1
|
Katayama M, Murakami S, Ishida H, Matsugo H, Sekine W, Ohira K, Takenaka-Uema A, Horimoto T. Antigenic commonality and divergence of hemagglutinin-esterase-fusion protein among influenza D virus lineages revealed using epitope mapping. J Virol 2024; 98:e0190823. [PMID: 38345383 PMCID: PMC10949428 DOI: 10.1128/jvi.01908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/20/2024] [Indexed: 03/20/2024] Open
Abstract
Influenza D virus (IDV) is one of the causative agents of bovine respiratory disease complex, which is the most common and economically burdensome disease affecting the cattle industry, and the need for an IDV vaccine has been proposed to enhance disease control. IDVs are classified into five genetic lineages based on the coding sequences of the hemagglutinin-esterase-fusion (HEF) protein, an envelope glycoprotein, which is the main target of protective antibodies against IDV infection. Herein, we prepared a panel of monoclonal antibodies (mAbs) against the HEF protein of viruses of various lineages to investigate the antigenic characteristics of IDVs and found that the mAbs could be largely separated into three groups. The first, second, and third groups demonstrated lineage-specific reactivity, cross-reactivity to viruses of multiple but not all lineages, and cross-reactivity to viruses of all lineages, respectively. Analyzing the escape mutant viruses from virus-neutralizing mAbs revealed that the receptor-binding region of the HEF molecule harbors virus-neutralizing epitopes that are conserved across multiple lineage viruses. In contrast, the apex region of the molecule possessed epitopes unique to each lineage virus. Furthermore, reverse genetics-generated recombinant viruses with point mutations revealed that amino acids within positions 210-214 of the HEF protein determined the antigenic specificity of each lineage virus. Taken together, this study reveals considerable antigenic variation among IDV lineages, although they are presumed to form a single serotype in terms of HEF antigenicity. Characterization of the antigenic epitope structure of HEF may contribute to selecting and creating effective vaccine viruses against IDV.IMPORTANCEInfluenza D viruses (IDVs) are suggested to create cross-reactive single serotypes in hemagglutinin-esterase-fusion (HEF) antigenicity, as indicated by serological analyses among distinct HEF lineage viruses. This is supported by the high identities of HEF gene sequences among strains, unlike the hemagglutinin (HA) genes of the influenza A virus that exhibit HA subtypes. Herein, we analyzed HEF antigenicity using a monoclonal antibody panel prepared from several virus lineages and found the existence of lineage-conserved and lineage-specific epitopes in HEF molecules. These findings confirm the HEF commonality and divergence among IDVs and provide useful information for constructing a vaccine containing a recombinant IDV virus with an engineered HEF gene, thereby leading to broad immunogenicity.
Collapse
Affiliation(s)
- Misa Katayama
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Murakami
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroho Ishida
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Hiromichi Matsugo
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Wataru Sekine
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Ohira
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Takenaka-Uema
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Horimoto
- Laboratory of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T-cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. PLoS Pathog 2023; 19:e1011032. [PMID: 37498934 PMCID: PMC10409285 DOI: 10.1371/journal.ppat.1011032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but the T-cell response to seasonal coronaviruses remains largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal coronavirus OC43. We identified MHC-bound peptides derived from each of the viral structural proteins (spike, nucleoprotein, hemagglutinin-esterase, membrane, and envelope) as well as non-structural proteins nsp3, nsp5, nsp6, and nsp12. Eighty MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. Fewer and less abundant MHC-I bound OC43-derived peptides were observed, possibly due to MHC-I downregulation induced by OC43 infection. The MHC-II peptides elicited low-abundance recall T-cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T-cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T-cell lines. Among the validated epitopes, spike protein S903-917 presented by DPA1*01:03/DPB1*04:01 and S1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. Nucleoprotein N54-68 and hemagglutinin-esterase HE128-142 presented by DRB1*15:01 and HE259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow CD4 T-cell cross-reactivity after infection or vaccination, and to guide selection of epitopes for inclusion in pan-coronavirus vaccines.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
3
|
Becerra-Artiles A, Nanaware PP, Muneeruddin K, Weaver GC, Shaffer SA, Calvo-Calle JM, Stern LJ. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.01.518643. [PMID: 36482973 PMCID: PMC9727760 DOI: 10.1101/2022.12.01.518643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seasonal "common-cold" human coronaviruses are widely spread throughout the world and are mainly associated with mild upper respiratory tract infections. The emergence of highly pathogenic coronaviruses MERS-CoV, SARS-CoV, and most recently SARS-CoV-2 has prompted increased attention to coronavirus biology and immunopathology, but identification and characterization of the T cell response to seasonal human coronaviruses remain largely uncharacterized. Here we report the repertoire of viral peptides that are naturally processed and presented upon infection of a model cell line with seasonal human coronavirus OC43. We identified MHC-I and MHC-II bound peptides derived from the viral spike, nucleocapsid, hemagglutinin-esterase, 3C-like proteinase, and envelope proteins. Only three MHC-I bound OC43-derived peptides were observed, possibly due to the potent MHC-I downregulation induced by OC43 infection. By contrast, 80 MHC-II bound peptides corresponding to 14 distinct OC43-derived epitopes were identified, including many at very high abundance within the overall MHC-II peptidome. These peptides elicited low-abundance recall T cell responses in most donors tested. In vitro assays confirmed that the peptides were recognized by CD4+ T cells and identified the presenting HLA alleles. T cell responses cross-reactive between OC43, SARS-CoV-2, and the other seasonal coronaviruses were confirmed in samples of peripheral blood and peptide-expanded T cell lines. Among the validated epitopes, S 903-917 presented by DPA1*01:03/DPB1*04:01 and S 1085-1099 presented by DRB1*15:01 shared substantial homology to other human coronaviruses, including SARS-CoV-2, and were targeted by cross-reactive CD4 T cells. N 54-68 and HE 128-142 presented by DRB1*15:01 and HE 259-273 presented by DPA1*01:03/DPB1*04:01 are immunodominant epitopes with low coronavirus homology that are not cross-reactive with SARS-CoV-2. Overall, the set of naturally processed and presented OC43 epitopes comprise both OC43-specific and human coronavirus cross-reactive epitopes, which can be used to follow T cell cross-reactivity after infection or vaccination and could aid in the selection of epitopes for inclusion in pan-coronavirus vaccines. Author Summary There is much current interest in cellular immune responses to seasonal common-cold coronaviruses because of their possible role in mediating protection against SARS-CoV-2 infection or pathology. However, identification of relevant T cell epitopes and systematic studies of the T cell responses responding to these viruses are scarce. We conducted a study to identify naturally processed and presented MHC-I and MHC-II epitopes from human cells infected with the seasonal coronavirus HCoV-OC43, and to characterize the T cell responses associated with these epitopes. We found epitopes specific to the seasonal coronaviruses, as well as epitopes cross-reactive between HCoV-OC43 and SARS-CoV-2. These epitopes should be useful in following immune responses to seasonal coronaviruses and identifying their roles in COVID-19 vaccination, infection, and pathogenesis.
Collapse
Affiliation(s)
- Aniuska Becerra-Artiles
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Padma P. Nanaware
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Khaja Muneeruddin
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
| | - Grant C. Weaver
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Scott A. Shaffer
- Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - J. Mauricio Calvo-Calle
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester MA
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
4
|
Halldorsson S, Sader K, Turner J, Calder LJ, Rosenthal PB. In situ structure and organization of the influenza C virus surface glycoprotein. Nat Commun 2021; 12:1694. [PMID: 33727554 PMCID: PMC7966785 DOI: 10.1038/s41467-021-21818-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/11/2021] [Indexed: 11/09/2022] Open
Abstract
The lipid-enveloped influenza C virus contains a single surface glycoprotein, the haemagglutinin-esterase-fusion (HEF) protein, that mediates receptor binding, receptor destruction, and membrane fusion at the low pH of the endosome. Here we apply electron cryotomography and subtomogram averaging to describe the structural basis for hexagonal lattice formation by HEF on the viral surface. The conformation of the glycoprotein in situ is distinct from the structure of the isolated trimeric ectodomain, showing that a splaying of the membrane distal domains is required to mediate contacts that form the lattice. The splaying of these domains is also coupled to changes in the structure of the stem region which is involved in membrane fusion, thereby linking HEF's membrane fusion conformation with its assembly on the virus surface. The glycoprotein lattice can form independent of other virion components but we show a major role for the matrix layer in particle formation.
Collapse
Affiliation(s)
- Steinar Halldorsson
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kasim Sader
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, The Netherlands
| | - Jack Turner
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lesley J Calder
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
5
|
Matsuzaki Y, Sugawara K, Shimotai Y, Kadowaki Y, Hongo S, Mizuta K, Nishimura H. Growth Kinetics of Influenza C Virus Antigenic Mutants That Escaped from Anti-Hemagglutinin Esterase Monoclonal Antibodies and Viral Antigenic Changes Found in Field Isolates. Viruses 2021; 13:401. [PMID: 33802440 PMCID: PMC7998938 DOI: 10.3390/v13030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023] Open
Abstract
The antigenicity of the hemagglutinin esterase (HE) glycoprotein of influenza C virus is known to be stable; however, information about residues related to antigenic changes has not yet been fully acquired. Using selection with anti-HE monoclonal antibodies, we previously obtained some escape mutants and identified four antigenic sites, namely, A-1, A-2, A-3, and Y-1. To confirm whether the residues identified as the neutralizing epitope possibly relate to the antigenic drift, we analyzed the growth kinetics of these mutants. The results showed that some viruses with mutations in antigenic site A-1 were able to replicate to titers comparable to that of the wild-type, while others showed reduced titers. The mutants possessing substitutions in the A-2 or A-3 site replicated as efficiently as the wild-type virus. Although the mutant containing a deletion at positions 192 to 195 in the Y-1 site showed lower titers than the wild-type virus, it was confirmed that this region in the 190-loop on the top side of the HE protein is not essential for viral propagation. Then, we revealed that antigenic changes due to substitutions in the A-1, A-3, and/or Y-1 site had occurred in nature in Japan for the past 30 years. These results suggest that some residues (i.e., 125, 176, 192) in the A-1 site, residue 198 in the A-3 site, and residue 190 in the Y-1 site are likely to mediate antigenic drift while maintaining replicative ability.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan;
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan;
| |
Collapse
|
6
|
Daniels RS, Tse H, Ermetal B, Xiang Z, Jackson DJ, Guntoro J, Nicod J, Stewart A, Cross KJ, Hussain S, McCauley JW, Lo J. Molecular Characterization of Influenza C Viruses from Outbreaks in Hong Kong SAR, China. J Virol 2020; 94:e01051-20. [PMID: 32817211 PMCID: PMC7565627 DOI: 10.1128/jvi.01051-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Substitution
- Child
- Child, Preschool
- Disease Outbreaks
- Epidemiological Monitoring
- Female
- Gene Expression
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- High-Throughput Nucleotide Sequencing
- Hong Kong/epidemiology
- Humans
- Infant
- Influenza, Human/epidemiology
- Influenza, Human/pathology
- Influenza, Human/virology
- Gammainfluenzavirus/enzymology
- Gammainfluenzavirus/genetics
- Male
- Middle Aged
- Models, Molecular
- Molecular Epidemiology
- Mutation
- Phylogeny
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Retrospective Studies
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rodney S Daniels
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Herman Tse
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Burcu Ermetal
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Zheng Xiang
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Deborah J Jackson
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Guntoro
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jérôme Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Karen J Cross
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Saira Hussain
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
7
|
Sederdahl BK, Williams JV. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses 2020; 12:E89. [PMID: 31941041 PMCID: PMC7019359 DOI: 10.3390/v12010089] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza C virus (ICV) is a common yet under-recognized cause of acute respiratory illness. ICV seropositivity has been found to be as high as 90% by 7-10 years of age, suggesting that most people are exposed to ICV at least once during childhood. Due to difficulty detecting ICV by cell culture, epidemiologic studies of ICV likely have underestimated the burden of ICV infection and disease. Recent development of highly sensitive RT-PCR has facilitated epidemiologic studies that provide further insights into the prevalence, seasonality, and course of ICV infection. In this review, we summarize the epidemiology and clinical characteristics of ICV.
Collapse
Affiliation(s)
- Bethany K. Sederdahl
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
8
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
9
|
Zhang W, Zhang L, He W, Zhang X, Wen B, Wang C, Xu Q, Li G, Zhou J, Veit M, Su S. Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses 2019; 11:E167. [PMID: 30791465 PMCID: PMC6409753 DOI: 10.3390/v11020167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 11/26/2022] Open
Abstract
Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies.
Collapse
Affiliation(s)
- Wenyan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Letian Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Baiqing Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Congcong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiuhua Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiyong Zhou
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany.
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Matsuzaki Y, Sugawara K, Furuse Y, Shimotai Y, Hongo S, Mizuta K, Nishimura H. Neutralizing Epitopes and Residues Mediating the Potential Antigenic Drift of the Hemagglutinin-Esterase Protein of Influenza C Virus. Viruses 2018; 10:E417. [PMID: 30096880 PMCID: PMC6116000 DOI: 10.3390/v10080417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022] Open
Abstract
We mapped the hemagglutinin-esterase (HE) antigenic epitopes of the influenza C virus on the three-dimensional (3D) structure of the HE glycoprotein using 246 escape mutants that were selected by a panel of nine anti-HE monoclonal antibodies (MAbs), including seven of the C/Ann Arbor/1/50 virus and two of the C/Yamagata/15/2004 virus. The frequency of variant selection in the presence of anti-HE MAbs was very low, with frequencies ranging from 10-4.62 to 10-7.58 for the C/Ann Arbor/1/50 virus and from 10-7.11 to 10-9.25 for the C/Yamagata/15/2004 virus. Sequencing of mutant HE genes revealed 25 amino acid substitutions at 16 positions in three antigenic sites: A-1, A-2, and A-3, and a newly designated Y-1 site. In the 3D structure, the A-1 site was widely located around the receptor-binding site, the A-2 site was near the receptor-destroying enzyme site, and the Y-1 site was located in the loop on the topside of HE. The hemagglutination inhibition reactions of the MAbs with influenza C viruses, circulating between 1947 and 2016, were consistent with the antigenic-site amino acid changes. We also found some amino acid variations in the antigenic site of recently circulating strains with antigenic changes, suggesting that viruses that have the potential to alter antigenicity continue to circulate in humans.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Yuki Furuse
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan.
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan.
| |
Collapse
|
11
|
Okuwa T, Sasaki Y, Matsuzaki Y, Himeda T, Yoshino N, Hongo S, Ohara Y, Muraki Y. The epitope sequence of S16, a monoclonal antibody against influenza C virus hemagglutinin-esterase fusion glycoprotein. Future Virol 2017. [DOI: 10.2217/fvl-2016-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aim: S16, a monoclonal antibody against the hemagglutinin-esterase fusion (HEF) glycoprotein of influenza C virus, reacts with SV40 large T antigen (LT) and a host cellular component(s). The aim is to determine the location of S16 linear epitope on LT and the amino acid sequence of S16 epitope. Materials & methods: BHK-21 cells expressing wild-type and mutant LTs, HEFs or GFPs, each of which was tagged with a FLAG epitope, were analyzed by immunoblotting using S16. Results & conclusions: An amino acid sequence 98-FNEENL-103 on LT forms a linear epitope recognized by S16. The sequence of S16 epitope was defined as F[NAT]EE[NYA]L, excluding FAEEAL and FTEEAL. This finding will be of help in identifying a host cellular component(s) crossreactive with S16.
Collapse
Affiliation(s)
- Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Yoshiro Ohara
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
- Present address: Yamagata Kosei Hospital, 255 Onigoe, Sugesawa, Yamagata 990–2362, Japan
| | - Yasushi Muraki
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
- Division of Infectious Diseases & Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| |
Collapse
|
12
|
Furuse Y, Matsuzaki Y, Nishimura H, Oshitani H. Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses. Viruses 2016; 8:E321. [PMID: 27898037 PMCID: PMC5192382 DOI: 10.3390/v8120321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1) multiple lineages have been circulating globally; (2) there have been weak and infrequent selective bottlenecks; (3) the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4) there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.
Collapse
Affiliation(s)
- Yuki Furuse
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 9909585, Japan.
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 9838520, Japan.
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan.
| |
Collapse
|
13
|
Wang M, Veit M. Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus. Protein Cell 2016; 7:28-45. [PMID: 26215728 PMCID: PMC4707155 DOI: 10.1007/s13238-015-0193-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
Abstract
Influenza C virus, a member of the Orthomyxoviridae family, causes flu-like disease but typically only with mild symptoms. Humans are the main reservoir of the virus, but it also infects pigs and dogs. Very recently, influenza C-like viruses were isolated from pigs and cattle that differ from classical influenza C virus and might constitute a new influenza virus genus. Influenza C virus is unique since it contains only one spike protein, the hemagglutinin-esterase-fusion glycoprotein HEF that possesses receptor binding, receptor destroying and membrane fusion activities, thus combining the functions of Hemagglutinin (HA) and Neuraminidase (NA) of influenza A and B viruses. Here we briefly review the epidemiology and pathology of the virus and the morphology of virus particles and their genome. The main focus is on the structure of the HEF protein as well as on its co- and post-translational modification, such as N-glycosylation, disulfide bond formation, S-acylation and proteolytic cleavage into HEF1 and HEF2 subunits. Finally, we describe the functions of HEF: receptor binding, esterase activity and membrane fusion.
Collapse
Affiliation(s)
- Mingyang Wang
- Institute of Virology, Veterinary Medicine, Free University Berlin, Berlin, Germany
| | - Michael Veit
- Institute of Virology, Veterinary Medicine, Free University Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
15
|
Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li F. Cocirculation of two distinct genetic and antigenic lineages of proposed influenza D virus in cattle. J Virol 2015; 89:1036-42. [PMID: 25355894 PMCID: PMC4300623 DOI: 10.1128/jvi.02718-14] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/26/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Viruses with approximately 50% homology to human influenza C virus (ICV) have recently been isolated from swine and cattle. The overall low homology to ICV, lack of antibody cross-reactivity to ICV in hemagglutination inhibition (HI) and agar gel immunodiffusion assays, and inability to productively reassort with ICV led to the proposal that these viruses represented a new genus of influenza virus, influenzavirus D (IDV). To further our understanding of the epidemiology of IDV, real-time reverse transcription-PCR was performed on a set of 208 samples from bovines with respiratory disease. Ten samples (4.8%) were positive and six viruses were successfully isolated in vitro. Phylogenetic analysis of full-genome sequences of these six new viruses and four previously reported viruses revealed two distinct cocirculating lineages represented by D/swine/Oklahoma/1334/2011 (D/OK) and D/bovine/Oklahoma/660/2013 (D/660), which frequently reassorted with one another. Antigenic analysis using the HI assay and lineage-representative D/OK and D/660 antiserum found up to an approximate 10-fold loss in cross-reactivity against heterologous clade antiserum. One isolate, D/bovine/Texas/3-13/2011 (D/3-13), clustered with the D/660 lineage, but also had high HI titers to heterologous (D/OK) clade antiserum. Molecular modeling of the hemagglutinin esterase fusion protein of D/3-13 identified a mutation at position 212 as a possible antigenic determinant responsible for the discrepant HI results. These results suggest that IDV is common in bovines with respiratory disease and that at least two genetic and antigenically distinct clades cocirculate. IMPORTANCE A novel bovine influenza virus was recently identified. Detailed genetic and antigenic studies led to the proposal that this virus represents a new genus of influenza, influenzavirus D (IDV). Here, we show that IDV is common in clinical samples of bovine respiratory disease complex (BRDC), with a prevalence similar to that of other established BRDC etiological agents. These results are in good agreement with the near-ubiquitous seroprevalence of IDV previously found. Phylogenetic analysis of complete genome sequences found evidence for two distinct cocirculating lineages of IDV which freely reassort. Significant antigenic differences, which generally agreed with the surface glycoprotein hemagglutinin esterase phylogeny, were observed between the two lineages. Based on these results, and on the ability of IDV to infect and transmit in multiple mammalian species, additional studies to determine the pathogenic potential of IDV are warranted.
Collapse
Affiliation(s)
- Emily A Collin
- Newport Laboratories, Inc., Worthington, Minnesota, USA Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Yuekun Lang
- Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Wenjun Ma
- Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Ben M Hause
- Newport Laboratories, Inc., Worthington, Minnesota, USA Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Feng Li
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
16
|
Abstract
Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Collapse
Affiliation(s)
| | - Philippe Delannoy
- Lille University of Science and Technology, Villeneuve d'Ascq Cedex, France
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, Queensland Australia
| |
Collapse
|
17
|
Roy Mukherjee T, Mukherjee A, Mullick S, Chawla-Sarkar M. Full genome analysis and characterization of influenza C virus identified in Eastern India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 16:419-25. [PMID: 23523822 DOI: 10.1016/j.meegid.2013.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 11/22/2022]
Abstract
In tropical countries of Asia, like India, approximately 0.5 million children of <5 years of age die annually due to acute respiratory illness (ARI). Of common respiratory pathogens, influenza viruses (A & B) are associated with annual worldwide epidemics; while the information on influenza C virus is inadequate. During January 2011 through December 2012, 2737 nasal and/or throat swabs were collected from patients reporting at outpatient department of hospitals in eastern India with ARI. Nucleotide sequencing was carried out using gene specific primers followed by pair-wise sequence alignments, multiple alignments, construction of phylogenetic tree and analysis of deduced amino acid sequences. Study reveals that, out of 2737 samples, 1616 (59.04%) were positive for one or more respiratory viruses; of which 23.72% were positive for influenza A and B viruses. From influenza A & B negative samples, influenza C virus was screened and detected with a frequency of 0.18%. Phylogenetic analysis showed that the HE, matrix, NS, PB1 and PB2 gene of the studied strain (C/Eastern-India/1202/2011) possessed a close relatedness to C/Yamagata/26/81 like strains. The P3 gene shows proximity with C/Mississipi/80 like strains whereas NP gene revealed similarity with C/Miyagi/1/93 like strains. The outcome of the whole genome analysis of the strain C/Eastern-India/1202/2011 provided useful information regarding genetic diversity of influenza C strains in India.
Collapse
|
18
|
Abstract
Virus attachment to host cells is mediated by dedicated virion proteins, which specifically recognize one or, at most, a limited number of cell surface molecules. Receptor binding often involves protein-protein interactions, but carbohydrates may serve as receptor determinants as well. In fact, many different viruses use members of the sialic acid family either as their main receptor or as an initial attachment factor. Sialic acids (Sias) are 9-carbon negatively-charged monosaccharides commonly occurring as terminal residues of glycoconjugates. They come in a large variety and are differentially expressed in cells and tissues. By targeting specific Sia subtypes, viruses achieve host cell selectivity, but only to a certain extent. The Sia of choice might still be abundantly present on non-cell associated molecules, on non-target cells (including cells already infected) and even on virus particles themselves. This poses a hazard, as high-affinity virion binding to any of such "false'' receptors would result in loss of infectivity. Some enveloped RNA viruses deal with this problem by encoding virion-associated receptor-destroying enzymes (RDEs). These enzymes make the attachment to Sia reversible, thus providing the virus with an escape ticket. RDEs occur in two types: neuraminidases and sialate-O-acetylesterases. The latter, originally discovered in influenza C virus, are also found in certain nidoviruses, namely in group 2 coronaviruses and in toroviruses, as well as in infectious salmon anemia virus, an orthomyxovirus of teleosts. Here, the structure, function and evolution of viral sialate-O-acetylesterases is reviewed with main focus on the hemagglutinin-esterases of nidoviruses.
Collapse
Affiliation(s)
- Raoul J de Groot
- Virology Section, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| |
Collapse
|
19
|
Baranowski E, Ruiz-Jarabo CM, Pariente N, Verdaguer N, Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res 2004; 62:19-111. [PMID: 14719364 PMCID: PMC7119103 DOI: 10.1016/s0065-3527(03)62002-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The picture beginning to form from genome analyses of viruses, unicellular organisms, and multicellular organisms is that viruses have shared functional modules with cells. A process of coevolution has probably involved exchanges of genetic information between cells and viruses for long evolutionary periods. From this point of view present-day viruses show flexibility in receptor usage and a capacity to alter through mutation their receptor recognition specificity. It is possible that for the complex DNA viruses, due to a likely limited tolerance to generalized high mutation rates, modifications in receptor specificity will be less frequent than for RNA viruses, albeit with similar biological consequences once they occur. It is found that different receptors, or allelic forms of one receptor, may be used with different efficiency and receptor affinities are probably modified by mutation and selection. Receptor abundance and its affinity for a virus may modulate not only the efficiency of infection, but also the capacity of the virus to diffuse toward other sites of the organism. The chapter concludes that receptors may be shared by different, unrelated viruses and that one virus may use several receptors and may expand its receptor specificity in ways that, at present, are largely unpredictable.
Collapse
Affiliation(s)
- Eric Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Matsuzaki Y, Mizuta K, Sugawara K, Tsuchiya E, Muraki Y, Hongo S, Suzuki H, Nishimura H. Frequent reassortment among influenza C viruses. J Virol 2003; 77:871-81. [PMID: 12502803 PMCID: PMC140804 DOI: 10.1128/jvi.77.2.871-881.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Accepted: 10/04/2002] [Indexed: 11/20/2022] Open
Abstract
In a 9-year survey from December 1990 to December 1999 in Sendai City, Japan, we succeeded in isolating a total of 45 strains of influenza C virus. These 45 strains were isolated in clusters within 4 months in a year, especially from winter to early summer. Previous studies of the hemagglutinin-esterase genes of various influenza C virus isolates revealed the existence of five distinct virus lineages (Aichi/1/81-, Yamagata/26/81-, Mississippi/80-, Sao Paulo/82-, and Kanagawa/1/76-related lineage) in Japan between 1970 and the early 1990s (Y. Matsuzaki, K. Mizuta, H. Kimura, K. Sugawara, E. Tsuchiya, H. Suzuki, S. Hongo, and K. Nakamura, J. Gen. Virol. 81:1447-1452, 2000). Antigenic and genetic analyses of the 45 strains showed that they could be divided into these five virus lineages and a few antigenic groups were cocirculating in Sendai City. In 1990 and 1991 the dominant antigenic group was the Aichi/1/81 virus group, and in 1992 it was Yamagata/26/81 virus group. The Mississippi/80 virus group was isolated from 1993 to 1996, and the Yamagata/26/81 virus group reemerged in 1996 and continued to circulate until 1999. This finding led us to a speculation that the replacement of the dominant antigenic groups had occurred by immune selection within the human population in the restricted area. Phylogenetic analysis of seven RNA segments showed that 44 viruses among the 45 strains isolated in our surveillance work were reassortant viruses that have various genome compositions distinguishable from those of the reference strains of the each lineage. This observation suggests that the reassortment between two different influenza C virus strains occurs frequently in nature and the genome composition of influenza C viruses may influence their ability to spread in humans.
Collapse
Affiliation(s)
- Y Matsuzaki
- Department of Bacteriology, Yamagata University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sugahara K, Hongo S, Sugawara K, Li ZN, Tsuchiya E, Muraki Y, Matsuzaki Y, Nakamura K. Role of individual oligosaccharide chains in antigenic properties, intracellular transport, and biological activities of influenza C virus hemagglutinin-esterase protein. Virology 2001; 285:153-64. [PMID: 11414815 DOI: 10.1006/viro.2001.0952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hemagglutinin-esterase (HE) glycoprotein of influenza C virus is composed of three domains: a stem domain active in membrane fusion (F), an acetylesterase domain (E), and a receptor-binding domain (R). The protein contains eight N-linked glycosylation sites, four (positions 26, 395, 552, and 603) in the F domain, three (positions 61, 131, and 144) in the E domain, and one (position 189) in the R domain. Here, we investigated the role of the individual oligosaccharide chains in antigenic properties, intracellular transport, and biological activities of the HE protein by eliminating each of the glycosylation sites by site-specific mutagenesis. Comparison of electrophoretic mobility between the wild-type and the mutant proteins showed that while seven of the glycosylation sites are used, one (position 131) is not. Analysis of reactivity of the mutants with anti-HE monoclonal antibodies demonstrated that glycosylation at position 144 is essential for the formation of conformation-dependent epitopes. It was also evident that glycosylation at the two sites in the F domain (positions 26 and 603), in addition to that in the E domain (position 144), is required for the HE molecule to be transported from the endoplasmic reticulum and that mutant HEs lacking one of these three sites failed to undergo the trimer assembly. Removal of an oligosaccharide chain at position 144 or 189 resulted in a decrease in the esterase activity. By contrast, two mutants lacking an oligosaccharide chain at position 26 or 603, which were defective not only in cell surface expression but in trimerization, possessed full-enzyme activity, suggesting that the HE monomers present within the cell have acetylesterase activity. Fusion activity of cells expressing each of mutant HEs was found to be comparable with the ability of the protein to be transported to the cell surface, suggesting that there is no specific oligosaccharide chain that plays a critical role in promoting membrane fusion.
Collapse
Affiliation(s)
- K Sugahara
- Department of Bacteriology, Yamagata University School of Medicine, Yamagata, Iida-Nishi, 990-9585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Muraki Y, Hongo S, Sugawara K, Matsuzaki Y, Takashita E, Kitame F, Nakamura K. Location of a linear epitope recognized by monoclonal antibody S16 on the hemagglutinin-esterase glycoprotein of influenza C virus. Virus Res 1999; 61:53-61. [PMID: 10426209 DOI: 10.1016/s0168-1702(99)00026-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We reported previously that monoclonal antibody S16, which had been raised against the hemagglutinin-esterase (HE) glycoprotein of influenza C/Ann Arbor/1/50 (AA/50) virus, recognizes a linear epitope present on the HE molecules of all influenza C viruses examined except for viruses belonging to a lineage represented by Aichi/1/81 (AI/81). Comparison of the deduced amino acid sequence of HE between viruses on the AI/81-related lineage and those on the others suggests that the epitope recognized by S16 is located in a region containing amino acid residue 403 and that a change from Glu to Lys at this position causes the loss of reactivity with the antibody. To prove it, the wild type (WT) HEs of AA/50 and AI/81 as well as their mutants with an amino acid substitution at residue 403 were expressed in CV-1 cells from the recombinant simian virus 40 (SV40) and tested for reactivity with S16 by immunoprecipitation. The results showed that the AA/50 virus WT and AI/81 virus mutant HEs (both having Glu at residue 403) were reactive with S16 whereas the AI/81 virus WT and AA/50 virus mutant HEs (both having Lys at residue 403) were not. Furthermore, we examined the reactivity of S16 with two synthetic peptides (corresponding to residues 397-409) that possess Glu and Lys at position 403, respectively, by enzyme-linked immunosorbent assays. The results demonstrated that the former peptide but not the latter was reactive with S16. These observations support strongly the notion described above. During this study it was also found that S16 cross-reacts with large T antigen of SV40.
Collapse
Affiliation(s)
- Y Muraki
- Department of Bacteriology, Yamagata University School of Medicine, Iida-Nishi, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Kimura H, Abiko C, Peng G, Muraki Y, Sugawara K, Hongo S, Kitame F, Mizuta K, Numazaki Y, Suzuki H, Nakamura K. Interspecies transmission of influenza C virus between humans and pigs. Virus Res 1997; 48:71-9. [PMID: 9140195 DOI: 10.1016/s0168-1702(96)01427-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The antigenic and genetic characteristics of the 18 human strains of influenza C virus isolated in Yamagata and Sendai Cities, Japan between January 1991 and February 1993 were investigated. Antigenic analysis with monoclonal antibodies to the hemagglutinin-esterase glycoprotein showed that the isolates could be divided into three distinct groups closely related to C/Yamagata/26/81, C/Aichi/1/81 and C/Mississippi/80, respectively. T1-oligonucleotide fingerprinting of total vRNA revealed that the six isolates belonging to the C/Yamagata/26/81 virus group had the genomes greatly similar to one another but considerably different from those of the 1988/1990 isolates (except C/Yamagata/10/89) of the same antigenic group. Comparison of total or partial nucleotide sequences of the seven RNA segments of the three strains (C/Miyagi/3/91, C/Miyagi/9/91 and C/Miyagi/2/92) representative of the 1991/1993 strains of the C/Yamagata/26/81 virus group with those of the previous influenza C isolates obtained from humans and pigs during 1980/1989 showed that the 1991/1993 strains, like C/Yamagata/10/89, are more closely related to viruses isolated from pigs in Beijing, China in 1981/1982 than to any of the isolates from humans. This observation suggests strongly that interspecies transmission of influenza C virus between humans and pigs has occurred in nature, although it is not known whether the virus has been transmitted from pigs to humans or from humans to pigs.
Collapse
Affiliation(s)
- H Kimura
- Department of Bacteriology, Yamagata University, School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Matsuzaki Y, Matsuzaki M, Muraki Y, Sugawara K, Hongo S, Kitame F, Nakamura K. Comparison of receptor-binding properties among influenza C virus isolates. Virus Res 1995; 38:291-6. [PMID: 8578866 DOI: 10.1016/0168-1702(95)00064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A total of 10 influenza C virus strains isolated recently in Yamagata City, Japan and shown to belong to the same lineage was compared for the ability to agglutinate chicken and mouse erythrocytes under various conditions. C/Yamagata/10/89 was unique in lacking the ability to agglutinate chicken erythrocytes at a temperature > or = 4 degrees C. This isolate also agglutinated native mouse erythrocytes only very inefficiently, although the high agglutination titer was obtained with the glutaraldehyde-fixed cells. Furthermore, it was found that C/Yamagata/4/88, unlike the other isolates, agglutinated erythrocytes from chickens to lower titers than those from mice, even when assayed at 0 degree C. Comparison of the deduced amino acid sequence of hemagglutinin-esterase among the 6 representative strains including two older isolates, C/Yamagata/26/81 and C/Nara/2/85, suggested that the failures of C/Yamagata/10/89 to agglutinate chicken erythrocytes at > or = 4 degrees C and unfixed mouse erythrocytes to high titers may be due to amino acid changes at residues 337 (Glu-->Lys) and 340 (Thr-->Tyr), respectively, and that a change at residue 347 (Leu-->Ser) may be responsible for the decreased ability of C/Yamagata/4/88 to agglutinate chicken erythrocytes.
Collapse
Affiliation(s)
- Y Matsuzaki
- Department of Bacteriology, Yamagata University, School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|