1
|
Bizzio LN, Tieman D, Munoz PR. Branched-Chain Volatiles in Fruit: A Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2022; 12:814138. [PMID: 35154212 PMCID: PMC8829073 DOI: 10.3389/fpls.2021.814138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 05/03/2023]
Abstract
Branched-chain volatiles (BCVs) constitute an important family of fruit volatile metabolites essential to the characteristic flavor and aroma profiles of many edible fruits. Yet in contrast to other groups of volatile organic compounds important to fruit flavor such as terpenoids, phenylpropanoids, and oxylipins, the molecular biology underlying BCV biosynthesis remains poorly understood. This lack of knowledge is a barrier to efforts aimed at obtaining a more comprehensive understanding of fruit flavor and aroma and the biology underlying these complex phenomena. In this review, we discuss the current state of knowledge regarding fruit BCV biosynthesis from the perspective of molecular biology. We survey the diversity of BCV compounds identified in edible fruits as well as explore various hypotheses concerning their biosynthesis. Insights from branched-chain precursor compound metabolism obtained from non-plant organisms and how they may apply to fruit BCV production are also considered, along with potential avenues for future research that might clarify unresolved questions regarding BCV metabolism in fruits.
Collapse
Affiliation(s)
- Lorenzo N. Bizzio
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Denise Tieman
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Patricio R. Munoz
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
3
|
Gupta SS, Sharp R, Hofferek C, Kuai L, Dorn GW, Wang J, Chen M. NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8 + T Cells. Cell Rep 2020; 29:1862-1877.e7. [PMID: 31722203 PMCID: PMC6886713 DOI: 10.1016/j.celrep.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a critical role in the maintenance of immunological memory. However, the molecular mechanisms involved in autophagy-regulated effector memory formation in CD8+ T cells remain unclear. Here we show that deficiency in NIX-dependent mitophagy leads to metabolic defects in effector memory T cells. Deletion of NIX caused HIF1α accumulation and altered cellular metabolism from long-chain fatty acid to short/branched-chain fatty acid oxidation, thereby compromising ATP synthesis during effector memory formation. Preventing HIF1α accumulation restored long-chain fatty acid metabolism and effector memory formation in antigen-specific CD8+ T cells. Our study suggests that NIX-mediated mitophagy is critical for effector memory formation in T cells. Gupta et al. demonstrate that mitophagy mediated by NIX, a mitochondrial outer membrane protein, plays a critical role in CD8+ T cell effector memory formation by regulating mitochondrial superoxide-dependent HIF1α protein accumulation and fatty acid metabolism. These findings elucidate the molecular mechanisms regulating T cell effector memory formation against viruses.
Collapse
Affiliation(s)
- Shubhranshu S Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert Sharp
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colby Hofferek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Kuai
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Rowland EA, Snowden CK, Cristea IM. Protein lipoylation: an evolutionarily conserved metabolic regulator of health and disease. Curr Opin Chem Biol 2017; 42:76-85. [PMID: 29169048 DOI: 10.1016/j.cbpa.2017.11.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
Lipoylation is a rare, but highly conserved lysine posttranslational modification. To date, it is known to occur on only four multimeric metabolic enzymes in mammals, yet these proteins are staples in the core metabolic landscape. The dysregulation of these mitochondrial proteins is linked to a range of human metabolic disorders. Perhaps most striking is that lipoylation itself, the proteins that add or remove the modification, as well as the proteins it decorates are all evolutionarily conserved from bacteria to humans, highlighting the importance of this essential cofactor. Here, we discuss the biological significance of protein lipoylation, the importance of understanding its regulation in health and disease states, and the advances in mass spectrometry-based proteomic technologies that can aid these studies.
Collapse
Affiliation(s)
- Elizabeth A Rowland
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Caroline K Snowden
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
5
|
Kruse R, Højlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion 2016; 33:45-57. [PMID: 27521611 DOI: 10.1016/j.mito.2016.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential for several biological processes including energy metabolism and cell survival. Accordingly, impaired mitochondrial function is involved in a wide range of human pathologies including diabetes, cancer, cardiovascular, and neurodegenerative diseases. Within the past decade a growing body of evidence indicates that reversible phosphorylation plays an important role in the regulation of a variety of mitochondrial processes as well as tissue-specific mitochondrial functions in mammals. The rapidly increasing number of mitochondrial phosphorylation sites and phosphoproteins identified is largely ascribed to recent advances in phosphoproteomic technologies such as fractionation, phosphopeptide enrichment, and high-sensitivity mass spectrometry. However, the functional importance and the specific kinases and phosphatases involved have yet to be determined for the majority of these mitochondrial phosphorylation sites. This review summarizes the progress in establishing the mammalian mitochondrial phosphoproteome and the technical challenges encountered while characterizing it, with a particular focus on large-scale phosphoproteomic studies of mitochondria from human skeletal muscle.
Collapse
Affiliation(s)
- Rikke Kruse
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
6
|
Modified Method for Purifying Rat Liver Branched-Chain α-Ketoacid Dehydrogenase Complex. Biosci Biotechnol Biochem 2014; 73:766-8. [DOI: 10.1271/bbb.80744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Bharti RK, Srivastava S, Thakur IS. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide. PLoS One 2014; 9:e91300. [PMID: 24619032 PMCID: PMC3949746 DOI: 10.1371/journal.pone.0091300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.
Collapse
Affiliation(s)
- Randhir K. Bharti
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shaili Srivastava
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Nuclear magnetic resonance approaches in the study of 2-oxo acid dehydrogenase multienzyme complexes--a literature review. Molecules 2013; 18:11873-903. [PMID: 24077172 PMCID: PMC6270654 DOI: 10.3390/molecules181011873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 11/17/2022] Open
Abstract
The 2-oxoacid dehydrogenase complexes (ODHc) consist of multiple copies of three enzyme components: E1, a 2-oxoacid decarboxylase; E2, dihydrolipoyl acyl-transferase; and E3, dihydrolipoyl dehydrogenase, that together catalyze the oxidative decarboxylation of 2-oxoacids, in the presence of thiamin diphosphate (ThDP), coenzyme A (CoA), Mg²⁺ and NAD⁺, to generate CO₂, NADH and the corresponding acyl-CoA. The structural scaffold of the complex is provided by E2, with E1 and E3 bound around the periphery. The three principal members of the family are pyruvate dehydrogenase (PDHc), 2-oxoglutarate dehydrogenase (OGDHc) and branched-chain 2-oxo acid dehydrogenase (BCKDHc). In this review, we report application of NMR-based approaches to both mechanistic and structural issues concerning these complexes. These studies revealed the nature and reactivity of transient intermediates on the enzymatic pathway and provided site-specific information on the architecture and binding specificity of the domain interfaces using solubilized truncated domain constructs of the multi-domain E2 component in its interactions with the E1 and E3 components. Where studied, NMR has also provided information about mobile loops and the possible relationship of mobility and catalysis.
Collapse
|
9
|
Zimmerman HA, Olson KC, Chen G, Lynch CJ. Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Mol Genet Metab 2013; 109:345-53. [PMID: 23800641 PMCID: PMC3955948 DOI: 10.1016/j.ymgme.2013.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022]
Abstract
Liver transplantation appears to be quite beneficial for treatment of maple syrup urine disease (MSUD, an inherited disorder of branched chain amino acid metabolism); however, there is a limited availability of donor livers worldwide and the first year costs of liver transplants are quite high. Recent studies have suggested that intact adipose tissue, already widely used in reconstructive surgery, may have an underappreciated high capacity for branched chain amino acid (BCAA) metabolism. Here we examined the potential for adipose tissue transplant to lower circulating BCAAs in two models of defective BCAA metabolism, BCATm and PP2Cm [branched chain keto acid dehydrogenase complex (BCKDC) phosphatase] knockout (KO) mice. After 1-2g fat transplant, BCATm and PP2Cm KO mice gained or maintained body weight 3weeks after surgery and consumed similar or more food/BCAAs the week before phlebotomy. Transplant of fat into the abdominal cavity led to a sterile inflammatory response and nonviable transplanted tissue. However when 1-2g of fat was transplanted subcutaneously into the back, either as small (0.1-0.3g) or finely minced pieces introduced with an 18-ga. needle, plasma BCAAs decreased compared to Sham operated mice. In two studies on BCATm KO mice and one study on PP2Cm KO mice, fat transplant led to 52-81% reductions in plasma BCAAs compared to baseline plasma BCAA concentrations of untreated WT type siblings. In PP2Cm KO mice, individual BCAAs in plasma were also significantly reduced by fat transplant, as were the alloisoleucine/Phe ratios. Therefore, subcutaneous fat transplantation may have merit as an adjunct to dietary treatment of MSUD. Additional studies are needed to further refine this approach.
Collapse
Affiliation(s)
- Heather A. Zimmerman
- Department of Comparative Medicine, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Kristine C. Olson
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Gang Chen
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- The Macromolecular Core Facility, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Christopher J. Lynch
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- Correspondence: Christopher J. Lynch, Ph.D., Dept. of Cellular & Molecular Physiology, Penn State College of Medicine. 500 University Drive, MC-H166, Hershey, PA 17033, USA FAX: +1 717 531 7667,
| |
Collapse
|
10
|
Escobar J, Frank JW, Suryawan A, Nguyen HV, Van Horn CG, Hutson SM, Davis TA. Leucine and alpha-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. J Nutr 2010; 140:1418-24. [PMID: 20534881 PMCID: PMC2903301 DOI: 10.3945/jn.110.123042] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The branched-chain amino acid, leucine, acts as a nutrient signal to stimulate protein synthesis in skeletal muscle of young pigs. However, the chemical structure responsible for this effect has not been identified. We have shown that the other branched-chain amino acids, isoleucine and valine, are not able to stimulate protein synthesis when raised in plasma to levels within the postprandial range. In this study, we evaluated the effect of leucine, alpha-ketoisocaproic acid (KIC), and norleucine infusion (0 or 400 micromol kg(-1) h(-1) for 60 min) on protein synthesis and activation of translation initiation factors in piglets. Infusion of leucine, KIC, and norleucine raised plasma levels of each compound compared with controls. KIC also increased (P < 0.01) and norleucine reduced (P < 0.02) plasma levels of leucine compared with controls. Administration of leucine and KIC resulted in greater (P < 0.006) phosphorylation of eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) and eIF4G, lower (P < 0.04) abundance of the inactive 4E-BP1.eIF4E complex, and greater (P < 0.05) active eIF4G.eIF4E complex formation in skeletal muscle compared with controls. Protein synthesis in skeletal muscle was greater (P < 0.02) in leucine- and KIC-infused pigs than in those in the control group. Norleucine infusion did not affect muscle protein synthesis or translation initiation factor activation. In liver, neither protein synthesis nor activation of translation initiation factors was affected by treatment. These results suggest that the ability of leucine to act as a nutrient signal to stimulate skeletal muscle protein synthesis is specific for leucine and/or its metabolite, KIC.
Collapse
Affiliation(s)
- Jeffery Escobar
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Jason W. Frank
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Agus Suryawan
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Hanh V. Nguyen
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cynthia G. Van Horn
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Susan M. Hutson
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Teresa A. Davis
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Abstract
In vivo and in vitro studies have demonstrated that high protein diets affect both protein synthesis and regulation of several cellular processes. The role of amino acids as substrate for protein synthesis has been established in the literature. However, the mechanism by which these amino acids modulate transcription and regulate the mRNA translation via mTOR-dependent signaling pathway has yet to be fully determined. It has been verified that mTOR is a protein responsible for activating a cascade of biochemical intracellular events which result in the activation of the protein translation process. Of the aminoacids, leucine is the most effective in stimulating protein synthesis and reducing proteolysis. Therefore, it promotes a positive nitrogen balance, possibly by favoring the activation of this protein. This amino acid also directly and indirectly stimulates the synthesis and secretion of insulin, enhancing its anabolic cellular effects. Therefore, this review aimed to identify the role of leucine in protein synthesis modulation and to discuss the metabolic aspects related to this aminoacid.
Collapse
|
12
|
Knapik-Czajka M, Gozdzialska A, Jaskiewicz J. Adverse effect of fenofibrate on branched-chain alpha-ketoacid dehydrogenase complex in rat's liver. Toxicology 2009; 266:1-5. [PMID: 19819289 DOI: 10.1016/j.tox.2009.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 11/29/2022]
Abstract
Branched-chain alpha-ketoacid dehydrogense complex (BCKDH) is a regulatory enzyme of valine, isoleucine and leucine catabolism. Its activity is mainly regulated by covalent modification achieved by a specific BCKDH kinase (BDK) and phosphatase (BDP). The goal of our study was to investigate the effect of increasing doses of fenofibrate on BDK and BCKDH activities in rat's liver. For 14 days fenofibrate was administrated to Wistar male rats (fed chow containing 8% protein) at one of the daily doses: 5, 10, 20 and 50mg/kg. Control group was given only vehicle (0.3% methylcellulose). BDK activity as well as actual BCKDH activity and total BCKDH activity were assayed spectrophotometrically and BDK protein amount was determined by Western blotting. In rats administered fenofibrate BDK activity decreased by 61%, 64%, 66% and 89% (p<0.0001). Changes in BDK protein expression did not correspond with changes in BDK activity. BCKDH complex actual activity was 3.7+/-0.3, 4.1+/-0.1, 4.6+/-0.3 and 4.0+/-0.3fold higher (p<0.0001) and BCKDH total activity 1.3+/-0.1, 1.3+/-0.1, 1.5+/-0.1 and 1.3+/-0.1fold higher comparing to control group (p<0.001). BCKDH activity state (percentage of active, dephosphorylated form) increased 2.8+/-0.2, 3.1+/-0.1, 3.2+/-0.1 and 3.0+/-0.1fold (p<0.0001). In addition, fenofibrate prevented body weight gain starting from the dose of 10mg/kg/day and induced hepatomegaly in a dose-dependent manner. It can be concluded that fenofibrate under condition of protein restriction starting from the lowest dose inhibits BDK activity at the posttranslational level and increases BCKDH activity state. It is conceivable that fenofibrate decreases of branched-chain amino acids (BCAA) levels by stimulation of their catabolism. Since leucine plays an important role in up-regulation of protein anabolism in muscles, the reduced level of this amino acid may be one of the factors involved in pathomechanism of myopathy observed during treatment with fenofibrate.
Collapse
Affiliation(s)
- Malgorzata Knapik-Czajka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Analytical Biochemistry, Medyczna 9 St., 30-688 Krakow, Poland.
| | | | | |
Collapse
|
13
|
Abstract
AbstractThe first part of this review is concerned with the balance between N input and output as urinary urea. I start with some observations on classical biochemical studies of the operation of the urea cycle. According to Krebs, the cycle is instantaneous and automatic, as a result of the irreversibility of the first enzyme, carbamoyl-phosphate synthetase 1 (EC6.3.5.5; CPS-I), and it should be able to handle many times the normal input to the cycle. It is now generally agreed that acetyl glutamate is a necessary co-factor for CPS-1, but not a regulator. There is abundant evidence that changes in dietary protein supply induce coordinated changes in the amounts of all five urea-cycle enzymes. How this coordination is achieved, and why it should be necessary in view of the properties of the cycle mentioned above, is unknown. At the physiological level it is not clear how a change in protein intake is translated into a change of urea cycle activity. It is very unlikely that the signal is an alteration in the plasma concentration either of total amino-N or of any single amino acid. The immediate substrates of the urea cycle are NH3and aspartate, but there have been no measurements of their concentration in the liver in relation to urea production. Measurements of urea kinetics have shown that in many cases urea production exceeds N intake, and it is only through transfer of some of the urea produced to the colon, where it is hydrolysed to NH3, that it is possible to achieve N balance. It is beginning to look as if this process is regulated, possibly through the operation of recently discovered urea transporters in the kidney and colon. The second part of the review deals with the synthesis and breakdown of protein. The evidence on whole-body protein turnover under a variety of conditions strongly suggests that the components of turnover, including amino acid oxidation, are influenced and perhaps regulated by amino acid supply or amino acid concentration, with insulin playing an important but secondary role. Molecular biology has provided a great deal of information about the complex processes of protein synthesis and breakdown, but so far has nothing to say about how they are coordinated so that in the steady state they are equal. A simple hypothesis is proposed to fill this gap, based on the self-evident fact that for two processes to be coordinated they must have some factor in common. This common factor is the amino acid pool, which provides the substrates for synthesis and represents the products of breakdown. The review concludes that although the achievement and maintenance of N balance is a fact of life that we tend to take for granted, there are many features of it that are not understood, principally the control of urea production and excretion to match the intake, and the coordination of protein synthesis and breakdown to maintain a relatively constant lean body mass.
Collapse
|
14
|
Howarth KR, Burgomaster KA, Phillips SM, Gibala MJ. Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1335-41. [PMID: 17581840 DOI: 10.1152/ajpregu.00115.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580–E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 ± 1 yr; peak oxygen uptake (V̇o2peak) = 41 ± 2 ml·kg−1·min−1] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer ( n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining V̇o2peak, and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased V̇o2peak, increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a ∼30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211–1216, 1998).
Collapse
Affiliation(s)
- Krista R Howarth
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Schachter D. L-glutamine in vitro regulates rat aortic glutamate content and modulates nitric oxide formation and contractility responses. Am J Physiol Cell Physiol 2007; 293:C142-51. [PMID: 17329397 DOI: 10.1152/ajpcell.00589.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies test the hypothesis that l-glutamine at its physiological plasma concentration, approximately 0.5 mM, can increase tissue content and net synthesis of glutamate in rat aortic segments in vitro, thereby mediating relaxation of the underlying smooth muscle in the elastic reservoir region of the thoracic aorta. Aortic segments were incubated in an isotonic medium with and without 21 amino acids at their normal plasma concentrations. Of these amino acids only L-glutamine and L-leucine at their plasma concentrations increased glutamate synthesis and content. Tissue glutamate content resulting from increasing concentrations of each precursor reached an upper level of approximately 1.3-1.6 micromol/g wet wt. Regulation of the tissue glutamate content involves an interaction of the synthetic pathways in which L-glutamine inhibits the endothelial leucine-to-glutamate pathway. L-glutamine increases nitric oxide (NO) formation, and NO inhibits the controlling enzyme of the endothelial leucine-to-glutamate pathway, the branched-chain alpha-ketoacid dehydrogenase complex. Treatment of precontracted aortic rings with 0.5 mM L-glutamine elicits smooth muscle relaxation, a response that requires endothelial nitric oxide synthase activity and an intact endothelium. The results demonstrate that in vitro L-glutamine at its normal concentration in plasma can regulate rat aortic glutamate content and modulate NO formation and contractility responses of the thoracic aortic wall.
Collapse
MESH Headings
- 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/antagonists & inhibitors
- 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Glutamic Acid/metabolism
- Glutamine/metabolism
- Glutamine/pharmacology
- In Vitro Techniques
- Leucine/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Rats
- Rats, Sprague-Dawley
- Triazenes/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- David Schachter
- Dept. of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, NY 10032, USA.
| |
Collapse
|
16
|
Islam MM, Wallin R, Wynn RM, Conway M, Fujii H, Mobley JA, Chuang DT, Hutson SM. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex. J Biol Chem 2007; 282:11893-903. [PMID: 17314104 DOI: 10.1074/jbc.m700198200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The catabolic pathways of branched-chain amino acids have two common steps. The first step is deamination catalyzed by the vitamin B(6)-dependent branched-chain aminotransferase isozymes (BCATs) to produce branched-chain alpha-keto acids (BCKAs). The second step is oxidative decarboxylation of the BCKAs mediated by the branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKD complex). The BCKD complex is organized around a cubic core consisting of 24 lipoate-bearing dihydrolipoyl transacylase (E2) subunits, associated with the branched-chain alpha-keto acid decarboxylase/dehydrogenase (E1), dihydrolipoamide dehydrogenase (E3), BCKD kinase, and BCKD phosphatase. In this study, we provide evidence that human mitochondrial BCAT (hBCATm) associates with the E1 decarboxylase component of the rat or human BCKD complex with a K(D) of 2.8 microM. NADH dissociates the complex. The E2 and E3 components do not interact with hBCATm. In the presence of hBCATm, k(cat) values for E1-catalyzed decarboxylation of the BCKAs are enhanced 12-fold. Mutations of hBCATm proteins in the catalytically important CXXC center or E1 proteins in the phosphorylation loop residues prevent complex formation, indicating that these regions are important for the interaction between hBCATm and E1. Our results provide evidence for substrate channeling between hBCATm and BCKD complex and formation of a metabolic unit (termed branched-chain amino acid metabolon) that can be influenced by the redox state in mitochondria.
Collapse
Affiliation(s)
- Mohammad Mainul Islam
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Murín R, Verleysdonk S, Rapp M, Hamprecht B. Immunocytochemical localization of 3-methylcrotonyl-CoA carboxylase in cultured ependymal, microglial and oligodendroglial cells. J Neurochem 2006; 97:1393-402. [PMID: 16696850 DOI: 10.1111/j.1471-4159.2006.03819.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the ability of ependymal, microglial and oligodendroglial cells to degrade leucine, the presence of 3-methylcrotonyl-CoA carboxylase (MCC) was investigated in cultures of these cells. MCC is a biotin-containing heterodimeric enzyme that is specific for the irreversible part of the leucine catabolic pathway. It has been reported previously that in cell culture MCC is expressed in astrocytes and a subpopulation of neurones. In the present study ependymal, microglial and oligodendroglial cell cultures, derived from the brains of newborn rats, were examined for the expression of MCC by RT-PCR, western blotting and immunocytochemistry. The results of RT-PCR and western blotting showed the presence of mRNA as well as protein of both subunits of MCC in ependymal, microglial and oligodendroglial cell cultures. Immunocytochemical investigation of the cellular and subcellular distribution of MCC demonstrated a mitochondrial location of MCC in all neuroglial cell types investigated. The ubiquitous expression of MCC in glial cells demonstrates the ability of the cells to engage in the catabolism of leucine transported into the brain, mainly for the generation of energy.
Collapse
Affiliation(s)
- Radovan Murín
- Interfaculty Institute for Biochemistry, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
18
|
Pagliarini DJ, Dixon JE. Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 2006; 31:26-34. [PMID: 16337125 DOI: 10.1016/j.tibs.2005.11.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/07/2005] [Accepted: 11/21/2005] [Indexed: 11/25/2022]
Abstract
In the past 1.5 billion years, mitochondria have evolved from oxygen-scavenging bacterial symbionts into primary control centers for energy production and cellular life-and-death processes in eukaryotes. This maturation of mitochondrial function has necessitated the coevolution of various mechanisms of communication with the rest of the cell. Emerging evidence indicates that reversible phosphorylation, the most prevalent form of cellular posttranslational modification, is an important and largely overlooked means of regulating mitochondrial functions. The steadily increasing number of reported mitochondrial kinases, phosphatases and phosphoproteins suggests that phosphorylation is likely to emerge as a common theme in the regulation of mitochondrial processes.
Collapse
Affiliation(s)
- David J Pagliarini
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0721, USA
| | | |
Collapse
|
19
|
Lynch CJ, Halle B, Fujii H, Vary TC, Wallin R, Damuni Z, Hutson SM. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab 2003; 285:E854-63. [PMID: 12812918 DOI: 10.1152/ajpendo.00153.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Leucine has been shown to stimulate adipose tissue protein synthesis in vivo as well as leptin secretion, protein synthesis, hyper-plastic growth, and tissue morphogenesis in in vitro experiments using freshly isolated adipocytes. Recently, others have proposed that leucine oxidation in the mitochondria may be required to activate the mammalian target of rapamycin (mTOR), the cytosolic Ser/Thr protein kinase that appears to mediate some of these effects. The first irreversible and rate-limiting step in leucine oxidation is catalyzed by the branched-chain alpha-keto acid dehydrogenase (BCKD) complex. The activity of this complex is regulated acutely by phosphorylation of the E1alpha-subunit at Ser293 (S293), which inactivates the complex. Because the alpha-keto acid of leucine regulates the activity of BCKD kinase, it has been suggested as a potential target for leucine regulation of mTOR. To study the regulation of BCKD phosphorylation and its potential link to mTOR activation, a phosphopeptide-specific antibody recognizing this site was developed and characterized. Phospho-S293 (pS293) immunoreactivity in liver corresponded closely to diet-induced changes in BCKD activity state. Immunoreactivity was also increased in TREMK-4 cells after the induction of BCKD kinase by a drug-inducible promoter. BCKD S293 phosphorylations in adipose tissue and gastrocnemius (which is mostly inactive in vivo) were similar. This suggests that BCKD complex in epididymal adipose tissue from food-deprived rats is mostly inactive (unable to oxidize leucine), as is the case in muscle. To begin to test the leucine oxidation hypothesis of mTOR activation, the dose-dependent effects of orally administered leucine on acute activation of S6K1 (an mTOR substrate) and BCKD were compared using the pS293 antibodies. Increasing doses of leucine directly correlated with increases in plasma leucine concentration. Phosphorylation of S6K1 (Thr389, the phosphorylation site leading to activation) in adipose tissue was maximal at a dose of leucine that increased plasma leucine approximately threefold. Changes in BCKD phosphorylation state required higher plasma leucine concentrations. The results seem more consistent with a role for BCKD and BCKD kinase in the activation of leucine metabolism/oxidation than in the activation of the leucine signal to mTOR.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular & Molecular Physiology (MC H166, Rm C4757), Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lynch CJ, Hutson SM, Patson BJ, Vaval A, Vary TC. Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 2002; 283:E824-35. [PMID: 12217901 DOI: 10.1152/ajpendo.00085.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute administration of leucine and norleucine activates the mammalian target of rapamycin (mTOR) cell-signaling pathway and increases rates of protein synthesis in a number of tissues in fasted rats. Although persistent stimulation of mTOR signaling is thought to increase protein synthetic capacity, little information is available concerning the effects of chronic administration of these agonists on protein synthesis, mTOR signal transduction, or leucine metabolism. Hence, we developed a model of chronic leucine/norleucine supplementation via drinking water and examined the effects of chronic (12 days) supplementation on protein synthesis in adipose tissue, kidney, heart, liver, and skeletal muscle from ad libitum-fed rats. The relative concentration of proteins involved in mTOR signaling and the two initial steps in leucine oxidation were also examined. Leucine or norleucine supplementation was accompanied by increased rates of protein synthesis in adipose tissue, liver, and skeletal muscle, but not in heart or kidney. Supplementation was not associated with increases in the anabolic hormones insulin or insulin-like growth factor I. Chronic supplementation did not cause apparent adaptation in either components of the mTOR cell-signaling pathway that respond to leucine (mTOR, ribosomal protein S6 kinase, and eukaryotic initiation factor 4E-binding protein-1) or the first two steps in leucine metabolism (the mitochondrial isoform of branched-chain amino acid transaminase, branched-chain keto acid dehydrogenase, and branched-chain keto acid dehydrogenase kinase), which may be involved in terminating the signal from leucine. These results suggest that provision of leucine or norleucine supplementation via the drinking water results in stimulation of postprandial protein synthesis in adipose tissue, skeletal muscle, and liver without notable adaptive changes in signaling proteins or metabolic enzymes.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
21
|
Nellis MM, Doering CB, Kasinski A, Danner DJ. Insulin increases branched-chain alpha-ketoacid dehydrogenase kinase expression in Clone 9 rat cells. Am J Physiol Endocrinol Metab 2002; 283:E853-60. [PMID: 12217904 DOI: 10.1152/ajpendo.00133.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The branched-chain amino acids (BCAA) are committed to catabolism by the activity of the branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. BCKD activity is regulated through the action of the complex-specific BCKD kinase that phosphorylates two serine residues in the E1alpha subunit. Greater BCKD kinase expression levels result in a lower activity state of BCKD and thus a decreased rate of BCAA catabolism. Activity state varies among tissues and can be altered by diet, exercise, hormones, and disease state. Within individual tissues, the concentration of BCKD kinase reflects the activity state of the BCKD complex. Here we investigated the effects of insulin, an important regulator of hepatic metabolic enzymes, on BCKD kinase expression in Clone 9 rat cells. Insulin effected a twofold increase in message levels and a twofold increase in BCKD kinase protein levels. The response was completely blocked by treatment with LY-294002 and partially blocked by rapamycin, thus demonstrating a dependence on phosphatidylinositol 3-kinase and mTOR function, respectively. These studies suggest that insulin acts to regulate BCAA catabolism through stimulation of BCKD kinase expression.
Collapse
Affiliation(s)
- Mary M Nellis
- Graduate Program in Nutrition and Health Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
22
|
Schachter D, Sang JC. Aortic leucine-to-glutamate pathway: metabolic route and regulation of contractile responses. Am J Physiol Heart Circ Physiol 2002; 282:H1135-48. [PMID: 11834513 DOI: 10.1152/ajpheart.00457.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat aortic endothelium is differentiated regionally for three signal pathways capable of regulating the cGMP content of the underlying smooth muscle. Formation of nitric oxide (NO) from L-arginine and of glutamate from L-leucine increase cGMP; however, formation of prostaglandin H2 (PGH2) decreases cGMP. All three have peak activity in the windkessel area just distal to the aortic arch and decrease peripherally. We report evidence that the biochemical route of the leucine-to-glutamate (Leu-->Glu) pathway is via metabolism of leucine to acetyl CoA, that the controlling reaction of the pathway is mediated by the branched chain alpha-ketoacid dehydrogenase complex (BCDC), and that glutamate formation via the Leu-->Glu pathway is a major source of aortic segment free glutamate in vitro. Interruption of the pathway by treatment of precontracted rat aortic rings in vitro with each of three classes of inhibitors (leucine analogs, competitors for the BCDC reaction, or inhibitors of L-glutamate transport) enhances contractile responses. The enhancement requires an intact endothelium and is not owing to reductions in NO formation. The results support the hypothesis that the Leu-->Glu pathway functions in the regulation of aortic contractility and compliance.
Collapse
Affiliation(s)
- David Schachter
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
23
|
Song JL, Chuang DT. Natural osmolyte trimethylamine N-oxide corrects assembly defects of mutant branched-chain alpha-ketoacid decarboxylase in maple syrup urine disease. J Biol Chem 2001; 276:40241-6. [PMID: 11507102 DOI: 10.1074/jbc.m107242200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maple syrup urine disease is caused by deficiency in the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. The clinical phenotype includes often fatal ketoacidosis, neurological derangement, and mental retardation. The type IA mutations Y393N-alpha, Y368C-alpha, and F364C-alpha, which occur in the E1alpha subunit of the decarboxylase (E1) component of the BCKD complex, impede the conversion of an alphabeta heterodimeric intermediate to a native alpha(2)beta(2) heterotetramer in the E1 assembly pathway. In the present study, we show that a natural osmolyte trimethylamine N-oxide (TMAO) at the optimal 1 m concentration restores E1 activity, up to 50% of the wild type, in the mutant E1 carrying the above missense mutations. TMAO promotes the conversion of otherwise trapped mutant heterodimers to active heterotetramers. This slow step does not involve dissociation/reassociation of the mutant heterodimers, which are preformed in the presence of chaperonins GroEL/GroES and Mg-ATP. The TMAO-stimulated mutant E1 activity is remarkably stable upon removal of the osmolyte, when cofactor thiamine pyrophosphate and the transacylase component of the BCKD complex are present. The above in vitro results offer the use of chemical chaperones such as TMAO as an approach to mitigate assembly defects caused by maple syrup urine disease mutations.
Collapse
Affiliation(s)
- J L Song
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | | |
Collapse
|
24
|
Wynn RM, Chuang JL, Sansaricq C, Mandel H, Chuang DT. Biochemical basis of type IB (E1beta ) mutations in maple syrup urine disease. A prevalent allele in patients from the Druze kindred in Israel. J Biol Chem 2001; 276:36550-6. [PMID: 11448970 DOI: 10.1074/jbc.m105862200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a metabolic disorder associated with often-fatal ketoacidosis, neurological derangement, and mental retardation. In this study, we identify and characterize two novel type IB MSUD mutations in Israeli patients, which affect the E1beta subunit in the decarboxylase (E1) component of the branched-chain alpha-ketoacid dehydrogenase complex. The recombinant mutant E1 carrying the prevalent S289L-beta (TCG --> TTG) mutation in the Druze kindred exists as a stable inactive alphabeta heterodimer. Based on the human E1 structure, the S289L-beta mutation disrupts the interactions between Ser-289-beta and Glu-290-beta', and between Arg-309-beta and Glu-290-beta', which are essential for native alpha(2)beta(2) heterotetrameric assembly. The R133P-beta (CGG --> CCG) mutation, on the other hand, is inefficiently expressed in Escherichia coli as heterotetramers in a temperature-dependent manner. The R133P-beta mutant E1 exhibits significant residual activity but is markedly less stable than the wild-type, as measured by thermal inactivation and free energy change of denaturation. The R133P-beta substitution abrogates the coordination of Arg-133-beta to Ala-95-beta, Glu-96-beta, and Ile-97-beta, which is important for strand-strand interactions and K(+) ion binding in the beta subunit. These findings provide new insights into folding and assembly of human E1 and will facilitate DNA-based diagnosis for MSUD in the Israeli population.
Collapse
Affiliation(s)
- R M Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
25
|
Xu M, Nagasaki M, Obayashi M, Sato Y, Tamura T, Shimomura Y. Mechanism of activation of branched-chain alpha-keto acid dehydrogenase complex by exercise. Biochem Biophys Res Commun 2001; 287:752-6. [PMID: 11563860 DOI: 10.1006/bbrc.2001.5647] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Branched-chain alpha-keto acid dehydrogenase (BCKDH) complex catalyzes the committed step of branched-chain amino acid catabolism, and its activity is regulated by the phosphorylation-dephosphorylation cycle. BCKDH kinase is responsible for inactivation of the complex by phosphorylation. In the present study, we examined acute exercise on the activity state of the complex as well as the amounts of bound and free forms of the kinase in rat liver and skeletal muscle. Acute exercise activated the complex in association with a decrease in the bound form of kinase in both liver and muscle. The free form of kinase in both tissues was slightly increased but the total amount of the kinase was not affected by acute exercise. The protein amount ratio of bound kinase to E1beta component of the complex was much higher in muscle than in the liver of rats, reflecting the low activity state of the complex in muscle. These results suggest that the amount of the bound kinase plays an important role in regulation of the activity state of the complex. We propose that the alteration in the amount of bound BCKDH kinase is a short-term regulatory mechanism for determining the activity of BCKDH complex.
Collapse
Affiliation(s)
- M Xu
- Department of Sports Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Bixel M, Shimomura Y, Hutson S, Hamprecht B. Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem 2001; 49:407-18. [PMID: 11181743 DOI: 10.1177/002215540104900314] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transamination of branched-chain amino acids (BCAAs) catalyzed by the branched chain aminotransferase isoenzymes (BCATs) is believed to play an important role in nitrogen shuttling and excitatory neurotransmitter glutamate metabolism in brain. Recently, we have shown that the mitochondrial isoenzyme (BCATm) is the predominant form found in cultured astrocytes. In this study we used immunocytochemistry to examine the distribution of BCAT isoenzymes in cultured rat neurons and microglial cells. The cytoplasm of neurons displayed intense staining for the cytosolic isoenzyme (BCATc), whereas BCATm staining was not detectable in neurons. In contrast, microglial cells expressed BCATm in high concentration. BCATc appeared to be absent in this cell type. The second and committed step in the BCAA catabolic pathway is oxidative decarboxylation of the alpha-keto acid products of BCAT catalyzed by the branched-chain alpha-keto acid dehydrogenase (BCKD) enzyme complex. Because the presence of BCKD should provide an index of the ability of a cell to oxidize BCAA, we have also immunocytochemically localized BCKD in neuron and glial cell cultures from rat brain. Our results suggest ubiquitous expression of this BCKD enzyme complex in cultured brain cells. BCKD immunoreactivity was detected in neurons and in astroglial and microglial cells. Therefore, the expression of BCAT isoenzymes shows cell-specific localization, which is consistent with the operation of an intercellular nitrogen shuttle between neurons and astroglia. On the other hand, the ubiquitous expression of BCKD suggests that BCAA oxidation can probably take place in all types of brain cells and is most likely regulated by the activity state of BCKD rather than by its cell-specific localization.
Collapse
Affiliation(s)
- M Bixel
- Physiologisch-chemisches Institut der Universität, Tübingen, Germany
| | | | | | | |
Collapse
|
27
|
Huang YS, Chuang DT. Regulation of branched-chain alpha-keto acid dehydrogenase kinase gene expression by glucocorticoids in hepatoma cells and rat liver. Methods Enzymol 2001; 324:498-511. [PMID: 10989456 DOI: 10.1016/s0076-6879(00)24257-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Y S Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390-9038, USA
| | | |
Collapse
|
28
|
Doering CB, Danner DJ. Amino acid deprivation induces translation of branched-chain alpha-ketoacid dehydrogenase kinase. Am J Physiol Cell Physiol 2000; 279:C1587-94. [PMID: 11029306 DOI: 10.1152/ajpcell.2000.279.5.c1587] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Leucine, isoleucine, and valine are used by cells for protein synthesis or are catabolized into sources for glucose and lipid production. These branched-chain amino acids influence proteolysis, hormone release, and cell cycle progression along with their other metabolic roles. The branched-chain amino acids play a central role in regulating cellular protein turnover by reducing autophagy. These essential amino acids are committed to their catabolic fate by the activity of the branched-chain alpha-ketoacid dehydrogenase complex. Activity of the branched-chain alpha-ketoacid dehydrogenase complex is regulated by phosphorylation/inactivation of the alpha-subunit performed by a complex specific kinase. Here we show that elimination of the branched-chain amino acids from the medium of cultured cells results in a two- to threefold increased production of the branched-chain alpha-ketoacid dehydrogenase kinase with a decrease in the activity state of the branched-chain alpha-ketoacid dehydrogenase complex. The mechanism cells use to increase kinase production under these conditions involves recruitment of the kinase mRNA into polyribosomes. Promoter activity and the steady-state concentration of the mRNA are unchanged by these conditions.
Collapse
Affiliation(s)
- C B Doering
- Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
29
|
Doering CB, Williams IR, Danner DJ. Controlled overexpression of BCKD kinase expression: metabolic engineering applied to BCAA metabolism in a mammalian system. Metab Eng 2000; 2:349-56. [PMID: 11120646 DOI: 10.1006/mben.2000.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A common metabolic complication of human disease is uncontrolled muscle protein breakdown or cachexia, which occurs in patients with chronic diseases such as cancer, AIDS, renal failure, and diabetes. Increased branched-chain amino acid catabolism is implicated as causal and has stimulated the investigation of methods to regulate the metabolism of these amino acids. Here we demonstrate doxycycline-controlled overexpression of a branched-chain alpha-ketoacid dehydrogenase (BCKD) kinase transgene in mammalian cell culture. This kinase functions to inactivate the BCKD complex by phosphorylation, thus preventing the catabolism of these essential, regulatory metabolites. In this study, doxycycline treatment leads to a 10-fold increase in BCKD kinase protein. The transgene-generated kinase is rapidly incorporated within mitochondria and functions correctly to inactivate the BCKD complex. The maximum reduction in basal BCKD activity achieved was 94%. Unexpectedly, total BCKD activity was also decreased by kinase overexpression despite no observable change in expression of the BCKD catalytic proteins. These results demonstrate that artificial regulation of branched-chain amino acid metabolism is possible through the controlled overexpression of a single endogenous enzyme and suggest the feasibility of clinical applications.
Collapse
Affiliation(s)
- C B Doering
- Department of Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
30
|
Wynn RM, Chuang JL, Cote CD, Chuang DT. Tetrameric assembly and conservation in the ATP-binding domain of rat branched-chain alpha-ketoacid dehydrogenase kinase. J Biol Chem 2000; 275:30512-9. [PMID: 10903321 DOI: 10.1074/jbc.m005075200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed previously that the rat branched-chain alpha-ketoacid dehydrogenase (BCKD) kinase is capable of autophosphorylation. However, despite its sequence similarity to bacterial histidine protein kinases, BCKD kinase does not function as a histidine protein kinase. In the present study, we report that the rat BCKD kinase exists as a homotetramer of M(r) = 185,000, based on results of gel filtration and dynamic light scattering. This is in contrast to the related mammalian pyruvate dehydrogenase kinase isozymes that occur as homodimers. The tetrameric assembly of BCKD kinase was confirmed by the presence of four 5'-adenylyl-imidodiphosphate-binding sites (K(D) = 4.1 x 10(-6)m) per molecule of the kinase. Incubation of the BCKD kinase with increasing concentrations of urea resulted in dissociation of the tetramer to dimers and eventually to monomers as separated on a sucrose density gradient. Both tetramers and dimers, but not the monomer, maintained the conformation capable of binding ATP and undergoing autophosphorylation. BCKD kinase depends on a fully lipoylated transacylase for maximal activity, but the interaction between the kinase and the transacylase is impeded in the presence of high salt concentrations. Alterations of conserved residues in the ATP-binding domain led to a marked reduction or complete loss in the catalytic efficiency of the BCKD kinase. The results indicate that BCKD kinase, similar to pyruvate dehydrogenase kinase isozymes, belongs to the superfamily of ATPase/kinase.
Collapse
Affiliation(s)
- R M Wynn
- Departments of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | |
Collapse
|
31
|
Bixel MG, Hamprecht B. Immunocytochemical localization of beta-methylcrotonyl-CoA carboxylase in astroglial cells and neurons in culture. J Neurochem 2000; 74:1059-67. [PMID: 10693937 DOI: 10.1046/j.1471-4159.2000.0741059.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Astroglia-rich primary cultures and brain slices rapidly metabolize branched-chain amino acids (BCAAs), in particular leucine, as energy substrates. To allocate the capacity to degrade leucine oxidatively in neural cells, we have purified beta-methylcrotonyl-CoA carboxylase (beta-MCC) from rat liver as one of the enzymes unique for the irreversible catabolic pathway of leucine. Polyclonal antibodies raised against beta-MCC specifically cross-reacted with both enzyme subunits in liver and brain homogenates. Immunocytochemical examination of astroglia-rich rat primary cultures demonstrated the presence of beta-MCC in astroglial cells, where the enzyme was found to be located in the mitochondria, the same organelle that the mitochondrial isoform of the BCA(A) aminotransferase (BCAT) is located in. This colocalization of the two enzymes supports the hypothesis that mitochondrial BCAT is the isoenzyme that in brain energy metabolism prepares the carbon skeleton of leucine for irreversible degradation in astrocytes. Analysis of neuron-rich primary cultures revealed also that the majority of neurons contained beta-MCC. The presence of beta-MCC in most neurons demonstrates their ability to degrade the alpha-ketoisocaproate that could be provided by neighboring astrocytes or could be generated locally from leucine by the action of the cytosolic isoform of BCAT that is known to occur in neurons.
Collapse
Affiliation(s)
- M G Bixel
- Physiologisch-chemisches Institut der Universität Tübingen, Germany
| | | |
Collapse
|
32
|
Huang YS, Chuang DT. Mechanism for basal expression of rat mitochondrial branched-chain-2-oxo-acid dehydrogenase kinase [corrected]. Biochem J 1998; 334 ( Pt 3):713-22. [PMID: 9729481 PMCID: PMC1219742 DOI: 10.1042/bj3340713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rat branched-chain-2-oxo-acid dehydrogenase (BCOD) kinase mRNA is transcribed from a TATA-less promoter that has GC-rich sequences and two putative Sp1 binding sites near the transcription start site. We demonstrated previously that the 5' region of the kinase gene, base pairs -128 to +264, contained promoter activity when assayed using luciferase as a reporter (Huang and Chuang (1996) Biochem. J. 313, 603-609). To define DNA elements required for efficient expression of the kinase gene, nested deletion constructs of the above promoter region fused with a luciferase reporter gene were transfected into cultured H4IIE (hepatoma) and NRK-52E (kidney) cells. The results showed that the region between nucleotides -58 and +21 was indispensable for the kinase basal promoter activity. Methylation-interference and mutagenesis-promoter assays identified nucleotides -50 to -40 (ACAACTCCCA) as cis-acting DNA sequences that are required for nuclear protein binding and efficient promoter activity. Gel-supershift analysis with anti-Sp1 antibody suggested that the nuclear protein capable of binding to the -58 oligonucleotide (bp -58 to -34) was immunologically related to the Sp1 protein. The -58 oligonucleotide formed a DNA-protein complex with recombinant Sp1 protein with an affinity approximately ten-fold lower than that of the consensus Sp1 oligonucleotide. Co-transfection of the Sp1 expression plasmid and the -58 promoter construct into Drosophila Schneider cells revealed that Sp1 contributed to the kinase basal promoter activity by binding to the non-consensus site in the -58 region. Deletion of two consensus Sp1 binding sites (bases -150 to -140 and bases +29 to +38) in the kinase gene did not affect the basal promoter activity. Therefore binding of Sp1 or Sp1-like proteins to the above single non-consensus Sp1 sequence in the -58 region plays a major role of transactivating basal expression of the BCOD kinase.
Collapse
Affiliation(s)
- Y S Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9038, USA
| | | |
Collapse
|
33
|
Doering CB, Coursey C, Spangler W, Danner DJ. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development. Gene 1998; 212:213-9. [PMID: 9611264 DOI: 10.1016/s0378-1119(98)00182-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system.
Collapse
Affiliation(s)
- C B Doering
- Emory University School of Medicine, Department of Genetics, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
34
|
Wynn RM, Davie JR, Chuang JL, Cote CD, Chuang DT. Impaired assembly of E1 decarboxylase of the branched-chain alpha-ketoacid dehydrogenase complex in type IA maple syrup urine disease. J Biol Chem 1998; 273:13110-8. [PMID: 9582350 DOI: 10.1074/jbc.273.21.13110] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E1 decarboxylase component of the human branched-chain ketoacid dehydrogenase complex comprises two E1alpha (45.5 kDa) and two E1beta (37.5 kDa) subunits forming an alpha2 beta2 tetramer. In patients with type IA maple syrup urine disease, the E1alpha subunit is affected, resulting in the loss of E1 and branched-chain ketoacid dehydrogenase catalytic activities. To study the effect of human E1alpha missense mutations on E1 subunit assembly, we have developed a pulse-chase labeling protocol based on efficient expression and assembly of human (His)6-E1alpha and untagged E1beta subunits in Escherichia coli in the presence of overexpressed chaperonins GroEL and GroES. Assembly of the two 35S-labeled E1 subunits was indicated by their co-extraction with Ni2+-nitrilotriacetic acid resin. The nine E1alpha maple syrup urine disease mutants studied showed aberrant kinetics of assembly with normal E1beta in the 2-h chase compared with the wild type and can be classified into four categories of normal (N222S-alpha and R220W-alpha), moderately slow (G245R-alpha), slow (G204S-alpha, A240P-alpha, F364C-alpha, Y368C-alpha, and Y393N-alpha), and no (T265R-alpha) assembly. Prolonged induction in E. coli grown in the YTGK medium or lowering of induction temperature from 37 to 28 degreesC (in the case of T265R-alpha), however, resulted in the production of mutant E1 proteins. Separation of purified E1 proteins by sucrose density gradient centrifugation showed that the wild-type E1 existed entirely as alpha2 beta2 tetramers. In contrast, a subset of E1alpha missense mutations caused the occurrence of exclusive alphabeta dimers (Y393N-alpha and F364C-alpha) or of both alpha2beta2 tetramers and lower molecular weight species (Y368C-alpha and T265R-alpha). Thermal denaturation at 50 degreesC indicated that mutant E1 proteins aggregated more rapidly than wild type (rate constant, 0.19 min-1), with the T265R-alpha mutant E1 most severely affected (rate constant, 4.45 min-1). The results establish that the human E1alpha mutations in the putative thiamine pyrophosphate-binding pocket that are studied, with the exception of G204S-alpha, have no effect on E1 subunit assembly. The T265R-alpha mutation adversely impacts both E1alpha folding and subunit interactions. The mutations involving the C-terminal aromatic residues impede both the kinetics of subunit assembly and the formation of the native alpha2 beta2 structure.
Collapse
Affiliation(s)
- R M Wynn
- Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9038, USA
| | | | | | | | | |
Collapse
|
35
|
Kobayashi R, Shimomura Y, Murakami T, Nakai N, Fujitsuka N, Otsuka M, Arakawa N, Popov KM, Harris RA. Gender difference in regulation of branched-chain amino acid catabolism. Biochem J 1997; 327 ( Pt 2):449-53. [PMID: 9359415 PMCID: PMC1218815 DOI: 10.1042/bj3270449] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regulation of the activity state of the hepatic branched-chain 2-oxo acid dehydrogenase (BCODH) complex during the light-dark cycle differs markedly in male and female rats. Female rats exhibit a profound diurnal rhythm in the activity state of the complex that is not observed in male rats. Regardless of gender, most of the complex was dephosphorylated and active in the middle of the dark period and early in the light period, and this form of the complex predominated in male rats at the end of the light period. In contrast, most of the complex in female rats became phosphorylated and inactive by the end of the light period. Gonadectomy prevented the diurnal rhythm in females but was without effect in males, indicating that female sex hormones are required for this gender difference in regulation of the BCODH complex. Changes in levels of branched-chain 2-oxo acids, known regulators of BCODH kinase, do not seem to be involved; rather, an increase in BCODH kinase activity occurring between morning and evening is responsible for inactivation of the BCODH complex in female rats. The increase in kinase activity is due to an increase in the amount of kinase protein associated with the BCODH complex. Thus a marked diurnal variation in the amount of BCODH kinase and therefore its activity results in large swings in the activity state of the liver BCODH complex in female rats. This study provides the first evidence for a gender-specific difference in the regulation of branched-chain amino acid catabolism.
Collapse
Affiliation(s)
- R Kobayashi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chuang JL, Cox RP, Chuang DT. E2 transacylase-deficient (type II) maple syrup urine disease. Aberrant splicing of E2 mRNA caused by internal intronic deletions and association with thiamine-responsive phenotype. J Clin Invest 1997; 100:736-44. [PMID: 9239422 PMCID: PMC508243 DOI: 10.1172/jci119586] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maple syrup urine disease (MSUD) or branched-chain alpha-ketoaciduria is an autosomally inherited disorder in the catabolism of branched-chain amino acids leucine, isoleucine, and valine. The disease is characterized by severe ketoacidosis, mental retardation, and neurological impairments. MSUD can be classified into genetic subtypes according to the genes of the branched-chain alpha-ketoacid dehydrogenase (BCKD) complex which are affected in patients. We describe here four intronic deletions and an intronic nucleotide substitution in the E2 transacylase gene of type II MSUD, in which the E2 subunit of the BCKD complex is deficient. These new E2 mutations comprise an internal 3.2-kb deletion in intron 4 (causing a 17-bp insertion in mRNA), an internal 12-bp (ttaccttgttac) deletion in intron 4 (creating a 10-bp insertion), a 10-bp (catttctaG) deletion in intron 10/ exon 11 junction (leading to a 21-bp deletion), a 2-bp deletion in the exon 5/intron 5 junction (ATgt--> A-t) (resulting in the skipping of exon 5), and a G to A transition at nucleotide -7 of intron 9 (causing a 6-bp insertion). These intronic mutations were initially detected by secondary alterations in the mutant E2 mRNA, as a result of aberrant splicing. The 3.2-kb deletion in intron 4 was determined by the amplification of the entire intron from both a normal subject (11.2 kb) and a homozygous patient (8 kb) by long PCR, followed by subcloning and sequencing of regions flanking the deletion. Similar methods were used to identify and characterize the other intronic alterations. Our results depict heretofore undescribed splicing errors caused by the deletion of internal intronic segments, and provide an approach for detecting this class of novel and rare human mutation. The association of the thiamine-responsive phenotype with a subset of the type II MSUD patients studied is also discussed.
Collapse
Affiliation(s)
- J L Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
37
|
Popov KM, Hawes JW, Harris RA. 9 Mitochondrial α-ketoacid dehydrogenase kinases. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997. [DOI: 10.1016/s1040-7952(97)80012-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
van Hall G, MacLean DA, Saltin B, Wagenmakers AJ. Mechanisms of activation of muscle branched-chain alpha-keto acid dehydrogenase during exercise in man. J Physiol 1996; 494 ( Pt 3):899-905. [PMID: 8865084 PMCID: PMC1160687 DOI: 10.1113/jphysiol.1996.sp021542] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Exercise leads to activation (dephosphorylation) of the branched-chain alpha-keto acid dehydrogenase (BCKADH). Here we investigate the effect of low pre-exercise muscle glycogen content and of branched-chain amino acid (BCAA) ingestion on the activity of BCKADH at rest and after 90 min of one-leg knee-extensor exercise at 65% maximal one-leg power output in five subjects. 2. Pre-exercise BCAA ingestion (308 mg BCAAs (kg body wt)-1) caused an increased muscle BCAA uptake, a higher intramuscular BCAA concentration and activation of BCKADH both at rest (9 +/- 1 versus 25 +/- 5% for the control and BCAA test, respectively) and after exercise (27 +/- 4 versus 54 +/- 7%). 3. At rest the percentage active BCKADH was not different, 6 +/- 2% versus 5 +/- 1%, in the normal and low glycogen content leg (392 +/- 21 and 147 +/- 34 mumol glycosyl units (g dry muscle)-1, respectively). The post-exercise BCKADH activity was higher in the low (46 +/- 2%) than in the normal glycogen content leg (26 +/- 2%). 4. It is concluded that: (1) the mechanism of activation by BCAA ingestion probably involves an increase of the muscle BCAA concentration; (2) BCKADH activation caused by exercise and BCAA ingestion are additive; (3) low pre-exercise muscle glycogen content augments the exercise-induced BCKADH activation without an increase in muscle BCAA concentration; and (4) the mechanism of BCKADH activation via BCAA ingestion and low muscle glycogen content are different.
Collapse
Affiliation(s)
- G van Hall
- Department of Human Biology, University of Limburg, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Huang Y, Chuang DT. Structural organization of the rat branched-chain 2-oxo-acid dehydrogenase kinase gene and partial characterization of the promoter-regulatory region. Biochem J 1996; 313 ( Pt 2):603-9. [PMID: 8573099 PMCID: PMC1216950 DOI: 10.1042/bj3130603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gene encoding the rat branched-chain 2-oxo-acid dehydrogenase kinase (EC 2.7.1.115) has been isolated and partially characterized. The entire gene, including the promoter-regulatory region, spans 6 kb and contains 11 exons. The 5'-untranslated region comprising 264 bp is interrupted by intron 1 which is 581 bp in size. The complete in-frame sequence of intron 7 encodes the 49 amino acid insert previously reported to be present in the larger isoform of the rat kinase (Harris, Popov, Shimomura, Zhao, Jaskiewicz, Nanaumi and Suzuki (1992) Adv. Enzyme Regul. 32, 267-284). Sequencing of the 679 bp of the 5'-flanking region showed the absence of a canonical TATA box, similar to other branched-chain 2-oxo-acid dehydrogenase-complex genes. Several candidate cis-acting elements are present. These include CAAT boxes, Sp-1-binding sites, GCN-4 sites, CCAAT enhancer binding-protein sites (C/EBP) and glucocorticoid-responsive element (GRE) sites. Also present are a pair of direct repeats of unknown function. The luciferase-reporter assay showed that promoter activity is markedly higher in normal rat kidney (NRK-52E) cells than in rat hepatoma (FTO-2B) cells, and that the 5'-flanking region between bases -449 and +264 is both necessary and sufficient for basal transcription of the kinase gene.
Collapse
Affiliation(s)
- Y Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
40
|
Chuang JL, Davie JR, Chinsky JM, Wynn RM, Cox RP, Chuang DT. Molecular and biochemical basis of intermediate maple syrup urine disease. Occurrence of homozygous G245R and F364C mutations at the E1 alpha locus of Hispanic-Mexican patients. J Clin Invest 1995; 95:954-63. [PMID: 7883996 PMCID: PMC441427 DOI: 10.1172/jci117804] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maple syrup urine disease (MSUD) is caused by a deficiency of the mitochondrial branched-chain alpha-keta acid dehydrogenase (BCKAD) complex. The multienzyme complex comprises five enzyme components, including the E1 decarboxylase with a heterotetrameric (alpha 2 beta 2) structure. Four unrelated Hispanic-Mexican MSUD patients with the intermediate clinical phenotype were diagnosed 7 to 22 mo after birth during evaluation for developmental delay. Three of the four patients were found homozygous for G to A transition at base 895 (exon 7) of the E1 alpha locus, which changes Gly-245 to Arg (G245R) in that subunit. The remaining patient was homozygous for T to G transversion at base 1,253 in the E1 alpha gene, which converts Phe-364 to Cys (F364C) in the gene product. Transfection studies in E1 alpha-deficient lymphoblasts indicate that both G245R and F364C mutant E1 alpha subunits were unable to significantly reconstitute BCKAD activity. Western blotting showed that both mutant E1 alpha subunits in transfected cells failed to efficiently rescue the normal E1 beta through assembly. The putative assembly defect was confirmed by pulse-chase labeling of E1 subunits in a chaperone-augmented bacterial overexpression system. The kinetics of initial assembly of the G245R E1 alpha subunit with the normal E1 beta was shown to be slower than the normal E1 alpha. No detectable assembly of the F364C E1 alpha with normal E1 beta was observed during the 2 h chase. Small amounts of recombinant mutant E1 proteins were produced after 15 h induction with isopropyl thiogalactoside and exhibited very low or no E1 activity. Our study establishes that G245R and F364C mutations in the E1 alpha subunit disrupt both the E1 heterotetrameric assembly and function of the BCKAD complex. Moreover, the results suggest that the G245R mutant E1 alpha allele may be important in the Hispanic-Mexican population.
Collapse
Affiliation(s)
- J L Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | |
Collapse
|
41
|
Zhao Y, Hawes J, Popov K, Jaskiewicz J, Shimomura Y, Crabb D, Harris R. Site-directed mutagenesis of phosphorylation sites of the branched chain alpha-ketoacid dehydrogenase complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32349-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Quan R, Gray GM. Sucrase-alpha-dextrinase in the rat. Postinsertional conversion to inactive molecular species by a carbohydrate-free diet. J Clin Invest 1993; 91:2785-90. [PMID: 8514885 PMCID: PMC443345 DOI: 10.1172/jci116520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Absence of dietary carbohydrate decreases both activities of intestinal brush border sucrase-alpha-dextrinase. We examined the molecular mechanism causing this decrease. Adult rats were fed chow (70% CHO) or matched carbohydrate-free (CHO-free) diet for 7 d. Sucrase activity decreased by 50% in whole homogenates and brush borders. Enzyme kinetics revealed no change in sucrose affinity (CHO-free Km = 18 mM, chow Km = 21 mM), but fewer active sites (CHO-free Vmax = 2,720, chow Vmax = 5,000 mumol/min per g protein). Intraintestinal pulse-labeling of [35S]methionine in vivo revealed no differences in incorporation into sucrase. Immunoreactive sucrase protein, assayed by ELISA and rocket immunoelectrophoresis, increased twofold per milliunit of sucrase enzymatic activity in CHO-free jejunum. Total immunosucrase (St), the sum of active and inactive enzyme (St = Sa+Si), was unchanged with carbohydrate withdrawal, but > 50% of the sucrase protein became inactive. SDS-PAGE of sucrase immunoprecipitates revealed alteration of alpha, beta, and gamma subunits in CHO-free animals: (a) alpha and beta subunits migrated farther (mass change--2 kD); and (b) the alpha subunit became diffuse or was a doublet and was less abundant than the beta subunit. Rather than representing loss of sucrase protein, the decline in sucrase activity is achieved with structural subunit changes, probably involving postinsertional processing.
Collapse
Affiliation(s)
- R Quan
- Department of Pediatrics (Gastroenterology/Nutrition), University of Texas Southwestern Medical Center, Dallas 75235-9063
| | | |
Collapse
|
43
|
Zhao Y, Denne SC, Harris RA. Developmental pattern of branched-chain 2-oxo acid dehydrogenase complex in rat liver and heart. Biochem J 1993; 290 ( Pt 2):395-9. [PMID: 8452526 PMCID: PMC1132286 DOI: 10.1042/bj2900395] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The developmental pattern of the branched-chain 2-oxo acid dehydrogenase complex was examined in the liver and heart of the rat throughout the suckling period. Basal activity and total activity of the complex were measured as a function of age. The hepatic enzyme activity increased dramatically and was 100% active (dephosphorylated) during the suckling period. The level of protein kinase associated with the complex was particularly low at birth, but like the complex increased throughout the suckling period. The level of heart enzyme also increased as a function of age, but only about 30-45% of the enzyme was active throughout the suckling period. Very low protein levels of liver and heart branched-chain 2-oxo acid dehydrogenase were detected by immunoblot analysis in newborn rats. The mRNA levels for the liver E1 alpha, E1 beta, and E2 subunits in newborn rat were 30%, 19%, and 4% of adult levels respectively. The capacity of the neonatal rat for oxidizing leucine in vivo was low at birth and increased with age. 4-Methyl-2-oxopentanoate was more toxic when given to newborn and 3-day-old pups than 21-day-old pups, as expected from the relative capacities of their tissues to dispose of branched-chain 2-oxo acids by oxidation. Force-feeding suckling rats a protein-free artificial milk formula resulted in partial inactivation of the hepatic branched-chain 2-oxo acid dehydrogenase complex, indicating that the liver of the suckling rat can adapt to conserve branched-chain amino acid residues during periods of protein deficiency.
Collapse
Affiliation(s)
- Y Zhao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122
| | | | | |
Collapse
|
44
|
Harris RA, Popov KM, Kedishvili NY, Zhao Y, Shimomura Y, Robbins B, Crabb DW. Molecular cloning of the branched-chain alpha-keto acid dehydrogenase kinase and the CoA-dependent methylmalonate semialdehyde dehydrogenase. ADVANCES IN ENZYME REGULATION 1993; 33:255-65. [PMID: 8356911 DOI: 10.1016/0065-2571(93)90022-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The complete amino acid sequence of rat liver CoA-dependent methylmalonate semialdehyde dehydrogenase, the enzyme responsible for the oxidative decarboxylation of malonate- and methylmalonate semialdehydes to acetyl- and propionyl-CoA in the distal portions of the valine and pyrimidine catabolic pathways, has been deduced from overlapping cDNAs obtained by screening a lambda gt11 library with nondegenerate oligonucleotide probes synthesized according to PCR-amplified portions coding for the N-terminal amino acid sequence of the enzyme. Although unique because of its requirement for coenzyme A, the methylmalonate semialdehyde dehydrogenase clearly belongs to the aldehyde dehydrogenase superfamily of enzymes. Quantitation of mRNA and protein levels indicates tissue-specific expression of methylmalonate semialdehyde dehydrogenase. A large increase in expression of methylmalonate semialdehyde dehydrogenase occurs during 3T3-L1 preadipocyte differentiation into adipocytes. The complete amino acid sequence of rat liver branched-chain alpha-ketoacid dehydrogenase kinase, the enzyme responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex, was deduced from a cDNA cloned by a procedure similar to that described above for the methylmalonate semialdehyde dehydrogenase. Expression of the cDNA in E. coli yielded a protein that phosphorylated and inactivated the branched-chain alpha-ketoacid dehydrogenase complex. Very little sequence similarity between branched-chain alpha-ketoacid dehydrogenase kinase and other eukaryotic protein kinases could be identified. However, a high degree of similarity within subdomains characteristic of prokaryotic histidine protein kinases was apparent. Thus, this first mitochondrial protein kinase to be cloned appears closer, evolutionarily, to the prokaryotic histidine protein kinases than eukaryotic ser/thr protein kinases.
Collapse
Affiliation(s)
- R A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhao Y, Kuntz MJ, Harris RA, Crabb DW. Molecular cloning of the E1 beta subunit of the rat branched chain alpha-ketoacid dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1132:207-10. [PMID: 1390893 DOI: 10.1016/0167-4781(92)90014-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Y Zhao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122
| | | | | | | |
Collapse
|
46
|
Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42179-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
Paul H, Adibi S. Mechanism of increased conversion of branched chain keto acid dehydrogenase from inactive to active form by a medium chain fatty acid (octanoate) in skeletal muscle. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49897-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Harris RA, Popov KM, Shimomura Y, Zhao Y, Jaskiewicz J, Nanaumi N, Suzuki M. Purification, characterization, regulation and molecular cloning of mitochondrial protein kinases. ADVANCES IN ENZYME REGULATION 1992; 32:267-84. [PMID: 1496922 DOI: 10.1016/0065-2571(92)90022-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mitochondrial kinases responsible for the phosphorylation and inactivation of rat heart pyruvate dehydrogenase complex and the rat liver and heart branched-chain alpha-ketoacid dehydrogenase complexes have been purified to homogeneity. The branched-chain alpha-ketoacid dehydrogenase kinase is composed of one subunit with a molecular weight of 44 kDa; pyruvate dehydrogenase kinase has two subunits with molecular weights of 48 (alpha) and 45 kDa (beta). Proteolysis maps of branched-chain alpha-ketoacid dehydrogenase kinase and the two subunits of pyruvate dehydrogenase kinase are different, suggesting that all subunits are different entities. The alpha subunit of the rat heart pyruvate dehydrogenase kinase was selectively cleaved by chymotrypsin with concomitant loss of kinase activity, as previously shown for the bovine kidney enzyme, suggesting that the catalytic activity of pyruvate dehydrogenase kinase resides in this subunit. Polyclonal antibodies against branched-chain alpha-ketoacid dehydrogenase kinase, purified by an epitope selection method, bound only to the 44 kDa polypeptide of the branched-chain alpha-ketoacid dehydrogenase complex, substantiating that the 44 kDa protein corresponds to the kinase for this complex. Both kinases exhibited strong substrate specificity toward their respective complexes and would not inactivate heterologous complexes. The kinases possessed slightly different substrate specificities toward histones. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by its purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the complex. cDNAs encoding the branched-chain alpha-ketoacid dehydrogenase kinase have been isolated from rat heart and rat liver lambda gt11 libraries. This represents the first successful cloning of a mitochondrial protein kinase. Preliminary data suggest that two different isoforms of the kinase may exist in different ratios in various tissues. No evidence was found for induction of the branched-chain alpha-ketoacid dehydrogenase complex nor its kinase by clofibric acid. Rather, clofibric acid is a potent inhibitor of the activity of the branched-chain alpha-ketoacid dehydrogenase kinase and this may be the molecular mechanism responsible for the myotonic effects of clofibric acid in man.
Collapse
Affiliation(s)
- R A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
A radiochemical assay was developed to measure pyruvate dehydrogenase complex (PDC) activity in liver and heart without interference by branched-chain 2-oxo acid dehydrogenase (BCODH). Decarboxylation of pyruvate by BCODH was eliminated by using low pyruvate concentration (0.5 mM), a preferred substrate for BCODH (3-methyl-2-oxopentanoate) that is not used by PDC, and a competitive inhibitor of BCODH, dichloroacetate. This method was validated by assaying a combination of both purified enzymes and tissue homogenates with known amounts of added BCODH. The actual percentage of active PDC decreased after 48 h starvation from 13.6 to 3.1 in liver and from 77.1 to 9.0 in heart. Total PDC activity (munits of PDC/units of citrate synthase) in starved rats was increased by 34% in liver and decreased by 23% in heart. Total PDC activity (munits/g wet wt.) in fed- and starved-rat liver was 0.8 and 1.3, and in heart was 6.6 and 5.8, respectively.
Collapse
Affiliation(s)
- R Paxton
- Department of Physiology and Pharmacology, Auburn University, AL 36849-5520
| | | |
Collapse
|
50
|
Shimomura Y, Nanaumi N, Suzuki M, Popov KM, Harris RA. Purification and partial characterization of branched-chain alpha-ketoacid dehydrogenase kinase from rat liver and rat heart. Arch Biochem Biophys 1990; 283:293-9. [PMID: 2177326 DOI: 10.1016/0003-9861(90)90645-f] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Branched-chain alpha-ketoacid dehydrogenase kinase was purified to homogeneity from rat liver and rat heart. The initial step was the purification of rat liver and heart branched-chain alpha-ketoacid dehydrogenase complex with high kinase activity by a modification of a method described previously. Preservation of high kinase activity during purification of the complex required the presence of fresh dithiothreitol throughout the procedure. The kinase was released from the complex by oxidation of dithiothreitol with potassium ferricyanide and purified by high-speed centrifugation, immunoadsorption chromatography, and DEAE-Sephacel chromatography. Both kinase preparations gave only one polypeptide band with a molecular weight of 44,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by the purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex. The kinase did not exhibit autophosphorylation and does not correspond to the same protein as pyruvate dehydrogenase kinase. The kinase phosphorylated histone (type II-S), but this reaction was slow relative to the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex and was not inhibited by alpha-chloroisocaproate.
Collapse
Affiliation(s)
- Y Shimomura
- Laboratory of Biochemistry of Exercise and Nutrition, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|