting Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Biying Xiao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jiaqi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Min Li
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chin-Yu Leung
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
| | - Nisha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Min Z Levine
- US Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Robert Webster
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mariette Ducatez
- Interactions Hosts-Pathogens (IHAP), Université de Toulouse, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| | - Sook-San Wong
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Liu L, Chen G, Huang S, Wen F. Receptor Binding Properties of Neuraminidase for influenza A virus: An Overview of Recent Research Advances. Virulence 2023; 14:2235459. [PMID: 37469130 PMCID: PMC10361132 DOI: 10.1080/21505594.2023.2235459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Influenza A viruses (IAVs) pose a serious risk to both human and animal health. IAVs' receptor binding characteristics account for a major portion of their host range and tissue tropism. While the function of neuraminidase (NA) in promoting the release of progeny virus is well-known, its role in the virus entry process remains poorly understood. Studies have suggested that certain subtypes of NA can act as receptor-binding proteins, either alone or in conjunction with haemagglutinin (HA). An important distinction is that NA from the avian influenza virus have a second sialic acid-binding site (2SBS) that is preserved in avian strains but missing in human or swine strains. Those observations suggest that the 2SBS may play a key role in the adaptation of the avian influenza virus to mammalian hosts. In this review, we provide an update of the recent research advances in the receptor-binding role of NA and highlight its underestimated importance during the early stages of the IAV life cycle. By doing so, we aim to provide new insights into the mechanisms underlying IAV host adaptation and pathogenesis.
Collapse
Affiliation(s)
- Lian Liu
- School of Medicine, Foshan University, Foshan, China
| | - Gaojie Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
3
|
Panickan S, Bhatia S, Bhat S, Bhandari N, Pateriya AK, Kalaiyarasu S, Sood R, Tripathi M. Reverse genetics based H5N2 vaccine provides clinical protection against H5N1, H5N8 and H9N2 avian influenza infection in chickens. Vaccine 2022; 40:6998-7008. [PMID: 36374710 DOI: 10.1016/j.vaccine.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The current study aimed to develop broadly protective vaccines for avian influenza. In an earlier study, HA stalk (universal flu vaccine) was found to be broadly protective against different subtypes of influenza virus in mice. Hence, we were interested to know its breadth of protective efficacy either alone or combined with inactivated rgH5N2 (clade 2.3.2.1a) vaccine against challenge viruses of homologous H5N1, heterologous H5N8 (clade 2.3.4.4) and heterosubtypic H9N2 virus in specific pathogen-free chickens. The rgH5N2 vaccine alone or in combination with HA stalk elicited sufficient pre-challenge immunity in the form of haemagglutination inhibiting (HI) antibodies and neutralizing antibodies (MNT) against H5N1, H5N8, and H9N2 in chickens. The rgH5N2 vaccine alone or in combination with HA stalk also attenuated the shedding of H5N1, H5N8 and H9N2 in chickens and protected against the lethal challenge of H5N1 or H5N8. In contrast, all HA stalk immunised chickens died upon H5N1 or H5N8 challenge and H9N2 challenged chickens survived. Our study suggests that the rgH5N2 vaccine can provide clinical protection against H5N1, H5N8 and can attenuate the viral shedding of H9N2 in chickens.
Collapse
Affiliation(s)
- Sivasankar Panickan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122, India; ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India.
| | - Sandeep Bhatia
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India.
| | - Sushant Bhat
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 ONF, United Kingdom
| | - Nisha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Atul Kumar Pateriya
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India
| | | | - Richa Sood
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Meghna Tripathi
- ICAR- National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
4
|
Influenza A (N1-N9) and Influenza B (B/Victoria and B/Yamagata) Neuraminidase Pseudotypes as Tools for Pandemic Preparedness and Improved Influenza Vaccine Design. Vaccines (Basel) 2022; 10:vaccines10091520. [PMID: 36146598 PMCID: PMC9571397 DOI: 10.3390/vaccines10091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
To better understand how inhibition of the influenza neuraminidase (NA) protein contributes to protection against influenza, we produced lentiviral vectors pseudotyped with an avian H11 hemagglutinin (HA) and the NA of all influenza A (N1–N9) subtypes and influenza B (B/Victoria and B/Yamagata). These NA viral pseudotypes (PV) possess stable NA activity and can be utilized as target antigens in in vitro assays to assess vaccine immunogenicity. Employing these NA PV, we developed an enzyme-linked lectin assay (pELLA) for routine serology to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies and post-vaccination sera with various influenza antigens. We also show that the pELLA is more sensitive than the commercially available NA-Fluor™ in detecting NA inhibition in these samples. Our studies may lead to establishing the protective NA titer that contributes to NA-based immunity. This will aid in the design of superior, longer lasting and more broadly protective vaccines that can be employed together with HA-targeted vaccines in a pre-pandemic approach.
Collapse
|
5
|
Hussain S, Daniels RS, Wharton SA, Howell S, Halai C, Kunzelmann S, Whittaker L, McCauley JW. Reduced sialidase activity of influenza A(H3N2) neuraminidase associated with positively charged amino acid substitutions. J Gen Virol 2021; 102. [PMID: 34596510 DOI: 10.1099/jgv.0.001648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NAI), oseltamivir and zanamivir, are the main antiviral medications for influenza and monitoring of susceptibility to these antivirals is routinely done by determining 50 % inhibitory concentrations (IC50) with MUNANA substrate. During 2010-2019, levels of A(H3N2) viruses presenting reduced NAI inhibition (RI) were low (~0.75 %) but varied year-on-year. The highest proportions of viruses showing RI were observed during the 2013-2014, 2016-2017 and 2017-2018 Northern Hemisphere seasons. The majority of RI viruses were found to contain positively charged NA amino acid substitutions of N329K, K/S329R, S331R or S334R, being notably higher during the 2016-2017 season. Sialidase activity kinetics were determined for viruses of RI phenotype and contemporary wild-type (WT) viruses showing close genetic relatedness and displaying normal inhibition (NI). RI phenotypes resulted from reduced sialidase activity compared to relevant WT viruses. Those containing S329R or N329K or S331R showed markedly higher Km for the substrate and Ki values for NAIs, while those with S334R showed smaller effects. Substitutions at N329 and S331 disrupt a glycosylation sequon (NDS), confirmed to be utilised by mass spectrometry. However, gain of positive charge at all three positions was the major factor influencing the kinetic effects, not loss of glycosylation. Because of the altered enzyme characteristics NAs carrying these substitutions cannot be assessed reliably for susceptibility to NAIs using standard MUNANA-based assays due to reductions in the affinity of the enzyme for its substrate and the concentration of the substrate usually used.
Collapse
Affiliation(s)
- Saira Hussain
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Stephen A Wharton
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Steven Howell
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Chandrika Halai
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Lynne Whittaker
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| | - John W McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
6
|
Du W, de Vries E, van Kuppeveld FJM, Matrosovich M, de Haan CAM. Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS J 2021; 288:5598-5612. [PMID: 33314755 PMCID: PMC8518505 DOI: 10.1111/febs.15668] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Influenza A viruses (IAVs) are a major cause of human respiratory tract infections and cause significant disease and mortality. Human IAVs originate from animal viruses that breached the host species barrier. IAV particles contain sialoglycan receptor-binding hemagglutinin (HA) and receptor-destroying neuraminidase (NA) in their envelope. When IAV crosses the species barrier, the functional balance between HA and NA needs to be adjusted to the sialoglycan repertoire of the novel host species. Relatively little is known about the role of NA in host adaptation in contrast to the extensively studied HA. NA prevents virion aggregation and facilitates release of (newly assembled) virions from cell surfaces and from decoy receptors abundantly present in mucus and cell glycocalyx. In addition to a highly conserved catalytic site, NA carries a second sialic acid-binding site (2SBS). The 2SBS preferentially binds α2,3-linked sialic acids and enhances activity of the neighboring catalytic site by bringing/keeping multivalent substrates in close contact with this site. In this way, the 2SBS contributes to the HA-NA balance of virus particles and affects virus replication. The 2SBS is highly conserved in all NA subtypes of avian IAVs, with some notable exceptions associated with changes in the receptor-binding specificity of HA and host tropism. Conservation of the 2SBS is invariably lost in human (pandemic) viruses and in several other viruses adapted to mammalian host species. Preservation or loss of the 2SBS is likely to be an important factor of the viral host range.
Collapse
Affiliation(s)
- Wenjuan Du
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Erik de Vries
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Frank J. M. van Kuppeveld
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | | | - Cornelis A. M. de Haan
- Section of VirologyDivision of Infectious Diseases & ImmunologyDepartment of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
7
|
Abstract
Most currently used conventional influenza vaccines are based on 1940s technology. Advances in vaccine immunogen design and delivery emerging over the last decade promise new options for improving influenza vaccines. In addition, new technologies for immune profiling provide better-defined immune correlates of protection and precise surrogate biomarkers for vaccine evaluations. Major technological advances include single-cell analysis, high-throughput antibody discovery, next-generation sequencing of antibody gene transcripts, antibody ontogeny, structure-guided immunogen design, nanoparticle display, delivery and formulation options, and better adjuvants. In this review, we provide our prospective outlook for improved influenza vaccines in the foreseeable future.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
MD simulation of the interaction between sialoglycans and the second sialic acid binding site of influenza A virus N1 neuraminidase. Biochem J 2021; 478:423-441. [PMID: 33410905 DOI: 10.1042/bcj20200670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/26/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
The neuraminidases (NAs) of avian influenza viruses (IAVs) contain a second sialic acid-binding site (2SBS), historically known as the hemadsorption site, which is separated from the sialyl-hydrolase catalytic site and serves to facilitate NA catalytic activity towards multivalent sialyl-capped glycoconjugates. Transmission and adaptation of avian IAVs to humans decreases hemadsorption and catalytic activities of the NA. Here, we report the molecular recognition features of the NA 2SBS of two pandemic H1N1 IAVs, A/Brevig Mission /1/1918 (BM18) and A/California/04/2009 (CA09), differing by their 2SBS activity. Using explicit solvent MD simulation, molecular mechanics, and glycosidic conformation analysis we initially analyzed the interactions of BM18 2SBS with two sialyllacto-N-tetraose pentasaccharides, 3'SLN-LC and 6'SLN-LC, which are models for the glycan receptors of IAVs in birds and humans, respectively. These studies characterize the binding specificity of BM18 2SBS towards human-type and avian-type receptors and identifies the key amino acids that affects binding. We next compared the interactions of the 2SBSs of BM18 and CA09 with 6'SLN-LC, revealing the critical effect of amino acid 372 on binding. Our results expand the current knowledge of the molecular features of NA 2SBSs and its alteration during the adaptation of avian IAVs to humans.
Collapse
|
9
|
Comparison of influenza-specific neutralizing antibody titers determined using different assay readouts and hemagglutination inhibition titers: good correlation but poor agreement. Vaccine 2020; 38:2527-2541. [PMID: 32044163 DOI: 10.1016/j.vaccine.2020.01.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
Abstract
Determination of influenza-specific antibody titers is commonly done using the hemagglutination inhibition assay (HAI) and the viral microneutralization assay (MN). Both assays are characterized by high intra- and inter-laboratory variability. The HAI assay offers little opportunity for standardization. For the MN assay, variability might be due to the use of different assay protocols employing different readouts. We therefore aimed at investigating which of the MN assay readout methods currently in use would be the most suitable choice for a standardized MN assay that could serve as a substitute for the HAI assay. For this purpose, human serum samples were tested for the presence of influenza specific neutralizing antibodies against A/California/7/09 H1N1 (49 sera) or A/Hong Kong/4801/2014 (50 sera) using four different infection readout methods for the MN assay (cytopathic effect, hemagglutination, ELISA, RT qPCR) and using the HAI assay. The results were compared by correlation analysis and by determining the level of agreement before and after normalization to a standard serum. Titers as measured by the 4 MN assay readouts showed good correlation, with high Person's r for most comparisons. However, agreement between nominal titers varied with readouts compared and virus strain used. In addition, Pearson's correlation of MN titers with HAI titers was high but agreement of nominal titers was moderate and the average difference between the readings of two assays (bias) was virus strain-dependent. Normalization to a standard serum did not result in better agreement of assay results. Our study demonstrates that different MN readouts result in nominally different antibody titers. Accordingly, the use of a common and standardized MN assay protocol will be crucial to minimize inter-laboratory variability. Based on reproducibility, cost effectiveness and unbiased assessment of results we elected the MN assay with ELISA readout as most suitable for a possible replacement of the HAI assay.
Collapse
|
10
|
Durrant JD, Kochanek SE, Casalino L, Ieong PU, Dommer AC, Amaro RE. Mesoscale All-Atom Influenza Virus Simulations Suggest New Substrate Binding Mechanism. ACS CENTRAL SCIENCE 2020; 6:189-196. [PMID: 32123736 PMCID: PMC7048371 DOI: 10.1021/acscentsci.9b01071] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Indexed: 05/13/2023]
Abstract
Influenza virus circulates in human, avian, and swine hosts, causing seasonal epidemic and occasional pandemic outbreaks. Influenza neuraminidase, a viral surface glycoprotein, has two sialic acid binding sites. The catalytic (primary) site, which also binds inhibitors such as oseltamivir carboxylate, is responsible for cleaving the sialic acid linkages that bind viral progeny to the host cell. In contrast, the functional annotation of the secondary site remains unclear. Here, we better characterize these two sites through the development of an all-atom, explicitly solvated, and experimentally based integrative model of the pandemic influenza A H1N1 2009 viral envelope, containing ∼160 million atoms and spanning ∼115 nm in diameter. Molecular dynamics simulations of this crowded subcellular environment, coupled with Markov state model theory, provide a novel framework for studying realistic molecular systems at the mesoscale and allow us to quantify the kinetics of the neuraminidase 150-loop transition between the open and closed states. An analysis of chloride ion occupancy along the neuraminidase surface implies a potential new role for the neuraminidase secondary site, wherein the terminal sialic acid residues of the linkages may bind before transfer to the primary site where enzymatic cleavage occurs. Altogether, our work breaks new ground for molecular simulation in terms of size, complexity, and methodological analyses of the components. It also provides fundamental insights into the understanding of substrate recognition processes for this vital influenza drug target, suggesting a new strategy for the development of anti-influenza therapeutics.
Collapse
Affiliation(s)
- Jacob D. Durrant
- Department of Biological
Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah E. Kochanek
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0340, United States
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0340, United States
| | - Pek U. Ieong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0340, United States
| | - Abigail C. Dommer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0340, United States
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0340, United States
- E-mail:
| |
Collapse
|
11
|
Gilchuk IM, Bangaru S, Gilchuk P, Irving RP, Kose N, Bombardi RG, Thornburg NJ, Creech CB, Edwards KM, Li S, Turner HL, Yu W, Zhu X, Wilson IA, Ward AB, Crowe JE. Influenza H7N9 Virus Neuraminidase-Specific Human Monoclonal Antibodies Inhibit Viral Egress and Protect from Lethal Influenza Infection in Mice. Cell Host Microbe 2019; 26:715-728.e8. [PMID: 31757769 PMCID: PMC6941661 DOI: 10.1016/j.chom.2019.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/20/2019] [Accepted: 10/07/2019] [Indexed: 02/05/2023]
Abstract
H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.
Collapse
Affiliation(s)
- Iuliia M Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sandhya Bangaru
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan P Irving
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin G Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natalie J Thornburg
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - C Buddy Creech
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sheng Li
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Cui MY, Xiao MW, Xu LJ, Chen Y, Liu AL, Ye J, Hu AX. Bioassay of ferulic acid derivatives as influenza neuraminidase inhibitors. Arch Pharm (Weinheim) 2019; 353:e1900174. [PMID: 31657061 DOI: 10.1002/ardp.201900174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023]
Abstract
Four series of ferulic acid derivatives were designed, synthesized, and evaluated for their neuraminidase (NA) inhibitory activities against influenza virus H1N1 in vitro. The pharmacological results showed that the majority of the target compounds exhibited moderate influenza NA inhibitory activity, which was also better than that of ferulic acid. The two most potent compounds were 1m and 4a with IC50 values of 12.77 ± 0.47 and 12.96 ± 1.34 μg/ml, respectively. On the basis of the biological results, a preliminary structure-activity relationship (SAR) was derived and discussed. Besides, molecular docking was performed to study the possible interactions of compounds 1p, 2d, 3b, and 4a with the active site of NA. It was found that the 4-OH-3-OMe group and the amide group (CON) of ferulic acid amide derivatives were two key pharmacophores for NA inhibitory activity. It is meaningful to further modify the natural product ferulic acid to improve its influenza NA inhibitory activity.
Collapse
Affiliation(s)
- Man-Ying Cui
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Meng-Wu Xiao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lv-Jie Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiao Ye
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Ai-Xi Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
13
|
A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses. J Virol 2019; 93:JVI.00570-19. [PMID: 31270231 PMCID: PMC6744242 DOI: 10.1128/jvi.00570-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/28/2019] [Indexed: 11/22/2022] Open
Abstract
The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic. The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs. IMPORTANCE The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.
Collapse
|
14
|
Du W, Guo H, Nijman VS, Doedt J, van der Vries E, van der Lee J, Li Z, Boons GJ, van Kuppeveld FJM, de Vries E, Matrosovich M, de Haan CAM. The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathog 2019; 15:e1007860. [PMID: 31181126 PMCID: PMC6586374 DOI: 10.1371/journal.ppat.1007860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/20/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus (IAV) neuraminidase (NA) receptor-destroying activity and hemagglutinin (HA) receptor-binding affinity need to be balanced with the host receptor repertoire for optimal viral fitness. NAs of avian, but not human viruses, contain a functional 2nd sialic acid (SIA)-binding site (2SBS) adjacent to the catalytic site, which contributes to sialidase activity against multivalent substrates. The receptor-binding specificity and potentially crucial contribution of the 2SBS to the HA-NA balance of virus particles is, however, poorly characterized. Here, we elucidated the receptor-binding specificity of the 2SBS of N2 NA and established an important role for this site in the virion HA-NA-receptor balance. NAs of H2N2/1957 pandemic virus with or without a functional 2SBS and viruses containing this NA were analysed. Avian-like N2, with a restored 2SBS due to an amino acid substitution at position 367, was more active than human N2 on multivalent substrates containing α2,3-linked SIAs, corresponding with the pronounced binding-specificity of avian-like N2 for these receptors. When introduced into human viruses, avian-like N2 gave rise to altered plaque morphology and decreased replication compared to human N2. An opposite replication phenotype was observed when N2 was combined with avian-like HA. Specific bio-layer interferometry assays revealed a clear effect of the 2SBS on the dynamic interaction of virus particles with receptors. The absence or presence of a functional 2SBS affected virion-receptor binding and receptor cleavage required for particle movement on a receptor-coated surface and subsequent NA-dependent self-elution. The contribution of the 2SBS to virus-receptor interactions depended on the receptor-binding properties of HA and the identity of the receptors used. We conclude that the 2SBS is an important and underappreciated determinant of the HA-NA-receptor balance. The rapid loss of a functional 2SBS in pandemic viruses may have served to balance the novel host receptor-repertoire and altered receptor-binding properties of the corresponding HA protein.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hongbo Guo
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vera S. Nijman
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jennifer Doedt
- Institute of Virology, Philipps University, Marburg, Germany
| | - Erhard van der Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joline van der Lee
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, the Netherlands
| | | | - Erik de Vries
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Marburg, Germany
- * E-mail: (MM); (CAMdH)
| | - Cornelis A. M. de Haan
- Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail: (MM); (CAMdH)
| |
Collapse
|
15
|
Design, synthesis, bioactivity, and DFT calculation of 2-thiazolyl-hydrazone derivatives as influenza neuraminidase inhibitors. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02343-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Kosik I, Yewdell JW. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Viruses 2019; 11:E346. [PMID: 31014029 PMCID: PMC6520700 DOI: 10.3390/v11040346] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza A virions possess two surface glycoproteins-the hemagglutinin (HA) and neuraminidase (NA)-which exert opposite functions. HA attaches virions to cells by binding to terminal sialic acid residues on glycoproteins/glycolipids to initiate the infectious cycle, while NA cleaves terminal sialic acids, releasing virions to complete the infectious cycle. Antibodies specific for HA or NA can protect experimental animals from IAV pathogenesis and drive antigenic variation in their target epitopes that impairs vaccine effectiveness in humans. Here, we review progress in understanding HA/NA co-evolution as each acquires epistatic mutations to restore viral fitness to mutants selected in the other protein by host innate or adaptive immune pressure. We also discuss recent exciting findings that antibodies to HA can function in vivo by blocking NA enzyme activity to prevent nascent virion release and enhance Fc receptor-based activation of innate immune cells.
Collapse
Affiliation(s)
- Ivan Kosik
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
17
|
Abstract
Understanding antigenic variation in influenza virus strains and how the human immune system recognizes strains are central challenges for vaccinologists. Antibodies directed to the 2 major viral surface membrane proteins, hemagglutinin (HA) and neuraminidase (NA), mediate protection against reinfection following natural infection or vaccination, but HA and NA protein sequences in field strains are highly variable. The central questions are how to achieve protective antibody responses in a higher proportion of individuals and how to induce responses with more breadth and durability. Studies using isolation of human monoclonal antibodies followed by structural and functional characterization revealed conserved antigenic sites recognized by broadly cross-reactive antibodies. The antigenic landscape on HA and NA proteins is coming into focus to inform studies of the correlates and mechanisms of immunity. Understanding the antibody determinants of influenza immunity points the way toward development and testing of next-generation vaccines with potential to confer broadly protective immunity.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- Cross Reactions/immunology
- Genetic Drift
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunologic Memory
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Neuraminidase/genetics
- Neuraminidase/immunology
- Point Mutation
- Vaccination
- Vaccines, Inactivated
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
18
|
Amaro RE, Ieong PU, Huber G, Dommer A, Steven AC, Bush RM, Durrant JD, Votapka LW. A Computational Assay that Explores the Hemagglutinin/Neuraminidase Functional Balance Reveals the Neuraminidase Secondary Site as a Novel Anti-Influenza Target. ACS CENTRAL SCIENCE 2018; 4:1570-1577. [PMID: 30555910 PMCID: PMC6276040 DOI: 10.1021/acscentsci.8b00666] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 05/09/2023]
Abstract
Studies of pathogen-host specificity, virulence, and transmissibility are critical for basic research as well as for assessing the pandemic potential of emerging infectious diseases. This is especially true for viruses such as influenza, which continue to affect millions of people annually through both seasonal and occasional pandemic events. Although the influenza virus has been fairly well studied for decades, our understanding of host-cell binding and its relation to viral transmissibility and infection is still incomplete. Assessing the binding mechanisms of complex biological systems with atomic-scale detail is challenging given current experimental limitations. Much remains to be learned, for example, about how the terminal residue of influenza-binding host-cell receptors (sialic acid) interacts with the viral surface. Here, we present an integrative structural-modeling and physics-based computational assay that reveals the sialic acid association rate constants (k on) to three influenza sites: the hemagglutinin (HA), neuraminidase (NA) active, and NA secondary binding sites. We developed a series of highly detailed (atomic-resolution) structural models of fully intact influenza viral envelopes. Brownian dynamics simulations of these systems showed how structural properties, such as stalk height and secondary-site binding, affect sialic acid k on values. Comparing the k on values of the three sialic acid binding sites across different viral strains suggests a detailed model of encounter-complex formation and indicates that the secondary NA binding site may play a compensatory role in host-cell receptor binding. Our method elucidates the competition among these sites, all present on the same virion, and provides a new technology for directly studying the functional balance between HA and NA.
Collapse
Affiliation(s)
- Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California, United States
- E-mail: . (R.E.A.)
| | - Pek U Ieong
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California, United States
| | - Gary Huber
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California, United States
| | - Abigail Dommer
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California, United States
| | - Alasdair C. Steven
- Structural
Biology Laboratory, National Institutes
of Health, Bethesda, Maryland, United States
| | - Robin M. Bush
- Department
of Ecology and Evolutionary Biology, University
of California, Irvine, Irvine, California, United States
| | - Jacob D. Durrant
- Department
of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- E-mail: . (J.D.D.)
| | - Lane W. Votapka
- Department
of Chemistry, Point Loma Nazarene University, San Diego, California, United States
- E-mail: . (L.W.V.)
| |
Collapse
|
19
|
Trianti I, Akeprathumchai S, Mekvichitsaeng P, Rachdawong S, Poomputsa K. Recombinant neuraminidase pseudotyped baculovirus: a dual vector for delivery of Angiotensin II peptides and DNA vaccine. AMB Express 2018; 8:170. [PMID: 30328017 PMCID: PMC6191402 DOI: 10.1186/s13568-018-0699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 11/10/2022] Open
Abstract
Baculovirus is a promising vaccine deliver vector due to its biosafety profiles, gene transfer efficiency, ability to display small foreign antigens on its surface, strong adjuvant activities, etc. A dual vector for peptide antigens and a DNA vaccine delivery was constructed. In this vector, a tetrameric glycoprotein neuraminidase (NA) from influenza A virus (H5N1) serves as a baculovirus surface protein to improve baculovirus transduction efficiency and a partner for displaying the target peptide antigen. Nucleotides encoding target peptides could be fused to a full length NA gene, at the lower part of its head structure, integrated into Autographa californica multinucleopolyhedrovirus genome and expressed under the control of a White Spot Syndrome Virus IE-1 shuttle promoter. Angiotensin II (AngII) peptides, a potent vasoconstrictor that causes high blood pressure, was our target antigen. The recombinant NA-AngII pseudotyped baculovirus had the AngII peptides fused to the NA and displayed on its surface. In vitro studies revealed that this recombinant baculovirus successfully delivered AngII peptides, as DNA vaccine, into human HEK293A cells. A single subcutaneous injection of the recombinant NA-AngII pseudotyped baculovirus into moderately high blood pressure rats at 4 × 109 pfu/rat, stimulated anti-AngII antibody production and their systolic blood pressure (SBP) levels were found to have decreased. In addition, a single intranasal immunization at 8 × 108 pfu/rat, raised anti-AngII antibodies in a rat and its SBP was also reduced. The recombinant neuraminidase pseudotyped baculovirus is a potential vector for AngII peptide antigen and DNA vaccine for subcutaneous or intranasal immunization for treatment of hypertension.
Collapse
|
20
|
Filip R, Leluk J. Comparative studies on variability, phylogenesis, and correlated mutations of neuraminidases from influenza virus type A. BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2017-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Neuraminidase (NA) is an important protein for the replication cycle of influenza A viruses. NA is an enzyme that cleaves the sialic acid receptors; this process plays a significant role in viral life cycle. Blocking NA with a specific inhibitor is an effective way to treat the flu. However, some strains show resistance to current drugs. Therefore, NA is the focus for the intense research for new antiviral drugs and also for the explanation of the functions of new mutations. This research focuses on determining the profile of variability and phylogenetic analysis and finding the correlated mutations within a set of 149 sequences of NA belonging to various strains of influenza A virus. In this study, we have used the original programs (Corm, Consensus Constructor, and SSSSg) and also other bioinformatics software. NA proteins are characterized by various levels of variability in different regions, which was presented in detail with the aid of ConSurf. The use of four independent methods to create the phylogenetic trees gave some new data on the evolutionary relationship within the NA family proteins. The search for correlated mutations shows several potentially important correlated positions that were not reported previously to be significant. The use of such an approach can be potentially important and gives new information regarding NA proteins of influenza A virus.
Collapse
|
21
|
Comparison of the Efficacy of N9 Neuraminidase-Specific Monoclonal Antibodies against Influenza A(H7N9) Virus Infection. J Virol 2018; 92:JVI.01588-17. [PMID: 29167344 DOI: 10.1128/jvi.01588-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.
Collapse
|
22
|
Murugan V, Parasuraman P, Selvin JFA, Gromiha MM, Fukui K, Veluraja K. Theoretical investigation on the binding specificity of fluorinated sialyldisaccharides Neu5Acα(2–3)Gal and Neu5Acα(2–6)Gal with influenza hemagglutinin H1 – A Molecular Dynamics Study. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1365153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Veeramani Murugan
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Ponnusamy Parasuraman
- Department of Physical Sciences, Bannari Amman Institute of Technology, Erode, Tamilnadu, India
| | | | - Michael M. Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Kazuhiko Fukui
- National Institute of Advanced Industrial Science and Technology (AIST), Molecular Profiling Research Center for Drug Discovery (molprof), 2-4-7 Aomi, Koto-ku, Tokyo, Japan
| | | |
Collapse
|
23
|
Microwave-assisted synthesis, characterization and bioassay of acylhydrazone derivatives as influenza neuraminidase inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2015-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Mouse Saliva Inhibits Transit of Influenza Virus to the Lower Respiratory Tract by Efficiently Blocking Influenza Virus Neuraminidase Activity. J Virol 2017; 91:JVI.00145-17. [PMID: 28446666 PMCID: PMC5487565 DOI: 10.1128/jvi.00145-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/15/2017] [Indexed: 11/23/2022] Open
Abstract
We previously identified a novel inhibitor of influenza virus in mouse saliva that halts the progression of susceptible viruses from the upper to the lower respiratory tract of mice in vivo and neutralizes viral infectivity in MDCK cells. Here, we investigated the viral target of the salivary inhibitor by using reverse genetics to create hybrid viruses with some surface proteins derived from an inhibitor-sensitive strain and others from an inhibitor-resistant strain. These viruses demonstrated that the origin of the viral neuraminidase (NA), but not the hemagglutinin or matrix protein, was the determinant of susceptibility to the inhibitor. Comparison of the NA sequences of a panel of H3N2 viruses with differing sensitivities to the salivary inhibitor revealed that surface residues 368 to 370 (N2 numbering) outside the active site played a key role in resistance. Resistant viruses contained an EDS motif at this location, and mutation to either EES or KDS, found in highly susceptible strains, significantly increased in vitro susceptibility to the inhibitor and reduced the ability of the virus to progress to the lungs when the viral inoculum was initially confined to the upper respiratory tract. In the presence of saliva, viral strains with a susceptible NA could not be efficiently released from the surfaces of infected MDCK cells and had reduced enzymatic activity based on their ability to cleave substrate in vitro. This work indicates that the mouse has evolved an innate inhibitor similar in function, though not in mechanism, to what humans have created synthetically as an antiviral drug for influenza virus. IMPORTANCE Despite widespread use of experimental pulmonary infection of the laboratory mouse to study influenza virus infection and pathogenesis, to our knowledge, mice do not naturally succumb to influenza. Here, we show that mice produce their own natural form of neuraminidase inhibitor in saliva that stops the virus from reaching the lungs, providing a possible mechanism through which the species may not experience severe influenza virus infection in the wild. We show that the murine salivary inhibitor targets the outer surface of the influenza virus neuraminidase, possibly occluding entry to the enzymatic site rather than binding within the active site like commercially available neuraminidase inhibitors. This knowledge sheds light on how the natural inhibitors of particular species combat infection.
Collapse
|
25
|
Mögling R, Richard MJ, Vliet SVD, Beek RV, Schrauwen EJA, Spronken MI, Rimmelzwaan GF, Fouchier RAM. Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site. J Gen Virol 2017; 98:1274-1281. [PMID: 28612701 DOI: 10.1099/jgv.0.000809] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.
Collapse
Affiliation(s)
- Ramona Mögling
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Ruud van Beek
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Eefje J A Schrauwen
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
| | | | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. J Virol 2017; 91:JVI.00049-17. [PMID: 28202753 DOI: 10.1128/jvi.00049-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/04/2017] [Indexed: 12/30/2022] Open
Abstract
The emergence of the novel influenza A virus (IAV) H7N9 since 2013 has caused concerns about the ability of the virus to spread between humans. Analysis of the receptor-binding properties of the H7 protein of a human isolate revealed modestly increased binding to α2,6 sialosides and reduced, but still dominant, binding to α2,3-linked sialic acids (SIAs) compared to a closely related avian H7N9 virus from 2008. Here, we show that the corresponding N9 neuraminidases (NAs) display equal enzymatic activities on a soluble monovalent substrate and similar substrate specificities on a glycan array. In contrast, solid-phase activity and binding assays demonstrated reduced specific activity and decreased binding of the novel N9 protein. Mutational analysis showed that these differences resulted from substitution T401A in the 2nd SIA-binding site, indicating that substrate binding via this site enhances NA catalytic activity. Substitution T401A in the novel N9 protein appears to functionally mimic the substitutions that are found in the 2nd SIA-binding site of NA proteins of avian-derived IAVs that became human pandemic viruses. Our phylogenetic analyses show that substitution T401A occurred prior to substitutions in hemagglutinin (HA), causing the altered receptor-binding properties mentioned above. Hence, in contrast to the widespread assumption that such changes in NA are obtained only after acquisition of functional changes in HA, our data indicate that mutations in the 2nd SIA-binding site may have enabled and even driven the acquisition of altered HA receptor-binding properties and may have contributed to the spread of the novel H7N9 viruses.IMPORTANCE Novel H7N9 IAVs continue to cause human infections and pose an ongoing public health threat. Here, we show that their N9 proteins display reduced binding to and lower enzymatic activity against multivalent substrates, resulting from mutation of the 2nd sialic acid-binding site. This mutation preceded and may have driven the selection of substitutions in H7 that modify H7 receptor-binding properties. Of note, all animal IAVs that managed to cross the host species barrier and became human viruses carry mutated 2nd sialic acid-binding sites. Screening of animal IAVs to monitor their potential to cross the host species barrier should therefore focus not only on the HA protein, but also on the functional properties of NA.
Collapse
|
27
|
Zanin M, Baviskar P, Webster R, Webby R. The Interaction between Respiratory Pathogens and Mucus. Cell Host Microbe 2016; 19:159-68. [PMID: 26867175 DOI: 10.1016/j.chom.2016.01.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The interaction between respiratory pathogens and their hosts is complex and incompletely understood. This is particularly true when pathogens encounter the mucus layer covering the respiratory tract. The mucus layer provides an essential first host barrier to inhaled pathogens that can prevent pathogen invasion and subsequent infection. Respiratory mucus has numerous functions and interactions, both with the host and with pathogens. This review summarizes the current understanding of respiratory mucus and its interactions with the respiratory pathogens Pseudomonas aeruginosa, respiratory syncytial virus and influenza viruses, with particular focus on influenza virus transmissibility and host-range specificity. Based on current findings we propose that respiratory mucus represents an understudied host-restriction factor for influenza virus.
Collapse
Affiliation(s)
- Mark Zanin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Pradyumna Baviskar
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
28
|
Wilson JR, Guo Z, Reber A, Kamal RP, Music N, Gansebom S, Bai Y, Levine M, Carney P, Tzeng WP, Stevens J, York IA. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo. Antiviral Res 2016; 135:48-55. [PMID: 27713074 DOI: 10.1016/j.antiviral.2016.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 12/09/2022]
Abstract
Zoonotic A(H7N9) avian influenza viruses emerged in China in 2013 and continue to be a threat to human public health, having infected over 800 individuals with a mortality rate approaching 40%. Treatment options for people infected with A(H7N9) include the use of neuraminidase (NA) inhibitors. However, like other influenza viruses, A(H7N9) can become resistant to these drugs. The use of monoclonal antibodies is a rapidly developing strategy for controlling influenza virus infection. Here we generated a murine monoclonal antibody (3c10-3) directed against the NA of A(H7N9) and show that prophylactic systemic administration of 3c10-3 fully protected mice from lethal challenge with wild-type A/Anhui/1/2013 (H7N9). Further, post-infection treatment with a single systemic dose of 3c10-3 at either 24, 48 or 72 h post A(H7N9) challenge resulted in both dose- and time-dependent protection of up to 100% of mice, demonstrating therapeutic potential for 3c10-3. Epitope mapping revealed that 3c10-3 binds near the enzyme active site of NA, and functional characterization showed that 3c10-3 inhibits the enzyme activity of NA and restricts the cell-to-cell spread of the virus in cultured cells. Affinity analysis also revealed that 3c10-3 binds equally well to recombinant NA of wild-type A/Anhui/1/2013 and to a variant NA carrying a R289K mutation known to infer NAI resistance. These results suggest that 3c10-3 has the potential to be used as a therapeutic to treat A(H7N9) infections either as an alternative to, or in combination with, current NA antiviral inhibitors.
Collapse
Affiliation(s)
- Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Carter Consulting, Inc., Atlanta, GA, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ram P Kamal
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Battelle Memorial Institute, Atlanta, GA, USA
| | - Nedzad Music
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Battelle Memorial Institute, Atlanta, GA, USA
| | - Shane Gansebom
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; Carter Consulting, Inc., Atlanta, GA, USA
| | - Yaohui Bai
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Levine
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wen-Pin Tzeng
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
29
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Lou J, Yang X, Rao Z, Qi W, Li J, Wang H, Li Y, Li J, Wang Z, Hu X, Liu P, Hong X. Design and synthesis of 6-oxo-1,4,5,6-tetrahydropyrimidine-5-carboxylate derivatives as neuraminidase inhibitors. Eur J Med Chem 2014; 83:466-73. [DOI: 10.1016/j.ejmech.2014.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/04/2014] [Accepted: 06/25/2014] [Indexed: 11/15/2022]
|
31
|
Li W, Xia L, Hu A, Liu A, Peng J, Tan W. Design and Synthesis of 4-Alkyl-2-amino(acetamino)-6-aryl-1,3-thiazine Derivatives as Influenza Neuraminidase Inhibitors. Arch Pharm (Weinheim) 2013; 346:635-44. [DOI: 10.1002/ardp.201300122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Wan Li
- College of Chemistry and Chemical Engineering; Hunan University; Changsha; China
| | - Lin Xia
- College of Chemistry and Chemical Engineering; Hunan University; Changsha; China
| | - Aixi Hu
- College of Chemistry and Chemical Engineering; Hunan University; Changsha; China
| | - Ailin Liu
- Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing; China
| | - Junmei Peng
- College of Chemistry and Chemical Engineering; Hunan University; Changsha; China
| | - Weiqing Tan
- College of Chemistry and Chemical Engineering; Hunan University; Changsha; China
| |
Collapse
|
32
|
Abstract
Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Collapse
Affiliation(s)
| | - Philippe Delannoy
- Lille University of Science and Technology, Villeneuve d'Ascq Cedex, France
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, Queensland Australia
| |
Collapse
|
33
|
Yewdell JW. To dream the impossible dream: universal influenza vaccination. Curr Opin Virol 2013; 3:316-21. [PMID: 23835048 PMCID: PMC3713083 DOI: 10.1016/j.coviro.2013.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/10/2013] [Indexed: 01/12/2023]
Abstract
Year in and year out, influenza viruses exact a deadly and expensive toll on humanity. Current vaccines simply do not keep pace with viral immune evasion, providing partial protection, at best, among various age groups. A quantum leap in understanding the basic principles of the adaptive and innate immune responses to influenza viruses offers the opportunity to develop vaccines that forestall, and potentially ultimately defeat, influenza virus antigenic variation.
Collapse
|
34
|
Kim JH, Resende R, Wennekes T, Chen HM, Bance N, Buchini S, Watts AG, Pilling P, Streltsov VA, Petric M, Liggins R, Barrett S, McKimm-Breschkin JL, Niikura M, Withers SG. Mechanism-based covalent neuraminidase inhibitors with broad-spectrum influenza antiviral activity. Science 2013; 340:71-5. [PMID: 23429702 DOI: 10.1126/science.1232552] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Influenza antiviral agents play important roles in modulating disease severity and in controlling pandemics while vaccines are prepared, but the development of resistance to agents like the commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here on a new class of specific, mechanism-based anti-influenza drugs that function through the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and we confirm this mode of action with structural and mechanistic studies. These compounds function in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro. The similarity of their structure to that of the natural substrate and their mechanism-based design make these attractive antiviral candidates.
Collapse
Affiliation(s)
- Jin-Hyo Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors. J Virol 2012; 86:13371-83. [PMID: 23015718 DOI: 10.1128/jvi.01426-12] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza virus neuraminidase (NA) cleaves off sialic acid from cellular receptors of hemagglutinin (HA) to enable progeny escape from infected cells. However, NA variants (D151G) of recent human H3N2 viruses have also been reported to bind receptors on red blood cells, but the nature of these receptors and the effect of the mutation on NA activity were not established. Here, we compare the functional and structural properties of a human H3N2 NA from A/Tanzania/205/2010 and its D151G mutant, which supports HA-independent receptor binding. While the wild-type NA efficiently cleaves sialic acid from both α2-6- and α2-3-linked glycans, the mutant exhibits much reduced enzymatic activity toward both types of sialosides. Conversely, while wild-type NA shows no detectable binding to sialosides, the D151G NA exhibits avid binding with broad specificity toward α2-3 sialosides. D151G NA binds the 3' sialyllactosamine (3'-SLN) and 6'-SLN sialosides with equilibrium dissociation constant (K(D)) values of 30.0 μM and 645 μM, respectively, which correspond to much higher affinities than the corresponding affinities (low mM) of HA to these glycans. Crystal structures of wild-type and mutant NAs reveal the structural basis for glycan binding in the active site by exclusively impairing the glycosidic bond hydrolysis step. The general significance of D151 among influenza virus NAs was further explored by introducing the D151G mutation into three N1 NAs and one N2 NA, which all exhibited reduced enzymatic activity and preferential binding to α2-3 sialosides. Since the enzymatic and binding activities of NAs are not routinely assessed, the potential for NA receptor binding to contribute to influenza virus biology may be underappreciated.
Collapse
|
36
|
Abstract
Influenza neuraminidase is the target of two licensed antivirals that have been very successful, with several more in development. However, neuraminidase has been largely ignored as a vaccine target despite evidence that inclusion of neuraminidase in the subunit vaccine gives increased protection. This article describes current knowledge on the structure, enzyme activity, and antigenic significance of neuraminidase.
Collapse
Affiliation(s)
- Gillian M Air
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
37
|
Arylazolyl(azinyl)thioacetanilide. Part 9: Synthesis and biological investigation of thiazolylthioacetamides derivatives as a novel class of potential antiviral agents. Arch Pharm Res 2012; 35:975-86. [DOI: 10.1007/s12272-012-0604-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/06/2011] [Accepted: 12/22/2011] [Indexed: 10/28/2022]
|
38
|
Votapka L, Demir Ö, Swift RV, Walker RC, Amaro RE. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase. J Mol Genet Med 2012; 6:293-300. [PMID: 22872804 PMCID: PMC3410406 DOI: 10.4172/1747-0862.1000052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022] Open
Abstract
Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity.
Collapse
Affiliation(s)
- Lane Votapka
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Robert V Swift
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Ross C Walker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Rommie E Amaro
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- Correspondence to: Rommie Amaro, , Tel: +1 858 534-4466
| |
Collapse
|
39
|
Venkatramani L, Johnson ES, Kolavi G, Air GM, Brouillette WJ, Mooers BHM. Crystal structure of a new benzoic acid inhibitor of influenza neuraminidase bound with a new tilt induced by overpacking subsite C6. BMC STRUCTURAL BIOLOGY 2012; 12:7. [PMID: 22559154 PMCID: PMC3416664 DOI: 10.1186/1472-6807-12-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/06/2012] [Indexed: 11/10/2022]
Abstract
Background Influenza neuraminidase (NA) is an important target for antiviral inhibitors since its active site is highly conserved such that inhibitors can be cross-reactive against multiple types and subtypes of influenza. Here, we discuss the crystal structure of neuraminidase subtype N9 complexed with a new benzoic acid based inhibitor (2) that was designed to add contacts by overpacking one side of the active site pocket. Inhibitor 2 uses benzoic acid to mimic the pyranose ring, a bis-(hydroxymethyl)-substituted 2-pyrrolidinone ring in place of the N-acetyl group of the sialic acid, and a branched aliphatic structure to fill the sialic acid C6 subsite. Results Inhibitor 2 {4-[2,2-bis(hydroxymethyl)-5-oxo-pyrrolidin-1-yl]-3-[(dipropylamino)methyl)]benzoic acid} was soaked into crystals of neuraminidase of A/tern/Australia/G70c/75 (N9), and the structure refined with 1.55 Å X-ray data. The benzene ring of the inhibitor tilted 8.9° compared to the previous compound (1), and the number of contacts, including hydrogen bonds, increased. However, the IC50 for compound 2 remained in the low micromolar range, likely because one propyl group was disordered. In this high-resolution structure of NA isolated from virus grown in chicken eggs, we found electron density for additional sugar units on the N-linked glycans compared to previous neuraminidase structures. In particular, seven mannoses and two N-acetylglucosamines are visible in the glycan attached to Asn200. This long, branched high-mannose glycan makes significant contacts with the neighboring subunit. Conclusions We designed inhibitor 2 with an extended substituent at C4-corresponding to C6 of sialic acid-to increase the contact surface in the C6-subsite and to force the benzene ring to tilt to maximize these interactions while retaining the interactions of the carboxylate and the pyrolidinone substituents. The crystal structure at 1.55 Å showed that we partially succeeded in that the ring in 2 is tilted relative to 1 and the number of contacts increased, but one hydrophobic branch makes no contacts, perhaps explaining why the IC50 did not decrease. Future design efforts will include branches of unequal length so that both branches may be accommodated in the C6-subsite without conformational disorder. The high-mannose glycan attached to Asn200 makes several inter-subunit contacts and appears to stabilize the tetramer.
Collapse
Affiliation(s)
- Lalitha Venkatramani
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 941 Stanton L, Young Blvd, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yu M, Liu A, Du G, Naesens L, Vanderlinden E, De Clercq E, Liu X. Discovery of dihydro-alkyloxy-benzyl-oxopyrimidines as promising anti-influenza virus agents. Chem Biol Drug Des 2011; 78:596-602. [PMID: 21752202 DOI: 10.1111/j.1747-0285.2011.01180.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A series of novel dihydro-alkyloxy-benzyl-oxopyrimidine derivatives were synthesized and evaluated for their activity against influenza virus in Madin-Darby canine kidney cells. Four dihydro-alkyloxy-benzyl-oxopyrimidine derivatives (4a1, 4a2, 4a3, and 4d1) showed potent activity against influenza virus. Among them, compound 4a3 was the most promising lead with broad activity against influenza A (antiviral EC(50) values of 9 and 18 μm for the A/H1N1 and A/H3N2 subtype, respectively) and influenza B viruses (EC(50) : 33 μm). The antiviral mechanism of action of these dihydro-alkyloxy-benzyl-oxopyrimidine derivatives must be quite different from that of the currently approved anti-influenza virus drugs that target the viral M2 or neuraminidase proteins. The dihydro-alkyloxy-benzyl-oxopyrimidine derivatives represent a new avenue for further optimization and development of novel anti-influenza virus agents.
Collapse
Affiliation(s)
- Mingyan Yu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, No. 44 Wenhuaxi Road, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang L, Cheng YX, Liu AL, Wang HD, Wang YL, Du GH. Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa. Molecules 2010; 15:8507-17. [PMID: 21102377 PMCID: PMC6259204 DOI: 10.3390/molecules15118507] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 01/30/2023] Open
Abstract
The fruit of Chaenomeles speciosa is a traditional Chinese medicine used for the treatment of dyspepsia and various inflammatory diseases. In the present study, we evaluated the potential radical scavenging capacity, and activity against nitrous oxide, inflammatory cytokines production and neuramindase (NA) of its isolates. The results showed that 3,4-dihydroxybenzoic acid (1) displayed higher inhibitory activities on DPPH and NA with IC50 values of 1.02 μg/mL and 1.27 μg/mL respectively, and quercetin (2) also showed significant inhibitory action on DPPH and NA, with IC50 values of 3.82 μg/mL and 1.90 μg/mL. Compounds 1, 2 and methyl 3-hydroxybutanedioic ester (3) could inhibit the production of TNF-α by 22.73%, 33.14% and 37.19% at 5 μg/mL (P < 0.05) compared with the control. In addition, compound 2 was found to be active on the release of IL-6 in RAW264.7 macrophage cells, with an inhibitory rate of 39.79% (P < 0.05). The anti-inflammatory effect of compound 3 is disclosed for the first time in this study. Avian influenza is usually accompanied by virus invasion followed by the occurrence of oxidative stress and serious inflammation, so the multiple effects of the isolates may play a cocktail-like role in the treatment of avian influenza, and C. speciosa components, especially quercetin, might be a potent source for anti-viral and anti-inflammatory agents.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China; E-Mails: (L.Z.)
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, China; E-Mail: (Y.-X.C.)
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China; E-Mails: (L.Z.)
| | - Hai-Di Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China; E-Mails: (L.Z.)
| | - Ya-Ling Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, China; E-Mail: (Y.-X.C.)
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China; E-Mails: (L.Z.)
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-63165184; Fax: +86-10-63165184
| |
Collapse
|
42
|
Sung JC, Van Wynsberghe AW, Amaro RE, Li WW, McCammon JA. Role of secondary sialic acid binding sites in influenza N1 neuraminidase. J Am Chem Soc 2010; 132:2883-5. [PMID: 20155919 PMCID: PMC2835425 DOI: 10.1021/ja9073672] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Within influenza viral particles, the intricate balance between host cell binding and sialic acid receptor destruction is carefully maintained by the hemagglutinin (HA) and neuraminidase (NA) glycoproteins, respectively. A major outstanding question in influenza biology is the function of a secondary sialic acid binding site on the NA enzyme. Through a series of Brownian dynamics (BD) simulations of the avian N1, human pandemic N2, and currently circulating pandemic (H1)N1 enzymes, we have probed the role of this secondary sialic acid binding site in the avian N1 subtype. Our results suggest that electrostatic interactions at the secondary and primary sites in avian NA may play a key role in the recognition process of the sialic acid receptors and catalytic efficiency of NA. This secondary site appears to facilitate the formation of complexes with the NA protein and the sialic acid receptors, as well as provide HA activity to a lesser extent. Moreover, this site is able to steer inhibitor binding as well, albeit with reduced capacity in N1, and may have potential implications for drug resistance or optimal inhibitor design. Although the secondary sialic acid binding site has previously been shown to be nonconserved in swine NA strains, our investigations of the currently circulating pandemic H1N1 strain of swine origin appears to have retained some of the key features of the secondary sialic acid binding site. Our results indicate possible lowered HA activity for this secondary sialic acid site, which may be an important event in the emergence of the current pandemic strain.
Collapse
Affiliation(s)
- Jeffrey C Sung
- Department of Chemistry, NSF Center for Theoretical Biological Physics, University of California-San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
43
|
Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment? J Virol 2010; 84:6769-81. [PMID: 20410266 DOI: 10.1128/jvi.00458-10] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Changes in the receptor binding characteristics of human H3N2 viruses have been evident from changes in the agglutination of different red blood cells (RBCs) and the reduced growth capacity of recently isolated viruses, particularly in embryonated eggs. An additional peculiarity of viruses circulating in 2005 to 2009 has been the poor inhibition of hemagglutination by postinfection ferret antisera for many viruses isolated in MDCK cells, including homologous reference viruses. This was shown not to be due to an antigenic change in hemagglutinin (HA) but was shown to be the result of a mutation in aspartic acid 151 of neuraminidase (NA) to glycine, asparagine, or alanine, which caused an oseltamivir-sensitive agglutination of RBCs. The D151G substitution was shown to cause a change in the specificity of NA such that it acquired the capacity to bind receptors, which were refractory to enzymatic cleavage, without altering its ability to remove receptors for HA. Thus, the inhibition of NA-dependent agglutination by the inclusion of oseltamivir carboxylate in the assay was effective in restoring the anti-HA specificity of the hemagglutination inhibition (HI) assay for monitoring antigenic changes in HA. Since the NA-dependent binding activity did not affect virus neutralization, and virus populations in clinical specimens possessed, at most, low levels of the "151 mutant," the biological significance of this feature of NA in, for example, immune evasion is unclear. It is apparent, however, that an important role of aspartic acid 151 in the activity of NA may be to restrict the specificity of the NA interaction and its receptor-destroying activity to complement that of HA receptor binding.
Collapse
|
44
|
Uhlendorff J, Matrosovich T, Klenk HD, Matrosovich M. Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses. Arch Virol 2009; 154:945-57. [PMID: 19458903 PMCID: PMC2691527 DOI: 10.1007/s00705-009-0393-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 04/26/2009] [Indexed: 12/04/2022]
Abstract
Human influenza viruses derive their genes from avian viruses. The neuraminidase (NA) of the avian viruses has, in addition to the catalytic site, a separate sialic acid binding site (hemadsorption site) that is not present in human viruses. The biological significance of the NA hemadsorption activity in avian influenza viruses remained elusive. A sequence database analysis revealed that the NAs of the majority of human H2N2 viruses isolated during the influenza pandemic of 1957 differ from their putative avian precursor by amino acid substitutions in the hemadsorption site. We found that the NA of a representative pandemic virus A/Singapore/1/57 (H2N2) lacks hemadsorption activity and that a single reversion to the avian-virus-like sequence (N367S) restores hemadsorption. Using this hemadsorption-positive NA, we generated three NA variants with substitutions S370L, N400S and W403R that have been found in the hemadsorption site of human H2N2 viruses. Each substitution abolished hemadsorption activity. Although, there was no correlation between hemadsorption activity of the NA variants and their enzymatic activity with respect to monovalent substrates, all four hemadsorption-negative NAs desialylated macromolecular substrates significantly slower than did the hemadsorption-positive counterpart. The NA of the 1918 pandemic virus A/Brevig Mission/1/18 (H1N1) also differed from avian N1 NAs by reduced hemadsorption activity and less efficient hydrolysis of macromolecular substrates. Our data indicate that the hemadsorption site serves to enhance the catalytic efficiency of NA and they suggest that, in addition to changes in the receptor-binding specificity of the hemagglutinin, alterations of the NA are needed for the emergence of pandemic influenza viruses.
Collapse
Affiliation(s)
- Jennifer Uhlendorff
- Institute of Virology, Philipps University, Hans-Meerwein-Str.2, 35043, Marburg, Germany
| | | | | | | |
Collapse
|
45
|
Schwahn AB, Wong JWH, Downard KM. Subtyping of the Influenza Virus by High Resolution Mass Spectrometry. Anal Chem 2009; 81:3500-6. [DOI: 10.1021/ac900026f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander B. Schwahn
- School of Molecular & Microbial Biosciences, University of Sydney, NSW 2006, Australia, and UNSW Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Jason W. H. Wong
- School of Molecular & Microbial Biosciences, University of Sydney, NSW 2006, Australia, and UNSW Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Kevin M. Downard
- School of Molecular & Microbial Biosciences, University of Sydney, NSW 2006, Australia, and UNSW Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
46
|
Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA. Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 2008; 51:3878-94. [PMID: 18558668 PMCID: PMC2652358 DOI: 10.1021/jm8001197] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Avian influenza virus subtype H5N1 is a potential pandemic threat with human-adapted strains resistant to antiviral drugs. Although virtual screening (VS) against a crystal or relaxed receptor structure is an established method to identify potential inhibitors, the more dynamic changes within binding sites are neglected. To accommodate full receptor flexibility, we use AutoDock4 to screen the NCI diversity set against representative receptor ensembles extracted from explicitly solvated molecular dynamics simulations of the neuraminidase system. The top hits are redocked to the entire nonredundant receptor ensemble and rescored using the relaxed complex scheme (RCS). Of the 27 top hits reported, half ranked very poorly if only crystal structures are used. These compounds target the catalytic cavity as well as the newly identified 150- and 430-cavities, which exhibit dynamic properties in electrostatic surface and geometric shape. This ensemble-based VS and RCS approach may offer improvement over existing strategies for structure-based drug discovery.
Collapse
Affiliation(s)
- Lily S Cheng
- National Biomedical Computation Resource, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The outbreaks of avian influenza A virus in poultry and humans over the last decade posed a pandemic threat to human. Here, we discuss the basic classification and the structure of influenza A virus. The viral genome contains eight RNA viral segments and the functions of viral proteins encoded by this genome are described. In addition, the RNA transcription and replication of this virus are reviewed.
Collapse
Affiliation(s)
- Timothy K W Cheung
- Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | |
Collapse
|
48
|
Ershler WB, Gravenstein S, Geloo ZS. Thymosin Alpha 1 as an Adjunct to Influenza Vaccination in the Elderly: Rationale and Trial Summaries. Ann N Y Acad Sci 2007; 1112:375-84. [PMID: 17600281 DOI: 10.1196/annals.1415.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
From a clinical perspective, the immune deficiency of aging (immune senescence) is not profound. In fact, it may be of little clinical consequence. However, older people are prone to chronic and debilitating disorders which alone, or in concert with the medications used in their treatment, may add to the age effect and create a more clinically relevant immune deficiency. As a result, many older people are susceptible to infection. Furthermore, it is now well recognized that older people respond less well to immunization protocols. Protection against influenza by vaccination with hemagluttinin is the prototype example. Despite programs that have raised vaccination rates dramatically over the past three decades, influenza remains a major cause of morbidity and mortality in the elderly. This, in part, is due to the fact that vaccine responses are reduced in older recipients. Strategies are under development to enhance vaccine efficacy in this population and one such strategy is the adjuvant use of thymosin alpha 1 (Talpha1). In both animal experiments and human trials, there has been demonstrated enhancement of vaccine responses. The findings to date warrant additional efforts to further examine the role of Talpha1 in augmenting specific vaccine responses both in the elderly or in younger subjects in situations in which there are suboptimal quantities of immunizing antigen available.
Collapse
Affiliation(s)
- William B Ershler
- Clinical Research Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21225, USA.
| | | | | |
Collapse
|
49
|
Zhang J, Wang Q, Fang H, Xu W, Liu A, Du G. Design, synthesis, inhibitory activity, and SAR studies of pyrrolidine derivatives as neuraminidase inhibitors. Bioorg Med Chem 2007; 15:2749-58. [PMID: 17287121 DOI: 10.1016/j.bmc.2007.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 11/25/2022]
Abstract
A series of pyrrolidine derivatives were synthesized and evaluated for their ability to inhibit neuraminidase (NA) of influenza A virus (H3N2). All compounds were synthesized in good yields starting from commercially 4-hydroxy-L-proline using a suitable synthetic strategy. These compounds showed potent inhibitory activity against influenza A neuraminidase. Within this series, five compounds, 6e, 9c, 9e, 9f, and 10e, have good potency (IC(50)=1.56-2.71 microM) which are compared to that the NA inhibitor Oseltamivir (IC(50)=1.06 microM), and could be used as lead compoundS in the future.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, 44, Wenhuaxi Road, Ji'nan, Shandong 250012, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Among coronaviruses, several members are able to interact with sialic acids. For bovine coronavirus (BCoV) and related viruses, binding to cell surface components containing
N-acetyl-9-
O-acetylneuraminic acid is essential for initiation of an infection. These viruses resemble influenza C viruses because they share not only the receptor determinant, but also the presence of an acetylesterase that releases the 9-
O-acetyl group from sialic acid and thus abolishes the ability of the respective sialoglycoconjugate to function as a receptor for BCoV. As in the case of influenza viruses, the receptor-destroying enzyme of BCoV is believed to facilitate the spread of virus infection by removing receptor determinants from the surface of infected cells and by preventing the formation of virus aggregates. Another coronavirus, porcine transmissible gastroenteritis virus (TGEV) preferentially recognizes
N-glycolylneuraminic acid. TGEV does not contain a receptor-destroying enzyme and does not depend on the sialic acid binding activity for infection of cultured cells. However, binding to sialic acids is required for the enteropathogenicity of TGEV. Interaction with sialoglycoconjugates may help the virus to pass through the sialic acid-rich mucus layer that covers the viral target cells in the epithelium of the small intestine. We discuss that the BCoV group of viruses may have evolved from a TGEV-like ancestor by acquiring an acetylesterase gene through heterologous recombination.
Collapse
Affiliation(s)
- Christel Schwegmann-Weßels
- Institut für Virologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Georg Herrler
- Institut für Virologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|