1
|
Quaglia G, Di Francesco A, Catelli E, Mescolini G, Lupini C. Turkey adenovirus 3: ORF1 gene sequence comparison between vaccine-like and field strains. Vet Res Commun 2023; 47:2307-2313. [PMID: 37289400 DOI: 10.1007/s11259-023-10148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Haemorrhagic enteritis is an economically significant disease reported in the majority of the countries where turkeys are raised intensively; it is caused by Turkey adenovirus 3 (TAdV-3). The aim of this study was to analyse and compare the ORF1 gene 3' region from turkey haemorrhagic enteritis virus (THEV) vaccine-like and field strains in order to develop a molecular diagnostic method to differentiate the strains from each other. Eighty samples were analysed by sequencing and phylogenetic analyses using a new set of polymerase chain reaction (PCR) primers targeting a genomic region spanning the partial ORF1, hyd and partial IVa2 gene sequences. A commercial live vaccine was also included in the analysis. The results showed that 56 of the 80 sequences obtained in this study showed ≥99.8% nucleotide identity with the homologous vaccine strain sequence. Three non-synonymous mutations - ntA1274G (aaI425V), ntA1420C (aaQ473H) and ntG1485A (aaR495Q) - were detected in the THEV field strains but not in the vaccine strain. Phylogenetic analysis confirmed the clustering of the field and vaccine-like strains in different phylogenetic branches. In conclusion, the method employed in this study could be a useful tool towards making a correct diagnosis. The data could contribute to the knowledge of field distribution of THEV strains and increase the limited existing information available on native isolates around the world.
Collapse
Affiliation(s)
- Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia (BO), 40064, Italy.
| | - Antonietta Di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia (BO), 40064, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia (BO), 40064, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia (BO), 40064, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell'Emilia (BO), 40064, Italy
| |
Collapse
|
2
|
Lobby JL, Uddbäck I, Scharer CD, Mi T, Boss JM, Thomsen AR, Christensen JP, Kohlmeier JE. Persistent Antigen Harbored by Alveolar Macrophages Enhances the Maintenance of Lung-Resident Memory CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1778-1787. [PMID: 36162870 PMCID: PMC9588742 DOI: 10.4049/jimmunol.2200082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022]
Abstract
Lung tissue-resident memory T cells are crucial mediators of cellular immunity against respiratory viruses; however, their gradual decline hinders the development of T cell-based vaccines against respiratory pathogens. Recently, studies using adenovirus (Ad)-based vaccine vectors have shown that the number of protective lung-resident CD8+ TRMs can be maintained long term. In this article, we show that immunization of mice with a replication-deficient Ad serotype 5 expressing influenza (A/Puerto Rico/8/34) nucleoprotein (AdNP) generates a long-lived lung TRM pool that is transcriptionally indistinct from those generated during a primary influenza infection. In addition, we demonstrate that CD4+ T cells contribute to the long-term maintenance of AdNP-induced CD8+ TRMs. Using a lineage tracing approach, we identify alveolar macrophages as a cell source of persistent NP Ag after immunization with AdNP. Importantly, depletion of alveolar macrophages after AdNP immunization resulted in significantly reduced numbers of NP-specific CD8+ TRMs in the lungs and airways. Combined, our results provide further insight to the mechanisms governing the enhanced longevity of Ag-specific CD8+ lung TRMs observed after immunization with recombinant Ad.
Collapse
Affiliation(s)
- Jenna L Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Ida Uddbäck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Tian Mi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; and
| |
Collapse
|
3
|
Mouse Adenovirus Type 1 Persistence Exacerbates Inflammation Induced by Allogeneic Bone Marrow Transplantation. J Virol 2022; 96:e0170621. [PMID: 35045262 DOI: 10.1128/jvi.01706-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone marrow transplantation (BMT) recipients are at risk for substantial morbidity and mortality from human adenovirus infections, often in the setting of reactivation of persistent virus. Human adenovirus persistence in mucosal lymphocytes has been described, but specific cellular reservoirs of persistence and effects of persistence on host responses to unrelated stimuli are not completely understood. We used mouse adenovirus type 1 (MAV-1) to characterize persistence of an adenovirus in its natural host and test the hypothesis that persistence increases complications of bone marrow transplantation (BMT). Following intranasal infection of C57BL/6J mice, MAV-1 DNA was detected in lung, mediastinal lymph nodes, and liver during acute infection at 7 days post infection (dpi), and at lower levels at 28 dpi that remained stable through 150 dpi. Expression of early and late viral transcripts was detected in those organs at 7 dpi but not at later time points. MAV-1 persistence was not affected by deficiency of IFN-γ. We detected no evidence of MAV-1 reactivation in vivo following allogeneic BMT of persistently infected mice. Persistent infection did not substantially affect mortality, weight loss, or pulmonary inflammation following BMT. However, T cell infiltration and increased expression of pro-inflammatory cytokines consistent with graft-versus-host disease (GVHD) were more pronounced in livers of persistently infected BMT mice than in uninfected BMT mice. These results suggest that MAV-1 persists in multiple sites without detectable evidence of ongoing replication. Our results indicate that MAV-1 persistence alters host responses to an unrelated challenge, even in the absence of detectable reactivation. Importance Long-term persistence in an infected host is an essential step in the life cycle of DNA viruses. Adenoviruses persist in their host following acute infection, but the nature of adenovirus persistence remains incompletely understood. Following intranasal infection of mice, we found that MAV-1 persists for a prolonged period in multiple organs, although we did not detect evidence of ongoing replication. Because BMT recipients are at risk for substantial morbidity and mortality from human adenovirus infections, often in the setting of reactivation of persistent virus in the recipient, we extended our findings using MAV-1 infection in a mouse model of BMT. MAV-1 persistence exacerbated GVHD-like inflammation following allogeneic BMT, even in the absence of virus reactivation. This novel finding suggests that adenovirus persistence has consequences, and it highlights the potential for a persistent adenovirus to influence host responses to unrelated challenges.
Collapse
|
4
|
Alarcon-Valdes P, Sanchez-Aguillon F, Martinez-Hernandez F, Olivo-Diaz A, Maravilla P, Santillan-Benitez JG, Romero-Valdovinos M. Long-term infection passaging of Human Adenovirus 36 in monkey kidney cells. Rev Inst Med Trop Sao Paulo 2022; 64:e68. [DOI: 10.1590/s1678-9946202264068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
|
5
|
Wang DD, Zhang XN. Advances in receptor modulation strategies for flexible, efficient, and enhanced antitumor efficacy. J Control Release 2021; 333:418-447. [PMID: 33812919 DOI: 10.1016/j.jconrel.2021.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Tumor-sensitivity, effective transport, and precise delivery to tumor cells of nano drug delivery systems (NDDs) have been great challenges to cancer therapy in recent years. The conventional targeting approach involves actively installing the corresponding ligand on the nanocarriers, which is prone to recognize the antigen blasts overexpressed on the surface of tumor cells. However, there are some probable limitations for the active tumor-targeting systems in vivo as follows: a. the limited ligand amount of modifications; b. possible steric hindrance, which was likely to prevent ligand-receptor interaction during the delivery process. c. the restrained antigen saturation highly expressed on the cell membrane, will definitely decrease the specificity and often lead to "off-target" effects of NDDs; and d. water insolubility of nanocarriers due to excess of ligands modification. Obviously, any regulation of receptors on surface of tumor cells exerted an important influence on the delivery of targeting systems. Herein, receptor upregulation was mostly desired for enhancing targeted therapy from the cellular level. This technique with the amplification of receptors has the potential to enhance tumor sensitivity towards corresponding ligand-modified nanoparticles, and thereby increasing the effective therapeutic concentration as well as improving the efficacy of chemotherapy. The enhancement of positively expressed receptors on tumor cells and receptor-dependent therapeutic agents or NDDs with an assembled "self-promoting" effect contributes to increasing cell sensitivity to NPs, and will provide a basic platform for clinical therapeutic practice. In this review, we highlight the significance of modulating various receptors on different types of cancer cells for drug delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
6
|
Adenovirus-Antibody Complexes Contributed to Lethal Systemic Inflammation in a Gene Therapy Trial. Mol Ther 2020; 28:784-793. [PMID: 32035027 DOI: 10.1016/j.ymthe.2020.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Intra-arterial administration of an adenovirus serotype 5 (Ad5) vector in a gene therapy trial caused lethal, systemic inflammation in subject 019 with ornithine transcarbamylase deficiency. This unanticipated inflammatory response was absent in another subject receiving the same vector dose and in 16 subjects receiving lower vector doses. We hypothesized that an immune memory to a previous natural adenovirus infection enhanced the immune response to high-dose systemic Ad5 vector, causing the exaggerated immune response in subject 019. To investigate this, we found that rabbit polyclonal sera to Ad5 and pooled human immunoglobulin (Ig) inhibited Ad5 vector transduction of non-immune cells in vitro, but enhanced transduction and activation of human dendritic cells (DCs). Sera from approximately 7% of normal human subjects and 50% of patients treated topically with Ad5 vectors enhanced Ad5 transduction and activation of DCs, apparently from formation of Ig-Ad5 immune complexes and binding to DCs through FcγR. Subject 019's blood substantially increased Ad5-vector activation of human DC primary cultures at levels exceeding those from normal subjects. Although this study is based on one event in a single subject, the results implicate a pre-existing humoral immune response to Ad5 in the lethal systemic inflammatory response that occurred in subject 019.
Collapse
|
7
|
Wei R, Trus I, Yang B, Huang L, Nauwynck HJ. Breed Differences in PCV2 Uptake and Disintegration in Porcine Monocytes. Viruses 2018; 10:v10100562. [PMID: 30326643 PMCID: PMC6213064 DOI: 10.3390/v10100562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/22/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is associated with various diseases which are designated as PCV2-associated diseases (PCVADs). Their severity varies among breeds. In the diseased pigs, virus is present in monocytes, without replication or full degradation. PCV2 entry and viral outcome in primary porcine monocytes and the role of monocytes in PCV2 genetic susceptibility have not been studied. Here, virus uptake and trafficking were analyzed and compared among purebreds Piétrain, Landrace and Large White and hybrid Piétrain × Topigs20. Viral capsids were rapidly internalized into monocytes, followed by a slow disintegration to a residual level. PCV2 uptake was decreased by chlorpromazine, cytochalasin D and dynasore. The internalized capsids followed the endosomal trafficking pathway, ending up in lysosomes. PCV2 genome was nicked by lysosomal DNase II in vitro, but persisted in monocytes in vivo. Monocytes from purebred Piétrain and the hybrid showed a higher level of PCV2 uptake and disintegration, compared to those from Landrace and Large White. In conclusion, PCV2 entry occurs via clathrin-mediated endocytosis. After entry, viral capsids are partially disintegrated, while viral genomes largely escape from the pathway to avoid degradation. The degree of PCV2 uptake and disintegration differ among pig breeds.
Collapse
Affiliation(s)
- Ruifang Wei
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Bo Yang
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Liping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Maduan Street 427, Harbin 150001, China.
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
8
|
Maisonneuve E, Cateau E, Leveque N, Kaaki S, Beby-Defaux A, Rodier MH. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells. PLoS One 2017; 12:e0178629. [PMID: 28591183 PMCID: PMC5462383 DOI: 10.1371/journal.pone.0178629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022] Open
Abstract
Free living amoebae (FLA) including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments.
Collapse
Affiliation(s)
- Elodie Maisonneuve
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- * E-mail:
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- Laboratoire de parasitologie et mycologie médicale, CHU La Milètrie, Poitiers, France
| | - Nicolas Leveque
- Laboratoire de virologie et mycobactériologie, CHU La Milètrie, Poitiers, France
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Sihem Kaaki
- Unité de pathologie ultrastructurale et expérimentale, Laboratoire d’anatomie et cytologie pathologiques, CHU la Milètrie, Poitiers, France
| | - Agnès Beby-Defaux
- Laboratoire de virologie et mycobactériologie, CHU La Milètrie, Poitiers, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- Laboratoire de parasitologie et mycologie médicale, CHU La Milètrie, Poitiers, France
| |
Collapse
|
9
|
Molloy CT, Andonian JS, Seltzer HM, Procario MC, Watson ME, Weinberg JB. Contributions of CD8 T cells to the pathogenesis of mouse adenovirus type 1 respiratory infection. Virology 2017; 507:64-74. [PMID: 28410483 DOI: 10.1016/j.virol.2017.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
CD8 T cells are key components of the immune response to viruses, but their roles in the pathogenesis of adenovirus respiratory infection have not been characterized. We used mouse adenovirus type 1 (MAV-1) to define CD8 T cell contributions to the pathogenesis of adenovirus respiratory infection. CD8 T cell deficiency in β2m-/- mice had no effect on peak viral replication in lungs, but clearance of virus was delayed in β2m-/- mice. Virus-induced weight loss and increases in bronchoalveolar lavage fluid total protein, IFN-γ, TNF-α, IL-10, CCL2, and CCL5 concentrations were less in β2m-/- mice than in controls. CD8 T cell depletion had similar effects on virus clearance, weight loss, and inflammation. Deficiency of IFN-γ or perforin had no effect on viral replication or inflammation, but perforin-deficient mice were partially protected from weight loss. CD8 T cells promote MAV-1-induced pulmonary inflammation via a mechanism that is independent of direct antiviral effects.
Collapse
Affiliation(s)
- Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Harrison M Seltzer
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan C Procario
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael E Watson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Rodríguez E, Ip WH, Kolbe V, Hartmann K, Pilnitz-Stolze G, Tekin N, Gómez-Medina S, Muñoz-Fontela C, Krasemann S, Dobner T. Humanized Mice Reproduce Acute and Persistent Human Adenovirus Infection. J Infect Dis 2016; 215:70-79. [PMID: 28077585 DOI: 10.1093/infdis/jiw499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/13/2016] [Indexed: 11/12/2022] Open
Abstract
Severe human adenovirus (HAdV) infections are an increasing threat for immunosuppressed individuals, particularly those who have received stem cell transplants. It has been previously hypothesized that severe infections might be due to reactivation of a persistent infection, but this hypothesis has been difficult to test owing to the lack of a permissive in vivo model of HAdV infection. Here we established a humanized mouse model that reproduces features of acute and persistent HAdV infection. In this model, acute infection correlated with high mortality, weight loss, liver pathology, and expression of viral proteins in several organs. In contrast, persistent infection was asymptomatic and led to establishment of HAdV-specific adaptive immunity and expression of early viral genes exclusively in the bone marrow. These findings validate the use of humanized mice to study acute and persistent HAdV infection and strongly suggest the presence of cellular reservoirs in the bone marrow.
Collapse
Affiliation(s)
- Estefanía Rodríguez
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| | - Viktoria Kolbe
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| | - Kristin Hartmann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf
| | - Gundula Pilnitz-Stolze
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| | - Nilgün Tekin
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| | - Sergio Gómez-Medina
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| | - César Muñoz-Fontela
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| | - Susanne Krasemann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg.,German Center for Infection Research, Braunschweig, (DZIF), Partner Site Hamburg, Germany
| |
Collapse
|
11
|
Demian PN, Horton KC, Kajon A, Siam R, Hasanin AMN, Elgohary Sheta A, Cornelius C, Gaynor AM. Molecular identification of adenoviruses associated with respiratory infection in Egypt from 2003 to 2010. BMC Infect Dis 2014; 14:50. [PMID: 24479824 PMCID: PMC3925414 DOI: 10.1186/1471-2334-14-50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 01/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Human adenoviruses of species B, C, and E (HAdV-B, –C, -E) are frequent causative agents of acute respiratory infections worldwide. As part of a surveillance program aimed at identifying the etiology of influenza-like illness (ILI) in Egypt, we characterized 105 adenovirus isolates from clinical samples collected between 2003 and 2010. Methods Identification of the isolates as HAdV was accomplished by an immunofluorescence assay (IFA) and confirmed by a set of species and type specific polymerase chain reactions (PCR). Results Of the 105 isolates, 42% were identified as belonging to HAdV-B, 60% as HAdV–C, and 1% as HAdV-E. We identified a total of six co-infections by PCR, of which five were HAdV-B/HAdV-C co-infections, and one was a co-infection of two HAdV-C types: HAdV-5/HAdV-6. Molecular typing by PCR enabled the identification of eight genotypes of human adenoviruses; HAdV-3 (n = 22), HAdV-7 (n = 14), HAdV-11 (n = 8), HAdV-1 (n = 22), HAdV-2 (20), HAdV-5 (n = 15), HAdV-6 (n = 3) and HAdV-4 (n = 1). The most abundant species in the characterized collection of isolates was HAdV-C, which is concordant with existing data for worldwide epidemiology of HAdV respiratory infections. Conclusions We identified three species, HAdV-B, -C and -E, among patients with ILI over the course of 7 years in Egypt, with at least eight diverse types circulating.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne M Gaynor
- U,S, Naval Medical Research Unit No, 3, Cairo, Egypt.
| |
Collapse
|
12
|
Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes. J Virol 2013; 88:903-12. [PMID: 24198418 DOI: 10.1128/jvi.01675-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection.
Collapse
|
13
|
Markel D, Lam E, Harste G, Darr S, Ramke M, Heim A. Type dependent patterns of human adenovirus persistence in human T-lymphocyte cell lines. J Med Virol 2013; 86:785-94. [PMID: 24026974 DOI: 10.1002/jmv.23736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 11/11/2022]
Abstract
Disseminated adenovirus infections cause significant mortality in stem cell transplanted patients and are suspected to originate from asymptomatic adenovirus persistence ("latency") in lymphocytes. The infection of three human T-lymphocyte lines (Jurkat, PM1, and CEM) with human adenovirus types of species A (HAdV-A31), B (HAdV-B3, -B11), and C (HAdV-C2, -C5) was investigated for 150 days in order to establish in vitro models for adenovirus persistence. HAdV-C5 persisted with continuous production of infectious virus progeny (about 10(7) TCID50 /ml) in PM1 cells. More than 100 copies of HAdV-C5-DNA per cell were detected by real-time PCR but hexon immunostaining showed that only 7.5% of the cells were infected ("carrier state infection"). Coxsackie and adenovirus receptor (CAR) expression was decreased in comparison to mock infected cultures suggesting selection of a semi-permissive subpopulation of PM-1 cells. By contrast, latency of HAdV-DNA (10(-3) -10(-4) copies/cell) without production of infectious virus progeny was observed in HAdV-C2 infection of PM1 and Jurkat, HAdV-A31 infection of PM1, and HAdV-B3 infection of Jurkat cells. In addition, transcription of E1A, DNA polymerase and hexon mRNA was not detected by RT-PCR suggesting an equivalent of clinical "HAdV latency." Persistence of HAdV-DNA was not observed in abortive infections of PM1 cells with HAdV-B3 and -B11 and in productive, lytical infections of Jurkat cells with HAdV-C5, HAdV-B11, and HAdV-A31. In conclusion, lytic and persistent infections with and without production of infectious virus were observed depending on the type of adenovirus. Genetic determinants for viral persistence may be investigated using these newly established infection models.
Collapse
Affiliation(s)
- Dominik Markel
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Roy S, Calcedo R, Medina-Jaszek A, Keough M, Peng H, Wilson JM. Adenoviruses in lymphocytes of the human gastro-intestinal tract. PLoS One 2011; 6:e24859. [PMID: 21980361 PMCID: PMC3184098 DOI: 10.1371/journal.pone.0024859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
Objective Persistent adenoviral shedding in stools is known to occur past convalescence following acute adenoviral infections. We wished to establish the frequency with which adenoviruses may colonize the gut in normal human subjects. Methods The presence of adenoviral DNA in intestinal specimens obtained at surgery or autopsy was tested using a nested PCR method. The amplified adenoviral DNA sequences were compared to each other and to known adenoviral species. Lamina propria lymphocytes (LPLs) were isolated from the specimens and the adenoviral copy numbers in the CD4+ and CD8+ fractions were determined by quantitative PCR. Adenoviral gene expression was tested by amplification of adenoviral mRNA. Results Intestinal tissue from 21 of 58 donors and LPLs from 21 of 24 donors were positive for the presence of adenoviral DNA. The majority of the sequences could be assigned to adenoviral species E, although species B and C sequences were also common. Multiple sequences were often present in the same sample. Forty-one non-identical sequences were identified from 39 different tissue donors. Quantitative PCR for adenoviral DNA in CD4+ and CD8+ fractions of LPLs showed adenoviral DNA to be present in both cell types and ranged from a few hundred to several million copies per million cells on average. Active adenoviral gene expression as evidenced by the presence of adenoviral messenger RNA in intestinal lymphocytes was demonstrated in 9 of the 11 donors tested. Conclusion Adenoviral DNA is highly prevalent in lymphocytes from the gastro-intestinal tract indicating that adenoviruses may be part of the normal gut flora.
Collapse
Affiliation(s)
- Soumitra Roy
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roberto Calcedo
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angelica Medina-Jaszek
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Martin Keough
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hui Peng
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James M. Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection.
Collapse
|
16
|
Helanterä I, Egli A, Koskinen P, Lautenschlager I, Hirsch HH. Viral Impact on Long-term Kidney Graft Function. Infect Dis Clin North Am 2010; 24:339-71. [DOI: 10.1016/j.idc.2010.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Lyons M, Onion D, Green NK, Aslan K, Rajaratnam R, Bazan-Peregrino M, Phipps S, Hale S, Mautner V, Seymour LW, Fisher KD. Adenovirus type 5 interactions with human blood cells may compromise systemic delivery. Mol Ther 2006; 14:118-28. [PMID: 16580883 DOI: 10.1016/j.ymthe.2006.01.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 12/28/2005] [Accepted: 01/12/2006] [Indexed: 11/19/2022] Open
Abstract
Intravenous delivery of adenovirus vectors requires that the virus is not inactivated in the bloodstream. Serum neutralizing activity is well documented, but we show here that type 5 adenovirus also interacts with human blood cells. Over 90% of a typical virus dose binds to human (but not murine) erythrocytes ex vivo, and samples from a patient administered adenovirus in a clinical trial showed that over 98% of viral DNA in the blood was cell associated. In contrast, nearly all viral genomes in the murine bloodstream are free in the plasma. Adenovirus bound to human blood cells fails to infect A549 lung carcinoma cells, although dilution to below 1.7 x 10(7) blood cells/ml relieves this inhibition. Addition of blood cells can prevent infection by adenovirus that has been prebound to A549 cells. Adenovirus also associates with human neutrophils and monocytes ex vivo, particularly in the presence of autologous plasma, giving dose-dependent transgene expression in CD14-positive monocytes. Finally, although plasma with a high neutralizing titer (defined on A549 cells) inhibits monocyte infection, weakly neutralizing plasma can actually enhance monocyte transduction. This may increase antigen presentation following intravenous injection, while blood cell binding may both decrease access of the virus to extravascular targets and inhibit infection of cells to which the virus does gain access.
Collapse
Affiliation(s)
- Mark Lyons
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford OX2 6HE, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Segerman A, Lindman K, Mei YF, Allard A, Wadell G. Adenovirus types 11p and 35 attach to and infect primary lymphocytes and monocytes, but hexon expression in T-cells requires prior activation. Virology 2006; 349:96-111. [PMID: 16483626 DOI: 10.1016/j.virol.2005.12.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/01/2005] [Accepted: 12/23/2005] [Indexed: 11/30/2022]
Abstract
Hematopoietic cells are attractive targets for gene therapy, but the conventional adenovirus (Ad) vectors, based on Ad5, transduce these cells inefficiently. One reason for low permissiveness of hematopoietic cells to infection by species C Ads appears to be inefficient attachment. Vectors pseudotyped with species B fibers are clearly more efficient at transducing hematopoietic cells than Ad5. To evaluate which Ad species B type(s) would be the most efficient vector(s) for primary T-cells, B-cells and monocytes, attachment to and entry of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 into primary PBMCs was studied. Ad11p and Ad35 were the only serotypes to show efficient binding and for which uptake by PBMCs could be detected. Infection of PBMCs by Ad5, Ad11p and Ad35 was compared. Expression of Ad hexons was detected in stimulated PBMCs, most frequently in T-cells, and in unstimulated monocytes, although B-cells appear to be refractory to productive infection. Replication of Ad DNA was severely restricted in most PBMCs. Neither hexon expression nor genome replication could be detected in unstimulated lymphocytes, but FISH and a real-time PCR-based assay suggested that Ad11p and Ad35 DNA reach the nucleus. Activation thus appears to be required for T-cells to be permissive to Ad gene expression. In summary, there are substantial differences between Ad3p and Ad7p on the one hand and Ad11p and Ad35 on the other, in their ability to interact with PBMCs. Ad11p and Ad35 probably represent vectors of choice for these cell types.
Collapse
Affiliation(s)
- Anna Segerman
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
19
|
McNees AL, Mahr JA, Ornelles D, Gooding LR. Postinternalization inhibition of adenovirus gene expression and infectious virus production in human T-cell lines. J Virol 2004; 78:6955-66. [PMID: 15194772 PMCID: PMC421642 DOI: 10.1128/jvi.78.13.6955-6966.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of adenovirus DNA in human tonsillar T cells in the absence of active virus replication suggests that T cells may be a site of latency or of attenuated virus replication in persistently infected individuals. The lytic replication cycle of Ad5 in permissive epithelial cells (A549) was compared to the behavior of Ad5 in four human T-cell lines, Jurkat, HuT78, CEM, and KE37. All four T-cell lines expressed the integrin coreceptors for Ad2 and Ad5, but only Jurkat and HuT78 express detectable surface levels of the coxsackie adenovirus receptor (CAR). Jurkat and HuT78 cells supported full lytic replication of Ad5, albeit at a level approximately 10% of that of A549, while CAR-transduced CEM and KE37 cells (CEM-CARhi and KE37-CARhi, respectively) produced no detectable virus following infection. All four T-cell lines bind and internalize fluorescently labeled virus. In A549, Jurkat, and HuT78 cells, viral proteins were detected in 95% of cells. In contrast, only a small subpopulation of CEM-CARhi and KE37-CARhi cells contained detectable viral proteins. Interestingly, Jurkat and HuT78 cells synthesize four to six times more copies of viral DNA per cell than did A549 cells, indicating that these cells produce infectious virions with much lower efficiency than A549. Similarly, CEM-CARhi and KE37-CARhi cells, which produce no detectable infectious virus, synthesize three times more viral genomes per cell than A549. The observed blocks to adenovirus gene expression and replication in all four human T-cell lines may contribute to the maintenance of naturally occurring persistent adenovirus infections in human T cells.
Collapse
Affiliation(s)
- Adrienne L McNees
- Department of Microbiology and Immunology, 3107 Rollins Research Center, Emory University School of Medicine, Atlanta, GA 30322.
| | | | | | | |
Collapse
|
20
|
Yotnda P, Savoldo B, Charlet-Berguerand N, Rooney C, Brenner M. Targeted delivery of adenoviral vectors by cytotoxic T cells. Blood 2004; 104:2272-80. [PMID: 15161664 DOI: 10.1182/blood-2003-11-3803] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Effective targeting of vectors to tumor cells that have metastasized to multiple different tissue sites remains a major challenge for gene therapy. Tumor-specific cytotoxic T lymphocytes (CTLs) have been shown in animal models and in humans to be able to cross tissue barriers and traffic to tumor cells. However, their capacity to eliminate malignancy has been limited by tumor immune evasion strategies. We now use a model of Epstein-Barr virus-mediated malignancy to show that human CTLs themselves may be modified to release therapeutic vectors following engagement of their antigen-specific receptors and that these vectors will effectively transduce and destroy tumor targets. We generated EBV-specific CTLs that were transgenic for the adenoviral E1 gene under the control of the cell activation-dependent CD40 ligand (CD40L) promoter. Following transduction with E1-deficient adenoviral vectors, these CTLs produced infectious virus when exposed to HLA-matched EBV-expressing targets, but not on exposure to major histocompatibility complex (MHC)-mismatched or otherwise irrelevant cells. This approach provides a means of delivering oncolytic/therapeutic vectors not only to locally accessible macroscopic tumors as is presently the case, but also to disseminated metastatic disease, while avoiding the risks associated with systemic administration of large doses of adenoviral vectors.
Collapse
Affiliation(s)
- Patricia Yotnda
- Center for Cell and Gene Therapy, 6621 Fannin St, MC3-3320, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
21
|
Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23:75-111. [PMID: 14690856 DOI: 10.1080/08830180490265556] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the evolutionary battle between viruses and their hosts, viruses have armed themselves with weapons to defeat the host's attacks on infected cells. Various proteins encoded in the adenovirus (Ad) E3 transcription unit protect cells from killing mediated by cytotoxic T cells and death-inducing cytokines such as tumor necrosis factor (TNF), Fas ligand, and TNF-related apoptosis-inducing ligand (TRAIL). The viral protein E3-gp19 K blocks MHC class-I-restricted antigen presentation, which diminishes killing by cytotoxic T cells. The receptor internalization and degradation (RID) complex (formerly E3-10.4 K/14.5 K) stimulates the clearance from the cell surface and subsequent degradation of the receptors for Fas ligand and TRAIL, thereby preventing the action of these important immune mediators. RID also downmodulates the epidermal growth factor receptor (EGFR), although what role, if any, this function has in immune regulation is uncertain. In addition, RID antagonizes TNF-mediated apoptosis and inflammation through a mechanism that does not primarily involve receptor downregulation. E3-6.7 K functions together with RID in downregulating some TRAIL receptors and may block apoptosis independently of other E3 proteins. Furthermore, E3-14.7 K functions as a general inhibitor of TNF-mediated apoptosis and blocks TRAIL-induced apoptosis. Finally, after expending great effort to maintain cell viability during the early part of the virus replication cycle, Ads lyse the cell to allow efficient virus release and dissemination. To perform this task subgroup C Ads synthesize a protein late in infection named ADP (formerly E3-11.6 K) that is required for efficient virus release. This review focuses on recent experiments aimed at discovering the mechanism of action of these critically important viral proteins.
Collapse
Affiliation(s)
- Drew L Lichtenstein
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
22
|
Nagel H, Maag S, Tassis A, Nestlé FO, Greber UF, Hemmi S. The alphavbeta5 integrin of hematopoietic and nonhematopoietic cells is a transduction receptor of RGD-4C fiber-modified adenoviruses. Gene Ther 2003; 10:1643-53. [PMID: 12923563 DOI: 10.1038/sj.gt.3302058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial and endothelial cells expressing the primary Coxsackie virus B adenovirus (Ad) receptor (CAR) and integrin coreceptors are natural targets of human Ad infections. The fiber knob of species A, C, D, E and F Ad serotypes binds CAR by mimicking the CAR-homodimer interface, and the penton base containing arginine-glycine-aspartate (RGD) motifs binds with low affinity to alphav integrins inducing cell activation. Here, we generated seven different genetically modified Ad vectors with RGD sequences inserted into the HI loop of fiber knob. All mutants bound and infected CAR and alphav integrin-positive epithelial cells with equal efficiencies. However, the Ads containing two additional cysteines, both N and C terminals of the RGD sequence (RGD-4C), were uniquely capable of transducing CAR-less hematopoietic and nonhematopoietic human tumor cell lines and primary melanoma cells. Both binding and transduction of RGD-4C Ad were blocked by soluble RGD peptides. Flow cytometry of cell surface integrins and virus binding to CAR-less cells in the presence of function-blocking anti-integrin antibodies indicated that the alphavbeta5 integrin, but not alphavbeta3, alphaIIbbeta3 or beta1,alpha5 or alpha6-containing integrins served as a functional transduction receptor of the RGD-4C Ads. However, in cells with low levels of alphavbeta5 integrin, the function-blocking anti-alphavbeta5 antibodies were not effective, unlike soluble RGD peptides. Collectively, our data demonstrate that the alphavbeta5 integrin is a functional transduction receptor of RGD-4C Ads in the absence of CAR, and that additional RGD receptors are targets of these viruses. The RGD-4C vectors further extend the tropism of Ads towards potential human therapies.
Collapse
Affiliation(s)
- H Nagel
- Institute of Molecular Biology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Kojaoghlanian T, Flomenberg P, Horwitz MS. The impact of adenovirus infection on the immunocompromised host. Rev Med Virol 2003; 13:155-71. [PMID: 12740831 DOI: 10.1002/rmv.386] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adenovirus (Ad) infections in immunocompromised hosts have increased in frequency as the number of patients with transplants of bone marrow, liver, kidney, heart and other organs increase in number and survive longer. The numbers of such patients have also increased because of the emergence of the HIV epidemic. Ad infections with the 51 different serotypes recognised to date have few pathognomonic signs and symptoms, and thus require a variety of laboratory-based procedures to confirm infection. These viruses have the ability to target various organs with relative serotype specificity and can cause diverse manifestations including serious life-threatening diseases characteristic of the organs involved. Ads have cytolytic and immunoregulatory properties. The clinical dilemma remains the prompt recognition of Ad-related disease, the differentiation of Ad infection from Ad disease and the differentiation from other causative agents. Since the armamentarium of effective antiviral agents available to treat Ads is unproven by controlled trials and the virus is often not acquired de novo, it is difficult to prevent reactivation in immunodeficient hosts or new acquisition from donor organs. Timely discontinuation of immunosuppressive agents is necessary to prevent morbid outcomes. The clinical diseases, diagnostic tests, antiviral agents and biological aspects of the Ads as pathogens in immunocompromised patients are discussed in the context of this review. Some of the newer diagnostic tests are based on the well-studied molecular biology of Ads, which also have been attenuated by selective viral DNA deletions for use as vectors in numerous gene therapy trials in humans.
Collapse
Affiliation(s)
- Tsoline Kojaoghlanian
- Division of Pediatric Infectious Diseases, Children's Hospital at Montefiore, 111 East 210th Street, Bronx, New York 10467, USA
| | | | | |
Collapse
|
24
|
Watkin H, Streuli CH. Adenoviral-mediated gene transfer in two-dimensional and three-dimensional cultures of mammary epithelial cells. Methods Cell Biol 2003; 69:403-23. [PMID: 12071007 DOI: 10.1016/s0091-679x(02)69025-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Harriet Watkin
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
25
|
Schoggins JW, Gall JGD, Falck-Pedersen E. Subgroup B and F fiber chimeras eliminate normal adenovirus type 5 vector transduction in vitro and in vivo. J Virol 2003; 77:1039-48. [PMID: 12502819 PMCID: PMC140814 DOI: 10.1128/jvi.77.2.1039-1048.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Altering adenovirus vector (Ad vector) targeting is an important goal for a variety of gene therapy applications and involves eliminating or reducing the normal tropism of a vector and retargeting through a distinct receptor-ligand pathway. The first step of Ad vector infection is high-affinity binding to a target cellular receptor. For the majority of adenoviruses and Ad vectors, the fiber capsid protein serves this purpose, binding to the coxsackievirus and adenovirus receptor (CAR) present on a variety of cell types. In this study we have explored a novel approach to altering Ad type 5 (Ad5) vector targeting based on serotypic differences in fiber function. The subgroup B viruses bind to an unidentified receptor that is distinct from CAR. The subgroup F viruses are the only adenoviruses that express two distinct terminal exons encoding fiber open reading frames. We have constructed chimeric fiber adenoviruses that utilize the tandem fiber arrangement of the subgroup F genome configuration. By taking advantage of serotypic differences in fiber expression, fiber shaft length, and fiber binding efficiency, we have developed a tandem fiber vector that has low binding efficiency for the known fiber binding sites, does not rely on an Ad5-based fiber, and can be grown to high titer using conventional cell lines. Importantly, when characterizing these vectors in vivo, we find the subgroup B system and our optimal tandem fiber system demonstrate reduced liver transduction by over 2 logs compared to an Ad5 fiber vector. These attributes make the tandem fiber vector a useful alternative to conventional strategies for fiber manipulation of adenovirus vectors.
Collapse
Affiliation(s)
- John W Schoggins
- Molecular Biology Graduate Program, Department of Microbiology and Immunology, Hearst Research Foundation, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
26
|
Garnett CT, Erdman D, Xu W, Gooding LR. Prevalence and quantitation of species C adenovirus DNA in human mucosal lymphocytes. J Virol 2002; 76:10608-16. [PMID: 12368303 PMCID: PMC136639 DOI: 10.1128/jvi.76.21.10608-10616.2002] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The common species C adenoviruses (serotypes Ad1, Ad2, Ad5, and Ad6) infect more than 80% of the human population early in life. Following primary infection, the virus can establish an asymptomatic persistent infection in which infectious virions are shed in feces for several years. The probable source of persistent virus is mucosa-associated lymphoid tissue, although the molecular details of persistence or latency of adenovirus are currently unknown. In this study, a sensitive real-time PCR assay was developed to quantitate species C adenovirus DNA in human tissues removed for routine tonsillectomy or adenoidectomy. Using this assay, species C DNA was detected in Ficoll-purified lymphocytes from 33 of 42 tissue specimens tested (79%). The levels varied from fewer than 10 to greater than 2 x 10(6) copies of the adenovirus genome/10(7) cells, depending on the donor. DNA from serotypes Ad1, Ad2, and Ad5 was detected, while the rarer serotype Ad6 was not. When analyzed as a function of donor age, the highest levels of adenovirus genomes were found among the youngest donors. Antibody-coated magnetic beads were used to purify lymphocytes into subpopulations and determine whether viral DNA could be enriched within any purified subpopulations. Separation of T cells (CD4/8- expressing and/or CD3-expressing cells) enriched viral DNA in each of nine donors tested. In contrast, B-cell purification (CD19-expressing cells) invariably depleted or eliminated viral DNA. Despite the frequent finding of significant quantities of adenovirus DNA in tonsil and adenoid tissues, infectious virus was rarely present, as measured by coculture with permissive cells. These findings suggest that human mucosal T lymphocytes may harbor species C adenoviruses in a quiescent, perhaps latent form.
Collapse
Affiliation(s)
- C T Garnett
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
27
|
Cuconati A, White E. Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 2002; 16:2465-78. [PMID: 12368257 DOI: 10.1101/gad.1012702] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Andrea Cuconati
- Howard Hughes Medical Institute, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
28
|
Sanchez TA, Booth JL, Metcalf JP. Tumor necrosis factor-alpha activation by adenovirus E1A 13S CR3 occurs in a cell-dependent and cell-independent manner. Am J Physiol Lung Cell Mol Physiol 2002; 283:L619-27. [PMID: 12169582 DOI: 10.1152/ajplung.00342.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adenovirus (Ad) early gene product 13S transactivates the tumor necrosis factor (TNF)-alpha promoter in inflammatory cells. We examined both the subdomains of E1A and the upstream TNF promoter elements involved. In both Jurkat and U-937 cells, zinc finger or carboxyl region mutation of Ad E1A 13S conserved region 3 resulted in a significant loss of transactivation of the TNF promoter (> or =69%). For both cell types there was a TNF-negative regulatory element in the -242 to -199 region and a positive regulatory element between -199 and -118. In contrast, an upstream positive regulatory element was detected in different regions in both cell types. In U-937 cells the positive regulatory unit was between -600 and -576, whereas in Jurkat cells it was between -576 and -242. The U-937 upstream element was dependent on a site previously designated epsilon in cooperation with an adjacent nuclear factor-kappaB-2a site. Therefore, transactivation of the TNF promoter by Ad 13S in lymphocyte and monocyte cell types involves similar subdomains of the E1A protein, but cell-specific TNF promoter elements.
Collapse
Affiliation(s)
- Traci A Sanchez
- Department of Internal Medicine, Pulmonary and Critical Care Division, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | |
Collapse
|
29
|
Abstract
Adenoviruses (Ads) are endemic in the human population and the well-studied group C Ads typically cause an acute infection in the respiratory epithelium. A growing body of evidence suggests that these viruses also establish a persistent infection. The Ad genome encodes several proteins that counteract the host anti-viral mechanisms, which function to limit viral infections. This review describes the adenovirus immuno-regulatory proteins and how they function to block apoptosis of infected cells. In addition to facilitating the successful completion of the viral replication cycle and spread of progeny virus, these functions may help maintain the virus in a persistent state.
Collapse
Affiliation(s)
- Adrienne L McNees
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
30
|
Cuconati A, Degenhardt K, Sundararajan R, Anschel A, White E. Bak and Bax function to limit adenovirus replication through apoptosis induction. J Virol 2002; 76:4547-58. [PMID: 11932420 PMCID: PMC155112 DOI: 10.1128/jvi.76.9.4547-4558.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level.
Collapse
Affiliation(s)
- Andrea Cuconati
- Howard Hughes Medical Institute. Department of Molecular Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Yi Chu
- Cardiovascular Division, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
32
|
Moise AR, Grant JR, Vitalis TZ, Jefferies WA. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol 2002; 76:1578-87. [PMID: 11799152 PMCID: PMC135875 DOI: 10.1128/jvi.76.4.1578-1587.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E3-6.7K is a small and hydrophobic membrane glycoprotein encoded by the E3 region of subgroup C adenovirus. Recently, E3-6.7K has been shown to be required for the downregulation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors by the adenovirus E3/10.4K and E3/14.5K complex of proteins. We demonstrate here that E3-6.7K has additional protective roles, independent of other virus proteins. In transfected Jurkat T-cell lymphoma cells, E3-6.7K was found to maintain endoplasmic reticulum-Ca(2+) homeostasis and inhibit the induction of apoptosis by thapsigargin. The presence of E3-6.7K also lead to a reduction in the TNF-induced release of arachidonic acid from transfected U937 human histiocytic lymphoma cells. In addition, E3-6.7K protected cells against apoptosis induced through Fas, TNF receptor, and TRAIL receptors. Therefore, E3-6.7K confers a wide range of protective effects against both Ca(2+) flux-induced and death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Alexander R Moise
- Biotechnology Laboratory, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
33
|
Perricone MA, Morris JE, Pavelka K, Plog MS, O'Sullivan BP, Joseph PM, Dorkin H, Lapey A, Balfour R, Meeker DP, Smith AE, Wadsworth SC, St George JA. Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. II. Transfection efficiency in airway epithelium. Hum Gene Ther 2001; 12:1383-94. [PMID: 11485630 DOI: 10.1089/104303401750298544] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A phase I clinical trial was conducted in which recombinant adenovirus containing the cystic fibrosis trans-membrane regulator (CFTR) (Ad2/CFTR) was administered by bronchoscopic instillation or aerosolization to the lungs of cystic fibrosis (CF) patients. In this paper, we evaluate the efficiency of Ad2/CFTR-mediated transduction of bronchial airway cells. The ability of an Ad2/CFTR vector to transduce airway cells was first evaluated in patients to whom the vector was administered by bronchoscopic instillation. Cells at the administration site were collected 2 days after treatment by bronchoscopic brushing. Ad2-specific CFTR DNA was detected in four of five individuals by PCR, and Ad2-specific CFTR RNA was detected in three of five individuals by RT-PCR. Ad2/CFTR-mediated transduction of airway epithelial cells was then determined in CF individuals receiving this vector by aerosol inhalation. Ad2-specific CFTR DNA was detected in 13 of 13 individuals 2 days after aerosolization, and in 3 of 5 individuals 7 days after aerosolization. Ad2-specific RNA was detected in 4 of 13 individuals on day 2, but was not detected in the 5 individuals tested on day 7. The percentage of airway epithelial cells containing nuclear-localized vector DNA was < or =2.4% as determined by fluorescence in situ hybridization (FISH). However, in some cases, a high percentage of nonepithelial mononuclear cells or squamous metaplastic epithelial cells was infected with the adenoviral vector. In conclusion, aerosol administration is a feasible means to distribute adenoviral vectors throughout the conducting airways, but improvements in adenovirus-mediated transduction of airway epithelial cells are necessary before gene therapy for CF will be effective.
Collapse
Affiliation(s)
- M A Perricone
- Genzyme Corporation, Framingham, MA 01701, USA. michael.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chu Y, Heistad D, Cybulsky MI, Davidson BL. Vascular cell adhesion molecule-1 augments adenovirus-mediated gene transfer. Arterioscler Thromb Vasc Biol 2001; 21:238-42. [PMID: 11156859 DOI: 10.1161/01.atv.21.2.238] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have reported that adenovirus-mediated gene transfer is augmented in the endothelium of atherosclerotic blood vessels. We observed that vascular cell adhesion molecule-1 (VCAM-1) shares some homology with the coxsackievirus and adenovirus receptor. Because VCAM-1 is upregulated on atherosclerotic endothelial cells, we hypothesized that VCAM-1 may act as an auxiliary receptor to augment adenovirus-mediated gene transfer. To test this hypothesis, stable NIH 3T3 cell lines that constitutively express VCAM-1 on the cell surface were generated. Recombinant adenovirus 5 (Ad5), which contains the reporter ss-galactosidase gene, was used to compare Ad5 infection in VCAM-1(+) and parental NIH 3T3 cells. Total ss-galactosidase activity and the number of transgene-positive cells were 6- to 10-fold and 5-fold higher, respectively, in VCAM-1(+) than in VCAM-1(-) cells. Ad5 binding to VCAM-1(+) cells was increased by 3-fold over VCAM-1(-) cells. Soluble VCAM-1 protein, present during infection or viral binding, reduced ss-galactosidase activity in VCAM-1(+) cells in a dose-dependent manner. Taken together, we conclude that VCAM-1 can mediate adenovirus binding and infection. This may explain, in part, the previous finding that adenovirus-mediated gene transfer is augmented in atherosclerotic arteries.
Collapse
Affiliation(s)
- Y Chu
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
35
|
Ebbinghaus C, Al-Jaibaji A, Operschall E, Schöffel A, Peter I, Greber UF, Hemmi S. Functional and selective targeting of adenovirus to high-affinity Fcgamma receptor I-positive cells by using a bispecific hybrid adapter. J Virol 2001; 75:480-9. [PMID: 11119616 PMCID: PMC113940 DOI: 10.1128/jvi.75.1.480-489.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) efficiently delivers its DNA genome into a variety of cells and tissues, provided that these cells express appropriate receptors, including the coxsackie-adenovirus receptor (CAR), which binds to the terminal knob domain of the viral capsid protein fiber. To render CAR-negative cells susceptible to Ad infection, we have produced a bispecific hybrid adapter protein consisting of the amino-terminal extracellular domain of the human CAR protein (CARex) and the Fc region of the human immunoglobulin G1 protein, comprising the hinge and the CH2 and CH3 regions. CARex-Fc was purified from COS7 cell supernatants and mixed with Ad particles, thus blocking Ad infection of CAR-positive but Fc receptor-negative cells. The functionality of the CARex domain was further confirmed by successful immunization of mice with CARex-Fc followed by selection of a monoclonal anti-human CAR antibody (E1-1), which blocked Ad infection of CAR-positive cells. When mixed with Ad expressing eGFP, CARex-Fc mediated an up to 250-fold increase of transgene expression in CAR-negative human monocytic cell lines expressing the high-affinity Fcgamma receptor I (CD64) but not in cells expressing the low-affinity Fcgamma receptor II (CD32) or III (CD16). These results open new perspectives for Ad-mediated cancer cell vaccination, including the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- C Ebbinghaus
- Institute of Molecular Biology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Sanchez TA, Habib I, Leland Booth J, Evetts SM, Metcalf JP. Zinc finger and carboxyl regions of adenovirus E1A 13S CR3 are important for transactivation of the cytomegalovirus major immediate early promoter by adenovirus. Am J Respir Cell Mol Biol 2000; 23:670-7. [PMID: 11062146 DOI: 10.1165/ajrcmb.23.5.3675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) is an important cause of disease in susceptible patients. We previously demonstrated that an adenovirus early gene product can transactivate the CMV major immediate early (IE) promoter in inflammatory cells. This effect was due to the conserved region 3 (CR3) of the adenovirus E1A 13S gene product. There are two domains in the CR3 region, a zinc finger (aa 147-177) and a carboxyl (aa 180-188) domain. Both are crucial for transactivation of downstream promoter elements of adenovirus in E1A 13S. We sought to determine if either or both of these specific domains is also necessary for transactivation of the CMV IE promoter by the adenovirus E1A 13S gene product. We cotransfected T-lymphocyte Jurkat cells and monocyte/macrophage-like THP-1 cells with plasmids expressing wild-type (WT) or CR3 mutant E1A 13S and a CMV IE chloramphenicol acetyltransferase (CAT) reporter construct. With extracts of cells coinfected with E1A WT set to 100%, mutation in the zinc finger domain, the carboxyl domain, or both domains decreased CMV IE CAT activity by >/= 96%. In contrast, a mutation in the region between the zinc finger and carboxyl domains reduced CMV IE CAT activity by only 24 to 26%. Mixing studies in Jurkat cells confirmed the importance of these domains. We also evaluated the active site of the CMV IE promoter involved in transactivation in THP-1 cells using CMV IE promoter deletions and single promoter element constructs. These studies showed that progressive deletion of the 19-bp CMV IE repeats containing cyclic AMP response element binding protein/activating transcription factor (CREB/ATF) sites resulted in progressive loss of activity. The importance of this element was confirmed using single promoter elements containing CMV IE 16-, 18-, 19-, and 21-bp repeats. Finally, using a 19-bp single promoter element construct and the CR3 mutants we demonstrated that mutations in the zinc finger (C171S) carboxyl region (S185N) or both regions (C171S/ S185N) resulted in significant (83, 94, and 85%) loss of activity. We conclude that the zinc finger and carboxyl domains of the CR3 region of E1A 13S are necessary for transactivation of the CMV promoter and that this occurs mainly through activation of the 19-bp CREB/ATF site of the promoter.
Collapse
Affiliation(s)
- T A Sanchez
- Pulmonary and Critical Care Division, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
37
|
Zsengellér Z, Otake K, Hossain SA, Berclaz PY, Trapnell BC. Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol 2000; 74:9655-67. [PMID: 11000238 PMCID: PMC112398 DOI: 10.1128/jvi.74.20.9655-9667.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus is a common respiratory pathogen which causes a broad range of distinct clinical syndromes and has recently received attention for its potential for in vivo gene delivery. Although adenovirus respiratory tract infection (ARTI) results in dose-dependent, local inflammation, the pathogenesis of this remains unclear. We hypothesized that alveolar macrophages (AMphi) rapidly internalize adenovirus following in vivo pulmonary administration and then initiate inflammatory signaling within the lung. To evaluate the role of AMphi in the induction of lung inflammation during ARTI in vivo, we directly assessed adenovirus uptake by murine AMphi and correlated uptake with the initiation of proinflammatory gene expression. Stimulation of cytokine (tumor necrosis factor alpha [TNF-alpha], interleukin-6 [IL-6], macrophage inflammatory protein-2 [MIP-2], and MIP-1alpha) expression in the lung was evaluated at the level of mRNA (by reverse transcription-PCR [RT-PCR]) and protein (by enzyme-linked immunosorbent assay) and by identification of cells expressing TNF-alpha and IL-6 mRNA in lung tissues (by in situ hybridization) and isolated lung lavage cells (by RT-PCR). Adenovirus, labeled with the fluorescent dye (Cy3), was rapidly and widely distributed on epithelial surfaces of airways and alveoli and was very rapidly ( approximately 1 min) localized within AMphi. At 30 min after infection AMphi but not airway epithelial or vascular endothelial cells expressed mRNA for TNF-alpha and IL-6, thus identifying AMphi as the cell source of initial cytokine signaling. IL-6, TNF-alpha, MIP-2, and MIP-1alpha levels progressively increased in bronchoalveolar lavage fluid after pulmonary adenovirus infection, and all were significantly elevated at 6 h (P < 0.05). To begin to define the molecular mechanism(s) by which adenovirus initiates the inflammatory signaling in macrophages, TNF-alpha expression from adenovirus-infected RAW264.7 macrophages was evaluated in vitro. TNF-alpha expression was readily detected in adenovirus-infected RAW cell supernatant with kinetics similar to AMphi during in vivo infection. Blockage of virus uptake at specific cellular sites, including internalization (by wortmannin), endosome acidification and/or lysis (by chloroquine) or by Ca(2+) chelation (by BAPTA) completely blocked TNF-alpha expression. In conclusion, results showed that during ARTI, (i) AMphi rapidly internalized adenovirus, (ii) expression of inflammatory mediators was initiated within AMphi and not airway epithelial or other cells, and (iii) the initiation of inflammatory signaling was linked to virion uptake by macrophages occurring at a point after vesicle acidification. These results have implications for our understanding of the role of the AMphi in the initiation of inflammation following adenovirus infection and adenovirus-mediated gene transfer to the lung.
Collapse
Affiliation(s)
- Z Zsengellér
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
38
|
Toyoda K, Andresen JJ, Zabner J, Faraci FM, Heistad DD. Calcium phosphate precipitates augment adenovirus-mediated gene transfer to blood vessels in vitro and in vivo. Gene Ther 2000; 7:1284-91. [PMID: 10918499 DOI: 10.1038/sj.gt.3301214] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenovirus (Ad)-mediated gene transfer to blood vessels is relatively inefficient, probably because binding of adenovirus to the endothelium and adventitia seems to be limited. Association of calcium phosphate (CaPi) precipitates with adenovirus improves efficiency of gene transfer to some cells in culture and to mouse lung in vivo. In this study, we tested the hypothesis that CaPi is useful for adenovirus-mediated gene transfer to blood vessels. In fibroblast and endothelial cells in culture, Ad:CaPi coprecipitates greatly increased transgene expression. Ad:CaPi also enhanced transgene expression in both adventitia and endothelium of carotid arteries and aortae from rabbits studied ex vivo. After injection of Ad:CaPi into the cisterna magna of rabbits in vivo, the transgene product was markedly increased in leptomeninges of the ventral brain stem, including the adventitia of the basilar artery. We also examined mechanisms of enhanced gene transfer. Binding of adenovirus to fibroblast and endothelial cells in culture, and to the basilar artery in vivo, as determined using Southern blot analysis, was augmented by CaPi. Antibody to adenoviral fiber knob did not inhibit augmented transgene expression by Ad:CaPi. The finding suggests that improved adenoviral binding occurs primarily via a fiber-independent pathway. Thus, CaPi precipitates are useful for improvement of adenovirus-mediated gene transfer to blood vessels in vitro and in vivo.
Collapse
Affiliation(s)
- K Toyoda
- Department of Internal Medicine, Pharmacology, University of Iowa College of Medicine, and Veterans Administration Medical Center, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
39
|
Schaley J, O'Connor RJ, Taylor LJ, Bar-Sagi D, Hearing P. Induction of the cellular E2F-1 promoter by the adenovirus E4-6/7 protein. J Virol 2000; 74:2084-93. [PMID: 10666238 PMCID: PMC111689 DOI: 10.1128/jvi.74.5.2084-2093.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1999] [Accepted: 11/30/1999] [Indexed: 01/01/2023] Open
Abstract
The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression.
Collapse
Affiliation(s)
- J Schaley
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
40
|
Segerman A, Mei YF, Wadell G. Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol 2000; 74:1457-67. [PMID: 10627557 PMCID: PMC111481 DOI: 10.1128/jvi.74.3.1457-1467.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cells are attractive targets for gene therapy. However, no satisfactory vectors are currently available. A major problem with the most commonly used adenovirus vectors, based on adenovirus type 2 (Ad2) or Ad5, is their low binding efficiency for hematopoietic cells. In this study we identify two adenovirus serotypes with high affinity for hematopoietic cells. The binding efficiency of prototype serotypes Ad4p, Ad11p, and Ad35p for different committed hematopoietic cell lines representing T cells (Jurkat), B cells (DG75), monocytes (U937-2), myeloblasts (K562), and granulocytes (HL-60) was evaluated and compared to that of Ad5v, the commonly used adenovirus vector, using flow cytometry. In contrast to Ad5v, which bound to less than 10% of the cells in all experiments, Ad11p and Ad35p showed high binding efficiency for all of the different hematopoietic cell lines. Ad4p bound to the lymphocytic cell lines to some extent but less well to the myelomonocytic cell lines. The abilities of the different serotypes to infect, replicate, and form complete infectious particles in the hematopoietic cell lines were also investigated by immunostaining, (35)S labeling of viral proteins, and titrations of cell lysates. Ad11p and Ad35p infected the highest proportion of cells, and Ad11p infected all of the cell lines investigated. The Ad11p hexon was expressed equally well in K562 and A549 cells. Jurkat cells also showed high levels of expression of Ad11p hexons, but the production of infectious particles was low. The binding properties of virions were correlated to their ability to infect and be expressed.
Collapse
Affiliation(s)
- A Segerman
- Department of Virology, Umeå University, 901 85 Umeå, Sweden.
| | | | | |
Collapse
|
41
|
Selective Expansion of Alveolar Macrophages In Vivo by Adenovirus-Mediated Transfer of the Murine Granulocyte-Macrophage Colony-Stimulating Factor cDNA. Blood 1999. [DOI: 10.1182/blood.v93.2.655.402k02_655_666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on the hypothesis that genetic modification of freshly isolated alveolar macrophages (AM) with the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA would induce AM to proliferate, this study focuses on the ability of adenoviral (Ad) vectors to transfer and efficiently express the murine (m) GM-CSF cDNA in murine AM with consequent expansion in the number of AM in vitro and in vivo. To demonstrate that an Ad vector can effectively transfer and express genes in AM, murine AM recovered by bronchoalveolar lavage from the lung of Balb/c mice were infected with an Ad vector coding for green fluorescent protein (GFP) in vitro and expressed GFP in a dose-dependent fashion. Infection of AM with an Ad vector containing an expression cassette coding for mGM-CSF led to GM-CSF expression and to AM proliferation in vitro. When AM infected with AdGFP were returned to the respiratory tract of syngeneic recipient mice, GFP-expressing cells could still be recovered by bronchoalveolar lavage 2 weeks later. In vitro infection of AM with AdmGM-CSF and subsequent transplantation of the genetically modified AM to the lungs of syngeneic recipients led to GM-CSF expression in vivo. Strikingly, the AM recovered by lavage 5 weeks after transplantation demonstrated an increased rate of proliferation, and the total number of alveolar macrophages was 1.9-fold greater than controls. Importantly, the increase in the numbers of AM was selective (ie, other inflammatory cell numbers were unchanged), and there was no modification to the lung architecture. Thus, it is feasible to genetically modify AM with Ad vectors and to use this strategy to modify the behavior of AM in vivo. Based on the importance of AM in the primary defense of the respiratory epithelial surface, this strategy may be useful in enhancing pulmonary defenses in immunodeficiency states.
Collapse
|
42
|
Selective Expansion of Alveolar Macrophages In Vivo by Adenovirus-Mediated Transfer of the Murine Granulocyte-Macrophage Colony-Stimulating Factor cDNA. Blood 1999. [DOI: 10.1182/blood.v93.2.655] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Based on the hypothesis that genetic modification of freshly isolated alveolar macrophages (AM) with the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA would induce AM to proliferate, this study focuses on the ability of adenoviral (Ad) vectors to transfer and efficiently express the murine (m) GM-CSF cDNA in murine AM with consequent expansion in the number of AM in vitro and in vivo. To demonstrate that an Ad vector can effectively transfer and express genes in AM, murine AM recovered by bronchoalveolar lavage from the lung of Balb/c mice were infected with an Ad vector coding for green fluorescent protein (GFP) in vitro and expressed GFP in a dose-dependent fashion. Infection of AM with an Ad vector containing an expression cassette coding for mGM-CSF led to GM-CSF expression and to AM proliferation in vitro. When AM infected with AdGFP were returned to the respiratory tract of syngeneic recipient mice, GFP-expressing cells could still be recovered by bronchoalveolar lavage 2 weeks later. In vitro infection of AM with AdmGM-CSF and subsequent transplantation of the genetically modified AM to the lungs of syngeneic recipients led to GM-CSF expression in vivo. Strikingly, the AM recovered by lavage 5 weeks after transplantation demonstrated an increased rate of proliferation, and the total number of alveolar macrophages was 1.9-fold greater than controls. Importantly, the increase in the numbers of AM was selective (ie, other inflammatory cell numbers were unchanged), and there was no modification to the lung architecture. Thus, it is feasible to genetically modify AM with Ad vectors and to use this strategy to modify the behavior of AM in vivo. Based on the importance of AM in the primary defense of the respiratory epithelial surface, this strategy may be useful in enhancing pulmonary defenses in immunodeficiency states.
Collapse
|
43
|
Leon RP, Hedlund T, Meech SJ, Li S, Schaack J, Hunger SP, Duke RC, DeGregori J. Adenoviral-mediated gene transfer in lymphocytes. Proc Natl Acad Sci U S A 1998; 95:13159-64. [PMID: 9789058 PMCID: PMC23744 DOI: 10.1073/pnas.95.22.13159] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Indexed: 01/19/2023] Open
Abstract
Although adenovirus can infect a wide range of cell types, lymphocytes are not generally susceptible to adenovirus infection, in part because of the absence of the expression of the cellular receptor for the adenoviral fiber protein. The cellular receptor for adenovirus and coxsackievirus (CAR) recently was cloned and shown to mediate adenoviral entry by interaction with the viral fiber protein. We show that the ectopic expression of CAR in various lymphocyte cell lines, which are almost completely resistant to adenovirus infection, is sufficient to facilitate the efficient transduction of these cells by recombinant adenoviruses. Furthermore, this property of CAR does not require its cytoplasmic domain, consistent with the idea that CAR primarily serves as a high affinity binding site for the adenoviral fiber protein, and that viral entry is mediated by interaction of the viral penton base proteins with cellular integrins. As a demonstration of their functional utility, we used CAR-expressing lymphocytes transduced with an adenovirus expressing Fas ligand to efficiently kill Fas receptor-expressing tumor cells. The ability to efficiently manipulate gene expression in lymphocyte cells by using adenovirus vectors should facilitate the functional characterization of pathways affecting lymphocyte physiology.
Collapse
Affiliation(s)
- R P Leon
- Department of Biochemistry and Molecular Genetics, University of Colorado Cancer Center, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Toyoda K, Ooboshi H, Chu Y, Fasbender A, Davidson BL, Welsh MJ, Heistad DD. Cationic polymer and lipids enhance adenovirus-mediated gene transfer to rabbit carotid artery. Stroke 1998; 29:2181-8. [PMID: 9756601 DOI: 10.1161/01.str.29.10.2181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Improvement of efficiency of gene transfer to endothelium could be useful for several applications. We tested the hypothesis that cationic nonviral molecules augment adenovirus-mediated gene transfer to blood vessels, perhaps by alteration of the surface charge of adenovirus and facilitation of binding to endothelium. METHODS Carotid arteries from rabbits were incubated in vitro for 0.5 to 2 hours with an adenoviral vector alone or noncovalent complexes of adenovirus with poly-L-lysine (a cationic polymer) or lipofectin (a cationic lipid). Binding of adenovirus to the vessels was evaluated immediately after incubation with virus, and assay of transgene (ss-galactosidase) activity and histochemistry were performed 24 hours after gene transfer. To determine whether cationic molecules can be used to augment alteration of vascular function by adenovirus-mediated gene transfer, we also examined effects on gene transfer of endothelial nitric oxide synthase. RESULTS Assay of ss-galactosidase activity indicated that both cationic molecules increased transgene expression in vessels by approximately 5- to 6-fold. In contrast, when endothelium was removed from the vessels after gene transfer, poly-L-lysine and lipofectin did not significantly increase transgene activity. Histochemistry for ss-galactosidase also suggested that the adenovirus-cationic molecule complexes augmented transgene expression mainly in the endothelium. In addition, we found that complexing adenovirus with cationic molecules increased binding of adenovirus to the vessels. After gene transfer with recombinant adenovirus containing endothelial nitric oxide synthase, calcium ionophore (A23187) produced greater relaxation of vessels treated with adenovirus complexed with poly-L-lysine or lipofectin than those treated with adenovirus alone. CONCLUSIONS Cationic molecules improve the efficiency of adenovirus-mediated gene transfer to blood vessels.
Collapse
Affiliation(s)
- K Toyoda
- Departments of Internal Medicine, Physiology and Biophysics, and Pharmacology, Cardiovascular Center and Center on Aging, University of Iowa College of Medicine, Iowa City, Iowa
| | | | | | | | | | | | | |
Collapse
|
45
|
High-Efficiency Gene Transfer Into Ex Vivo Expanded Human Hematopoietic Progenitors and Precursor Cells by Adenovirus Vectors. Blood 1998. [DOI: 10.1182/blood.v91.8.2781.2781_2781_2792] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication-deficient adenoviral vectors (AdVec), which infect cycling and noncycling cells with high efficiency, low toxicity, and ease of delivery, provide ideal vehicles to study the expression of regulatory genes controlling different stages of hematopoiesis. To examine the infection efficiency of AdVec in hematopoietic precursor and progenitor cells, we used a replication-deficient adenovector expressing the humanized form of the cDNA for green fluorescent protein (AdGFP), permitting assessment of infection efficiency and kinetics of transgene expression in viable hematopoietic cells using flow cytometry and fluorescence microscopy. Flow-cytometric analysis of ex vivo expanded hematopoietic precursor cells infected with a multiplicity of infection (MOI) of 100 of AdGFP show that 78% of megakaryocytic (CD41a+ and CD42b+) cells, 82% of dendritic (CD1a+) cells, 41% of RBC precursors (glycophorin A+), and 32% of monocytic (CD14+) cells expressed GFP. Nineteen percent ± 1% of freshly isolated CD34+ cells from peripheral blood leukapheresis products infected under the same conditions expressed GFP. Morphologic evaluation of ex vivo expanded, AdGFP-infected CD34+ cells showed normal maturation. The functional capacity of AdGFP-infected CD34+ cells was analyzed by quantifying clonogeneic efficiency and proliferative capacity. Infection of CD34+ progenitor cells with MOIs of 1 to 100 did not impair clonogeneic efficiency of CD34+ cells. However, MOI greater than 100 resulted in a significant inhibition of colony-forming unit–granulocyte/granulocyte-macrophage (CFU-G/GM) formation. In sequential dilution expansion over 3 weeks (Delta assay), the cytokine-driven proliferative potential of CD34+cells was not impaired following exposure to AdGFP at MOIs of 1 to 1,000. The GFP+ population expanded 10- to 15-fold at high MOIs (500 to 1,000), indicating multiple copies of the transgene in the initially infected CD34+ cells, which were expressed in subsequent progenies. These data show that AdVec deliver transgenes with high efficiency and low toxicity to hematopoietic progenitor and precursor cells. Introduction of marker genes such as GFP into hematopoietic cells by AdVec will provide a valuable system for study of development, homing, and trafficking of hematopoietic precursor and progenitor cells in vitro and in vivo. Furthermore, these results provide insights into the design of gene therapy strategies for treatment of hematologic disorders by AdVec.
Collapse
|
46
|
Interactions between the Immune System and Gene Therapy Vectors: Bidirectional Regulation of Response and Expression**Received for publication September 19, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60611-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8:2019-29. [PMID: 9414251 DOI: 10.1089/hum.1997.8.17-2019] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the major limitations to current gene therapy is the low-level and transient vector gene expression due to poorly defined mechanisms, possibly including promoter attenuation or extinction. Because the application of gene therapy vectors in vivo induces cytokine production through specific or nonspecific immune responses, we hypothesized that cytokine-mediated signals may alter vector gene expression. Our data indicate that the cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) inhibit transgene expression from certain widely used viral promoters/enhancers (cytomegalovirus, Rous sarcoma virus, simian virus 40, Moloney murine leukemia virus long terminal repeat) delivered by adenoviral, retroviral or plasmid vectors in vitro. A constitutive cellular promoter (beta-actin) is less sensitive to these cytokine effects. Inhibition is at the mRNA level and cytokines do not cause vector DNA degradation, inhibit total cellular protein synthesis, or kill infected/transfected cells. Administration of neutralizing anti-IFN-gamma monoclonal antibody results in enhanced transgene expression in vivo. Thus, standard gene therapy vectors in current use may be improved by altering cytokine-responsive regulatory elements. Determination of the mechanisms involved in cytokine-regulated vector gene expression may improve the understanding of the cellular disposition of vectors for gene transfer and gene therapy.
Collapse
Affiliation(s)
- L Qin
- Department of Surgery, University of Michigan, Ann Arbor 48109-0331, USA
| | | | | | | | | | | |
Collapse
|
48
|
Worgall S, Leopold PL, Wolff G, Ferris B, Van Roijen N, Crystal RG. Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther 1997; 8:1675-84. [PMID: 9322870 DOI: 10.1089/hum.1997.8.14-1675] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To evaluate the hypothesis that innate immune mechanisms play a major role in eliminating adenovirus (Ad) vectors from the lung, the fate of adenoviral genome of an Ad vector was quantified in the first 24 h after intratracheal administration of an Ad vector coding for beta-galactosidase (beta gal) to mice. Southern analysis with an Ad specific probe showed that 70% of the Ad genome was lost within 24 h, in both immunocompetent and immunodeficient animals. When alveolar macrophages were eliminated by administration of liposomes containing dichloromethylene-biphosphanate, subsequent administration of Ad vector was associated with a 100%+/-8% increase in lung Ad DNA and 96%+/-9% rise in beta gal expression at 24 h compared to control animals. In vitro infection of mouse, rat, and human alveolar macrophages with an Ad vector resulted in 65% loss of vector genome within 24 h, whereas the vector genome was stable in lung epithelial cell lines. PCR in situ hybridization demonstrated that the Ad vector genome persisted A549 lung epithelial cell in vitro but not in alveolar macrophages. Finally, alveolar macrophages recovered from the mouse lung 30 min following intratracheal administration of an Ad vector showed large amounts of vector genome, whereas much less was evident in alveolar macrophages recovered after 24 h. These observations demonstrate that alveolar macrophages play an important role in elimination of Ad vectors from the lung and suggest that strategies to transiently suppress this major innate immune defense system might be rewarding in enhancing the efficiency Ad vectors for lung gene therapy.
Collapse
Affiliation(s)
- S Worgall
- Division of Pulmonary and Critical Care Medicine, The New York Hospital-Cornell Medical Center, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
49
|
Dong Z, Yang X, Fidler IJ. Neutralization of endogenous interferon-beta increases the efficiency of adenoviral vector-mediated gene transduction. J Interferon Cytokine Res 1997; 17:401-7. [PMID: 9243372 DOI: 10.1089/jir.1997.17.401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
One reason for low transduction efficiency and, hence, the inefficiency of gene therapy using adenoviral vectors may be the natural antiviral defense mechanisms of hosts. In this study, we investigated the effects of endogenous interferon-beta (IFN-beta) on gene transduction by adenoviral vectors. Infection of murine macrophages with Ad5CMV-LacZ produced increased expression of endogenous IFN-beta. Neutralization with anti-IFN-beta antibody (but not control immunoglobulin) during infection with the vector enhanced expression of LacZ. In contrast, IFN-beta gene expression was not detected in readily transduced NIH 3T3 cells, and the transduction efficiency of NIH 3T3 cells was unaffected by the antibody. LacZ gene expression in NIH 3T3 cells was decreased when cocultured with macrophages or in the presence of exogenous IFN-beta. The addition of the anti-IFN-beta antibody reversed this inhibition. These results demonstrate that IFN-beta-mediated cellular antiviral mechanisms are a barrier to gene transduction by adenoviral vectors.
Collapse
Affiliation(s)
- Z Dong
- Department of Cell Biology, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | | | |
Collapse
|
50
|
Kristoffersen AK, Sindre H, Mándi Y, Rollag H, Degré M. Effect of adenovirus 2 on cellular gene activation in blood-derived monocytes and macrophages. APMIS 1997; 105:402-9. [PMID: 9201242 DOI: 10.1111/j.1699-0463.1997.tb00587.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have investigated the effect of adenovirus 2 (Ad2) infection on human monocytes and monocyte-derived macrophages with regard to expression of TNF-alpha and IL-1 beta. In monocytes, the virus was bound to the surface without being internalized. On the other hand, Ad2 was internalized by macrophages. No virus replication and no transcription of the Ad2 early genes was observed in either of the cells. Ad2 infection induced transient increase in the mRNA levels for TNF-alpha and IL-1 beta in both monocytes and in macrophages, although the kinetics of the transcription was slightly different. The production of both cytokines, measured by ELISA tests, was enhanced in monocytes. In macrophages, a slight enhancement of TNF-alpha production was seen, whereas IL-1 beta was not detected. The data indicate that cellular genes might be activated by Ad2 virus infection in nonpermissive cells where no viral gene products could be detected.
Collapse
Affiliation(s)
- A K Kristoffersen
- Institute of Microbiology, Rikshospitalet, University of Oslo, Norway
| | | | | | | | | |
Collapse
|