1
|
Talledge N, Yang H, Shi K, Coray R, Yu G, Arndt WG, Meng S, Baxter GC, Mendonça LM, Castaño-Díez D, Aihara H, Mansky LM, Zhang W. HIV-2 Immature Particle Morphology Provides Insights into Gag Lattice Stability and Virus Maturation. J Mol Biol 2023; 435:168143. [PMID: 37150290 PMCID: PMC10524356 DOI: 10.1016/j.jmb.2023.168143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Retrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used the single particle cryo-electron microscopy method to determine the HIV-2 Gag lattice structure for immature virions. The reconstruction map at 5.5 Å resolution revealed a stable, wineglass-shaped Gag hexamer structure with structural features consistent with other lentiviral immature Gag lattice structures. Cryo-electron tomography provided evidence for nearly complete ordered Gag lattice structures in HIV-2 immature particles. We also solved a 1.98 Å resolution crystal structure of the carboxyl-terminal domain (CTD) of the HIV-2 capsid (CA) protein that identified a structured helix 12 supported via an interaction of helix 10 in the absence of the SP1 region of Gag. Residues at the helix 10-12 interface proved critical in maintaining HIV-2 particle release and infectivity. Taken together, our findings provide the first 3D organization of HIV-2 immature Gag lattice and important insights into both HIV Gag lattice stabilization and virus maturation.
Collapse
Affiliation(s)
- Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA. https://twitter.com/BioChemTalledge
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Ke Shi
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Raffaele Coray
- BioEM Lab, Biozentrum, University of Basel - Basel, Switzerland
| | - Guichuan Yu
- Minnesota Supercomputing Institute, Office of the Vice President for Research, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Gloria C Baxter
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota - Twin Cities, USA
| | - Luiza M Mendonça
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | | | - Hideki Aihara
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Chougui G, Margottin-Goguet F. HUSH, a Link Between Intrinsic Immunity and HIV Latency. Front Microbiol 2019; 10:224. [PMID: 30809215 PMCID: PMC6379475 DOI: 10.3389/fmicb.2019.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
A prominent obstacle to HIV eradication in seropositive individuals is the viral persistence in latent reservoir cells, which constitute an HIV sanctuary out of reach of highly active antiretroviral therapies. Thus, the study of molecular mechanisms governing latency is a very active field that aims at providing solutions to face the reservoirs issue. Since the past 15 years, another major field in HIV biology focused on the discovery and study of restriction factors that shape intrinsic immunity, while engaging in a molecular battle against HIV. Some of these restrictions factors act at early stages of the virus life cycle, alike SAMHD1 antagonized by the viral protein Vpx, while others are late actors. Until recently, no such factor was identified in the nucleus and found active at the level of provirus expression, a crucial step where latency may take place. Today, two studies highlight Human Silencing Hub (HUSH) as a potential restriction factor that controls viral expression and is antagonized by Vpx. This Review discusses HUSH restriction in the light of the actual knowledge of intrinsic immunity and HIV latency.
Collapse
Affiliation(s)
- Ghina Chougui
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
3
|
Schaller T, Bauby H, Hué S, Malim MH, Goujon C. New insights into an X-traordinary viral protein. Front Microbiol 2014; 5:126. [PMID: 24782834 PMCID: PMC3986551 DOI: 10.3389/fmicb.2014.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein.
Collapse
Affiliation(s)
- Torsten Schaller
- Department of Infectious Diseases, King's College London London, UK
| | - Hélène Bauby
- Department of Infectious Diseases, King's College London London, UK
| | - Stéphane Hué
- Department of Infection, Division of Infection and Immunity, Centre for Medical Molecular Virology, University College London London, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London London, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London London, UK
| |
Collapse
|
4
|
HIV-2 viral protein X (Vpx) ubiquitination is dispensable for ubiquitin ligase interaction and effects on macrophage infection. Virology 2012; 427:67-75. [PMID: 22386056 DOI: 10.1016/j.virol.2012.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/16/2011] [Accepted: 02/03/2012] [Indexed: 11/21/2022]
Abstract
HIV-2 Vpx, a virus-associated accessory protein, is critical for infection of non-dividing myeloid cells. To understand the function of Vpx ubiquitination, interaction with an E3 ubiquitin ligase complex, and ability to overcome an inhibition of reverse transcription, we analyzed Vpx lysine mutants for their function and replication capability in macrophages. Both Wt Vpx and Vpx TA (lysine-less Vpx) localized to the cytoplasm and nucleus in HeLa cells. All HIV-2 Vpx lysine mutants were functional in virion packaging. However, ubiquitination was absent with Vpx TA and Vpx K84A mutants, indicating a lack of ubiquitin on positions K68 and K77. Mutants Vpx K68A and K77A were unable to infect macrophages due to impaired reverse transcription from loss of interaction with the ubiquitin substrate receptor, DCAF1. Even though Vpx K84A lacked ubiquitination, it bound DCAF1, and infected macrophages comparable to Wt Vpx.
Collapse
|
5
|
Belshan M, Matthews JM, Madson CJ. Replication of biotinylated human immunodeficiency viruses. J Virol Methods 2010; 171:299-302. [PMID: 21087640 DOI: 10.1016/j.jviromet.2010.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/12/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Previous work demonstrated recently the adaptation of the Escherichia coli biotin ligase BirA - biotin acceptor sequence (BAS) labeling system to produce human immunodeficiency virus type 1 viruses with biotinylated integrase (NLXIN(B)) and matrix (NLXMA(B)) proteins (Belshan et al., 2009). This report describes the construction of an HIV permissive cell line stably expressing BirA (SupT1.BirA). Consistent with the results in the previous report, NLXMA(B) replicated similar to wild-type levels and expressed biotinylated Gag and MA proteins in the SupT1.BirA cells, whereas the replication of NLXIN(B) was reduced severely. Three additional HIV type 2 (HIV-2) viruses were constructed with the BAS inserted into the vpx and vpr accessory genes. Two BAS insertions were made into the C-terminal half of the Vpx, including one internal insertion, and one at the N-terminus of Vpr. All three viruses were replication competent in the SupT1.BirA cells and their target proteins biotinylated efficiently and incorporated into virions. These results demonstrate the potential utility of the biotinylation system to label and capture HIV protein complexes in the context of replicating virus.
Collapse
Affiliation(s)
- Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
6
|
The human immunodeficiency virus type 2 Vpx protein usurps the CUL4A-DDB1 DCAF1 ubiquitin ligase to overcome a postentry block in macrophage infection. J Virol 2009; 83:4854-60. [PMID: 19264781 DOI: 10.1128/jvi.00187-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) genomes encode several auxiliary proteins that have increasingly shown their importance in the virus-host relationship. One of these proteins, Vpx, is unique to the HIV-2/SIVsm lineage and is critical for viral replication in macrophages. The functional basis for this requirement, as well as the Vpx mode of action, has remained unexplained, and it is all the more enigmatic that HIV type 1 (HIV-1), which has no Vpx counterpart, can infect macrophages. Here, we underscore DCAF1 as a critical host effector of Vpx in its ability to mediate infection and long-term replication of HIV-2 in human macrophages. Vpx assembles with the CUL4A-DDB1 ubiquitin ligase through DCAF1 recruitment. Precluding Vpx present in the incoming virions from recruiting DCAF1 in target macrophages leads to a postentry block characterized by defective accumulation of HIV-2 reverse transcripts. In addition, Vpx from SIVsm functionally complements Vpx-defective HIV-2 in a DCAF1-binding-dependent manner. Altogether, our data point to a mechanism in which Vpx diverts the Cul4A-DDB1(DCAF1) ligase to inactivate an evolutionarily conserved factor, which restricts macrophage infection by HIV-2 and closely related simian viruses.
Collapse
|
7
|
Hsp40 facilitates nuclear import of the human immunodeficiency virus type 2 Vpx-mediated preintegration complex. J Virol 2007; 82:1229-37. [PMID: 18032501 DOI: 10.1128/jvi.00540-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) Vpx is required for nuclear translocation of the viral preintegration complex (PIC) in quiescent cells. In order to decipher the mechanism of action of Vpx, a cDNA library was screened with the yeast two-hybrid assay, resulting in the identification of heat shock protein 40, Hsp40/DnaJB6, as a Vpx-interactive protein. Interaction with Vpx was confirmed by glutathione S-transferase (GST) pull-down and coimmunoprecipitation assays. Overexpression of Hsp40/DnaJB6 enhanced Vpx nuclear import, whereas overexpression of a nuclear localization mutant of Hsp40/DnaJB6 (H31Q) or down-regulation of Hsp40/DnaJB6 by small interfering RNA (siRNA) reduced the nuclear import of Vpx. Hsp40/DnaJB6 competed with the Pr55(Gag) precursor protein for the binding of Vpx and incorporation into virus-like particles. Overexpression of Hsp40/DnaJB6 promoted viral PIC nuclear import, whereas siRNA down-regulation of Hsp40/DnaJB6 inhibited PIC nuclear import. These results demonstrate a role for Hsp40/DnaJB6 in the regulation of HIV-2 PIC nuclear transport.
Collapse
|
8
|
Mahnke LA, Belshan M, Ratner L. Analysis of HIV-2 Vpx by modeling and insertional mutagenesis. Virology 2006; 348:165-74. [PMID: 16457868 DOI: 10.1016/j.virol.2005.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/22/2005] [Accepted: 12/09/2005] [Indexed: 11/27/2022]
Abstract
Vpx facilitates HIV-2 nuclear localization by a poorly understood mechanism. We have compared Vpx to an NMR structure HIV-1 Vpr in a central helical domain and probed regions of Vpx by insertional mutagenesis. A predicted loop between helices two and three appears to be unique, overlapping with a known novel nuclear localization signal. Overall, Vpx was found to be surprisingly flexible, tolerating a series of large insertions. We found that insertion within the polyproline-containing C-terminus destabilizes nuclear localization, whereas mutating a second helix in the central domain disrupts viral packaging. Other insertional mutants in the predicted loop and in a linker region between the central domain and the C-terminus may be useful as sites of intramolecular tags as they could be packaged adequately and retained preintegration complex associated integration activity in a serum starvation assay. An unexpected result was found within a previously defined nuclear localization motif near aa 71. This mutant retained robust nuclear localization in a GFP fusion assay and was competent for preintegration complex associated nuclear import. In summary, we have modeled helical content in Vpx and assessed potential sites of intramolecular tags which may prove useful for protein-protein interactions studies.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Nucleus/chemistry
- Gene Products, vpr/chemistry
- Genes, Reporter
- Green Fluorescent Proteins/analysis
- HIV-2/chemistry
- HIV-2/genetics
- HIV-2/physiology
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nuclear Magnetic Resonance, Biomolecular
- Protein Structure, Secondary
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Protein Transport
- Sequence Alignment
- Viral Regulatory and Accessory Proteins/analysis
- Viral Regulatory and Accessory Proteins/chemistry
- Viral Regulatory and Accessory Proteins/genetics
- Viral Regulatory and Accessory Proteins/physiology
- Virus Assembly/genetics
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Lisa A Mahnke
- Department of Medicine, Divisions of Oncology and Infections Diseases, Washington University School of Medicine, PO Box 8069, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
9
|
Belshan M, Mahnke LA, Ratner L. Conserved amino acids of the human immunodeficiency virus type 2 Vpx nuclear localization signal are critical for nuclear targeting of the viral preintegration complex in non-dividing cells. Virology 2005; 346:118-26. [PMID: 16325220 DOI: 10.1016/j.virol.2005.10.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/29/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
The HIV-2 viral accessory protein Vpx is related to, but distinct from the Vpr protein of HIV-1. Vpx is packaged into virions and as a component of the viral preintegration complex (PIC) is required for efficient virus replication in non-dividing cells. We have previously reported that the minimal transferable region of Vpx that contained karyophilic properties was aa 65 to 72. Analysis of Vpx sequences from various HIV-2/SIV strains reveals that this region contains highly conserved amino acids, including two basic residues (K68, R70) and three tyrosines (Y66, Y69, Y71). Here, we demonstrate that mutation of the basic or tyrosine residues abolishes PIC nuclear import in arrested cells as assessed by PCR detection of viral integration. Examination of cell-free virus by Western blot indicated that all mutant proteins were incorporated into virions, suggesting that the lack of replication in arrested cells was not due to a loss of Vpx in target cells. Together, these studies map critical residues of the Vpx nuclear localization signal that are required for efficient infection of non-dividing cells.
Collapse
Affiliation(s)
- Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | | | | |
Collapse
|
10
|
Ueno F, Shiota H, Miyaura M, Yoshida A, Sakurai A, Tatsuki J, Koyama AH, Akari H, Adachi A, Fujita M. Vpx and Vpr proteins of HIV-2 up-regulate the viral infectivity by a distinct mechanism in lymphocytic cells. Microbes Infect 2003; 5:387-95. [PMID: 12737994 DOI: 10.1016/s1286-4579(03)00042-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutants of human immunodeficiency virus type 2 (HIV-2) carrying a frame-shift mutation in vpx, vpr, and in both genes were monitored for their growth potentials in a newly established lymphocytic cell line, HSC-F. Worthy of note, the replication of a vpx single mutant, but not vpr, was severely impaired in these cells, and that of a vpx-vpr double mutant was more damaged. Defective replication sites of the vpx single and vpx-vpr double mutants were demonstrated to be mapped, respectively, to the nuclear import of viral genome, and to both, this process and the virus assembly/release stage. While the mutational effect of vpr was small, the replication efficiency in one cycle of the vpx mutant relative to that of wild-type virus was estimated to be 10%. The growth phenotypes of the vpx, vpr, and vpx-vpr mutant viruses in HSC-F cells were essentially repeated in primary human lymphocytes. In primary human macrophages, whereas the vpx and vpx-vpr mutants did not grow at all, the vpr mutant grew equally as well as the wild-type virus. These results strongly suggested that Vpx is critical for up-regulation of HIV-2 replication in natural target cells by enhancing the genome nuclear import, and that Vpr promotes HIV-2 replication somewhat, at least in lymphocytic cells, at a very late replication phase.
Collapse
Affiliation(s)
- Fumiko Ueno
- Department of Ophthalmology and Visual Neuroscience, The University of Tokushima School of Medicine, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jin L, Zhou Y, Ratner L. HIV type 2 Vpx interaction with Gag and incorporation into virus-like particles. AIDS Res Hum Retroviruses 2001; 17:105-11. [PMID: 11177390 DOI: 10.1089/08892220150217193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The domain of HIV-2 Vpx previously shown to be important for virion incorporation has been mapped to residues 73--89. Mutational analysis of this domain was employed to further define the sequences important for incorporation into virus-like particles, using a vaccinia virus expression system. Deletion of residues 73--89 did not abrogate Vpx packaging, but substitution with alanines markedly reduced incorporation into virus-like particles. Moreover, alanine substitution also disrupted Vpx interaction with Gag, as demonstrated with glutathione S-transferase fusion proteins and the yeast two-hybrid system.
Collapse
Affiliation(s)
- L Jin
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
12
|
Pancio HA, Vander Heyden N, Kosuri K, Cresswell P, Ratner L. Interaction of human immunodeficiency virus type 2 Vpx and invariant chain. J Virol 2000; 74:6168-72. [PMID: 10846101 PMCID: PMC112116 DOI: 10.1128/jvi.74.13.6168-6172.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vpx is a virion-associated protein of human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency viruses. The yeast two-hybrid system was used to identify invariant chain (Ii) as a cellular protein that interacts with HIV-2 Vpx. Vpx-Ii interaction was confirmed in cell-free reactions using bacterially expressed glutathione S-transferase fusion proteins and by coimmunoprecipitation in transfected and infected cells. In chronically infected cells expressing Vpx, Ii levels were markedly decreased, presumably due to enhanced degradation. These findings suggest that Vpx may disrupt major histocompatibility complex class II antigen presentation.
Collapse
Affiliation(s)
- H A Pancio
- Department of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
13
|
Pancio HA, Vander Heyden N, Ratner L. The C-terminal proline-rich tail of human immunodeficiency virus type 2 Vpx is necessary for nuclear localization of the viral preintegration complex in nondividing cells. J Virol 2000; 74:6162-7. [PMID: 10846100 PMCID: PMC112115 DOI: 10.1128/jvi.74.13.6162-6167.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2), like other lentiviruses, is capable of infecting nondividing T cells and macrophages. The present work shows that in HIV-2-infected cells, Vpx is necessary for efficient nuclear import of the preintegration complex. In agreement with this finding, the subcellular localization of a GFP-Vpx fusion protein was found to be predominantly nuclear. However, deletion of the proline-rich C-terminal 11 residues of Vpx resulted in a shift of the fusion protein to the cytoplasm. Furthermore, the same deletion in the context of the provirus resulted in a decrease in nuclear import of the preintegration complex and attenuated replication in macrophages.
Collapse
Affiliation(s)
- H A Pancio
- Departments of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
14
|
Campbell BJ, Hirsch VM. Vpr of simian immunodeficiency virus of African green monkeys is required for replication in macaque macrophages and lymphocytes. J Virol 1997; 71:5593-602. [PMID: 9188633 PMCID: PMC191801 DOI: 10.1128/jvi.71.7.5593-5602.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.
Collapse
Affiliation(s)
- B J Campbell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH Twinbrook II Facility, Rockville, Maryland 20852, USA
| | | |
Collapse
|
15
|
Selig L, Benichou S, Rogel ME, Wu LI, Vodicka MA, Sire J, Benarous R, Emerman M. Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. J Virol 1997; 71:4842-6. [PMID: 9151883 PMCID: PMC191711 DOI: 10.1128/jvi.71.6.4842-4846.1997] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Vpr protein encoded by human immunodeficiency virus type 1 (HIV-1) is important for growth of virus in macrophages and prevents infected cells from passing into mitosis (G2 arrest). The cellular target for these functions is not known, but Vpr of HIV-1 and the related Vpr from simian immunodeficiency virus of sooty mangabeys (SIV(SM)) bind the DNA repair enzyme UNG, while the Vpx protein of SIV(SM) does not. Nonetheless, a mutational analysis of Vpr showed that binding to UNG is neither necessary nor sufficient for the effect of Vpr on the cell cycle.
Collapse
Affiliation(s)
- L Selig
- Laboratoire de Génétique Moléculaire des Interactions Protéiques, INSERM U332, ICGM, Université Paris V, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Macreadie IG, Arunagiri CK, Hewish DR, White JF, Azad AA. Extracellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death. Mol Microbiol 1996; 19:1185-92. [PMID: 8730861 DOI: 10.1111/j.1365-2958.1996.tb02464.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vpr is a virion-associated protein of human immunodeficiency virus type 1 (HIV-1) whose function in acquired immune deficiency syndrome (AIDS) has been uncertain. We previously employed yeast as a model to examine the effects of Vpr on basic cellular functions; intracellular Vpr was shown to cause cell-growth arrest and structural defects, and these effects were caused by a region of Vpr containing the sequence HFRIGCRHSRIG. Here we show that peptides containing the H(S/F)RIG amino acid sequence motif cause death when added externally to a variety of yeast including Saccharomyces cerevisiae, Kluyveromyces lactis, Candida glabrata, Candida albicans and Schizosaccharomyces pombe. Such peptides rapidly entered the cell from the time of addition, resulting in cell death. Elevated levels of ions, particularly magnesium and calcium ions, abrogated the cytotoxic effect by preventing the Vpr peptides from entering the cells. Extracellular Vpr found in the serum, or breakdown products of extracellular Vpr, may have similar effects to the Vpr peptides described here and could explain the death of uninfected bystander cells during AIDS.
Collapse
Affiliation(s)
- I G Macreadie
- Biomolecular Research Institute, Division of Biomolecular Engineering, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
17
|
Macreadie IG, Castelli LA, Hewish DR, Kirkpatrick A, Ward AC, Azad AA. A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects. Proc Natl Acad Sci U S A 1995; 92:2770-4. [PMID: 7708721 PMCID: PMC42300 DOI: 10.1073/pnas.92.7.2770] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vpr is a virion-associated protein of human immunodeficiency type 1 (HIV-1) whose function in acquired immunodeficiency syndrome (AIDS) has been uncertain. Employing the yeast Saccharomyces cerevisiae as a model to examine the effects of HIV-1 auxiliary proteins on basic cellular functions, we found that the vpr gene caused cell growth arrest and structural defects indicated by osmotic sensitivity and gross cell enlargement. Production of various domains by gene expression showed that this effect arose from within the carboxyl-terminal third of the Vpr protein and implicated the sequence HFRIGCRHSRIG, containing two H(S/F)RIG motifs. Electroporation with a series of peptides containing these motifs caused structural defects in yeast that resulted in osmotic sensitivity. A protein with functions relating to the yeast cytoskeleton, Sac1p [Cleves, A. E., Novick, P.J. & Bankaitis, V.A. (1989) J. Cell Biol. 109, 2939-2950], shows sequence similarity to Vpr, and Vpr's effect in yeast may be to disrupt normal Sac1p functions. The Sac1p equivalent has not yet been described in mammalian cells, but in rhabdomyosarcoma and osteosarcoma cell lines Vpr also caused gross cell enlargement and replication arrest [Levy, D.N., Fernandes, L.S., Williams, W.V. & Weiner, D.B. (1993) Cell 72, 541-550]. We note that there is a correlation between the region containing the H(S/F)RIG motifs and the pathogenicity of primate lentiviruses and we suggest that the function of Vpr may be to bring about cell growth arrest and/or cytoskeletal changes as an early step in HIV-1 infection.
Collapse
Affiliation(s)
- I G Macreadie
- Biomolecular Research Institute, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- J C Kappes
- Department of Medicine, University of Alabama at Birmingham 35294, USA
| |
Collapse
|
19
|
Persidsky Y, Liska V, Huss T, Gendrault JL, Venet A, Muchmore E, Traincard F, Kirn A, Aubertin AM. Presence of virion protein x (Vpx) of simian immunodeficiency virus SIVmac 251 in target cells in vivo. J Med Primatol 1995; 24:35-42. [PMID: 7563009 DOI: 10.1111/j.1600-0684.1995.tb00142.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Localization of virion-associated protein x (Vpx) of SIVmac 251 was studied in lymph nodes and liver of six SIVmac-infected monkeys. Vpx was found associated with the network of follicular dendritic cells and macrophages in lymph nodes and/or livers from five out of six animals by immunohistochemistry. Although the humoral response to Vpx occurs in only 50% of the animals, the presence of Vpx in target cell or antibodies to Vpx in all the monkeys studied, suggests that Vpx may be necessary for viral replication in vivo.
Collapse
Affiliation(s)
- Y Persidsky
- Unité INSERM 74, Institut de Virologie de la Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kawamura M, Sakai H, Adachi A. Human immunodeficiency virus Vpx is required for the early phase of replication in peripheral blood mononuclear cells. Microbiol Immunol 1994; 38:871-8. [PMID: 7898386 DOI: 10.1111/j.1348-0421.1994.tb02140.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Functional importance of Vpx protein of human immunodeficiency virus type 2 was evaluated in various types of cells. In 8 lymphocytic or monocytic cell lines tested, vpx mutant virus grew as well as wild-type virus. Only in primary peripheral blood mononuclear cell cultures, severely retarded growth of mutant virus was observed. No replication of vpx-minus virus was detected in primary macrophage cells. A highly sensitive single-round replication assay system was used to determine the defective replication phase in primary mononuclear cells of vpx mutant virus. In all cell lines examined, vpx mutant displayed no abnormality. In contrast, the vpx mutant was demonstrated to be defective at an early stage of the infection cycle in primary cell cultures. No evidence of a replication-defect at a late phase in primary cells of the vpx mutant was obtained by a transfection-coculture method. These results indicate that the virion-associated Vpx protein is essential for early viral replication process in natural target cells such as primary macrophages.
Collapse
Affiliation(s)
- M Kawamura
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
21
|
Lu YL, Spearman P, Ratner L. Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 1993; 67:6542-50. [PMID: 8411357 PMCID: PMC238091 DOI: 10.1128/jvi.67.11.6542-6550.1993] [Citation(s) in RCA: 232] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The subcellular localization of human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) was examined by subcellular fractionation. In HIV-1-infected peripheral blood mononuclear cells, Vpr was found in the nuclear and membrane fractions as well as the conditioned medium. Expression of Vpr without other HIV-1 proteins, in two different eukaryotic expression systems, demonstrated a predominant localization of Vpr in the nuclear matrix and chromatin extract fractions. Deletion of the carboxyl-terminal 19-amino-acid arginine-rich sequence impaired Vpr nuclear localization. Indirect immunofluorescence confirmed the nuclear localization of Vpr and also indicated a perinuclear location. Expression of Vpr alone did not result in export of the protein from the cell, but when coexpressed with the Gag protein, Vpr was exported and found in virus-like particles. A truncated Gag protein, missing the p6 sequence and a portion of the p9 sequence, was incapable of exporting Vpr from the cell. Regulation of Vpr localization may be important in the influence of this protein on virus replication.
Collapse
Affiliation(s)
- Y L Lu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
22
|
|
23
|
Yu X, Matsuda Z, Yu QC, Lee TH, Essex M. Vpx of simian immunodeficiency virus is localized primarily outside the virus core in mature virions. J Virol 1993; 67:4386-90. [PMID: 8510227 PMCID: PMC237811 DOI: 10.1128/jvi.67.7.4386-4390.1993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human immunodeficiency virus type 2 and the related simian immunodeficiency virus (SIV) contain a unique regulatory gene, vpx. The Vpx protein is packaged in mature virions and is required for efficient viral replication in peripheral blood lymphocytes and macrophages. To study the localization of Vpx in mature virions, conical and bar-shaped core structures of SIV from macaques (SIVmac) were purified. The SIVmac core has a density of approximately 1.25 g/cm3, compared with 1.16 g/cm3 for an intact virion. The relative proportions of major capsid protein (p27) and reverse transcriptase activity were similar for intact virions and core structures. The majority of matrix protein (p14) was removed from the purified core structure, suggesting its association with the viral membrane. Similarly, most of the Vpx protein was absent from the purified core structure. This result suggests that as with the matrix protein, the majority of Vpx proteins are localized outside the virus core. The localization of Vpx suggests that it may be involved in virus entry such as penetration or uncoating.
Collapse
Affiliation(s)
- X Yu
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
24
|
Balotta C, Lusso P, Crowley R, Gallo RC, Franchini G. Antisense phosphorothioate oligodeoxynucleotides targeted to the vpr gene inhibit human immunodeficiency virus type 1 replication in primary human macrophages. J Virol 1993; 67:4409-14. [PMID: 8510229 PMCID: PMC237816 DOI: 10.1128/jvi.67.7.4409-4414.1993] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The replication of human immunodeficiency viruses (HIV) in human macrophages is influenced by genetic determinants which have been mapped predominantly to the viral envelope. However, in HIV-2, the vpr gene has also been suggested as an important modulator of viral expression in human macrophages. We synthesized five antisense phosphorothioate oligodeoxynucleotides complementary to the vpr mRNA of HIV-1Ba-L, a highly macrophage-tropic viral strain, and measured their effect on HIV-1Ba-L replication in primary human macrophages. All of the oligodeoxynucleotides displayed some level of non-sequence-specific inhibition of viral replication; however, only the antisense one had an additional effect on viral production in primary macrophages. Of the five antisense oligodeoxynucleotides tested, only one did not show any additional effect on viral production, whereas all the others inhibited viral replication to a similar degree (70 to 100%). Variation in the degree of inhibition was observed by using five different donors of human primary macrophages. The phosphorothioate oligonucleotides, targeted to the initiating methionine of the Vpr protein, had an inhibitory effect at both 20 and 10 microM only when the size was increased from 24 to 27 bases. Thus, HIV-1 replication in human macrophages is modulated by the expression of the vpr gene, and it is conceivable that vpr antisense oligodeoxynucleotides could be used in combination with antisense oligodeoxynucleotides against other HIV-1 regulatory genes to better control viral expression in human macrophages.
Collapse
Affiliation(s)
- C Balotta
- Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
25
|
Matsuda Z, Yu X, Yu QC, Lee TH, Essex M. A virion-specific inhibitory molecule with therapeutic potential for human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1993; 90:3544-8. [PMID: 7682710 PMCID: PMC46337 DOI: 10.1073/pnas.90.8.3544] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A potential new approach for gene therapy against human immunodeficiency virus type 1 (HIV-1) infection is the design of a nonstructural gene-based virion-specific inhibitory molecule that is packaged with virus to destroy its infectivity. We tested this approach for HIV-1 by using Vpx, a virion-associated protein of HIV-2 and simian immunodeficiency virus. Vpx was incorporated into HIV-1 virions and the resulting cell-free virus lost infectivity in CD4+ human T cells. This demonstrates the therapeutic potential of an accessory gene-based virion-specific inhibitory molecule. Vpx and its derivatives can be regarded as a new class of anti-HIV-1 molecule.
Collapse
Affiliation(s)
- Z Matsuda
- Department of Cancer Biology, Harvard School of Public Health, Boston, MA 02115
| | | | | | | | | |
Collapse
|
26
|
Abstract
Many protein families are common to all cellular organisms, indicating that many genes have ancient origins. Genetic variation is mostly attributed to processes such as mutation, duplication, and rearrangement of ancient modules. Thus it is widely assumed that much of present-day genetic diversity can be traced by common ancestry to a molecular "big bang." A rarely considered alternative is that proteins may arise continuously de novo. One mechanism of generating different coding sequences is by "overprinting," in which an existing nucleotide sequence is translated de novo in a different reading frame or from noncoding open reading frames. The clearest evidence for overprinting is provided when the original gene function is retained, as in overlapping genes. Analysis of their phylogenies indicates which are the original genes and which are their informationally novel partners. We report here the phylogenetic relationships of overlapping coding sequences from steroid-related receptor genes and from tymovirus, luteovirus, and lentivirus genomes. For each pair of overlapping coding sequences, one is confined to a single lineage, whereas the other is more widespread. This suggests that the phylogenetically restricted coding sequence arose only in the progenitor of that lineage by translating an out-of-frame sequence to yield the new polypeptide. The production of novel exons by alternative splicing in thyroid receptor and lentivirus genes suggests that introns can be a valuable evolutionary source for overprinting. New genes and their products may drive major evolutionary changes.
Collapse
Affiliation(s)
- P K Keese
- Commonwealth Scientific and Industrial Organisation, Division of Plant Industry, Australian National University, Canberra
| | | |
Collapse
|
27
|
Desrosiers RC. HIV with multiple gene deletions as a live attenuated vaccine for AIDS. AIDS Res Hum Retroviruses 1992; 8:411-21. [PMID: 1571200 DOI: 10.1089/aid.1992.8.411] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most viral vaccines currently in use in humans are live attenuated strains of virus that lack pathogenic potential. In general, such live attenuated vaccines induce the strongest longest-lasting immunity. Live attenuated strains of human immunodeficiency virus type 1 (HIV-1) have not been previously considered as vaccines for acquired immunodeficiency syndrome (AIDS) because of an inability to envision how their safety could be adequately assured. This report describes a means for making live, nonpathogenic strains of SIVmac and HIV-1 that cannot revert to a virulent form and a stepwise scheme for demonstrating their safety. Replication-competent, multiply deleted derivatives that are currently being tested are missing combinations of auxiliary genes (nef, vpr, vif, vpx, vpu) and certain control elements in the negative regulatory element (NRE) of the long terminal repeat (LTR). Since these genomic regions are in large part conserved among the SIVs and HIVs, they are likely to be important for the virus life cycle in vivo. Consistent with this line of reasoning, a replication-competent nef deletion mutant of SIVmac apparently has lost most or all of its pathogenic potential, yet it still induces strong immune responses. Multiply deleted derivatives of SIVmac and HIV-1 will have to be extensively tested in animal models prior to moving a promising HIV-1 candidate to initial trials in high-risk human volunteers. Definitive evidence for safety and general acceptance for this approach can only evolve gradually over a prolonged period of time.
Collapse
Affiliation(s)
- R C Desrosiers
- New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772-9102
| |
Collapse
|
28
|
Niederman TM, Ratner L. Functional analysis of HIV1 and SIV Nef proteins. RESEARCH IN VIROLOGY 1992; 143:43-6. [PMID: 1565854 DOI: 10.1016/s0923-2516(06)80077-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- T M Niederman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
29
|
|
30
|
Yu XF, Yu QC, Essex M, Lee TH. The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J Virol 1991; 65:5088-91. [PMID: 1714525 PMCID: PMC248975 DOI: 10.1128/jvi.65.9.5088-5091.1991] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
vpx is a unique open reading frame found in simian immunodeficiency virus (SIV) and human immunodeficiency virus type 2 (HIV-2) but not in HIV-1. It encodes a 12- to 16-kDa virion-associated protein. Although vpx is dispensable for viral replication in several established human lymphocyte cell lines, there is no consensus regarding whether this gene is required for efficient viral replication in freshly isolated lymphocytes. We report here that the vpx mutant of SIVmac exhibits different degrees of impairment from wild-type SIVmac in freshly isolated lymphocytes. This defect is more pronounced in macrophages from the same donors. Our findings suggest that vpx is required for efficient viral replication in fresh lymphocytes and macrophages.
Collapse
Affiliation(s)
- X F Yu
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
31
|
Kappes JC, Conway JA, Lee SW, Shaw GM, Hahn BH. Human immunodeficiency virus type 2 vpx protein augments viral infectivity. Virology 1991; 184:197-209. [PMID: 1714662 DOI: 10.1016/0042-6822(91)90836-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The genomes of HIV and SIV are complex and contain several accessory genes which modulate viral replication and pathogenicity. One of these genes, vpx, is unique to the HIV-2/SIV group of viruses and encodes a virion-associated protein of unknown function. To examine the function of vpx, we constructed a vpx-deficient HIV-2 proviral clone and characterized its in vitro biological properties. Following transfection into immortalized T-cell lines, vpx-mutant HIV-2 was fully replication competent and exhibited growth kinetics and cytopathic properties equivalent to wild-type HIV-2. In addition, vpx-deficient virions were indistinguishable from wild-type HIV-2 in ultrastructure, composition of major structural proteins, and reverse transcriptase activity. In PHA-stimulated normal peripheral blood mononuclear cells (PBMCs), however, vpx-deficient virus replicated at substantially lower titers and required a 100- to 1000-fold higher inoculum to establish a productive infection. This defect was localized to early events in the viral life cycle since vpx-deficient virus exhibited a 5- to 10-fold reduction in initial (single cycle) viral DNA synthesis following acute infection of primary PBMCs. Paradoxically, in long-term (9-23 months) cultures of immortalized T-cells (SupT1) continuous high level replication of vpx-deficient, but not wild-type, virus was observed, indicating less efficient viral spread and cell killing and a more attenuated phenotype of vpx-deficient HIV-2. Taken together, these results demonstrate that vpx is required for the production of fully infectious and cytopathic HIV-2 virions and that it functions early in the viral life cycle by facilitating viral entry and/or reverse transcription. The pronounced replicative defect of vpx-deficient HIV-2 in primary PBMCs but not in short-term cultures of immortalized T-cell lines emphasizes the need to characterize the properties of nonessential HIV accessory gene products in natural target cells.
Collapse
Affiliation(s)
- J C Kappes
- Department of Medicine, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
32
|
Marcon L, Michaels F, Hattori N, Fargnoli K, Gallo RC, Franchini G. Dispensable role of the human immunodeficiency virus type 2 Vpx protein in viral replication. J Virol 1991; 65:3938-42. [PMID: 2041103 PMCID: PMC241433 DOI: 10.1128/jvi.65.7.3938-3942.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) is similar in genetic organization to HIV-1 but contains a unique gene (vpx) that encodes a 16-kDa protein. A replication-competent molecular clone of HIV-2 (HIV-2sbl/isy) that infects human primary cells in vitro and rhesus monkeys was used to generate three mutations in the vpx gene. In the first mutant, the vpx open reading frame was truncated at amino acid 20; the second mutant was tailored to eliminate the proline-rich carboxyl terminus of the protein; and the third mutant was obtained by addition of four amino acids (KDEL) to the carboxyl terminus of the protein to provide a retention signal in the endoplasmic reticulum. The viral infection kinetics of the three mutant viruses and isogeneic HIV-2sbl/isy in the SupT1 cell line were similar. Slight impairment in the early phases of viral replication was observed during infection of primary human peripheral blood mononuclear cells with the vpx mutant viruses. All of the vpx mutant viruses readily infected macrophages, indicating that vpx expression is dispensable for HIV-2 infection and replication in human macrophages.
Collapse
Affiliation(s)
- L Marcon
- Laboratory of Tumor Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
33
|
Paine E, Garcia J, Philpott TC, Shaw G, Ratner L. Limited sequence variation in human T-lymphotropic virus type 1 isolates from North American and African patients. Virology 1991; 182:111-23. [PMID: 2024459 DOI: 10.1016/0042-6822(91)90654-t] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nucleotide sequences were determined from the env genes of three HTLV-I clones derived from two North American patients and one African patient with adult T-cell leukemia/lymphoma (ATLL). In addition, sequences from the pX region, between env and the 3'LTR, were determined from one of these isolates. These data were compared to sequences derived from HTLV-I isolates of two Japanese ATLL patients, a Japanese patient with HTLV-I-associated myelopathy or tropical spastic paraparesis (HAM/TSP) and a Caribbean ATLL patient. Nucleotide sequence variation was found to be less than 6% in coding and noncoding regions. Predicted amino acid sequences varied between 0.6 and 1.8% in the envelope, 0-3.7% in rex, 0.8-2.5% in the tax gene product, and 3-14.0% in the pX-I open reading frame. Comparisons of the predicted amino acid sequences of the surface envelope protein (SU-gp46) suggest that the variation between isolates of different geographical origins is greater than that between isolates obtained from the same region of the world.
Collapse
Affiliation(s)
- E Paine
- Department of Medicine, Washington University, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
34
|
Ratner L, Vander Heyden N, Garcia J, Polinsky M, Westervelt P, Becich M. Formation of noninfectious HIV-1 virus particles lacking a full-length envelope protein. AIDS Res Hum Retroviruses 1991; 7:287-94. [PMID: 1829617 DOI: 10.1089/aid.1991.7.287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Deletions were constructed within a functional human immunodeficiency virus type 1 (HIV-1) proviral clone in order to assess the role of the envelope protein in virus particle formation. A graded exonuclease deletion technique was used to produce 12 clones with deletions of 175-308 nucleotides in the first conserved domain of envelope. This included 9 clones with frameshift deletions and 3 clones with in-frame deletions. Isogenic pairs of env deletion clones were produced with or without an additional deletion in the vif and vpr genes. Upon transfection, all clones produced virus particles, as determined by p24 antigen, reverse transcriptase, and sucrose gradient assays with conditioned media. Virus particles produced from clones with deletions in env or vif and vpr, or both regions, banded on sucrose gradients with a mobility similar to that of virus produced by the parental clone. The p24 gag capsid protein in the particles was resistant to trypsin, but the particles were disrupted by treatment with Triton X-100, suggesting the presence of a surrounding lipid bilayer. Furthermore, electron microscopic studies revealed both mature and immature virus particles derived from COS cells transfected with the env deletion clones. Cocultivation experiments with lymphoid cells and cells transfected with each of the env deletion clones demonstrated that the virus particles were noninfectious.
Collapse
Affiliation(s)
- L Ratner
- Department of Medicine, Washington University, St. Louis, MO 63110
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- E Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854
| | | |
Collapse
|
36
|
Dordick JS. Protein engineering and site-directed mutagenesis. Patents and literature. Appl Biochem Biotechnol 1990; 26:107-13. [PMID: 2268144 DOI: 10.1007/bf02798396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J S Dordick
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, 52242
| |
Collapse
|
37
|
Abstract
The last decade has witnessed a new chapter in the history of retrovirology. As of now, four human retroviruses have been identified and molecularly characterized. They are associated with a wide spectrum of human diseases including cancer, immunodeficiency and neurological disorders. By virtue of their clinical relevance, their novel genes and regulatory mechanisms these viruses have become the focal point of research in retrovirology. The study of these viruses is of fundamental importance in understanding the mechanisms leading to transformation of human cells and distortion of the immunological state.
Collapse
Affiliation(s)
- P Chandra
- Laboratory of Molecular Biology, (ZBC), University Medical School, Frankfurt, FRG
| | | | | |
Collapse
|