1
|
Srivastava S, Verhagen A, Sasmal A, Wasik BR, Diaz S, Yu H, Bensing BA, Khan N, Khedri Z, Secrest P, Sullam P, Varki N, Chen X, Parrish CR, Varki A. Development and applications of sialoglycan-recognizing probes (SGRPs) with defined specificities: exploring the dynamic mammalian sialoglycome. Glycobiology 2022; 32:1116-1136. [PMID: 35926090 PMCID: PMC9680117 DOI: 10.1093/glycob/cwac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023] Open
Abstract
Glycans that are abundantly displayed on vertebrate cell surface and secreted molecules are often capped with terminal sialic acids (Sias). These diverse 9-carbon-backbone monosaccharides are involved in numerous intrinsic biological processes. They also interact with commensals and pathogens, while undergoing dynamic changes in time and space, often influenced by environmental conditions. However, most of this sialoglycan complexity and variation remains poorly characterized by conventional techniques, which often tend to destroy or overlook crucial aspects of Sia diversity and/or fail to elucidate native structures in biological systems, i.e. in the intact sialome. To date, in situ detection and analysis of sialoglycans has largely relied on the use of plant lectins, sialidases, or antibodies, whose preferences (with certain exceptions) are limited and/or uncertain. We took advantage of naturally evolved microbial molecules (bacterial adhesins, toxin subunits, and viral hemagglutinin-esterases) that recognize sialoglycans with defined specificity to delineate 9 classes of sialoglycan recognizing probes (SGRPs: SGRP1-SGRP9) that can be used to explore mammalian sialome changes in a simple and systematic manner, using techniques common in most laboratories. SGRP candidates with specificity defined by sialoglycan microarray studies were engineered as tagged probes, each with a corresponding nonbinding mutant probe as a simple and reliable negative control. The optimized panel of SGRPs can be used in methods commonly available in most bioscience labs, such as ELISA, western blot, flow cytometry, and histochemistry. To demonstrate the utility of this approach, we provide examples of sialoglycome differences in tissues from C57BL/6 wild-type mice and human-like Cmah-/- mice.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Andrea Verhagen
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Aniruddha Sasmal
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Brian R Wasik
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sandra Diaz
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Hai Yu
- Department of Chemistry, University of California at Davis, Davis, CA, USA
| | - Barbara A Bensing
- Department of Medicine, University of California, San Francisco, CA, USA,VA Medical Center, San Francisco, CA, USA
| | - Naazneen Khan
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Zahra Khedri
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Patrick Secrest
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Paul Sullam
- Department of Medicine, University of California, San Francisco, CA, USA,VA Medical Center, San Francisco, CA, USA
| | - Nissi Varki
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, San Diego, CA, USA,Glycobiology Research and Training Center, University of California at San Diego, San Diego, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California at Davis, Davis, CA, USA
| | - Colin R Parrish
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ajit Varki
- Corresponding author: UCSD School of Medicine, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
2
|
Abstract
Historically part of the coronavirus (CoV) family, torovirus (ToV) was recently classified into the new family Tobaniviridae. While reverse genetics systems have been established for various CoVs, none exist for ToVs. Herein, we developed a reverse genetics system using an infectious full-length cDNA clone of bovine ToV (BToV) in a bacterial artificial chromosome (BAC). Recombinant BToV harboring genetic markers had the same phenotype as wild-type (wt) BToV. To generate two types of recombinant virus, the hemagglutinin-esterase (HE) gene was edited, as cell-adapted wtBToV generally loses full-length HE (HEf), resulting in soluble HE (HEs). First, recombinant viruses with HEf and HA-tagged HEf or HEs genes were rescued. These exhibited no significant differences in their effect on virus growth in HRT18 cells, suggesting that HE is not essential for viral replication in these cells. Thereafter, we generated recombinant virus (rEGFP), wherein HE was replaced by the enhanced green fluorescent protein (EGFP) gene. The rEGFP expressed EGFP in infected cells, but showed significantly lower viral growth compared to wtBToV. Moreover, the rEGFP readily deleted the EGFP gene after one passage. Interestingly, rEGFP variants with two mutations (C1442F and I3562T) in non-structural proteins (NSPs) that emerged during passages exhibited improved EGFP expression, EGFP gene retention, and viral replication. An rEGFP into which both mutations were introduced displayed a similar phenotype to these variants, suggesting that the mutations contributed to EGFP gene acceptance. The current findings provide new insights into BToV, and reverse genetics will help advance the current understanding of this neglected pathogen. Importance ToVs are diarrhea-causing pathogens detected in various species, including humans. Through the development of a BAC-based BToV, we introduced the first reverse genetics system for Tobaniviridae. Utilizing this system, recombinant BToVs with a full-length HE gene were generated. Remarkably, although clinical BToVs generally lose the HE gene after a few passages, some recombinant viruses generated in the current study retained the HE gene for up to 20 passages while accumulating mutations in NSPs, which suggested that these mutations may be involved in HE gene retention. The EGFP gene of recombinant viruses was unstable, but rEGFP into which two NSP mutations were introduced exhibited improved EGFP expression, gene retention, and viral replication. These data suggested the existence of an NSP-based acceptance or retention mechanism for exogenous RNA or HE genes. Recombinant BToVs and reverse genetics are powerful tools for understanding fundamental viral processes, infection pathogenesis, and BToV vaccine development.
Collapse
|
3
|
Bartak M, Słońska A, Bańbura MW, Cymerys J. SDAV, the Rat Coronavirus-How Much Do We Know about It in the Light of Potential Zoonoses. Viruses 2021; 13:1995. [PMID: 34696425 PMCID: PMC8537196 DOI: 10.3390/v13101995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Sialodacryoadenitis virus (SDAV) is known to be an etiological agent, causing infections in laboratory rats. Until now, its role has only been considered in studies on respiratory and salivary gland infections. The scant literature data, consisting mainly of papers from the last century, do not sufficiently address the topic of SDAV infections. The ongoing pandemic has demonstrated, once again, the role of the Coronaviridae family as extremely dangerous etiological agents of human zoonoses. The ability of coronaviruses to cross the species barrier and change to hosts commonly found in close proximity to humans highlights the need to characterize SDAV infections. The main host of the infection is the rat, as mentioned above. Rats inhabit large urban agglomerations, carrying a vast epidemic threat. Of the 2277 existing rodent species, 217 are reservoirs for 66 zoonotic diseases caused by viruses, bacteria, fungi, and protozoa. This review provides insight into the current state of knowledge of SDAV characteristics and its likely zoonotic potential.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.S.); (M.W.B.)
| | | | | | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.S.); (M.W.B.)
| |
Collapse
|
4
|
Ujike M, Taguchi F. Recent Progress in Torovirus Molecular Biology. Viruses 2021; 13:435. [PMID: 33800523 PMCID: PMC7998386 DOI: 10.3390/v13030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although it belonged to the Coronavirus (CoV) family historically. ToVs are associated with enteric diseases in animals and humans. In contrast to CoVs, which are recognised as pathogens of veterinary and medical importance, little attention has been paid to ToVs because their infections are usually asymptomatic or not severe; for a long time, only one equine ToV could be propagated in cultured cells. However, bovine ToVs, which predominantly cause diarrhoea in calves, have been detected worldwide, leading to economic losses. Porcine ToVs have also spread globally; although they have not caused serious economic losses, coinfections with other pathogens can exacerbate their symptoms. In addition, frequent inter- or intra-recombination among ToVs can increase pathogenesis or unpredicted host adaptation. These findings have highlighted the importance of ToVs as pathogens and the need for basic ToV research. Here, we review recent progress in the study of ToV molecular biology including reverse genetics, focusing on the similarities and differences between ToVs and CoVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Fumihiro Taguchi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
| |
Collapse
|
5
|
Qing E, Hantak M, Perlman S, Gallagher T. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. mBio 2020; 11:e02764-19. [PMID: 32047128 PMCID: PMC7018658 DOI: 10.1128/mbio.02764-19] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses (CoVs) are common human and animal pathogens that can transmit zoonotically and cause severe respiratory disease syndromes. CoV infection requires spike proteins, which bind viruses to host cell receptors and catalyze virus-cell membrane fusion. Several CoV strains have spike proteins with two receptor-binding domains, an S1A that engages host sialic acids and an S1B that recognizes host transmembrane proteins. As this bivalent binding may enable broad zoonotic CoV infection, we aimed to identify roles for each receptor in distinct infection stages. Focusing on two betacoronaviruses, murine JHM-CoV and human Middle East respiratory syndrome coronavirus (MERS-CoV), we found that virus particle binding to cells was mediated by sialic acids; however, the transmembrane protein receptors were required for a subsequent virus infection. These results favored a two-step process in which viruses first adhere to sialic acids and then require subsequent engagement with protein receptors during infectious cell entry. However, sialic acids sufficiently facilitated the later stages of virus spread through cell-cell membrane fusion, without requiring protein receptors. This virus spread in the absence of the prototype protein receptors was increased by adaptive S1A mutations. Overall, these findings reveal roles for sialic acids in virus-cell binding, viral spike protein-directed cell-cell fusion, and resultant spread of CoV infections.IMPORTANCE CoVs can transmit from animals to humans to cause serious disease. This zoonotic transmission uses spike proteins, which bind CoVs to cells with two receptor-binding domains. Here, we identified the roles for the two binding processes in the CoV infection process. Binding to sialic acids promoted infection and also supported the intercellular expansion of CoV infections through syncytial development. Adaptive mutations in the sialic acid-binding spike domains increased the intercellular expansion process. These findings raise the possibility that the lectin-like properties of many CoVs contribute to facile zoonotic transmission and intercellular spread within infected organisms.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Michael Hantak
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
6
|
Graepel KW, Lu X, Case JB, Sexton NR, Smith EC, Denison MR. Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations. mBio 2017; 8:e01503-17. [PMID: 29114026 PMCID: PMC5676041 DOI: 10.1128/mbio.01503-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
The coronavirus (CoV) RNA genome is the largest among the single-stranded positive-sense RNA viruses. CoVs encode a proofreading 3'-to-5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is responsible for CoV high-fidelity replication. Alanine substitution of ExoN catalytic residues [ExoN(-)] in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and murine hepatitis virus (MHV) disrupts ExoN activity, yielding viable mutant viruses with defective replication, up to 20-fold-decreased fidelity, and increased susceptibility to nucleoside analogues. To test the stability of the ExoN(-) genotype and phenotype, we passaged MHV-ExoN(-) 250 times in cultured cells (P250), in parallel with wild-type MHV (WT-MHV). Compared to MHV-ExoN(-) P3, MHV-ExoN(-) P250 demonstrated enhanced replication and increased competitive fitness without reversion at the ExoN(-) active site. Furthermore, MHV-ExoN(-) P250 was less susceptible than MHV-ExoN(-) P3 to multiple nucleoside analogues, suggesting that MHV-ExoN(-) was under selection for increased replication fidelity. We subsequently identified novel amino acid changes within the RNA-dependent RNA polymerase and nsp14 of MHV-ExoN(-) P250 that partially accounted for the reduced susceptibility to nucleoside analogues. Our results suggest that increased replication fidelity is selected in ExoN(-) CoVs and that there may be a significant barrier to ExoN(-) reversion. These results also support the hypothesis that high-fidelity replication is linked to CoV fitness and indicate that multiple replicase proteins could compensate for ExoN functions during replication.IMPORTANCE Uniquely among RNA viruses, CoVs encode a proofreading exoribonuclease (ExoN) in nsp14 that mediates high-fidelity RNA genome replication. Proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] either are nonviable or have significant defects in replication, RNA synthesis, fidelity, fitness, and virulence. In this study, we showed that ExoN(-) murine hepatitis virus can adapt during long-term passage for increased replication and fitness without reverting the ExoN-inactivating mutations. Passage-adapted ExoN(-) mutants also demonstrate increasing resistance to nucleoside analogues that is explained only partially by secondary mutations in nsp12 and nsp14. These data suggest that enhanced resistance to nucleoside analogues is mediated by the interplay of multiple replicase proteins and support the proposed link between CoV fidelity and fitness.
Collapse
Affiliation(s)
- Kevin W Graepel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James Brett Case
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicole R Sexton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Everett Clinton Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biology, the University of the South, Sewanee, Tennessee, USA
| | - Mark R Denison
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc Natl Acad Sci U S A 2017; 114:E8895-E8904. [PMID: 29073030 DOI: 10.1073/pnas.1706696114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the order Nidovirales express their structural protein ORFs from a nested set of 3' subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3' region, but some are in the 5' ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3' ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader-body junction sequences. Sg mRNAs encoding E', GP2, or ORF5a as their 5' ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses.
Collapse
|
8
|
Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A 2017; 114:E8508-E8517. [PMID: 28923942 DOI: 10.1073/pnas.1712592114] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus-Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.
Collapse
|
9
|
Cong Y, Verlhac P, Reggiori F. The Interaction between Nidovirales and Autophagy Components. Viruses 2017; 9:E182. [PMID: 28696396 PMCID: PMC5537674 DOI: 10.3390/v9070182] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a conserved intracellular catabolic pathway that allows cells to maintain homeostasis through the degradation of deleterious components via specialized double-membrane vesicles called autophagosomes. During the past decades, it has been revealed that numerous pathogens, including viruses, usurp autophagy in order to promote their propagation. Nidovirales are an order of enveloped viruses with large single-stranded positive RNA genomes. Four virus families (Arterividae, Coronaviridae, Mesoniviridae, and Roniviridae) are part of this order, which comprises several human and animal pathogens of medical and veterinary importance. In host cells, Nidovirales induce membrane rearrangements including autophagosome formation. The relevance and putative mechanism of autophagy usurpation, however, remain largely elusive. Here, we review the current knowledge about the possible interplay between Nidovirales and autophagy.
Collapse
Affiliation(s)
- Yingying Cong
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Pauline Verlhac
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
10
|
Irigoyen N, Firth AE, Jones JD, Chung BYW, Siddell SG, Brierley I. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling. PLoS Pathog 2016; 12:e1005473. [PMID: 26919232 PMCID: PMC4769073 DOI: 10.1371/journal.ppat.1005473] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 02/07/2023] Open
Abstract
Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.
Collapse
Affiliation(s)
- Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joshua D Jones
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Betty Y-W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Stuart G Siddell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J Virol 2014; 89:3076-92. [PMID: 25552712 DOI: 10.1128/jvi.02420-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCoV HKU24 as a separate species. ChRCoV HKU24 possessed genome features that resemble those of both Betacoronavirus 1 and murine coronavirus, being closer to Betacoronavirus 1 in most predicted proteins but closer to murine coronavirus by G+C content, the presence of a single nonstructural protein (NS4), and an absent transcription regulatory sequence for the envelope (E) protein. Its N-terminal domain (NTD) demonstrated higher sequence identity to the bovine coronavirus (BCoV) NTD than to the mouse hepatitis virus (MHV) NTD, with 3 of 4 critical sugar-binding residues in BCoV and 2 of 14 contact residues at the MHV NTD/murine CEACAM1a interface being conserved. Molecular clock analysis dated the time of the most recent common ancestor of ChRCoV HKU24, Betacoronavirus 1, and rabbit coronavirus HKU14 to about the year 1400. Cross-reactivities between other lineage A and B βCoVs and ChRCoV HKU24 nucleocapsid but not spike polypeptide were demonstrated. Using the spike polypeptide-based Western blot assay, we showed that only Norway rats and two oriental house rats from Guangzhou, China, were infected by ChRCoV HKU24. Other rats, including Norway rats from Hong Kong, possessed antibodies only against N protein and not against the spike polypeptide, suggesting infection by βCoVs different from ChRCoV HKU24. ChRCoV HKU24 may represent the murine origin of Betacoronavirus 1, and rodents are likely an important reservoir for ancestors of lineage A βCoVs. IMPORTANCE While bats and birds are hosts for ancestors of most coronaviruses (CoVs), lineage A βCoVs have never been found in these animals and the origin of Betacoronavirus lineage A remains obscure. We discovered a novel lineage A βCoV, China Rattus coronavirus HKU24 (ChRCoV HKU24), from Norway rats in China with a high seroprevalence. The unique genome features and phylogenetic analysis supported the suggestion that ChRCoV HKU24 represents a novel CoV species, occupying a deep branch at the root of members of Betacoronavirus 1 and being distinct from murine coronavirus. Nevertheless, ChRCoV HKU24 possessed genome characteristics that resemble those of both Betacoronavirus 1 and murine coronavirus. Our data suggest that ChRCoV HKU24 represents the murine origin of Betacoronavirus 1, with interspecies transmission from rodents to other mammals having occurred centuries ago, before the emergence of human coronavirus (HCoV) OC43 in the late 1800s. Rodents are likely an important reservoir for ancestors of lineage A βCoVs.
Collapse
|
12
|
Peng G, Xu L, Lin YL, Chen L, Pasquarella JR, Holmes KV, Li F. Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem 2012; 287:41931-8. [PMID: 23091051 PMCID: PMC3516740 DOI: 10.1074/jbc.m112.418210] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The spike protein N-terminal domains (NTDs) of bovine coronavirus (BCoV) and mouse hepatitis coronavirus (MHV) recognize sugar and protein receptors, respectively, despite their significant sequence homology. We recently determined the crystal structure of MHV NTD complexed with its protein receptor murine carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which surprisingly revealed a human galectin (galactose-binding lectin) fold in MHV NTD. Here, we have determined at 1.55 Å resolution the crystal structure of BCoV NTD, which also has the human galectin fold. Using mutagenesis, we have located the sugar-binding site in BCoV NTD, which overlaps with the galactose-binding site in human galectins. Using a glycan array screen, we have identified 5-N-acetyl-9-O-acetylneuraminic acid as the preferred sugar substrate for BCoV NTD. Subtle structural differences between BCoV and MHV NTDs, primarily involving different conformations of receptor-binding loops, explain why BCoV NTD does not bind CEACAM1 and why MHV NTD does not bind sugar. These results suggest a successful viral evolution strategy in which coronaviruses stole a galectin from hosts, incorporated it into their spike protein, and evolved it into viral receptor-binding domains with altered sugar specificity in contemporary BCoV or novel protein specificity in contemporary MHV.
Collapse
Affiliation(s)
- Guiqing Peng
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Guan BJ, Su YP, Wu HY, Brian DA. Genetic evidence of a long-range RNA-RNA interaction between the genomic 5' untranslated region and the nonstructural protein 1 coding region in murine and bovine coronaviruses. J Virol 2012; 86:4631-43. [PMID: 22345457 PMCID: PMC3318640 DOI: 10.1128/jvi.06265-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/02/2012] [Indexed: 01/25/2023] Open
Abstract
Higher-order RNA structures in the 5' untranslated regions (UTRs) of the mouse hepatitis coronavirus (MHV) and bovine coronavirus (BCoV), separate species in the betacoronavirus genus, appear to be largely conserved despite an ∼36% nucleotide sequence divergence. In a previous study, each of three 5'-end-proximal cis-acting stem-loop domains in the BCoV genome, I/II, III, and IV, yielded near-wild-type (wt) MHV phenotypes when used by reverse genetics to replace its counterpart in the MHV genome. Replacement with the BCoV 32-nucleotide (nt) inter-stem-loop fourth domain between stem-loops III and IV, however, required blind cell passaging for virus recovery. Here, we describe suppressor mutations within the transplanted BCoV 32-nt domain that along with appearance of potential base pairings identify an RNA-RNA interaction between this domain and a 32-nt region ∼200 nt downstream within the nonstructural protein 1 (Nsp1)-coding region. Mfold and phylogenetic covariation patterns among similarly grouped betacoronaviruses support this interaction, as does cotransplantation of the BCoV 5' UTR and its downstream base-pairing domain. Interestingly, cotransplantation of the BCoV 5' UTR and BCoV Nsp1 coding region directly yielded an MHV wt-like phenotype, which demonstrates a cognate interaction between these two BCoV regions, which in the MHV genome act in a fully interspecies-compliant manner. Surprisingly, the 30-nt inter-stem-loop domain in the MHV genome can be deleted and viral progeny, although debilitated, are still produced. These results together identify a previously undescribed long-range RNA-RNA interaction between the 5' UTR and Nsp1 coding region in MHV-like and BCoV-like betacoronaviruses that is cis acting for viral fitness but is not absolutely required for viral replication in cell culture.
Collapse
Affiliation(s)
| | - Yu-Pin Su
- Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| | - Hung-Yi Wu
- Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| | - David A. Brian
- Departments of Microbiology
- Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Aita T, Kuwabara M, Murayama K, Sasagawa Y, Yabe S, Higuchi R, Tamura T, Miyazaki A, Tsunemitsu H. Characterization of epidemic diarrhea outbreaks associated with bovine torovirus in adult cows. Arch Virol 2011; 157:423-31. [PMID: 22167249 PMCID: PMC7087103 DOI: 10.1007/s00705-011-1183-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/22/2011] [Indexed: 11/28/2022]
Abstract
Bovine torovirus (BToV) is recognized as an enteric pathogen of calves, but its etiological role in diarrhea and epidemiological characterization in adult cows remain unclear. In 2007-2008, three outbreaks of epidemic diarrhea occurred in adult cows at three dairy farms in Niigata Prefecture, Japan. BToV was the only enteric pathogen detected in these outbreaks, as determined by electron microscopy, reverse transcription-PCR, bacteria and parasite tests of fecal samples, and antibody tests with paired sera. The epidemiological features of the three outbreaks were similar to those of bovine coronavirus infection, except for the absence of bloody diarrhea, with diarrhea spreading among most adult cows, but not in calves, within several days and diarrhea lasting for 3-5 days with anorexia. Decreased milk production and mild respiratory symptoms were also observed in two of the outbreaks. Nucleotide sequence analysis of the BToV nucleocapsid, spike, and hemagglutinin-esterase (HE) genes revealed a close relatedness among the detected BToV strains from each outbreak and those of Japanese BToV strain Aichi/2004. Furthermore, we isolated a BToV strain, designated Niigata (TC), from a fecal sample using a human rectal tumor cell line. Sequence analysis of this isolate and Aichi/2004 indicated that both strains have truncated HE genes with deletions in the 3′ region that occurred through cell culture-adaptation. The short projections that are believed to be formed by the HE protein on virus particles were not observed in these cultured strains by electron microscopy. Taken together, these results suggest that BToV causes epidemic diarrhea in adult cows and should be included in the differential diagnosis of diarrhea in adult cows. In addition, our findings indicate that the HE protein of BToV may not be necessary for viral replication.
Collapse
Affiliation(s)
- Tsunehiko Aita
- Niigata Chuo Livestock Hygiene Service Center, Hataya 686, Nishikan, Niigata, Niigata 9590423, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
16
|
Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proc Natl Acad Sci U S A 2011; 108:10696-701. [PMID: 21670291 DOI: 10.1073/pnas.1104306108] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same β-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the β-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.
Collapse
|
17
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
18
|
Leibowitz JL, Srinivasa R, Williamson ST, Chua MM, Liu M, Wu S, Kang H, Ma XZ, Zhang J, Shalev I, Smith R, Phillips MJ, Levy GA, Weiss SR. Genetic determinants of mouse hepatitis virus strain 1 pneumovirulence. J Virol 2010; 84:9278-91. [PMID: 20631137 PMCID: PMC2937641 DOI: 10.1128/jvi.00330-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 06/26/2010] [Indexed: 02/03/2023] Open
Abstract
We report here investigation into the genetic basis of mouse hepatitis virus strain 1 (MHV-1) pneumovirulence. Sequencing of the 3' one-third of the MHV-1 genome demonstrated that the genetic organization of MHV-1 was similar to that of other strains of MHV. The hemagglutinin esterase (HE) protein was truncated, and reverse transcription-PCR (RT-PCR) studies confirmed previous work that suggested that the MHV-1 HE is a pseudogene. Targeted recombination was used to select chimeric viruses containing either the MHV-1 S gene or genes encoding all of the MHV-1 structural proteins, on an MHV-A59 background. Challenge studies in mice demonstrated that expression of the MHV-1 S gene within the MHV-A59 background (rA59/S(MHV-1)) increased the pneumovirulence of MHV-A59, and mice infected with this recombinant virus developed pulmonary lesions that were similar to those observed with MHV-1, although rA59/S(MHV-1) was significantly less virulent. Chimeras containing all of the MHV-1 structural genes on an MHV-A59 background were able to reproduce the severe acute respiratory syndrome (SARS)-like pathology observed with MHV-1 and reproducibly increased pneumovirulence relative to rA59/S(MHV-1), but were still much less virulent than MHV-1. These data suggest that important determinants of pneumopathogenicity are contained within the 3' one-third of the MHV-1 genome, but additional important virulence factors must be encoded in the genome upstream of the S gene. The severity of the pulmonary lesions observed correlates better with elevated levels of inflammatory cytokines than with viral replication in the lungs, suggesting that pulmonary disease has an important immunological component.
Collapse
Affiliation(s)
- Julian L Leibowitz
- Department of Microbial and Molecular Pathogenesis Texas A&M University System-HSC, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. J Virol 2010; 84:8970-4. [PMID: 20538854 DOI: 10.1128/jvi.00566-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The members of Betacoronavirus phylocluster A possess two types of surface projections, one comprised of the spike protein (S) and the other of hemagglutinin-esterase (HE). Purportedly, these viruses bind to O-acetylated sialic acids (O-Ac-Sias) primarily through S, with HE serving merely as receptor-destroying enzyme. Here, we show that, in apparent contrast to human and ungulate host range variants of Betacoronavirus-1, murine coronaviruses actually bind to O-Ac-Sias via HE exclusively. Apparently, expansion of group A betacoronaviruses into new hosts and niches was accompanied by changes in HE ligand and substrate preference and in the roles of HE and S in Sia receptor usage.
Collapse
|
20
|
Vabret A, Miszczak F. [Variation of coronavirus tropism]. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2010; 2010:63-68. [PMID: 32288811 PMCID: PMC7140254 DOI: 10.1016/s1773-035x(10)70561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/15/2010] [Indexed: 12/02/2022]
Abstract
Viral tropism is defined as the group of target cells which can be infected by this virus. Knowing viral tropism is knowing the target organ, and the animal species used as host. The variation of tropism allow for virus to evolve, cross species barriers, and infect a new host. Coronavirus family is a very large group of viruses which infect birds and mammals. These RNA viruses can rapidly evolve. In the history of coronaviruses, several examples of variations of tropism have been described, and have as consequences the emergence of a new infection (coronavirus associated with SARS, porcine respiratory coronavirus), or a new expression of the clinical presentation of the infection (fatal infectious peritonitis in cats and ferrets).
Collapse
Affiliation(s)
- Astrid Vabret
- Laboratoire de virologie. Centre hospitalier universitaire de Caen, Avenue Georges-Clémenceau, 14033 Caen cedex
| | - Fabien Miszczak
- Laboratoire départemental Franck-Duncombe, 14053 Caen cedex 4
| |
Collapse
|
21
|
Bender SJ, Weiss SR. Pathogenesis of murine coronavirus in the central nervous system. J Neuroimmune Pharmacol 2010; 5:336-54. [PMID: 20369302 PMCID: PMC2914825 DOI: 10.1007/s11481-010-9202-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/05/2010] [Indexed: 12/15/2022]
Abstract
Murine coronavirus (mouse hepatitis virus, MHV) is a collection of strains that induce disease in several organ systems of mice. Infection with neurotropic strains JHM and A59 causes acute encephalitis, and in survivors, chronic demyelination, the latter of which serves as an animal model for multiple sclerosis. The MHV receptor is a carcinoembryonic antigen-related cell adhesion molecule, CEACAM1a; paradoxically, CEACAM1a is poorly expressed in the central nervous system (CNS), leading to speculation of an additional receptor. Comparison of highly neurovirulent JHM isolates with less virulent variants and the weakly neurovirulent A59 strain, combined with the use of reverse genetics, has allowed mapping of pathogenic properties to individual viral genes. The spike protein, responsible for viral entry, is a major determinant of tropism and virulence. Other viral proteins, both structural and nonstructural, also contribute to pathogenesis in the CNS. Studies of host responses to MHV indicate that both innate and adaptive responses are crucial to antiviral defense. Type I interferon is essential to prevent very early mortality after infection. CD8 T cells, with the help of CD4 T cells, are crucial for viral clearance during acute disease and persist in the CNS during chronic disease. B cells are necessary to prevent reactivation of virus in the CNS following clearance of acute infection. Despite advances in understanding of coronavirus pathogenesis, questions remain regarding the mechanisms of viral entry and spread in cell types expressing low levels of receptor, as well as the unique interplay between virus and the host immune system during acute and chronic disease.
Collapse
Affiliation(s)
- Susan J Bender
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
22
|
The spike protein of murine coronavirus regulates viral genome transport from the cell surface to the endoplasmic reticulum during infection. J Virol 2009; 83:10653-63. [PMID: 19570858 DOI: 10.1128/jvi.00956-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We observed that the nonfusogenic mouse hepatitis virus (MHV) strain MHV-2 reached a titer of approximately 2 log10 higher than that of the fusogenic strain A59 in astrocytoma DBT cells. To determine whether the spike protein is responsible for the difference, a recombinant virus, Penn-98-1, that contains the A59 genome with a spike from MHV-2 was used to infect DBT cells. Results showed that Penn-98-1 behaved like MHV-2, thus establishing a role for the spike protein in viral growth. The inverse correlation between viral fusogenicity and growth was further established in four different cell types and with a fusogenic mutant, the S757R mutant, derived from isogenic Penn-98-1. While both A59 and Penn-98-1 entered cells at similar levels, viral RNA and protein syntheses were significantly delayed for A59. Interestingly, when the genomic RNAs were delivered directly into the cells via transfection, the levels of gene expression for these viruses were similar. Furthermore, cell fractionation experiments revealed that significantly more genomic RNAs for the nonfusogenic MHVs were detected in the endoplasmic reticulum (ER) within the first 2 h after infection than for the fusogenic MHVs. Pretreatment of Penn-98-1 with trypsin reversed its properties in syncytium formation, virus production, and genome transport to the ER. These findings identified a novel role for the spike protein in regulating the uncoating and delivery of the viral genome to the ER after internalization.
Collapse
|
23
|
Lorusso A, Desario C, Mari V, Campolo M, Lorusso E, Elia G, Martella V, Buonavoglia C, Decaro N. Molecular characterization of a canine respiratory coronavirus strain detected in Italy. Virus Res 2009; 141:96-100. [PMID: 19162098 PMCID: PMC7114405 DOI: 10.1016/j.virusres.2008.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 10/25/2022]
Abstract
Coronaviruses (CoVs) are positive-stranded, non-segmented RNA viruses generally responsible for the emergence of respiratory and enteric disease in humans, companion animals and livestock. Their aptitude to evolve by genetic recombination and/or point mutation is recognized, thus giving rise to new viral genotypes and mutants with different tissues or host tropism. In particular, a probable origin from the strictly related bovine coronavirus (BCoV) or, alternatively, from a common ancestor has been suggested for some group 2a CoVs, including canine respiratory coronavirus (CRCoV). In this study, we report the sequence analysis of the viral RNA 3'-end of an Italian CRCoV, strain 240/05, together with the sequence comparison with extant bovine-like viruses including the sole CRCoV strain 4182 previously described. Interestingly, although the structural proteins show the same features of CRCoV 4182, the genomic region between the spike and the envelope protein genes of CRCoV 240/05 encodes for three distinct products, including the equivalent bovine 4.9 kDa non-structural protein and a truncated form of the 4.8 kDa protein, whereas CRCoV 4182 has a unique 8.8 kDa protein.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nicola Decaro
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine of Bari, Strada per Casamassima km 3, 70010 Valenzano (Bari), Italy
| |
Collapse
|
24
|
Vabret A, Dina J, Brison E, Brouard J, Freymuth F. [Human coronaviruses]. PATHOLOGIE-BIOLOGIE 2009; 57:149-60. [PMID: 18456429 PMCID: PMC7125620 DOI: 10.1016/j.patbio.2008.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/28/2008] [Indexed: 01/19/2023]
Abstract
Coronaviruses are a large group of viruses and infect a lot of species of mammals and birds. Five coronaviruses currently infect humans: HCoVs 229E and OC43, identified in the 1960s, SARS-CoV identified in March 2003 during the SARS epidemic, and the HCoVs NL63 and HKU1, identified in 2004 and 2005 respectively. The genome of the coronaviruses is a linear, non-segmented, positive-sense single-stranded RNA molecule of approximately 30kb. The evolution of these viruses occurs through some features: the generation of multiple mutants during the replication resulting on a quasispecies structure of the viral population, the demonstrated ability of coronaviruses to establish persistent infections, the flexibility of the genome due to a high frequency of homologue or heterologue recombinations, the ability to jump barrier species and to adapt to the new environment. Two epidemiologic pictures of HCoV infections have to be distinguished: as suggested by recent studies, HCoVs except SARS-CoV, are distributed worldwide and cocirculate during seasonal outbreaks. The distribution of the different HCoV species varies according to the geographic area and season. In contrast, the SARS-CoV is responsible of the first emerging infectious disease of this millennium, infecting more than 8000 people between November 2002 and July 2003. Its circulation has been stopped by drastic public health policy. Human coronaviruses may be also involved in enteric and neurologic diseases. The detection of these viruses is difficult and mainly based on molecular assays (RT-PCR). There is no established specific therapy to date.
Collapse
Affiliation(s)
- A Vabret
- Laboratoire de virologie, EA 2128, centre hospitalo-universitaire de Caen, avenue Georges-Clemenceau, 14033 Caen cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Lorusso A, Decaro N, Schellen P, Rottier PJM, Buonavoglia C, Haijema BJ, de Groot RJ. Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 2008; 82:10312-7. [PMID: 18667517 PMCID: PMC2566247 DOI: 10.1128/jvi.01031-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/21/2008] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses are positive-strand RNA viruses of extraordinary genetic complexity and diversity. In addition to a common set of genes for replicase and structural proteins, each coronavirus may carry multiple group-specific genes apparently acquired through relatively recent heterologous recombination events. Here we describe an accessory gene, ORF3, unique to canine coronavirus type I (CCoV-I) and characterize its product, glycoprotein gp3. Whereas ORF3 is conserved in CCoV-I, only remnants remain in CCoV-II and CCoV-II-derived porcine and feline coronaviruses. Our findings provide insight into the evolutionary history of coronavirus group 1a and into the dynamics of gain and loss of accessory genes.
Collapse
Affiliation(s)
- Alessio Lorusso
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Lissenberg A, Vrolijk MM, van Vliet ALW, Langereis MA, de Groot-Mijnes JDF, Rottier PJM, de Groot RJ. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol 2006; 79:15054-63. [PMID: 16306576 PMCID: PMC1316008 DOI: 10.1128/jvi.79.24.15054-15063.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group 2 coronaviruses encode an accessory envelope glycoprotein species, the hemagglutinin esterase (HE), which possesses sialate-O-acetylesterase activity and which, presumably, promotes virus spread and entry in vivo by facilitating reversible virion attachment to O-acetylated sialic acids. While HE may provide a strong selective advantage during natural infection, many laboratory strains of mouse hepatitis virus (MHV) fail to produce the protein. Apparently, their HE genes were inactivated during cell culture adaptation. For this report, we have studied the molecular basis of this phenomenon. By using targeted RNA recombination, we generated isogenic recombinant MHVs which differ exclusively in their expression of HE and produce either the wild-type protein (HE+), an enzymatically inactive HE protein (HE0), or no HE at all. HE expression or the lack thereof did not lead to gross differences in in vitro growth properties. Yet the expression of HE was rapidly lost during serial cell culture passaging. Competition experiments with mixed infections revealed that this was not due to the enzymatic activity: MHVs expressing HE+ or HE0 propagated with equal efficiencies. During the propagation of recombinant MHV-HE+, two types of spontaneous mutants accumulated. One produced an anchorless HE, while the other had a Gly-to-Trp substitution at the predicted C-terminal residue of the HE signal peptide. Neither mutant incorporated HE into virion particles, suggesting that wild-type HE reduces the in vitro propagation efficiency, either at the assembly stage or at a postassembly level. Our findings demonstrate that the expression of "luxury" proteins may come at a fitness penalty. Apparently, under natural conditions the costs of maintaining HE are outweighed by the benefits.
Collapse
Affiliation(s)
- A Lissenberg
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Kazi L, Lissenberg A, Watson R, de Groot RJ, Weiss SR. Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J Virol 2006; 79:15064-73. [PMID: 16306577 PMCID: PMC1316009 DOI: 10.1128/jvi.79.24.15064-15073.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine hepatitis virus (MHV) infection provides a model system for the study of hepatitis, acute encephalitis, and chronic demyelinating disease. The spike glycoprotein, S, which mediates receptor binding and membrane fusion, plays a critical role in MHV pathogenesis. However, viral proteins other than S also contribute to pathogenicity. The JHM strain of MHV is highly neurovirulent and expresses a second spike glycoprotein, the hemagglutinin esterase (HE), which is not produced by MHV-A59, a hepatotropic but only mildly neurovirulent strain. To investigate a possible role for HE in MHV-induced neurovirulence, isogenic recombinant MHV-A59 viruses were generated that produced either (i) the wild-type protein, (ii) an enzymatically inactive HE protein, or (iii) no HE at all (A. Lissenberg, M. M. Vrolijk, A. L. W. van Vliet, M. A. Langereis, J. D. F. de Groot-Mijnes, P. J. M. Rottier, and R. J. de Groot, J. Virol. 79:15054-15063, 2005 [accompanying paper]). A second, mirror set of recombinant viruses was constructed in which, in addition, the MHV-A59 S gene had been replaced with that from MHV-JHM. The expression of HE in combination with A59 S did not affect the tropism, pathogenicity, or spread of the virus in vivo. However, in combination with JHM S, the expression of HE, regardless of whether it retained esterase activity or not, resulted in increased viral spread within the central nervous system and in increased neurovirulence. Our findings suggest that the properties of S receptor utilization and/or fusogenicity mainly determine organ and host cell tropism but that HE enhances the efficiency of infection and promotes viral dissemination, at least in some tissues, presumably by serving as a second receptor-binding protein.
Collapse
Affiliation(s)
- Lubna Kazi
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | | | | | | | |
Collapse
|
28
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2006; 69:635-64. [PMID: 16339739 PMCID: PMC1306801 DOI: 10.1128/mmbr.69.4.635-664.2005] [Citation(s) in RCA: 767] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
29
|
Abstract
Virus attachment to host cells is mediated by dedicated virion proteins, which specifically recognize one or, at most, a limited number of cell surface molecules. Receptor binding often involves protein-protein interactions, but carbohydrates may serve as receptor determinants as well. In fact, many different viruses use members of the sialic acid family either as their main receptor or as an initial attachment factor. Sialic acids (Sias) are 9-carbon negatively-charged monosaccharides commonly occurring as terminal residues of glycoconjugates. They come in a large variety and are differentially expressed in cells and tissues. By targeting specific Sia subtypes, viruses achieve host cell selectivity, but only to a certain extent. The Sia of choice might still be abundantly present on non-cell associated molecules, on non-target cells (including cells already infected) and even on virus particles themselves. This poses a hazard, as high-affinity virion binding to any of such "false'' receptors would result in loss of infectivity. Some enveloped RNA viruses deal with this problem by encoding virion-associated receptor-destroying enzymes (RDEs). These enzymes make the attachment to Sia reversible, thus providing the virus with an escape ticket. RDEs occur in two types: neuraminidases and sialate-O-acetylesterases. The latter, originally discovered in influenza C virus, are also found in certain nidoviruses, namely in group 2 coronaviruses and in toroviruses, as well as in infectious salmon anemia virus, an orthomyxovirus of teleosts. Here, the structure, function and evolution of viral sialate-O-acetylesterases is reviewed with main focus on the hemagglutinin-esterases of nidoviruses.
Collapse
Affiliation(s)
- Raoul J de Groot
- Virology Section, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| |
Collapse
|
30
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005. [PMID: 16339739 DOI: 10.1128/mmbr.69.4.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
31
|
Thackray LB, Turner BC, Holmes KV. Substitutions of conserved amino acids in the receptor-binding domain of the spike glycoprotein affect utilization of murine CEACAM1a by the murine coronavirus MHV-A59. Virology 2005; 334:98-110. [PMID: 15749126 PMCID: PMC7111733 DOI: 10.1016/j.virol.2005.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 11/15/2004] [Accepted: 01/12/2005] [Indexed: 01/17/2023]
Abstract
The host range of the murine coronavirus (MHV) is limited to susceptible mice and murine cell lines by interactions of the spike glycoprotein (S) with its receptor, mCEACAM1a. We identified five residues in S (S33, L79, T82, Y162 and K183) that are conserved in the receptor-binding domain of MHV strains, but not in related coronaviruses. We used targeted RNA recombination to generate isogenic viruses that differ from MHV-A59 by amino acid substitutions in S. Viruses with S33R and K183R substitutions had wild type growth, while L79A/T82A viruses formed small plaques. Viruses with S33G, L79M/T82M or K183G substitutions could only be recovered from cells that over-expressed a mutant mCEACAM1a. Viruses with Y162H or Y162Q substitutions were never recovered, while Y162A viruses formed minute plaques. However, viruses with Y162F substitutions had wild type growth, suggesting that Y162 may comprise part of a hydrophobic domain that contacts the MHV-binding site of mCEACAM1a.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Base Sequence
- Binding Sites/genetics
- Carcinoembryonic Antigen
- Cell Adhesion Molecules
- Cell Line
- Conserved Sequence
- Coronavirus/genetics
- Coronavirus/growth & development
- Coronavirus/metabolism
- Coronavirus/pathogenicity
- Cricetinae
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Green Fluorescent Proteins/genetics
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Rats
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombination, Genetic
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
|
32
|
Abstract
As the largest RNA virus, coronavirus replication employs complex mechanisms and involves various viral and cellular proteins. The first open reading frame of the coronavirus genome encodes a large polyprotein, which is processed into a number of viral proteins required for viral replication directly or indirectly. These proteins include the RNA-dependent RNA polymerase (RdRp), RNA helicase, proteases, metal-binding proteins, and a number of other proteins of unknown function. Genetic studies suggest that most of these proteins are involved in viral RNA replication. In addition to viral proteins, several cellular proteins, such as heterogeneous nuclear ribonucleoprotein (hnRNP) A1, polypyrimidine-tract-binding (PTB) protein, poly(A)-binding protein (PABP), and mitochondrial aconitase (m-aconitase), have been identified to interact with the critical cis-acting elements of coronavirus replication. Like many other RNA viruses, coronavirus may subvert these cellular proteins from cellular RNA processing or translation machineries to play a role in viral replication.
Collapse
Affiliation(s)
- Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Campus Universidad Autónoma, Cantoblanco, 38049 Madrid, Spain
| |
Collapse
|
33
|
Woo PCY, Lau SKP, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BHL, Poon RWS, Cai JJ, Luk WK, Poon LLM, Wong SSY, Guan Y, Peiris JSM, Yuen KY. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005; 79:884-95. [PMID: 15613317 PMCID: PMC538593 DOI: 10.1128/jvi.79.2.884-895.2005] [Citation(s) in RCA: 1088] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Despite extensive laboratory investigations in patients with respiratory tract infections, no microbiological cause can be identified in a significant proportion of patients. In the past 3 years, several novel respiratory viruses, including human metapneumovirus, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and human coronavirus NL63, were discovered. Here we report the discovery of another novel coronavirus, coronavirus HKU1 (CoV-HKU1), from a 71-year-old man with pneumonia who had just returned from Shenzhen, China. Quantitative reverse transcription-PCR showed that the amount of CoV-HKU1 RNA was 8.5 to 9.6 x 10(6) copies per ml in his nasopharyngeal aspirates (NPAs) during the first week of the illness and dropped progressively to undetectable levels in subsequent weeks. He developed increasing serum levels of specific antibodies against the recombinant nucleocapsid protein of CoV-HKU1, with immunoglobulin M (IgM) titers of 1:20, 1:40, and 1:80 and IgG titers of <1:1,000, 1:2,000, and 1:8,000 in the first, second and fourth weeks of the illness, respectively. Isolation of the virus by using various cell lines, mixed neuron-glia culture, and intracerebral inoculation of suckling mice was unsuccessful. The complete genome sequence of CoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA, with G+C content of 32%, the lowest among all known coronaviruses with available genome sequence. Phylogenetic analysis reveals that CoV-HKU1 is a new group 2 coronavirus. Screening of 400 NPAs, negative for SARS-CoV, from patients with respiratory illness during the SARS period identified the presence of CoV-HKU1 RNA in an additional specimen, with a viral load of 1.13 x 10(6) copies per ml, from a 35-year-old woman with pneumonia. Our data support the existence of a novel group 2 coronavirus associated with pneumonia in humans.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
This chapter describes the interactions between the different structural components of the viruses and discusses their relevance for the process of virion formation. Two key factors determine the efficiency of the assembly process: intracellular transport and molecular interactions. Many viruses have evolved elaborate strategies to ensure the swift and accurate delivery of the virion components to the cellular compartment(s) where they must meet and form (sub) structures. Assembly of viruses starts in the nucleus by the encapsidation of viral DNA, using cytoplasmically synthesized capsid proteins; nucleocapsids then migrate to the cytosol, by budding at the inner nuclear membrane followed by deenvelopment, to pick up the tegument proteins.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | |
Collapse
|
35
|
Molecular Determinants of Coronavirus Mhv- Induced Demyelination. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7120609 DOI: 10.1007/0-387-25518-4_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mouse hepatitis virus (MHV) is a member of the coronavirus family of the nidovirales order. MHV is an enveloped virus with single-stranded, positive genomic RNA of about 31kb. Infection of susceptible strains of mice with the MHV-JHM and A59 strains results in acute encephalomyelitis and chronic demyelinating disease with features similar to the human demyelination disease multiple sclerosis (MS). Because the mechanism of demyelination in MS is not completely understood, various experimental models, including MHV infection in mice, have been used to study the pathogenesis of inflammatory autoimmune demyelination. The spike (S) glycoprotein of MHV has been implicated as the most critical genomic determinant of MHV pathogenesis and demyelination. However, other genes and proteins are likely to contribute to MHV pathogenesis as well.
Collapse
|
36
|
Smits SL, Gerwig GJ, van Vliet ALW, Lissenberg A, Briza P, Kamerling JP, Vlasak R, de Groot RJ. Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J Biol Chem 2004; 280:6933-41. [PMID: 15507445 PMCID: PMC8062793 DOI: 10.1074/jbc.m409683200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many viruses achieve reversible attachment to sialic acid (Sia) by encoding envelope glycoproteins with receptor-binding and receptor-destroying activities. Toroviruses and group 2 coronaviruses bind to O-acetylated Sias, presumably via their spike proteins (S), whereas other glycoproteins, the hemagglutinin-esterases (HE), destroy Sia receptors by de-O-acetylation. Here, we present a comprehensive study of these enzymes. Sialate-9-O-acetylesterases specific for 5-N-acetyl-9-O-acetylneuraminic acid, described for bovine and human coronaviruses, also occur in equine coronaviruses and in porcine toroviruses. Bovine toroviruses, however, express novel sialate-9-O-acetylesterases, which prefer the di-O-acetylated substrate 5-N-acetyl-7(8),9-di-O-acetylneuraminic acid. Whereas most rodent coronaviruses express sialate-4-O-acetylesterases, the HE of murine coronavirus DVIM cleaves 9-O-acetylated Sias. Under the premise that HE specificity reflects receptor usage, we propose that two types of Sias serve as initial attachment factors for coronaviruses in mice. There are striking parallels between orthomyxo- and nidovirus biology. Reminiscent of antigenic shifts in orthomyxoviruses, rodent coronaviruses exchanged S and HE sequences through recombination to extents not appreciated before. As for orthomyxovirus reassortants, the fitness of nidovirus recombinant offspring probably depends both on antigenic properties and on compatibility of receptor-binding and receptor-destroying activities.
Collapse
Affiliation(s)
- Saskia L Smits
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Thackray LB, Holmes KV. Amino acid substitutions and an insertion in the spike glycoprotein extend the host range of the murine coronavirus MHV-A59. Virology 2004; 324:510-24. [PMID: 15207636 PMCID: PMC7127820 DOI: 10.1016/j.virol.2004.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/02/2004] [Accepted: 04/03/2004] [Indexed: 12/14/2022]
Abstract
The murine coronavirus [murine hepatitis virus (MHV)] is limited to infection of susceptible mice and murine cell lines by the specificity of the spike glycoprotein (S) for its receptor, murine carcinoembryonic antigen cell adhesion molecule 1a (mCEACAM1a). We have recently shown that 21 aa substitutions and a 7-aa insert in the N-terminal region of S are associated with the extended host range of a virus variant derived from murine cells persistently infected with the A59 strain of MHV (MHV-A59). We used targeted RNA recombination (TRR) to generate isogenic viruses that differ from MHV-A59 by the 21 aa substitutions or the 7-aa insert in S. Only viruses with both the 21 aa substitutions and the 7-aa insert in S infected hamster, feline, and monkey cells. These viruses also infected murine cells in the presence of blocking anti-mCEACAM1a antibodies. Thus, relatively few changes in the N-terminal region of S1 are sufficient to permit MHV-A59 to interact with alternative receptors on murine and non-murine cells.
Collapse
Affiliation(s)
| | - Kathryn V Holmes
- Corresponding author. Department of Microbiology, University of Colorado Health Sciences Center, Campus Box B-175, 4200 East 9th Avenue, Denver, CO 80262. Fax: +1-303-315-6785.
| |
Collapse
|
38
|
Fu L, Gonzales DM, Das Sarma J, Lavi E. A combination of mutations in the S1 part of the spike glycoprotein gene of coronavirus MHV-A59 abolishes demyelination. J Neurovirol 2004; 10:41-51. [PMID: 14982727 PMCID: PMC7095319 DOI: 10.1080/13550280490262229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The A59 strain of coronavirus, mouse hepatitis virus (MHV), produces acute hepatitis, meningoencephalitis, and chronic demyelination. The authors have previously shown that the spike (S) glycoprotein gene of MHV contains determinants of virulence, hepatitis, and demyelination. They then identified viruses containing mutations in the S gene that exhibit alterations in viral pathogenesis. In the present study, the authors produced new recombinant viruses with each one of these S gene mutations by site-directed mutagenesis and targeted recombination and studied the effect of each individual mutation on the pathogenesis of the virus. They identified a combination of mutations in the S1 gene (I375M and L652I) that abolishes demyelination. Individual mutation and other combinations of mutations in the S gene only interfere with virulence and hepatitis and only reduce demyelination (I375M), but do not abolish demyelination completely. Thus, demyelination determinants exist within genomic regions on both sides of the hypervariable region, downstream from the receptor-binding domain in the S1 part of the MHV spike glycoprotein gene. The structure and precise function of these regions awaits further investigation.
Collapse
Affiliation(s)
- Li Fu
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
| | - Donna M. Gonzales
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
| | - Jayasri Das Sarma
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
- Present Address: Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania USA
| | - Ehud Lavi
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, 422 Curie Boulevard, 19104-6100 Philadelphia, PA USA
| |
Collapse
|
39
|
Hellebø A, Vilas U, Falk K, Vlasak R. Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J Virol 2004; 78:3055-62. [PMID: 14990724 PMCID: PMC353765 DOI: 10.1128/jvi.78.6.3055-3062.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) is the causative agent of infections in farmed Atlantic salmon. ISAV presumably represents a new genus within the Orthomyxoviridae. ISAV has been shown earlier to exhibit a receptor-destroying activity, which was defined as an acetylesterase with unknown specificity. We have analyzed the substrate specificity of the ISAV esterase in detail. Purified ISAV hydrolyzed free 5-N-acetyl-4-O-acetyl neuraminic acid. In addition, the purified 9-O-acetylated sialic acid derivative was also hydrolyzed, but at lower rates. When we used a glycosidically bound substrate, ISAV was unable to hydrolyze 9-O-acetylated sialic acid, which represents the major substrate for the influenza C virus esterase. ISAV completely de-O-acetylated glycoprotein-bound 5-N-acetyl-4-O-acetyl neuraminic acid. Thus, the enzymatic activity of the hemagglutinin-esterase of ISAV is comparable to that of the sialate-4-O-esterases of murine coronaviruses and related group 2 coronaviruses. In addition, we found that ISAV specifically binds to glycoproteins containing 4-O-acetylated sialic acids. Both the ISAV esterase and recombinant rat coronavirus esterase specific for 4-O-acetylated sialic acids hydrolyzed ISAV receptors on horse and rabbit erythrocytes, indicating that this sialic acid represents a receptor determinant for ISAV.
Collapse
Affiliation(s)
- Audny Hellebø
- Fish Health Section, National Veterinary Institute, N-0033 Oslo, Norway
| | | | | | | |
Collapse
|
40
|
Liu Y, Cai Y, Zhang X. Induction of caspase-dependent apoptosis in cultured rat oligodendrocytes by murine coronavirus is mediated during cell entry and does not require virus replication. J Virol 2003; 77:11952-63. [PMID: 14581532 PMCID: PMC254259 DOI: 10.1128/jvi.77.22.11952-11963.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Murine coronavirus mouse hepatitis virus (MHV) causes demyelination of the central nervous system (CNS) in rats and mice. Apoptotic oligodendrocytes have been detected in the vicinity of the CNS demyelinating lesions in these animals. However, whether MHV can directly induce oligodendrocyte apoptosis has not been documented. Here, we established a rat oligodendrocyte culture that is morphologically and phenotypically indistinguishable from the primary rat oligodendrocytes. Using this culture, we showed that mature rat oligodendrocytes were permissive to MHV infection but did not support productive virus replication. Significantly, oligodendrocytes infected with both live and ultraviolet light-inactivated viruses underwent apoptosis to a similar extent, which was readily detectable at 24 h postinfection as revealed by apoptotic bodies and DNA fragmentation, indicating that MHV-induced apoptosis is mediated during the early stages of the virus life cycle and does not require virus replication. Prior treatment of cells with the lysosomotropic agents NH(4)Cl and chloroquine as well as the vacuolar proton pump-ATPase inhibitor bafilomycin A1, all of which block the acidification of the endosome, prevented oligodendrocytes from succumbing to apoptosis induced by MHV mutant OBLV60, which enters cells via endocytosis, indicating that fusion between the viral envelope and cell membranes triggers the apoptotic cascade. Treatment with the pan-caspase inhibitor Z-VAD-fmk blocked MHV-induced apoptosis, suggesting an involvement of the caspase-dependent pathway. Our results, thus, for the first time provide unequivocal evidence that infection of oligodendrocytes with MHV directly results in apoptosis. This finding provides an explanation for the destruction of oligodendrocytes and the damage of myelin sheath in MHV-infected CNS and suggests that oligodendrocyte apoptosis may be one of the underlying mechanisms for the pathogenesis of MHV-induced demyelinating diseases in animals.
Collapse
Affiliation(s)
- Yin Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
41
|
Cai Y, Liu Y, Yu D, Zhang X. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection. Virology 2003; 316:104-15. [PMID: 14599795 PMCID: PMC7125541 DOI: 10.1016/j.virol.2003.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 06/18/2003] [Accepted: 07/28/2003] [Indexed: 11/30/2022]
Abstract
Murine coronavirus mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system of susceptible rodents. Astrocytes are the major target for MHV persistence. However, the mechanisms by which astrocytes survive MHV infection and permit viral persistence are not known. Here we performed DNA microarray analysis on differential gene expression in astrocyte DBT cells by MHV infection and found that the mRNA of the proapoptotic gene BNip3 was significantly decreased following MHV infection. This finding was further confirmed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and BNip3-promoter-luciferase reporter system. Interestingly, infection with live and ultraviolet light-inactivated viruses equally repressed BNip3 expression, indicating that the down-regulation of BNip3 expression does not require virus replication and is mediated during cell entry. Furthermore, treatment of cells with chloroquine, which blocks the acidification of endosomes, significantly inhibited the repression of the BNip3 promoter activity induced by the acidic pH-dependent MHV mutant OBLV60, which enters cells via endocytosis, indicating that the down-regulation of BNip3 expression is mediated by fusion between viral envelope and cell membranes during entry. Deletion analysis showed that the sequence between nucleotides 262 and 550 of the 588-base-pair BNip3 promoter is necessary and sufficient for driving the BNip3 expression and that it contains signals that are responsible for MHV-induced down-regulation of BNip3 expression in DBT cells. These results may provide insights into the mechanisms by which MHV evades host antiviral defense and promotes cell survival, thereby allowing its persistence in the host astrocytes.
Collapse
Affiliation(s)
- Yingyun Cai
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Yin Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Dongdong Yu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| |
Collapse
|
42
|
Liu Y, Cai Y, Zhang X. Induction of caspase-dependent apoptosis in cultured rat oligodendrocytes by murine coronavirus is mediated during cell entry and does not require virus replication. J Virol 2003. [PMID: 14581532 DOI: 10.1128/jvi772211952-119632003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Murine coronavirus mouse hepatitis virus (MHV) causes demyelination of the central nervous system (CNS) in rats and mice. Apoptotic oligodendrocytes have been detected in the vicinity of the CNS demyelinating lesions in these animals. However, whether MHV can directly induce oligodendrocyte apoptosis has not been documented. Here, we established a rat oligodendrocyte culture that is morphologically and phenotypically indistinguishable from the primary rat oligodendrocytes. Using this culture, we showed that mature rat oligodendrocytes were permissive to MHV infection but did not support productive virus replication. Significantly, oligodendrocytes infected with both live and ultraviolet light-inactivated viruses underwent apoptosis to a similar extent, which was readily detectable at 24 h postinfection as revealed by apoptotic bodies and DNA fragmentation, indicating that MHV-induced apoptosis is mediated during the early stages of the virus life cycle and does not require virus replication. Prior treatment of cells with the lysosomotropic agents NH(4)Cl and chloroquine as well as the vacuolar proton pump-ATPase inhibitor bafilomycin A1, all of which block the acidification of the endosome, prevented oligodendrocytes from succumbing to apoptosis induced by MHV mutant OBLV60, which enters cells via endocytosis, indicating that fusion between the viral envelope and cell membranes triggers the apoptotic cascade. Treatment with the pan-caspase inhibitor Z-VAD-fmk blocked MHV-induced apoptosis, suggesting an involvement of the caspase-dependent pathway. Our results, thus, for the first time provide unequivocal evidence that infection of oligodendrocytes with MHV directly results in apoptosis. This finding provides an explanation for the destruction of oligodendrocytes and the damage of myelin sheath in MHV-infected CNS and suggests that oligodendrocyte apoptosis may be one of the underlying mechanisms for the pathogenesis of MHV-induced demyelinating diseases in animals.
Collapse
Affiliation(s)
- Yin Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
43
|
Shen S, Wen ZL, Liu DX. Emergence of a coronavirus infectious bronchitis virus mutant with a truncated 3b gene: functional characterization of the 3b protein in pathogenesis and replication. Virology 2003; 311:16-27. [PMID: 12832199 PMCID: PMC7125764 DOI: 10.1016/s0042-6822(03)00117-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The subgenomic RNA 3 of IBV has been shown to be a tricistronic mRNA, encoding three products in IBV-infected cells. To explore if the least expressed ORF, ORF 3b, which encodes a nonstructural protein, is evolutionarily conserved and functionally indispensable for viral propagation in cultured cells, the Beaudette strain of IBV was propagated in chicken embryonated eggs for three passages and then adapted to a monkey kidney cell line, Vero. The 3b gene of passage 3 in embryonated eggs and passages 7, 15, 20, 25, 30, 35 50, and 65 in Vero cells were amplified by reverse transcription-polymerase chain reaction and sequenced. The results showed that viral RNA extracted from passages 35, 50, and 65 contained a single A insertion in a 6A stretch of the 3b gene between nucleotides 24075 and 24080, whereas the early passages carried the normal 3b gene. This insertion resulted in a frameshift event and therefore, if expressed, a C-terminally truncated protein. We showed that the frameshifting product, cloned in a plasmid, was expressed in vitro and in cells transfected with the mutant construct. The normal product of the 3b gene is 64 amino acids long, whereas the frameshifting product is 34 amino acids long with only 17 homogeneous amino acid residues at the N-terminal half. Immunofluorescent studies revealed that the normal 3b protein was localized to the nucleus and the truncated product showed a "free" distribution pattern, indicating that the C-terminal portion of 3b was responsible for its nuclear localization. Comparison of the complete genome sequences (27.6 kb) of isolates p20c22 and p36c12 (from passages 20 and 36, respectively) revealed that p36c12 contains three amino acid substitutions, two in the 195-kDa protein (encoded by gene 1) and one in the S protein, in addition to the frameshifting 3b product. Further characterization of the two isolates demonstrated that p36c12 showed growth advantage over p20c22 in both Vero cells and chicken embryos and was more virulent in chicken embryos than p20c22. These results suggest that the 3b gene product is not essential for the replication of IBV.
Collapse
Affiliation(s)
- S Shen
- Institute of Molecular and Cell Biology, National University of Singapore, 117604, Singapore
| | | | | |
Collapse
|
44
|
de Haan CAM, Masters PS, Shen X, Weiss S, Rottier PJM. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology 2002; 296:177-89. [PMID: 12036329 PMCID: PMC7133727 DOI: 10.1006/viro.2002.1412] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Revised: 01/28/2002] [Accepted: 02/08/2002] [Indexed: 11/22/2022]
Abstract
In addition to a characteristic set of essential genes coronaviruses contain several so-called group-specific genes. These genes differ distinctly among the three coronavirus groups and are specific for each group. While the essential genes encode replication and structural functions, hardly anything is known about the products and functions of the group-specific genes. As a first step to elucidate their significance, we deleted the group-specific genes from the group 2 mouse hepatitis virus (MHV) genome via a novel targeted recombination system based on host switching (L. Kuo, G. J.Godeke, M. J. Raamsman, P. S. Masters, and P. J. M. Rottier, 2000, J. Virol. 74, 1393-1406). Thus, we obtained recombinant viruses from which the two clusters of group-specific genes were deleted either separately or in combination in a controlled genetic background. As all recombinant deletion mutant viruses appeared to be viable, we conclude that the MHV group-specific genes are nonessential, accessory genes. Importantly, all deletion mutant viruses were attenuated when inoculated into their natural host, the mouse. Therefore, deletion of the coronavirus group-specific genes seems to provide an attractive approach to generate attenuated live coronavirus vaccines.
Collapse
|
45
|
Popova R, Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection. Virology 2002; 294:222-36. [PMID: 11886280 PMCID: PMC7131450 DOI: 10.1006/viro.2001.1307] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spike (S) and hemagglutinin/esterase (HE) of bovine coronavirus (BCV) are the two envelope proteins that recognize the same receptor-determinant of 9-O-acetylneuraminic acid on host cells. However, the precise and relative roles of the two proteins in BCV infectivity remain elusive. To unequivocally determine their roles in viral cytopathogenicity, we developed a system in which phenotypically chimeric viruses were generated by infecting a closely related mouse hepatitis virus (MHV) in cells that stably express an individual BCV protein (S or HE). The chimeric viruses were then used to infect human rectal tumor (HRT)-18 cells that are permissive to BCV but are nonsusceptible to MHV. Using this approach, we found that the chimeric virus containing the BCV S protein on the virion surface entered and replicated in HRT-18 cells; this was specifically blocked by prior treatment of the virus with a neutralizing antibody specific to the BCV S protein, indicating that the BCV S protein is responsible for initiating chimeric virus infection. In contrast, chimeric viruses that contain biologically active and functional BCV HE protein on the surface failed to enter HRT-18 cells, indicating that the BCV HE protein alone is not sufficient for BCV infection. Taken together, these results demonstrate that the S protein but not the HE protein of BCV is necessary and sufficient for infection of the chimeric viruses in HRT-18 cells, suggesting that BCV likely uses the S protein as a primary vehicle to infect permissive cells.
Collapse
Affiliation(s)
- Rada Popova
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | |
Collapse
|
46
|
Wurzer WJ, Obojes K, Vlasak R. The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: a proposal to reorganize group 2 Coronaviridae. J Gen Virol 2002; 83:395-402. [PMID: 11807232 DOI: 10.1099/0022-1317-83-2-395] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Group 2 coronaviruses are characterized within the order Nidovirales by a unique genome organization. A characteristic feature of group 2 coronaviruses is the presence of a gene encoding the haemagglutinin-esterase (HE) protein, which is absent in coronaviruses of groups 1 and 3. At least three coronavirus strains within group 2 expressed a structural protein with sialate-4-O-acetylesterase activity, distinguishing them from other members of group 2, which encode an enzyme specific for 5-N-acetyl-9-O-acetylneuraminic acid. The esterases of mouse hepatitis virus (MHV) strains S and JHM and puffinosis virus (PV) specifically hydrolysed 5-N-acetyl-4-O-acetylneuraminic acid (Neu4,5Ac2) as well as the synthetic substrates p-nitrophenyl acetate, 4-methylumbelliferyl acetate and fluorescein diacetate. The K(m) values of the MHV-like esterases for the latter substrates were two- to tenfold lower than those of the sialate-9-O-acetylesterases of influenza C viruses. Another unspecific esterase substrate, alpha-naphthyl acetate, was used for the in situ detection of the dimeric HE proteins in SDS-polyacrylamide gels. MHV-S, MHV-JHM and PV bound to horse serum glycoproteins containing Neu4,5Ac2. De-O-acetylation of the glycoproteins by alkaline treatment or incubation with the viral esterases resulted in a complete loss of recognition, indicating a specific interaction of MHV-like coronaviruses with Neu4,5Ac2. Combined with evidence for distinct phylogenetic lineages of group 2 coronaviruses, subdivision into subgroups 2a (MHV-like viruses) and 2b (bovine coronavirus-like viruses) is suggested.
Collapse
Affiliation(s)
- Walter Juergen Wurzer
- Austrian Academy of Sciences, Institute of Molecular Biology, Department of Biochemistry, Billrothstrasse 11, A-5020 Salzburg, Austria1
| | - Karola Obojes
- Austrian Academy of Sciences, Institute of Molecular Biology, Department of Biochemistry, Billrothstrasse 11, A-5020 Salzburg, Austria1
| | - Reinhard Vlasak
- Austrian Academy of Sciences, Institute of Molecular Biology, Department of Biochemistry, Billrothstrasse 11, A-5020 Salzburg, Austria1
| |
Collapse
|
47
|
Das Sarma J, Fu L, Hingley ST, Lavi E. Mouse hepatitis virus type-2 infection in mice: an experimental model system of acute meningitis and hepatitis. Exp Mol Pathol 2001; 71:1-12. [PMID: 11502093 DOI: 10.1006/exmp.2001.2378] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection with mouse hepatitis virus (MHV) strain A59 produces acute hepatitis, encephalitis, and chronic demyelination in mice. However, little is known about a closely related strain, MHV-2, which is only weakly neurotropic. To better understand the molecular basis of neurotropism of MHVs, we compared the pathogenesis and genomic sequence of MHV-2 with that of MHV-A59. Intracerebral injection of MHV-2 into 4-week-old C57B1/6 mice produces acute meningitis and hepatitis without encephalitis or chronic inflammatory demyelination. Sequence comparison between MHV-2 and MHV-A59 reveals 94-98% sequence identity of the replicase gene, 83-95% sequence identity of genes 2a, 3, 5b, 6, and 7, and marked difference in the sequence of genes, 2b, 4, and 5a. This information provides the basis for further studies exploring the mechanism of viral neurotropism and virus-induced demyelination.
Collapse
Affiliation(s)
- J Das Sarma
- Division of Neuropathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
48
|
Das Sarma J, Fu L, Hingley ST, Lai MMC, Lavi E. Sequence analysis of the S gene of recombinant MHV-2/A59 coronaviruses reveals three candidate mutations associated with demyelination and hepatitis. J Neurovirol 2001; 7:432-6. [PMID: 11582515 PMCID: PMC7095204 DOI: 10.1080/135502801753170282] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Coronaviruses, mouse hepatitis virus (MHV) strains, exhibit various degrees of neurotropism and hepatotropism following intracerebral (IC) infection of 4-week-old C57Bl/6 mice. Whereas MHV-A59 produces acute meningitis, encephalitis, hepatitis, and chronic demyelination, a closely related strain, MHV-2, produces only acute meningitis and hepatitis. We previously reported that the spike glycoprotein gene of MHV contains determinants of demyelination and hepatitis. To further investigate the site of demyelination and hepatitis determinants within the S gene, we sequenced the S gene of several nondemyelinating recombinant viruses. We found that three encephalitis-positive, demyelination-negative, hepatitis-negative recombinant viruses have an MHV-A59-derived S gene, which contains three identical point mutations (I375M, L652I, and T1087N). One or more of the sites of these mutations in the MHV-A59 genome are likely to contribute to demyelination and hepatitis.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Brain/pathology
- Brain/virology
- Cardiovirus Infections/pathology
- Cardiovirus Infections/virology
- Demyelinating Diseases/pathology
- Demyelinating Diseases/virology
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Genes, Viral
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Liver/pathology
- Liver/virology
- Male
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Meningitis, Viral/pathology
- Meningitis, Viral/virology
- Mice
- Mice, Inbred C57BL
- Murine hepatitis virus/classification
- Murine hepatitis virus/genetics
- Murine hepatitis virus/pathogenicity
- Murine hepatitis virus/physiology
- Point Mutation
- Recombination, Genetic
- Sequence Analysis, RNA
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Spinal Cord/pathology
- Spinal Cord/virology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/physiology
- Viral Structural Proteins/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, Division of Neuropathology, 422 Curie Blvd, 19104-6100 Philadelphia, PA USA
| | - Li Fu
- Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, Division of Neuropathology, 422 Curie Blvd, 19104-6100 Philadelphia, PA USA
| | - Susan T. Hingley
- Department of Microbiology and Immunology, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Michael M. C. Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California, School of Medicine, Los Angeles, California USA
| | - Ehud Lavi
- Department of Pathology and Laboratory Medicine, 613 Stellar-Chance Laboratories, University of Pennsylvania, School of Medicine, Division of Neuropathology, 422 Curie Blvd, 19104-6100 Philadelphia, PA USA
| |
Collapse
|
49
|
Tsai CW, Chang SC, Chang MF. A 12-amino acid stretch in the hypervariable region of the spike protein S1 subunit is critical for cell fusion activity of mouse hepatitis virus. J Biol Chem 1999; 274:26085-90. [PMID: 10473557 DOI: 10.1074/jbc.274.37.26085] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spike (S) glycoprotein of mouse hepatitis virus (MHV) plays a major role in the viral pathogenesis. It is often processed into the N-terminal S1 and the C-terminal S2 subunits that were evidently important for binding to cell receptor and inducing cell-cell fusion, respectively. As a consequence of cell-cell fusion, most of the naturally occurring infections of MHV are associated with syncytia formation. So far, only MHV-2 was identified to be fusion-negative. In this study, the S gene of MHV-2 was molecularly cloned, and the nucleotide sequence was determined. The MHV-2 S protein lacks a 12-amino acid stretch in the S1 hypervariable region from amino acid residue 446 to 457 when compared with the fusion-positive strain MHV-JHM. In addition, there are three amino acid substitutions in the S2 subunit, Tyr-1144 to Asp, Glu-1165 to Asp, and Arg-1209 to Lys. The cloned MHV-2 S protein exhibited the fusion-negative property in DBT cells as the intrinsic viral protein. Furthermore, similar to the fusion-positive MHV-JHM strain, proteolytic cleavage activity was detected both in DBT cells infected with the fusion-negative MHV-2 and in the transfected cells that expressed the cloned MHV-2 S protein. Domain swapping experiments demonstrated that the 12-amino acid stretch missing in the MHV-2 S1 subunit, but not the proteolytic cleavage site, was critical for the cell-fusion activity of MHV.
Collapse
Affiliation(s)
- C W Tsai
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | |
Collapse
|
50
|
Regl G, Kaser A, Iwersen M, Schmid H, Kohla G, Strobl B, Vilas U, Schauer R, Vlasak R. The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J Virol 1999; 73:4721-7. [PMID: 10233932 PMCID: PMC112514 DOI: 10.1128/jvi.73.6.4721-4727.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1998] [Accepted: 03/05/1999] [Indexed: 11/20/2022] Open
Abstract
By comparative analysis of the hemagglutinin-esterase (HE) protein of mouse hepatitis virus strain S (MHV-S) and the HE protein of influenza C virus, we found major differences in substrate specificities. In striking contrast to the influenza C virus enzyme, the MHV-S esterase was unable to release acetate from bovine submandibulary gland mucin. Furthermore, MHV-S could not remove influenza C virus receptors from erythrocytes. Analysis with free sialic acid derivatives revealed that the MHV-S HE protein specifically de-O-acetylates 5-N-acetyl-4-O-acetyl sialic acid (Neu4, 5Ac2) but not 5-N-acetyl-9-O-acetyl sialic acid (Neu5,9Ac2), which is the major substrate for esterases of influenza C virus and bovine coronaviruses. In addition, the MHV-S esterase converted glycosidically bound Neu4,5Ac2 of guinea pig serum glycoproteins to Neu5Ac. By expression of the MHV esterase with recombinant vaccinia virus and incubation with guinea pig serum, we demonstrated that the viral HE possesses sialate-4-O-acetylesterase activity. In addition to observed enzymatic activity, MHV-S exhibited affinity to guinea pig and horse serum glycoproteins. Binding required sialate-4-O-acetyl groups and was abolished by chemical de-O-acetylation. Since Neu4,5Ac2 has not been identified in mice, the nature of potential substrates and/or secondary receptors for MHV-S in the natural host remains to be determined. The esterase of MHV-S is the first example of a viral enzyme with high specificity and affinity toward 4-O-acetylated sialic acids.
Collapse
Affiliation(s)
- G Regl
- Austrian Academy of Sciences, Institute of Molecular Biology, A-5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|