1
|
Chen Q, Li L, Liu L, Liu Z, Guo S, Tan C, Chen H, Wang X. African Swine Fever Virus pF778R Attenuates Type I Interferon Response by Impeding STAT1 Nuclear Translocation. Virus Res 2023; 335:199190. [PMID: 37536381 PMCID: PMC10424126 DOI: 10.1016/j.virusres.2023.199190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
African swine fever virus (ASFV) is an extensive and intricate double-stranded DNA virus with approximately 100% lethality in domestic swine. There is no effective vaccine to combat this virus, and this has led to substantial economic losses in the swine industry. ASFV encodes various proteins that impede interferon-based immune defenses in the host by employing diverse mechanisms. However, the roles of most of these proteins remain unknown. Therefore, understanding the immune evasion mechanisms employed by ASFV may facilitate the development of effective measures against the virus. In this study, we discovered a negative regulation of the type I interferon (IFN) response by the ASFV ribonuclease reductase large subunit pF778R. This novel type Ⅰ IFN response antagonist significantly inhibits IFN-α-induced interferon-stimulated response element promoter activation, precludes the upregulation of various interferon-stimulated genes, and prevents STAT1 nuclear translocation. Mechanistically, pF778R did not affect the protein levels of crucial molecules in the JAK/STAT signaling pathway or engage in direct interactions. However, pF778R expression impedes type I IFN responses mediated by the JAK/STAT signaling pathway. Further investigations revealed that pF778R did not interfere with STAT1 phosphorylation or dimerization, but it inhibited IFN signaling by weakening the nuclear accumulation of activated STAT1. The critical role of the ASFV protein pF778R in evading IFN-I-mediated innate immunity highlights a unique mode of ASFV evasion and provides insights into the pathogenic mechanism of the virus.
Collapse
Affiliation(s)
- Qichao Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China; International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China.
| |
Collapse
|
2
|
Lyu C, Li WD, Peng JM, Cai XH. Identification of interaction domains in the pseudorabies virus ribonucleotide reductase large and small subunits. Vet Microbiol 2020; 246:108740. [PMID: 32605757 DOI: 10.1016/j.vetmic.2020.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
Alphaherpesviral ribonucleotide reductase (RNR) is composed of large (pUL39, RR1) and small (pUL40, RR2) subunits. This enzyme can catalyze conversion of ribonucleotide to deoxynucleotide diphosphates that are further phosphorylated into deoxynucleotide triphosphate (dNTPs). The dNTPs are substrates for de novo viral DNA synthesis in infected host cells. The enzymatic activity of RNR depends on association between RR1 and RR2. However, the molecular basis underlying alphaherpesviral RNR complex formation is still largely unknown. In the current study, we investigated the pseudorabies virus (PRV) RNR interaction domains in pUL39 and pUL40. The interaction of pUL39 and pUL40 was identified by co-immunoprecipitation (co-IP) and colocalization analyses. Furthermore, the interaction amino acid (aa) domains in pUL39 and pUL40 were mapped using a series of truncated proteins. Consequently, the 90-210 aa in pUL39 was identified to be responsible for the interaction with pUL40. In turn, the 66-152, 218-258 and 280-303 aa in pUL40 could interact with pUL39, respectively. Deletion of 90-210 aa in pUL39 completely abrogated the interaction with pUL40. Deletion of 66-152, 218-258 and 280-303 aa in pUL40 remarkably weakened the interaction with pUL39, whereas a weak interaction could still be observed. Amino acid sequence alignments showed that the interaction domains identified in PRV pUL39/pUL40 were relatively non-conserved among the selected RNR subunits in alphaherpesviruses HSV1, HSV2, HHV3(VZV), BHV1, EHV1 and DEV. However, they were relatively conserved among PRV, HSV1 and HSV2. Collectively, our findings provided some molecular targets for inhibition of pUL39-pUL40 interaction to antagonize viral replication in PRV infected hosts.
Collapse
Affiliation(s)
- Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China
| | - Wei-Dong Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China
| | - Jin-Mei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China.
| |
Collapse
|
3
|
Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation. J Virol 2018; 92:JVI.01654-17. [PMID: 29321311 DOI: 10.1128/jvi.01654-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39, which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo, we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39mut), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection.IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1.
Collapse
|
4
|
Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir. J Virol 2017; 91:JVI.02257-16. [PMID: 28228587 DOI: 10.1128/jvi.02257-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection.
Collapse
|
5
|
Telford E, Owsianka A, Marsden H. Stability of the Herpesvirus Ribonucleotide Reductase-Inhibiting Nonapeptide YAGAVVNDL in Extracts of HSV-1-Infected Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029000100307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The nonapeptide YAGAVVNDL has previously been shown to specifically inhibit ribonucleotide reductase (RR) induced by herpes simplex virus (HSV) and other herpesviruses. The stability of this peptide has been examined in extracts of HSV-infected cells. It was found to be rapidly modified to yield free tyrosine and the octapeptide AGAWNDL. Modification could be inhibited by several protease inhibitors, suggesting that it arises through cleavage of the amino-terminal tyrosine peptide bond. The implications of these results for the development of a therapeutically useful drug based on the nonapeptide are discussed.
Collapse
Affiliation(s)
- E. Telford
- Medical Research Council, Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - A. Owsianka
- Medical Research Council, Virology Unit, Church Street, Glasgow G11 5JR, UK
| | - H. Marsden
- Medical Research Council, Virology Unit, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
6
|
Metrick CM, Heldwein EE. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21. J Virol 2016; 90:5759-69. [PMID: 27053559 PMCID: PMC4886797 DOI: 10.1128/jvi.00475-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed four regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function. IMPORTANCE Due to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire. The structure of UL21C and the observation of its RNA-binding ability are the latest additions to the navigational chart that can guide the exploration of the multiple functions of UL21.
Collapse
Affiliation(s)
- Claire M Metrick
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USAUniversity of California, Irvine
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USAUniversity of California, Irvine
| |
Collapse
|
7
|
The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFα- and FasL-induced apoptosis by interacting with caspase-8. Apoptosis 2011; 16:256-71. [PMID: 21107701 DOI: 10.1007/s10495-010-0560-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously reported that HSV-2 R1, the R1 subunit (ICP10; UL39) of herpes simplex virus type-2 ribonucleotide reductase, protects cells against apoptosis induced by the death receptor (DR) ligands tumor necrosis factor-alpha- (TNFα) and Fas ligand (FasL) by interrupting DR-mediated signaling at, or upstream of, caspase-8 activation. Further investigation of the molecular mechanism underlying HSV-2 R1 protection showed that extracellular-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3-K)/Akt, NF-κB and JNK survival pathways do not play a major role in this antiapoptotic function. Interaction studies revealed that HSV-2 R1 interacted constitutively with caspase-8. The HSV-2 R1 deletion mutant R1(1-834)-GFP and Epstein-Barr virus (EBV) R1, which did not protect against apoptosis induced by DR ligands, did not interact with caspase-8, indicating that interaction is required for protection. HSV-2 R1 impaired caspase-8 activation induced by caspase-8 over-expression, suggesting that interaction between the two proteins prevents caspase-8 dimerization/activation. HSV-2 R1 bound to caspase-8 directly through its prodomain but did not interact with either its caspase domain or Fas-associated death domain protein (FADD). Interaction between HSV-2 R1 and caspase-8 disrupted FADD-caspase-8 binding. We further demonstrated that individually expressed HSV-1 R1 (ICP6) shares, with HSV-2 R1, the ability to bind caspase-8 and to protect cells against DR-induced apoptosis. Finally, as the long-lived Fas protein remained stable during the early period of infection, experiments with the HSV-1 UL39 deletion mutant ICP6∆ showed that HSV-1 R1 could be essential for the protection of HSV-1-infected cells against FasL.
Collapse
|
8
|
Ren Z, Li S, Wang QL, Xiang YF, Cui YX, Wang YF, Qi RB, Lu DX, Zhang SM, Zhang PZ. Effect of siRNAs on HSV-1 plaque formation and relative expression levels of RR mRNA. Virol Sin 2011; 26:40-6. [PMID: 21331889 DOI: 10.1007/s12250-011-3162-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022] Open
Abstract
RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40, respectively. In this study, we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication.
Collapse
Affiliation(s)
- Zhe Ren
- Biomedicine research and development center of Jinan University, Guangdong, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Effect of siRNA on HSV-1 plaque formation and relative expression levels of UL39 mRNA. Arch Virol 2008; 153:1401-6. [PMID: 18551244 DOI: 10.1007/s00705-008-0110-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/20/2008] [Indexed: 12/18/2022]
|
10
|
Cai S, Brandt CR. Induction of interleukin-6 in human retinal epithelial cells by an attenuated Herpes simplex virus vector requires viral replication and NFkappaB activation. Exp Eye Res 2007; 86:178-88. [PMID: 18061164 DOI: 10.1016/j.exer.2007.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/22/2007] [Accepted: 10/23/2007] [Indexed: 11/15/2022]
Abstract
Gene delivery has potential for treating ocular disease and a number of delivery systems have been tested in animal models. However, several viral vectors have been shown to trigger undesirable transient inflammatory responses in the eye. Previously, it was shown that an attenuated Herpes simplex virus vector (hrR3) transduced numerous cell types in the anterior and posterior segments of monkey eyes, but this was accompanied by inflammation. In the retina, retinal pigment epithelial cells were the predominant cell type transduced by hrR3. IL-6 is an important pro-inflammatory cytokine and may play a role in the response to the hrR3 vector. Infection of human ARPE-19 cells with hrR3 resulted in increased IL-6 expression and secretion 3-4h post-infection. In the presence of acyclovir (70 microM) or in cells infected with UV-inactivated hrR3, IL-6 was not up-regulated indicating viral replication was required. Expression of the HSV-1 alpha and beta genes may be necessary but was not sufficient for NF-kappaB activation and IL-6 up-regulation. The translocation of NF-kappaB into the nucleus also occurred between 3 and 4h post-infection, coincident with increased IL-6 expression. Inhibition of NF-kappaB translocation by an Adenovirus vector expressing a dominant negative IkappaB (AdIkappaBam) inhibited IL-6 up-regulation, indicating that NF-kappaB plays a role in increasing IL-6 expression in APRE-19 cells. The hrR3 virus lacks viral ribonucleotide reductase (RR) activity, thus RR is not required for NF-kappaB activation or IL-6 up-regulation in ARPE-19 cells.
Collapse
Affiliation(s)
- Suping Cai
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM, Ewence AE, Li N, Hirozane-Kishikawa T, Hill DE, Vidal M, Kieff E, Johannsen E. Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 2007; 104:7606-11. [PMID: 17446270 PMCID: PMC1863443 DOI: 10.1073/pnas.0702332104] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive mapping of interactions among Epstein-Barr virus (EBV) proteins and interactions of EBV proteins with human proteins should provide specific hypotheses and a broad perspective on EBV strategies for replication and persistence. Interactions of EBV proteins with each other and with human proteins were assessed by using a stringent high-throughput yeast two-hybrid system. Overall, 43 interactions between EBV proteins and 173 interactions between EBV and human proteins were identified. EBV-EBV and EBV-human protein interaction, or "interactome" maps provided a framework for hypotheses of protein function. For example, LF2, an EBV protein of unknown function interacted with the EBV immediate early R transactivator (Rta) and was found to inhibit Rta transactivation. From a broader perspective, EBV genes can be divided into two evolutionary classes, "core" genes, which are conserved across all herpesviruses and subfamily specific, or "noncore" genes. Our EBV-EBV interactome map is enriched for interactions among proteins in the same evolutionary class. Furthermore, human proteins targeted by EBV proteins were enriched for highly connected or "hub" proteins and for proteins with relatively short paths to all other proteins in the human interactome network. Targeting of hubs might be an efficient mechanism for EBV reorganization of cellular processes.
Collapse
Affiliation(s)
- Michael A. Calderwood
- *Program in Virology, Departments of Medicine and Microbiology and Molecular Genetics, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kavitha Venkatesan
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Li Xing
- *Program in Virology, Departments of Medicine and Microbiology and Molecular Genetics, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Michael R. Chase
- *Program in Virology, Departments of Medicine and Microbiology and Molecular Genetics, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Alexei Vazquez
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115; and
- The Simons Center for Systems Biology, Institute for Advanced Studies, Princeton, NJ 08540
| | - Amy M. Holthaus
- *Program in Virology, Departments of Medicine and Microbiology and Molecular Genetics, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Alexandra E. Ewence
- *Program in Virology, Departments of Medicine and Microbiology and Molecular Genetics, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Ning Li
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Tomoko Hirozane-Kishikawa
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115; and
| | - David E. Hill
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Marc Vidal
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02115; and
- To whom correspondence may be addressed. E-mail: and
| | - Elliott Kieff
- *Program in Virology, Departments of Medicine and Microbiology and Molecular Genetics, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
- To whom correspondence may be addressed. E-mail: and
| | - Eric Johannsen
- *Program in Virology, Departments of Medicine and Microbiology and Molecular Genetics, The Channing Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
12
|
Chabaud S, Sasseville AMJ, Elahi SM, Caron A, Dufour F, Massie B, Langelier Y. The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function. J Gen Virol 2007; 88:384-394. [PMID: 17251554 DOI: 10.1099/vir.0.82383-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The R1 subunit (ICP10) of herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (RR), which in addition to its C-terminal reductase domain possesses a unique N-terminal domain of about 400 aa, protects cells against apoptosis. As the NH2domain on its own is not antiapoptotic, it has been postulated that both domains of R1 or part(s) of them could be necessary for this function. Here, N- and C-terminal deletions were introduced in HSV-2 R1 to map the domain(s) involved in its antiapoptotic potential. The results showed that, whereas most of the NH2domain including part of the recently described putativeα-crystallin domain is dispensable for antiapoptotic activity, it is the integrity of the structured RR domain that is required for protection. As theα-crystallin domain appears to play an important role in protein folding and oligomerization, the N-terminal boundary of the antiapoptotic domain could not be defined precisely. In addition, this study provided evidence that overexpression of HSV-2 R2 at levels up to 30-fold more than HSV-2 R1 did not decrease protection from tumour necrosis factor alpha, indicating that the R1 surface where R2 binds is not involved in antiapoptotic activity. Importantly, this result suggests that the co-expression of both RR subunits during the lytic cycle should not affect protection from this cytokine.
Collapse
Affiliation(s)
- Stéphane Chabaud
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| | - A Marie-Josée Sasseville
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| | - Seyyed Mehdy Elahi
- Institut de Recherche en Biotechnologie, 6100 ave Royalmount, Montréal, QC H4P 2R2, Canada
| | - Antoine Caron
- Institut de Recherche en Biotechnologie, 6100 ave Royalmount, Montréal, QC H4P 2R2, Canada
| | - Florent Dufour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| | - Bernard Massie
- INRS-IAF, Université du Québec, Laval, QC H7N 4Z3, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, QC, Canada
- Institut de Recherche en Biotechnologie, 6100 ave Royalmount, Montréal, QC H4P 2R2, Canada
| | - Yves Langelier
- Département de Médecine, Université de Montréal, QC, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Institut du Cancer de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, QC H2L 4M1, Canada
| |
Collapse
|
13
|
Stubbe J. Ribonucleotide reductases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 63:349-419. [PMID: 2407066 DOI: 10.1002/9780470123096.ch6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
14
|
Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AMJ, Denis S, Mosser DD, Massie B. The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 2002; 83:2779-2789. [PMID: 12388814 DOI: 10.1099/0022-1317-83-11-2779] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The R1 subunit of herpes simplex virus (HSV) ribonucleotide reductase, which in addition to its C-terminal reductase domain possesses a unique N-terminal domain of about 400 amino acids, is thought to have an additional, as yet unknown, function. Here, we report that the full-length HSV-2 R1 has an anti-apoptotic function able to protect cells against death triggered by expression of R1(Delta2-357), an HSV-2 R1 subunit with its first 357 amino acids deleted. We further substantiate the R1 anti-apoptotic activity by showing that its accumulation at low level could completely block apoptosis induced by TNF-receptor family triggering. Activation of caspase-8 induced either by TNF or by Fas ligand expression was prevented by the R1 protein. As HSV R1 did not inhibit cell death mediated by several agents acting via the mitochondrial pathway (Bax overexpression, etoposide, staurosporine and menadione), it is proposed that it functions to interrupt specifically death receptor-mediated signalling at, or upstream of, caspase-8 activation. The N-terminal domain on its own did not exhibit anti-apoptotic activity, suggesting that both domains of R1 or part(s) of them are necessary for this new function. Evidence for the importance of HSV R1 in protecting HSV-infected cells against cytokine-induced apoptosis was obtained with the HSV-1 R1 deletion mutants ICP6Delta and hrR3. These results show that, in addition to its ribonucleotide reductase function, which is essential for virus reactivation, HSV R1 could contribute to virus propagation by preventing apoptosis induced by the immune system.
Collapse
Affiliation(s)
- Yves Langelier
- Département de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, Canada2
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphane Bergeron
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphane Chabaud
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Julie Lippens
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Claire Guilbault
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - A Marie-Josée Sasseville
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphan Denis
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Dick D Mosser
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
| | - Bernard Massie
- INRS-IAF Université du Québec, Laval, Québec, CanadaH7N 4Z34
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
- Département de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, Canada2
| |
Collapse
|
15
|
Abstract
Herpes Simplex Viruses type 1 (HSV-1) and 2 (HSV-2) cause central nervous system (CNS) disease ranging from benign aseptic meningitis to fatal encephalitis. In adults, CNS infection with HSV-2 is most often associated with aseptic meningitis while HSV-1 frequently produces severe, focal encephalitis associated with high mortality and morbidity. Recent studies suggested that the distinct neurological outcome of CNS infection with the two viruses may be due to their distinct modulation of apoptotic cell death: HSV-1 triggers neuronal apoptosis, while HSV-2 is neuroprotective. Apoptosis also occurs in the etiology of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Down's syndrome, and determines the loss of specific neuronal populations and the decline in cognitive functions. Notwithstanding, the therapy of these disorders may rely on the use of replication-defective HSV-1 vectors to deliver anti-apoptotic transgenes to the CNS. However, the recent discovery of a neuroprotective activity innate to the HSV-2 genome (the ICP10 PK gene) suggests that: i) ICP10 PK may constitute a novel therapeutic approach by targeting both the apoptotic cell death and the cognitive decline, and ii) HSV-2 may be more suitable than HSV-1 as a vector for targeting neuronal disease.
Collapse
|
16
|
|
17
|
Bolger G, Liuzzi M, Krogsrud R, Scouten E, McCollum R, Welchner E, Kempner E. Radiation inactivation of ribonucleotide reductase, an enzyme with a stable free radical. Biophys J 2000; 79:2155-61. [PMID: 11023919 PMCID: PMC1301105 DOI: 10.1016/s0006-3495(00)76463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus ribonucleotide reductase (RR) is a tetrameric enzyme composed of two homodimers of large R1 and small R2 subunits with a tyrosyl free radical located on the small subunit. Irradiation of the holoenzyme yielded simple exponential decay curves and an estimated functional target size of 315 kDa. Western blot analysis of irradiated holoenzyme R1 and R2 yielded target sizes of 281 kDa and 57 kDa (approximately twice their expected size). Irradiation of free R1 and analysis by all methods yielded a single exponential decay with target sizes ranging from 128-153 kDa. For free R2, quantitation by enzyme activity and Western blot analyses yielded simple inactivation curves but considerably different target sizes of 223 kDa and 19 kDa, respectively; competition for radioligand binding in irradiated R2 subunits yielded two species, one with a target size of approximately 210 kDa and the other of approximately 20 kDa. These results are consistent with a model in which there is radiation energy transfer between the two monomers of both R1 and R2 only in the holoenzyme, a radiation-induced loss of free radical only in the isolated R2, and an alteration of the tertiary structure of R2.
Collapse
Affiliation(s)
- G Bolger
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Limited, Bio-Méga Research Division, Laval, Québec H7S 2G5, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Aurelian L, Smith CC. Herpes simplex virus type 2 growth and latency reactivation by cocultivation are inhibited with antisense oligonucleotides complementary to the translation initiation site of the large subunit of ribonucleotide reductase (RR1). ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:77-85. [PMID: 10805158 DOI: 10.1089/oli.1.2000.10.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antisense oligonucleotides complementary to the translation initiation site of the herpes simplex virus type 2 (HSV-2) large subunit of ribonucleotide reductase (RR1) were studied for their ability to inhibit RR1 expression, HSV-2 growth, and its reactivation from latently infected ganglia. The oligomers caused a significant decrease (90%-97% inhibition) in HSV-2 RR1 expression and inhibited HSV-2 growth, with IC50 and IC90 values of 0.11 and 1.0 microM, respectively. The titers of HSV-2 mutants that are respectively deleted in the PK (ICP10deltaPK) or RR (ICP10deltaRR) domains of RR1 were also significantly (500-20,000-fold) decreased, indicating that the antisense oligomers interfere with the independent contributions of the two RR1 functions (PK and RR) toward virus growth. Inhibition was sequence specific, as evidenced by the failure of a two-base mutant (RR1TImu) to inhibit protein expression and HSV-2 growth. Furthermore, the antisense oligomers inhibited HSV-2 reactivation by cocultivation of latently infected ganglia (0/8). Virus was reactivated from ganglia cultured without oligomers, in the presence of unrelated oligomers (6/8), or in the presence of the two-base mutant RR1TImu (5/8) (p < 0.007 by two-tailed Fisher exact test). HSV-2 growth was not inhibited by antisense oligonucleotides complementary to the splice junction of HSV-2 immediate-early (IE) pre-mRNA 4 and 5 (IE4,5SA) or the translation initiation site of IE mRNA 4 (IE4TI), although the respective HSV-1-specific oligomers inhibit HSV-1 growth.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antiviral Agents/pharmacology
- Chlorocebus aethiops
- Coculture Techniques
- DNA, Complementary/genetics
- DNA, Complementary/pharmacology
- DNA, Viral/pharmacology
- Growth Inhibitors/pharmacology
- HeLa Cells
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/growth & development
- Herpesvirus 2, Human/physiology
- Humans
- Mice
- Oligonucleotides, Antisense/pharmacology
- Peptide Chain Initiation, Translational/drug effects
- Ribonucleotide Reductases/genetics
- Ribonucleotide Reductases/metabolism
- Tumor Cells, Cultured
- Vero Cells
- Virus Activation/drug effects
- Virus Activation/genetics
Collapse
Affiliation(s)
- L Aurelian
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Baltimore 21201, USA
| | | |
Collapse
|
19
|
Smith CC, Peng T, Kulka M, Aurelian L. The PK domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is required for immediate-early gene expression and virus growth. J Virol 1998; 72:9131-41. [PMID: 9765459 PMCID: PMC110331 DOI: 10.1128/jvi.72.11.9131-9141.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10DeltaPK). ICP10DeltaPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10DeltaPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10DeltaPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.
Collapse
Affiliation(s)
- C C Smith
- Virology/Immunology Laboratories, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
20
|
O'Brien WJ, Narasimhan J, Guy J, Tom P, Taylor JL. The effects of interferon-alpha and acyclovir on herpes simplex virus type-1 ribonucleotide reductase. Antiviral Res 1998; 38:107-16. [PMID: 9707373 DOI: 10.1016/s0166-3542(98)00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herpes simplex virus-type 1 (HSV-1) encodes both the small (UL40) and large (UL39) subunits of the enzyme, ribonucleotide reductase. Treatment of HSV-1-infected cells with interferon-alpha (IFN-alpha) reduced the levels of both enzyme subunits. Reduced steady state levels of the large subunit were demonstrated by immunoblot using polyclonal antibody specific for the viral enzyme. Reduction in the amount of small subunit was shown by a reduction in the electron spin resonance signal derived from the iron-containing tyrosyl free-radical present in this subunit. Treatment of cells with 100 IU/ml of IFN-alpha decreased levels of both subunits resulting in a reduction in enzyme activity as measured by conversion of CDP to dCDP. The decrease in the amount of the large subunit was not due to a reduction in the level of its mRNA. The combination of IFN-alpha and ACV treatment of human cornea stromal cells did not result in a further reduction in amounts of ribonucleotide reductase relative to that detected with IFN-alpha alone. The IFN-alpha-induced reduction in ribonucleotide reductase activity is the likely cause of decreased levels of dGTP which we have previously demonstrated in IFN-alpha-treated, infected cells.
Collapse
Affiliation(s)
- W J O'Brien
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53266, USA
| | | | | | | | | |
Collapse
|
21
|
Willoughby K, Bennett M, Williams RA, McCracken C, Gaskell RM. Sequences of the ribonucleotide reductase-encoding genes of felid herpesvirus 1 and molecular phylogenetic analysis. Virus Genes 1998; 15:203-18. [PMID: 9482586 DOI: 10.1023/a:1007924419113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The felid herpesvirus 1 (FHV-1) genes encoding the two ribonucleotide reductase (RR) subunits (RR1, large subunit and RR2, small subunit) were cloned and their nucleotide (nt) sequence determined. The RR1 open reading frame (ORF) is 2358 nts long and is predicted to encode a protein of 786 amino acids (aa). In common with herpesviruses in the Varicellovirus genus of the alphaherpesvirus subfamily, FHV-1 RR1 lacks the N-terminal serine threonine protein kinase region present in herpes simplex virus (HSV)-1 and -2. FHV-1 RR1 has a predicted aa identity of 47-64% with other alphaherpesvirus RR1 peptides, falling to 26-29% for gammaherpesviruses. The RR2 ORF is 996 nts long, predicted to encode a protein of 332 aa and has aa identities of 64-70% with alphaherpesviruses and 38-39% with gammaherpesviruses. Molecular phylogenetic analysis groups FHV-1 with equid herpesviruses 1 and 4 (EHV 1 and 4), pseudorabies virus (PRV) and bovid herpesvirus 1 (BHV 1) within the genus Varicellovirus.
Collapse
Affiliation(s)
- K Willoughby
- Department of Veterinary Pathology, University of Liverpool Veterinary Field Station, Neston, South Wirral, UK
| | | | | | | | | |
Collapse
|
22
|
Langelier Y, Champoux L, Hamel M, Guilbault C, Lamarche N, Gaudreau P, Massie B. The R1 subunit of herpes simplex virus ribonucleotide reductase is a good substrate for host cell protein kinases but is not itself a protein kinase. J Biol Chem 1998; 273:1435-43. [PMID: 9430680 DOI: 10.1074/jbc.273.3.1435] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The N terminus of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is believed to be a protein kinase domain mainly because the R1 protein was phosphorylated in a protein kinase assay on blot. Using Escherichia coli and adenovirus expression vectors to produce R1, we found that, whereas the reductase activity of both recombinant proteins was similar, efficient phosphorylation of R1 and casein in the presence of Mg2+ was obtained only with the R1 purified from eukaryotic cells. Phosphorylation of this R1, in solution or on blot, results mainly from the activity of casein kinase II (CKII), a co-purifying protein kinase. Labeling on blot occurs from CKII leakage off the membrane and its subsequent high affinity binding to in vivo CKII-phosphorylated R1. CKII target sites were mapped to an acidic serine-rich segment of the R1 N terminus. Improvement in purification of the R1 expressed in eukaryotic cells nearly completely abolished its phosphorylation potential. An extremely low level of phosphorylation observed in the presence of Mn2+ with the R1 produced in E. coli was probably due to an unidentified prokaryotic protein kinase. These results provide evidence that the herpes simplex virus type 2 R1 does not possess an intrinsic protein kinase activity.
Collapse
Affiliation(s)
- Y Langelier
- Institut du Cancer de Montréal, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
23
|
White PW. Understanding the molecular mechanism of viral resistance to peptidomimetic inhibitors of ribonucleotide reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1382:102-10. [PMID: 9507079 DOI: 10.1016/s0167-4838(97)00151-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herpes simplex virus (HSV) encodes a ribonucleotide reductase which provides high levels of deoxynucleotides necessary for replication of viral DNA in infected cells. The enzyme is composed of two distinct subunits, R1 and R2, whose association is required for enzymatic activity. Compounds that mimic the C-terminal amino acids of the HSV ribnucleotide reductase R2 subunit inhibit the enzyme by preventing the association of R1 and R2. Moderate resistance to one of these inhibitors, BILD 733, has been generated in cell culture. This resistance is the result of two point mutations in R1, P1090L and A1091S. Here we report on the binding of additional peptidomimetic inhibitors with altered functional groups to these mutants. This study has made it possible, in the absence of a crystal structure for this enzyme, to define the molecular mechanism by which these two mutations cause the observed resistance. Mutation of proline 1090 to leucine causes a conformational shift in the R1 inhibitor binding site. Mutation of alanine 1091 to serine weakens a specific binding interaction with the hydrophobic carboxy terminus of both R2 and inhibitors. Potential limitations on the degree of viral resistance possible by each resistance mechanism are discussed.
Collapse
Affiliation(s)
- P W White
- Research Division of Boehringer Ingelheim Ltd., Laval, Qué., Canada
| |
Collapse
|
24
|
Smith CC, Aurelian L. The large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is associated with the virion tegument and has PK activity. Virology 1997; 234:235-42. [PMID: 9268154 DOI: 10.1006/viro.1997.8645] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The large subunit of herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (ICP10) was identified in sucrose gradient-purified HSV-2 virions by immunoprecipitation/immunoblotting with antibody specific for the protein kinase (PK) domain. Immunoblotting of individual gradient fractions indicated that ICP10 cosediments with the major capsid protein and the highest virus titers. ICP10 was not labeled by iodination of purified virions, indicating that it is not located on the virion surface. After envelope glycoproteins were removed by detergent treatment, ICP10 was associated with capsid-tegument particles and became sensitive to trypsin digestion. The capsid-tegument-associated ICP10 was phosphorylated and had PK activity in vitro and on Immobilon membranes. A mutant ICP10 protein deleted in the PK domain (p95) was also associated with purified virions (ICP10deltaPK virus) but it lacked PK activity. The data indicate that ICP10 is contained within the tegument component where it retains intrinsic PK activity.
Collapse
Affiliation(s)
- C C Smith
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
25
|
Zhu J, Aurelian L. AP-1 cis-response elements are involved in basal expression and Vmw110 transactivation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virology 1997; 231:301-12. [PMID: 9168892 DOI: 10.1006/viro.1997.8522] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The promoter of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) has two AP-1 cis-response elements, respectively located at positions -62 and -94 relative to the transcription start site (Wymer et al., 1989. J. Virol. 63, 2773-2784). Chloramphenicol acetyl transferase (CAT) analysis with hybrid constructions of the CAT structural gene and the ICP10 promoter or its mutants and gel retardation studies were used to examine the role of the AP-1 cis-response elements in expression from the ICP10 promoter. Basal expression from the wild-type promoter was significantly (75-90%) reduced by mutation of the upstream or downstream AP-1 element. Mutation in the upstream AP-1 element also caused a 60% reduction in c-Jun-mediated activation. Activation was decreased 40% by mutation in the downstream AP-1 element and it was abrogated by mutation of both elements. Similar results were obtained for ACT-deleted mutants and mutants in which CT was mutated to AG. The trans-activation by Vmw110 was also reduced by mutation of the AP-1 elements (10- and 2-fold for the upstream and downstream element, respectively) and it was abrogated by mutation of both AP-1 elements. Mutation of nucleotides adjacent to the AP-1 cis-response elements had no effect on trans-activation. Gel retardation assays with a DNA probe representing the wild-type ICP10 promoter and nuclear extracts from HSV-1-infected cells identified one complex that was not seen with mock-infected cells or with cells infected with a Vmw110-deleted mutant. The complex was not seen when HSV-1-infected cells were reacted with an AP-1-mutant DNA probe, and its formation was competed by an AP-1 but not a mutant AP-1 oligonucleotide. The migration of this complex was retarded by c-Fos antibody, suggesting that both AP-1 and Vmw110 are involved in its formation. A mutant deleted in all sequences upstream of the TATA box was also activated by Vmw110, but this activation was only 2-fold lower than that seen for the wild type and significantly higher (10-fold) than that seen for the double AP-1 mutants. The data suggest that AP-1 elements play a crucial role in ICP10 gene expression/activation.
Collapse
Affiliation(s)
- J Zhu
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
26
|
Abstract
The Herpesviridae comprise a large class of animal viruses of considerable public health importance. Of the Herpesviridae, replication of herpes simplex virustype-1 (HSV-1) has been the most extensively studied. The linear 152-kbp HSV-1 genome contains three origins of DNA replication and approximately 75 open-reading frames. Of these frames, seven encode proteins that are required for originspecific DNA replication. These proteins include a processive heterodimeric DNA polymerase, a single-strand DNA-binding protein, a heterotrimeric primosome with 5'-3' DNA helicase and primase activities, and an origin-binding protein with 3'-5' DNA helicase activity. HSV-1 also encodes a set of enzymes involved in nucleotide metabolism that are not required for viral replication in cultured cells. These enzymes include a deoxyuridine triphosphatase, a ribonucleotide reductase, a thymidine kinase, an alkaline endo-exonuclease, and a uracil-DNA glycosylase. Host enzymes, notably DNA polymerase alpha-primase, DNA ligase I, and topoisomerase II, are probably also required. Following circularization of the linear viral genome, DNA replication very likely proceeds in two phases: an initial phase of theta replication, initiated at one or more of the origins, followed by a rolling-circle mode of replication. The latter generates concatemers that are cleaved and packaged into infectious viral particles. The rolling-circle phase of HSV-1 DNA replication has been reconstituted in vitro by a complex containing several of the HSV-1 encoded DNA replication enzymes. Reconstitution of the theta phase has thus far eluded workers in the field and remains a challenge for the future.
Collapse
Affiliation(s)
- P E Boehmer
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
27
|
Cooper J, Conner J, Clements JB. Characterization of the novel protein kinase activity present in the R1 subunit of herpes simplex virus ribonucleotide reductase. J Virol 1995; 69:4979-85. [PMID: 7609068 PMCID: PMC189314 DOI: 10.1128/jvi.69.8.4979-4985.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have compared the protein kinase activities of the R1 subunits from herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) ribonucleotide reductase following expression in Escherichia coli. Autophosphorylation activity was observed when kinase assays were performed with immunoprecipitated R1 or proteins purified to homogeneity, and the activity was stimulated by the basic protein protamine. Transphosphorylation of histones or calmodulin by purified or immunoprecipitated HSV-1 and HSV-2 R1 was not observed, and our results suggest that the activities of these two proteins are similar. We further characterized the protein kinase activity of HSV-1 R1 by producing insertion and deletion mutants constructed with a plasmid expressing R1 amino acids 1 to 449. C-terminal deletion analysis identified the catalytic core of the enzyme as comprising residues 1 to 292, and this polypeptide will be useful for structural determinations by X-ray crystallography. Insertion of a 4-amino-acid sequence at sites within the protein kinase domain identified regions essential for activity; insertions at residues 22 and 112 completely inactivated activity, and an insertion at residue 136 reduced activity sixfold. Similar insertions at residues 257, 262, 292, and 343 had no effect on activity. The ATP analog 5'-fluorosulfonylbenzoyladenosine, which covalently modifies conventional eukaryotic kinases at an essential lysine residue within the active site, did label HSV R1, but this labelling occurred outside the N-terminal domain. These data indicate that the HSV R1 kinase is novel and distinct from other eukaryotic protein kinases.
Collapse
Affiliation(s)
- J Cooper
- MRC Virology Unit, Institute of Virology, Glasgow, United Kingdom
| | | | | |
Collapse
|
28
|
Hanson E, Mathews CK. Allosteric effectors are required for subunit association in T4 phage ribonucleotide reductase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47381-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Laplante SR, Aubry N, Liuzzi M, Thelander L, Ingemarson R, Moss N. The critical C-terminus of the small subunit of herpes simplex virus ribonucleotide reductase is mobile and conformationally similar to C-terminal peptides. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1994; 44:549-55. [PMID: 7705976 DOI: 10.1111/j.1399-3011.1994.tb01143.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The C-terminus of the small subunit of class I ribonucleotide reductases is essential for subunit association and enzymatic activity. 1H NMR analysis of the small subunit (2 x 38 kDa as a homodimer) of herpes simplex virus ribonucleotide reductase shows that this critical binding site is mobile and exposed in relation to the rest of the protein. Assignments of six C-terminal amino acids are made by comparing the TOCSY and NOESY spectra of the small subunit with the spectra of an identical protein truncated by seven amino acids at the C-terminus and the spectra of an analogous 15 amino acid peptide. The mobility of the C-terminus may be important for subunit recognition and could be general for other ribonucleotide reductases. The spectral comparisons also suggest that the six C-terminal amino acids of the small subunit and peptide are conformationally similar. This observation may be important for the design of inhibitors of ribonucleotide reductase subunit association.
Collapse
Affiliation(s)
- S R Laplante
- Bio-Méga/Boehringer Ingelheim Research Inc., Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Marcello A, Loregian A, Cross A, Marsden H, Hirst TR, Palù G. Specific inhibition of herpes virus replication by receptor-mediated entry of an antiviral peptide linked to Escherichia coli enterotoxin B subunit. Proc Natl Acad Sci U S A 1994; 91:8994-8. [PMID: 8090758 PMCID: PMC44733 DOI: 10.1073/pnas.91.19.8994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mimetic peptides capable of selectively disrupting protein-protein interactions represent potential therapeutic agents for inhibition of viral and cellular enzymes. This approach was first suggested by the observation that the peptide YAGAVVNDL, corresponding to the carboxyl-terminal 9 amino acids of the small subunit of ribonucleotide reductase of herpes simplex virus, specifically inhibited the viral enzyme in vitro. Evaluation and use of this peptide as a potential antiviral agent has, however, been thwarted by its failure to inhibit virus replication in vivo, presumably because the peptide is too large to enter eukaryotic cells unaided. Here, we show that the nontoxic B subunit of Escherichia coli heat-labile enterotoxin can be used as a recombinant carrier for the receptor-mediated delivery of YAGAVVNDL into virally infected cells. The resultant fusion protein specifically inhibited herpes simplex virus type 1 replication and ribonucleotide reductase activity in quiescent Vero cells. Preincubation of the fusion protein with soluble GM1 ganglioside abolished this antiviral effect, indicating that receptor-mediated binding to the target cell is necessary for its activity. This provides direct evidence of the usefulness of carrier-mediated delivery to evaluate the intracellular efficacy of a putative antiviral peptide.
Collapse
Affiliation(s)
- A Marcello
- Institute of Microbiology, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The equine herpesvirus 4 (EHV-4) genes encoding the two subunits of the enzyme ribonucleotide reductase (RR) were cloned and their nucleotide (nt) sequences determined. The large subunit (RR1) is predicted to comprise 789 amino acids (aa), which compares with lengths of 790, 775 and 1137 aa for the RR1 proteins encoded by equine herpesvirus 1 (EHV-1) gene 21, varicella zoster virus (VZV) gene 19 and herpes simplex virus type 1 (HSV-1) UL39, respectively. In common with VZV RR1, the EHV-4 RR1 protein lacks the N-terminal domain of HSV-1 RR1 which possesses protein kinase activity. EHV-4 RR1 demonstrates identities of 88, 52 and 29% with the RR1 proteins of EHV-1, VZV and HSV-1, respectively. The small subunit (RR2) is predicted to be 320 aa in length, which compares with lengths of 321, 306 and 340 aa for the RR2 proteins encoded by EHV-1 gene 20, VZV gene 18 and HSV-1 UL40, respectively. The EHV-4 RR2 protein exhibits identities of 90, 60 and 55% with the RR2 proteins of EHV-1, VZV and HSV-1, respectively.
Collapse
Affiliation(s)
- M P Riggio
- Department of Veterinary Pathology, University of Glasgow Veterinary School, UK
| | | |
Collapse
|
32
|
|
33
|
Neurovirulence of Herpes Simplex Virus Type 1 Accessory Gene Mutants. PATHOGENICITY OF HUMAN HERPESVIRUSES DUE TO SPECIFIC PATHOGENICITY GENES 1994. [DOI: 10.1007/978-3-642-85004-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Desai P, Ramakrishnan R, Lin ZW, Osak B, Glorioso JC, Levine M. The RR1 gene of herpes simplex virus type 1 is uniquely trans activated by ICP0 during infection. J Virol 1993; 67:6125-35. [PMID: 8396674 PMCID: PMC238035 DOI: 10.1128/jvi.67.10.6125-6135.1993] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
As has been demonstrated for herpes simplex virus type 2, we show in this report that the herpes simplex virus type 1 ribonucleotide reductase large subunit (RR1) gene is trans activated in transient transfection assays by VP16 and ICP0 but not by ICP4. Deletion analysis demonstrated that responsiveness to induction to VP16 resides in an octamer/TAATGARAT sequence of the RR1 promoter and that the TATA box alone is sufficient to provide induction by ICP0. The induction of the RR1 gene by ICP0 but not by ICP4 suggested that it might be possible to identify the cis-acting element(s) responsive to ICP4 in an ICP4-inducible promoter. To this end, a series of chimeric promoters containing various portions of the regulatory sequences of the RR1 promoter and thymidine kinase (TK) promoter were constructed. The TK promoter is trans activated by both ICP0 and ICP4 in transient transfection assays and by ICP4 in infection. The data show that replacing the RR1 TATA region with the TK TATA region permits ICP4 inducibility even if the rest of the RR1 promoter elements remain intact. To test whether the RR1 gene is induced by ICP0 during infection, four mutant viruses were constructed. (i) TAATGARAT+ has the wild-type RR1 promoter driving chloramphenicol acetyltransferase (CAT) and the RR2 promoter driving the lacZ gene. The RR2 gene codes for the small subunit of the ribonucleotide reductase and is expressed as a beta gene. (ii) TAATGARAT- has a triple-base change in the octamer/TAATGARAT element which renders it unresponsive to VP16 trans activation, eliminating that portion of the activation of the RR1 gene. (iii) TAATGARAT- delta alpha 0 has a deletion of the alpha 0 gene. (iv) TAATGARAT- delta alpha 4 has a deletion of the alpha 4 gene. Infections were carried out in Vero cells at a multiplicity of infection of 10 per cell; cells were assayed for CAT and beta-galactosidase (beta-Gal) activities and for virus yields. The first two infections gave strong CAT and beta-Gal activities and high yields of progeny virus. Infection with the third virus showed no CAT activity but did produce high levels of beta-Gal activity and virus progeny. The fourth infection resulted in strong CAT activity but no beta-Gal activity or progeny virus. The data demonstrated that the RR1 promoter was activated in the absence of ICP4 but not in the absence of ICP0 in these infections.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Desai
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Certain large DNA viruses (e.g. herpesviruses and poxviruses) encode proteins related to cellular protein-serine/threonine kinases, and Hepatitis B virus and vesicular stomatitis virus may encode structurally different protein kinases. Other viruses activate cellular protein kinases, e.g. interferon-induced eukaryotic initiation factor-2 kinase, growth factor-induced kinases and protein kinases that regulate mitosis. Protein phosphatases are encoded by vaccinia virus and bacteriophage lambda and must also play a role in viral infection--as do cellular protein phosphatases. The functions of many of these viral enzymes remain to be determined, but they represent possible new targets for anti-viral therapy.
Collapse
Affiliation(s)
- D P Leader
- Department of Biochemistry, University of Glasgow, U.K
| |
Collapse
|
36
|
Howell M, Roseman N, Slabaugh M, Mathews C. Vaccinia virus ribonucleotide reductase. Correlation between deoxyribonucleotide supply and demand. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53159-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Conner J, Cooper J, Furlong J, Clements JB. An autophosphorylating but not transphosphorylating activity is associated with the unique N terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit. J Virol 1992; 66:7511-6. [PMID: 1331536 PMCID: PMC240460 DOI: 10.1128/jvi.66.12.7511-7516.1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report on a protein kinase function encoded by the unique N terminus of the herpes simplex virus type 1 (HSV-1) ribonucleotide reductase large subunit (R1). R1 expressed in Escherichia coli exhibited autophosphorylation activity in a reaction which depended on the presence of the unique N terminus. When the N terminus was separately expressed in E. coli and partially purified, a similar autophosphorylation reaction was observed. Importantly, transphosphorylation of histones and of proteins in HSV-1-infected cell extracts was also observed with purified R1 and with truncated R1 mutants in which most of the N terminus was deleted. Ion-exchange chromatography was used to separate the autophosphorylating activity of the N terminus from the transphosphorylating activity of an E. coli contaminant protein kinase. We propose a putative function for this activity of the HSV-1 R1 N terminus during the immediate-early phase of virus replication.
Collapse
Affiliation(s)
- J Conner
- Institute of Virology, University of Glasgow, United Kingdom
| | | | | | | |
Collapse
|
38
|
de Wind N, Wagenaar F, Pol J, Kimman T, Berns A. The pseudorabies virus homology of the herpes simplex virus UL21 gene product is a capsid protein which is involved in capsid maturation. J Virol 1992; 66:7096-103. [PMID: 1331512 PMCID: PMC240387 DOI: 10.1128/jvi.66.12.7096-7103.1992] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We mutagenized, mapped, and sequenced the pseudorabies virus (PRV) homology of gene UL21 of herpes simplex virus type 1. A polyclonal mouse antiserum against the protein encoded by the UL21 homolog was generated and used to monitor the expression and subcellular localization of the UL21-encoded protein. We found that the protein is identical to a previously detected PRV capsid protein. We analyzed viable PRV strains encoding mutant UL21 homologys, truncated by insertion of an oligonucleotide that contains stop codons in all reading frames. In two PRV mutants carrying the oligonucleotide at two sites within the gene, processing of newly replicated viral DNA was impaired. In addition, we show that one of the UL21 mutants has strongly reduced virulence for mice.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Capsid/genetics
- Capsid Proteins
- Cell Line
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Genes, Viral
- Herpesvirus 1, Suid/genetics
- Herpesvirus 1, Suid/pathogenicity
- Herpesvirus 3, Human/genetics
- Kidney
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Open Reading Frames
- Protein Biosynthesis
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Reading Frames
- Restriction Mapping
- Sequence Homology, Amino Acid
- Simplexvirus/genetics
- Swine
- Transcription, Genetic
- Virulence
Collapse
Affiliation(s)
- N de Wind
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|
39
|
Filatov D, Ingemarson R, Gräslund A, Thelander L. The role of herpes simplex virus ribonucleotide reductase small subunit carboxyl terminus in subunit interaction and formation of iron-tyrosyl center structure. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49608-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Luo J, Aurelian L. The transmembrane helical segment but not the invariant lysine is required for the kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50139-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
41
|
Wymer JP, Aprhys CM, Chung TD, Feng CP, Kulka M, Aurelian L. Immediate early and functional AP-1 cis-response elements are involved in the transcriptional regulation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virus Res 1992; 23:253-70. [PMID: 1320796 DOI: 10.1016/0168-1702(92)90112-m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Expression from the promoter of the herpes simplex virus type 2 (HSV-2) large subunit of ribonucleotide reductase (ICP10) is stimulated by co-transfection with DNA that encodes the virion protein Vmw65 previously shown to activate in trans the transcription of all IE genes (Wymer et al., 1989). Specific cis response elements involved in ICP10 transcriptional regulation were studied by chloramphenicol acetyltransferase analysis with hybrid ICP10 promoter/CAT structural gene constructions containing wild type or site-directed mutations of the promoter sequences. The data indicate that Vmw65 activation requires an intact TAAT-GARAT motif while complex formation requires an intact Oct-1 element, and the AP-1 consensus elements in the ICP10 promoter are functional in vitro. Thus, expression from the wild type and GA-rich mutant constructions was enhanced 10-20-fold by co-transfection with DNA encoding Vmw65. The GARAT and POU homeobox (PHB) binding motifs were required for Vmw65 mediated activation but the mutant in the POU specific box (PSB) binding motif was activated at higher concentrations of Vmw65 DNA (1.0-3.0 micrograms). The PHB and PSB binding motifs were necessary for complex formation as determined by gel retardation analysis with in vitro synthesized OTF-1 and Vmw65 proteins. The GARAT and GA-rich elements were not required. CAT expression from pICP10-cat was enhanced by co-transfection with jun and fos encoding DNA, and the ICP10 promoter complexed with in vitro synthesized jun protein.
Collapse
Affiliation(s)
- J P Wymer
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | | | | | | | | | |
Collapse
|
42
|
Liuzzi M, Scouten E, Ingemarson R. Inhibition of herpes simplex virus ribonucleotide reductase by synthetic nonapeptides: a potential antiviral therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 312:129-38. [PMID: 1325100 DOI: 10.1007/978-1-4615-3462-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M Liuzzi
- Department of Biochemistry, Bio-Mega Inc., Laval, Québec, Canada
| | | | | |
Collapse
|
43
|
Höjeberg B, Ingemarsson R, Kristensson K, Lycke E, Olsson T. A monoclonal antibody against HSV type 1 ribonucleotide reductase cross-reacts with the P0 protein of peripheral nerve myelin. J Neurol Sci 1991; 106:91-5. [PMID: 1723423 DOI: 10.1016/0022-510x(91)90200-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An epitope on peripheral nerve myelin was detected by the use of a mouse monoclonal antibody directed against the 38 kDa subunit of herpes simplex virus (HSV) type 1 ribonucleotide reductase. Immunohistochemistry showed reactivity solely in PNS myelin. In nerve roots there was a sharp border in transitional zones to the negative CNS myelin. The immunoreactivity was found in rat, guinea pig, bovine and human peripheral nerves. Western blot analysis of peripheral nerve myelin as well as purified P0 revealed a distinctly stained band corresponding to a molecular weight of approximately 29 kDa. The present finding of a shared antigenic determinant between HSV ribonucleotide reductase and peripheral nerve P0 may be of pathogenetic relevance in virus induced demyelinating diseases in the peripheral nervous system.
Collapse
Affiliation(s)
- B Höjeberg
- Department of Neurology, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
44
|
Luo J, Smith C, Kulka M, Aurelian L. A truncated protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) expressed in Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54807-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Smith CC, Wymer JP, Luo J, Aurelian L. Genomic sequences homologous to the protein kinase region of the bifunctional herpes simplex virus type 2 protein ICP10. Virus Genes 1991; 5:215-26. [PMID: 1663292 DOI: 10.1007/bf00568971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The large subunit of herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (ICP10) consists of two functional domains. The amino (N)-terminal domain at residues 1-411 has serine/threonine-specific kinase activity (PK domain) and is encoded by a DNA fragment with transforming potential (15,17). The remaining region is required for ribonucleotide reductase activity (RR domain) (14, 15). Computer-assisted comparison of the ICP10 sequence to the EMBL database 21 has revealed sequences within the RR domain that are common to all RR1 proteins. Motifs homologous to the catalytic domains of all PKs were identified in the PK region (15). However, based on this database all other sequences were unique. Secondary structure analysis of the PK and RR junction region of ICP10 identified twist angle variations with helical periodicity characteristic of enhancer elements. Sequences homologous to a segment of the PK domain were amplified and cloned from human DNA using the polymerase chain reaction (PCR), suggesting that the PK domain may have originated from a cellular gene.
Collapse
Affiliation(s)
- C C Smith
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | | | | | |
Collapse
|
46
|
Furlong J, Conner J, McLauchlan J, Lankinen H, Galt C, Marsden HS, Clements JB. The large subunit of herpes simplex virus type 1 ribonucleotide reductase: expression in Escherichia coli and purification. Virology 1991; 182:846-51. [PMID: 1850930 DOI: 10.1016/0042-6822(91)90627-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The open reading frame of the large subunit (R1) of herpes simplex virus type 1 (HSV-1) ribonucleotide reductase has been positioned downstream of the phage T7 gene 10 promoter in the expression vector, pET. Transformation of this recombinant plasmid into Escherichia coli BL21 DE3 cells containing the T7 RNA polymerase, under the control of the lac UV5 promoter, allows expression of the subunit on induction of the T7 RNA polymerase by isopropyl thiodigalactoside. The expressed protein is soluble and can be purified with yields up to 0.5 mg of R1 per litre of bacterial culture. The subunit can complement R2 produced in BHK cells or E. coli to give specific activities comparable to that produced in BHK cells infected with HSV-1. Enzyme activity reconstituted from E. coli-expressed R1 and R2 is inhibited by the nonapeptide YAGAVVNDL with an IC50 comparable to that obtained with enzyme extracted from BHK cells infected with HSV-1. Results suggest that the E. coli produced enzyme is a good source of protein for further structural and functional studies.
Collapse
Affiliation(s)
- J Furlong
- MRC Virology Unit, Glasgow, Scotland
| | | | | | | | | | | | | |
Collapse
|
47
|
Paradis H, Gaudreau P, Massie B, Lamarche N, Guilbault C, Gravel S, Langelier Y. Affinity purification of active subunit 1 of herpes simplex virus type 1 ribonucleotide reductase exhibiting a protein kinase activity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92869-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Production and characterization of monoclonal antibodies to a 58-kilodalton antigen of Aspergillus fumigatus. Infect Immun 1991; 59:316-22. [PMID: 1987045 PMCID: PMC257743 DOI: 10.1128/iai.59.1.316-322.1991] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eight monoclonal antibodies that recognize a serodiagnostically important 58-kDa antigen of Aspergillus fumigatus were produced and partially characterized. 2-7, 2-12, and 2-14 are of the immunoglobulin M class, and 2-2-1, 2-2-4, 2-2-6, 2-2-9, and 2-2-13 are all immunoglobulin G1(kappa) antibodies. Immunoblot analysis with A. fumigatus mycelial extract demonstrated that all of the monoclonal antibodies recognize a major 58-kDa antigen. The antigen was also detected by immunoblot analysis of 4- and 7-day culture filtrate preparations. 2-2-1, 2-2-4, and 2-2-6 cross-reacted with an antigen of approximately 55 kDa from an extract of Candida albicans. 2-7, 2-12, 2-14, and 2-2-4 formed a precipitin band with immunoaffinity-purified 58-kDa antigen by immunodiffusion. Results from indirect immunofluorescence assays with 2-7 and 2-2-9 showed fluorescent staining mainly on the surfaces of conidia and hyphae, indicating that the 58-kDa antigen may be cell wall associated. 2-2-9 and 2-2-13 and antibodies in patient and immune rabbit sera precipitated the [35S]methionine-labeled 58-kDa antigen. The 58-kDa antigen immunoprecipitated by each of the antibodies was enzymatically cleaved by Staphylococcus aureus V8 protease; one cleavage product, a 35-kDa fragment, was generated, indicating that the precipitated antigens share primary structure. Immunoblot analysis with an immunoaffinity-purified 58-kDa antigen showed that sera from patients with invasive aspergillosis reacted with the same antigen as that recognized by the monoclonal antibodies.
Collapse
|
49
|
Chung TD, Wymer JP, Kulka M, Smith CC, Aurelian L. Myristylation and polylysine-mediated activation of the protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Virology 1990; 179:168-78. [PMID: 2171204 DOI: 10.1016/0042-6822(90)90286-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amino-terminal domain of the large subunit of herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (ICP10) was previously shown to possess protein kinase (PK) activity that localizes to the cytosolic, cytoskeletal, and plasma membrane fractions. Further studies of the PK domain using computer-assisted sequence analysis have identified a single transmembrane segment and fatty acid incorporation findings indicate that ICP10 is myristylated. Myristylation does not depend on a viral enzyme, since myristic acid is incorporated into ICP10 precipitated from cells transfected with an ICP10 expression vector. It is also incorporated into the 57-kDa protein expressed by the amino-terminal PK expression vector. The myristyl moiety is linked through an amide bond. The basic protein polylysine stimulates the kinase activity and alters its divalent cation requirements resulting in 20- to 40-fold stimulation in the presence of 0.1 mM Mn2+. The PK activity is inhibited by antibody to synthetic peptides corresponding to residues 355-369 and 13-26, respectively, located within, and amino-terminal to, the predicted PK catalytic domain.
Collapse
Affiliation(s)
- T D Chung
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | | | | | | | |
Collapse
|
50
|
Darling AJ, McKay EM, Ingemarson R, Booth B. Herpes simplex virus-encoded ribonucleotide reductase: evidence for the dissociation/reassociation of the holoenzyme. Virus Genes 1990; 3:367-72. [PMID: 2161585 DOI: 10.1007/bf00569043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
35S-labeled cells infected with herpes simplex virus type 1 (HSV-1), temperature-sensitive (ts) mutant ts 1222 were used as a source of the large subunit of the viral ribonucleotide reductase (RR) to investigate the binding of the large (RR1) and small (RR2) subunits in the active enzyme. Mixing 35S-labeled RR1 from ts 1222 with unlabeled RR1/RR2 complex from wild type (wt) infected cells resulted in the formation of a complex between 35S-labeled RR1 and unlabeled RR2, indicating that the complex between the RR1 and RR2 subunits is dynamic and subunit dissociation/reassociation occurs during enzyme function. Similar results were obtained when unlabeled HSV-2 RR was substituted for HSV-1 RR, demonstrating that the holoenzyme can be formed the large subunit of HSV-1 RR and the small subunit of HSV-2.
Collapse
Affiliation(s)
- A J Darling
- M.R.C. Virology Unit, Institute of Virology, Glasgow, Scotland
| | | | | | | |
Collapse
|