1
|
Schink SJ, Gough Z, Biselli E, Huiman MG, Chang YF, Basan M, Gerland U. MetA is a "thermal fuse" that inhibits growth and protects Escherichia coli at elevated temperatures. Cell Rep 2022; 40:111290. [PMID: 36044860 PMCID: PMC10477958 DOI: 10.1016/j.celrep.2022.111290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/10/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
Adaptive stress resistance in microbes is mostly attributed to the expression of stress response genes, including heat-shock proteins. Here, we report a response of E. coli to heat stress caused by degradation of an enzyme in the methionine biosynthesis pathway (MetA). While MetA degradation can inhibit growth, which by itself is detrimental for fitness, we show that it directly benefits survival at temperatures exceeding 50°C, increasing survival chances by more than 1,000-fold. Using both experiments and mathematical modeling, we show quantitatively how protein expression, degradation rates, and environmental stressors cause long-term growth inhibition in otherwise habitable conditions. Because growth inhibition can be abolished with simple mutations, namely point mutations of MetA and protease knockouts, we interpret the breakdown of methionine synthesis as a system that has evolved to halt growth at high temperatures, analogous to "thermal fuses" in engineering that shut off electricity to prevent overheating.
Collapse
Affiliation(s)
- Severin J Schink
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany.
| | - Zara Gough
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Elena Biselli
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Mariel Garcia Huiman
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Yu-Fang Chang
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Markus Basan
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Ulrich Gerland
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
2
|
Mokhtari-Abpangoui M, Lohrasbi-Nejad A, Zolala J, Torkzadeh-Mahani M, Ghanbari S. Improvement Thermal Stability of D-Lactate Dehydrogenase by Hydrophobin-1 and in Silico Prediction of Protein-Protein Interactions. Mol Biotechnol 2021; 63:919-932. [PMID: 34109551 DOI: 10.1007/s12033-021-00342-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Hydrophobins are small surface-active proteins. They can connect to hydrophobic or hydrophilic regions and oligomerize in solution to form massive construction. In nature, these proteins are produced by filamentous fungi at different stages of growth. So far, researchers have used them in various fields of biotechnology. In this study, recombinant hydrophobin-1 (rHFB1, 7.5 kDa) was used to stabilize recombinant D-lactate dehydrogenase (rD-LDH, 35 kDa). rD-LDH is a sensitive enzyme deactivated and oxidized by external agents such as O2 and lights. So, its stabilization with rHFB1 can be the best index to demonstrate the positive effect of rHFB1 on preserving and improving enzyme's activity. The unique ability of rHFB1 for interacting with hydrophobic regions of rD-LDH was predicted by protein-protein docking study with ClusPro and PIC servers and confirmed by fluorescence experiments, and Colorless Native-PAGE. Measurement of thermodynamic parameters allows for authenticating the role of rHFB1 as a thermal stabilizer in the protein-protein complex (rD-LDH@rHFB1). Interaction between rHFB1 and rD-LDH improved half-life of enzyme 2.25-fold at 40 °C. Investigation of the kinetic parameters proved that the presence of rHFB1 along with the rD-LDH enhancement strongly the affinity of the enzyme for pyruvate. Furthermore, an increase of Kcat/Km for complex displayed the effect of rHFB1 for improving the enzyme's catalytic efficiency.
Collapse
Affiliation(s)
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Jafar Zolala
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Saba Ghanbari
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
3
|
Gorobets MG, Wasserman LA, Bychkova AV, Rosenfeld MA. Thermodynamic features of bovine and human serum albumins under ozone and hydrogen peroxide induced oxidation studied by differential scanning calorimetry. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8219283. [PMID: 31089418 PMCID: PMC6476063 DOI: 10.1155/2019/8219283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023]
Abstract
Chronic kidney disease (CKD) is accompanied by a disturbed redox homeostasis, especially in end-stage patients, which is associated with pathological complications such as anemia, atherosclerosis, and muscle atrophy. However, limited evidence exists about redox disturbances before the end stage of CKD. Moreover, the available redox literature has not yet provided clear associations between circulating and tissue-specific (muscle) oxidative stress levels. The aim of the study was to evaluate commonly used redox status indices in the blood and in two different types of skeletal muscle (psoas, soleus) in the predialysis stages of CKD, using an animal model of renal insufficiency, and to investigate whether blood redox status indices could be reflecting the skeletal muscle redox status. Indices evaluated included reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), catalase (CAT), total antioxidant capacity (TAC), protein carbonyls (PC), and thiobarbituric acid reactive substances (TBARS). Results showed that blood GSH was higher in the uremic group compared to the control (17.50 ± 1.73 vs. 12.43 ± 1.01, p = 0.033). In both muscle types, PC levels were higher in the uremic group compared to the control (psoas: 1.086 ± 0.294 vs. 0.596 ± 0.372, soleus: 2.52 ± 0.29 vs. 0.929 ± 0.41, p < 0.05). The soleus had higher levels of TBARS, PC, GSH, CAT, and GR and lower TAC compared to the psoas in both groups. No significant correlations in redox status indices between the blood and skeletal muscles were found. However, in the uremic group, significant correlations between the psoas and soleus muscles in PC, GSSG, and CAT levels emerged, not present in the control. Even in the early stages of CKD, a disturbance in redox homeostasis was observed, which seemed to be muscle type-specific, while blood levels of redox indices did not seem to reflect the intramuscular condition. The above results highlight the need for further research in order to identify the key mechanisms driving the onset and progression of oxidative stress and its detrimental effects on CKD patients.
Collapse
|
5
|
Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells. Sci Rep 2019; 9:3673. [PMID: 30842615 PMCID: PMC6403224 DOI: 10.1038/s41598-019-40122-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Maternal lipolytic metabolic disorders result in a lipotoxic microenvironment in the ovarian follicular fluid (FF) which deteriorates oocyte quality. Although cellular stress response mechanisms are well defined in somatic cells, they remain largely unexplored in oocytes, which have distinct organelle structure and nuclear transcription patterns. Here we used shotgun proteomic analyses to study cellular responses of bovine oocytes and cumulus cells (CCs) after in vitro maturation under lipotoxic conditions; in the presence of pathophysiological palmitic acid (PA) concentration as a model. Differentially regulated proteins (DRPs) were mainly localized in the endoplasmic reticulum, mitochondria and nuclei of CCs and oocytes, however the DRPs and their direction of change were cell-type specific. Proteomic changes in PA-exposed CCs were predominantly pro-apoptotic unfolded protein responses (UPRs), mitochondrial and metabolic dysfunctions, and apoptotic pathways. This was also functionally confirmed. Interestingly, although the oocytes were enclosed by CCs during PA exposure, elevated cellular stress levels were also evident. However, pro-survival UPRs, redox regulatory and compensatory metabolic mechanisms were prominent despite evidence of mitochondrial dysfunction, oxidative stress, and reduced subsequent embryo development. The data provides a unique insight that enriches the understanding of the cellular stress responses in metabolically-compromised oocytes and forms a fundamental base to identify new targets for fertility treatments as discussed within.
Collapse
|
6
|
Rana M, Sharma AK. Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 2019; 11:64-84. [DOI: 10.1039/c8mt00203g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coordination chemistry of transition metal ions (Fe, Cu, Zn) with the amyloid-β (Aβ) peptides has attracted a lot of attention in recent years due to its repercussions in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| | - Anuj Kumar Sharma
- Department of Chemistry
- Central University of Rajasthan
- Ajmer 305817
- India
| |
Collapse
|
7
|
Mirzaei M, Bagheri M, Taheri A. Influence of standard corneal cross-linking in keratoconus patients on macular profile. J Curr Ophthalmol 2018; 30:330-336. [PMID: 30555966 PMCID: PMC6277222 DOI: 10.1016/j.joco.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 12/03/2022] Open
Abstract
Purpose To determine the effect of corneal cross-linking (CXL) on retinal structure and function. Methods The current study was conducted on 42 eyes of 21 patients with keratoconus (KCN) who were candidates for CXL due to disease progression. The Optovue optical coherence tomography (OCT) (Optovue Inc., Fremont, USA) from macula and multifocal electroretinography (mERG) were performed on all patients prior to surgery and at 1- and 6- month follow-up. Structural and functional parameters of macula including retinal thickness in OCT, and amplitude and latency of electroretinogram were compared between eyes that underwent surgery and control fellow eyes during the study period. Results A statistically significant increase in central foveal, foveal, parafoveal, and perifoveal thickness was observed at 1-month follow-up. The changes were non-significant at 6 months. Although a statistically significant reduction in amplitude and increase in latency in both rings 2 and 3 were observed at 1 month in mERG, only amplitude changes in ring 2 remained significant at 6 months. Conclusion Transient anatomical and functional alterations following CXL were observed in the current study.
Collapse
Affiliation(s)
- Mohammad Mirzaei
- Department of Ophthalmology, Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masood Bagheri
- Department of Ophthalmology, Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Taheri
- Department of Ophthalmology, Nikookari Eye Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Rai KK, Rai N, Rai SP. Investigating the impact of high temperature on growth and yield of Lablab purpureus L. inbred lines using integrated phenotypical, physiological, biochemical and molecular approaches. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0364-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Murphy GR, Dunstan RH, Macdonald MM, Gottfries J, Roberts TK. Alterations in amino acid metabolism during growth by Staphylococcus aureus following exposure to H 2O 2 - A multifactorial approach. Heliyon 2018; 4:e00620. [PMID: 29756075 PMCID: PMC5944418 DOI: 10.1016/j.heliyon.2018.e00620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/20/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023] Open
Abstract
Temperature and pH are known to vary in a wound site due to the immune response and subsequent healing processes. This study used a multifactorial design to examine the cellular responses of Staphylococcus aureus to hydrogen peroxide (0–100 mM) when bacteria were grown in temperatures of 37 ± 2 °C and pH 7 ± 1, conditions potentially encountered in wound sites. A centroid sample was included in the design which represented the mid-point values of all three environmental parameters (37 °C, pH 7, 50 mM H2O2). Cytoplasmic extracts and corresponding medium supernatants were analysed for amino acid composition by gas chromatography. Exposures of S. aureus to H2O2 during the inoculation process resulted in extended lag phases lasting well after the peroxide had been neutralised by the bacterium's antioxidant systems, after which the bacteria eventually resumed growth at equivalent rates to the controls. Even though the subsequent growth rates appeared normal, the cells exhibited a variant metabolic regime at the mid-exponential phase of growth as a result of the initial exposure to peroxide. The alterations in metabolism were reflected by the differential amino acid profiles measured in the cytoplasmic extracts (P < 0.0001). The data indicated that the metabolic responses to H2O2 challenge were uniquely different depending on the variations of temperature and pH. The uptake patterns of amino acids from the media also altered depending on prevailing environmental conditions. From these results, it was proposed that a specific reproducible homeostasis could be induced under a specific set of defined environmental conditions. It was also evident that early toxic insults on the bacterial culture could have lasting impacts on cellular homeostasis after successive generations, even after the offending chemical had been removed and initial cell integrity restored. It was concluded that metabolic homeostasis would be continually adjusting and responding to changing environmental conditions to deploy defensive proteins as well as optimising processes for survival. The powerful ability to continually and rapidly adapt to the environment may represent the key feature supporting the virulence of S. aureus as an opportunistic pathogen invading the wound site.
Collapse
Affiliation(s)
- Grace R Murphy
- Metabolic Research Group, Faculty of Science and Information Technology, School of Environmental and Life Sciences, Department of Biology, University Drive, Callaghan, 2308, NSW, Australia
| | - R Hugh Dunstan
- Metabolic Research Group, Faculty of Science and Information Technology, School of Environmental and Life Sciences, Department of Biology, University Drive, Callaghan, 2308, NSW, Australia
| | - Margaret M Macdonald
- Metabolic Research Group, Faculty of Science and Information Technology, School of Environmental and Life Sciences, Department of Biology, University Drive, Callaghan, 2308, NSW, Australia
| | | | - Tim K Roberts
- Metabolic Research Group, Faculty of Science and Information Technology, School of Environmental and Life Sciences, Department of Biology, University Drive, Callaghan, 2308, NSW, Australia
| |
Collapse
|
10
|
McNamee AP, Horobin JT, Tansley GD, Simmonds MJ. Oxidative Stress Increases Erythrocyte Sensitivity to Shear-Mediated Damage. Artif Organs 2017; 42:184-192. [DOI: 10.1111/aor.12997] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Antony P. McNamee
- School of Allied Health Sciences; Griffith University; Queensland Australia
- Menzies Health Institute; Griffith University; Queensland Australia
| | - Jarod T. Horobin
- School of Allied Health Sciences; Griffith University; Queensland Australia
- Menzies Health Institute; Griffith University; Queensland Australia
| | - Geoff D. Tansley
- School of Engineering; Griffith University; Queensland Australia
| | | |
Collapse
|
11
|
Galvis V, Tello A, Ortiz AI, Escaf LC. Patient selection for corneal collagen cross-linking: an updated review. Clin Ophthalmol 2017; 11:657-668. [PMID: 28435217 PMCID: PMC5391157 DOI: 10.2147/opth.s101386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Corneal cross-linking (CXL) is an option that in the last decade has demonstrated its efficacy and safety in halting the progression of keratoconus (KCN) and other corneal ectasias. Its indication has been extended beyond the classic definition that required evidence of KCN progression, especially in the presence of some risk factors for a possible progression (particularly the younger age). However, the results can be still somewhat variable today. There are several protocols, each with its own advantages and disadvantages. Some predictors of CXL outcome have been identified. We will review the current knowledge on patient selection for CXL, its indications, and options in special cases (such as thin corneas).
Collapse
Affiliation(s)
- Virgilio Galvis
- Centro Oftalmológico Virgilio Galvis, Floridablanca.,Department of Ophthalmology, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga.,Department of Ophthalmology, Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Santander, Colombia
| | - Alejandro Tello
- Centro Oftalmológico Virgilio Galvis, Floridablanca.,Department of Ophthalmology, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga.,Department of Ophthalmology, Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Santander, Colombia
| | - Alvaro I Ortiz
- Department of Ophthalmology, Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Santander, Colombia
| | - Luis C Escaf
- Department of Ophthalmology, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga
| |
Collapse
|
12
|
Castañeda-Arriaga R, Domínguez-Castro A, Lee J, Alvarez-Idaboy JR, Mora-Diez N. Chemical repair of protein carbon-centred radicals: long-distance dynamic factors. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The thermodynamic and kinetic study of the repair reactions of three damaged aliphatic amino acids (alanine, valine, and leucine) with dihydrolipoic acid (DHLA) in a polar and a nonpolar solvent is presented in this work. Two simplified protein models were explored in the most common conformations (alpha helix and beta sheet). Calculations are performed at the M06-2X-SMD/6-31++G(d,p) level of theory. DHLA has shown to be an excellent antioxidant repair agent through hydrogen-transfer reaction involving the thiol groups, with rate constants close to diffusion control in most cases. The stability of the initial protein radical is not the most important factor determining the rate of the repair reaction because stabilizing intermolecular interactions involving the protein and the antioxidant can provide additional stability to some transition states accelerating the repair of sites that would otherwise not be so quickly repaired.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México DF 04510, México
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | | | - JinGyu Lee
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - J. Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Nelaine Mora-Diez
- Department of Chemistry, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| |
Collapse
|
13
|
Protective Effect of Sundakai (Solanum torvum) Seed Protein (SP) Against Oxidative Membrane Damage in Human Erythrocytes. J Membr Biol 2015; 248:1137-44. [DOI: 10.1007/s00232-015-9831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
14
|
Mishra AK, Agrawal SB. Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. PROTOPLASMA 2015; 252:797-811. [PMID: 25326391 DOI: 10.1007/s00709-014-0717-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Surface-level ozone (O3) has been regarded as one of the most significant phytotoxic pollutants worldwide. Investigations addressing adverse impacts of elevated O3 on mung bean (Vigna radiata L.), an important leguminous crop of the Indian subcontinent, are still limited. The present study analyzed the differences on the foliar injury, reactive oxygen species (ROS) generation, antioxidative defense system, physiology, and foliar protein profile of two tropical mung bean cultivars (HUM-2 and HUM-6) exposed to elevated O3 under near-natural conditions. Both cultivars were negatively affected by the pollutant, but the response was cultivar-specific. Results revealed that elevated O3 induced higher levels of ROS (O2 (·-) and H2O2) and lipid peroxidation leading to greater foliar injury in HUM-2 compared to HUM-6. Photosynthetic pigments, photosynthetic rate, stomatal conductance, and photochemical efficiency reduced under elevated O3 exposure and the extent of reduction was higher in HUM-2. Principal component analysis revealed that photosynthetic performance and quantum yield were drastically affected in HUM-2 as compared to HUM-6. Activities of antioxidative enzymes were also stimulated, suggesting generation of oxidative stress under elevated O3. HUM-6 showed higher induction of antioxidative enzymes than HUM-2. One-dimensional gel electrophoresis analysis showed drastic reductions in the abundantly present ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large and small subunits and the decrease was higher in HUM-2. Altogether, results suggested that higher accumulation of ROS and limited induction of antioxidant defense system led to more leaf injury and impairment of photosynthesis in HUM-2 than HUM-6 depicting its higher sensitivity towards elevated O3.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India,
| | | |
Collapse
|
15
|
Singh AA, Agrawal SB, Shahi JP, Agrawal M. Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1447-1463. [PMID: 25023387 DOI: 10.1007/s10646-014-1287-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Tropospheric ozone (O3) concentrations are rising in Indo-Gangetic plains of India, causing potential threat to agricultural productivity. Maize (Zea mays L.) is the third most important staple crop at global level after rice and wheat. Two high yielding cultivars of Indian maize (HQPM1-quality protein maize and DHM117-normal/non quality protein maize) were exposed to two levels of elevated O3 above the ambient level (NFC) viz. NFC + 15 ppb O3 (NFC + 15) and NFC + 30 ppb O3 (NFC + 30) using open top chambers under field conditions. The study was conducted to evaluate the biochemical responses of two cultivars at different developmental stages leading to change in yield responses. Initially at lower O3 dose, photosynthetic pigments showed an increase but reduction at later stage, while higher dose caused a decline at both the stages of sampling. Levels of superoxide radical (O2 (-)) and hydrogen peroxide (H2O2) significantly increased and contributed to lipid peroxidation at elevated O3. Histochemical localization assay of O2 (-) and H2O2 showed that guard cells of stomata and cells around trichomes took deeper stain at elevated O3 reflecting more formation of reactive oxygen species. Secondary metabolites like total phenol, flavonoids and anthocyanin pigments also increased in plants under O3 stress. Enzymatic antioxidants were triggered in both the cultivars due to elevated O3, while induction of non-enzymatic antioxidants was more in HQPM1. Native PAGE analysis also showed that SOD, POX, CAT, APX and GPX were stimulated at elevated O3 concentrations compared to NFC. SDS-PAGE showed reductions of major photosynthetic proteins with higher decrease in DHM117. Principal Component Analysis showed that both the cultivars showed differential response against O3 at two developmental stages. HQPM1 maintained the analogous defense strategy at both the sampling stages while DHM117 showed variable response. Overall metabolic induction of antioxidants related to defense was more in DHM117 than HQPM1. This suggests that DHM117 utilized more assimilates in maintaining the homeostasis against imposed oxidative stress, causing less translocation of assimilates to reproductive parts and thus affecting the final yield. In terms of yield it is suggested that performance of HQPM1 (quality protein maize) was better than the DHM117 (non quality protein maize).
Collapse
Affiliation(s)
- Aditya Abha Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi, 221005, India,
| | | | | | | |
Collapse
|
16
|
Saul N, Baberschke N, Chakrabarti S, Stürzenbaum SR, Lieke T, Menzel R, Jonáš A, Steinberg CEW. Two organobromines trigger lifespan, growth, reproductive and transcriptional changes in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10419-10431. [PMID: 24838126 DOI: 10.1007/s11356-014-2932-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Organobromines of natural and artificial origin are omnipresent in aquatic and terrestrial environments. Although it is well established that exposure to high concentrations of organobromines are harmful to vertebrates, few studies have investigated the effect of environmentally realistic concentrations on invertebrates. Here, the nematode Caenorhabditis elegans was challenged with two organobromines, namely dibromoacetic acid (DBAA) and tetrabromobisphenol-A (TBBP), and monitored for changes in different life trait variables and global gene expression patterns. Fifty micromolar DBAA stimulated the growth and lifespan of the nematodes; however, the onset of reproduction was delayed. In contrast, TBBP changed the lifespan in a hormetic fashion, namely it was stimulated at 0.1 μM but impaired at 50 μM. The reproductive performance was even impaired at 2 μM TBBP. Moreover, DBAA could not reduce the toxic effect of TBBP when applied as a mixture. A whole-genome DNA microarray revealed that both organobromines curtailed signalling and neurological processes. Furthermore on the transcription level, 50 μM TBBP induced proteolysis and DBAA up-regulated biosynthesis and metabolism. To conclude, even naturally occurring concentrations of organobromines can influence the biomolecular responses and life cycle traits in C. elegans. The life extension is accompanied by negative changes in the reproductive behaviour, which is crucial for the stability of populations. Thus, this paper highlights that the effects of exposure to moderate, environmentally realistic concentrations of organobromines should not be ignored.
Collapse
Affiliation(s)
- Nadine Saul
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437, Berlin, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sorkin N, Varssano D. Corneal Collagen Crosslinking: A Systematic Review. Ophthalmologica 2014; 232:10-27. [DOI: 10.1159/000357979] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022]
|
18
|
Chia TF, Aung HH, Osipov AN, Goh NK, Chia LS. Carnivorous pitcher plant uses free radicals in the digestion of prey. Redox Rep 2013; 9:255-61. [PMID: 15606978 DOI: 10.1179/135100004225006029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.
Collapse
Affiliation(s)
- Tet Fatt Chia
- National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore.
| | | | | | | | | |
Collapse
|
19
|
Bordin L, Donà G, Sabbadin C, Ragazzi E, Andrisani A, Ambrosini G, Brunati AM, Clari G, Armanini D. Human red blood cells alterations in primary aldosteronism. J Clin Endocrinol Metab 2013; 98:2494-501. [PMID: 23539731 DOI: 10.1210/jc.2012-3571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Aldosterone (Aldo) effects include NADPH oxidase activation involved in Aldo-related oxidative stress. Red blood cells (RBCs) are particularly sensitive to oxidative assault, and both the formation of high molecular weight aggregates (HMWAs) and the diamide-induced Tyr phosphorylation (Tyr-P) level of membrane band 3 can be used to monitor their redox status. OBJECTIVE The Aldo-related alterations in erythrocytes were evaluated by comparing in vitro evidence. DESIGN This was a multicenter comparative study. STUDY PARTICIPANTS The study included 12 patients affected by primary aldosteronism (PA) and 6 healthy control subjects (HCs), whose RBCs were compared with those of patients with PA. For in vitro experiments, RBCs from HCs were incubated with increasing Aldo concentrations. MAIN OUTCOME MEASURES The Tyr-P level, band 3 HMWA formation, and autologous IgG binding were evaluated. RESULTS In patients with PA, both Tyr-P levels and band 3 HMWAs were higher than those in HCs. RBCs from HCs were treated with increasing Aldo concentrations in both platelet-poor plasma (PPP) and charcoal-stripped (CS)-PPP. Results showed that Aldo had dose- and time-dependent effects on band 3 Tyr-P and HMWA formation in CS-PPP more than in PPP. These effects were almost completely prevented by canrenone or cortisol. Aldo-related membrane alterations led to increased autologous IgG binding. CONCLUSIONS Erythrocytes from patients with PA show oxidative-like stress evidenced by increased HMWA content and diamide-induced band 3 Tyr-P level. Aldo effects are mediated by the mineralocorticoid receptor, as suggested by the inhibitory effects of canrenone, an antagonist of Aldo. In CS-PPP, in which Aldo induces remarkable membrane alterations leading to IgG binding, Aldo may be responsible for premature RBC removal from circulation.
Collapse
Affiliation(s)
- Luciana Bordin
- Department of Molecular Medicine-Biological Chemistry, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Panitlertumpai N, Nakbanpote W, Sangdee A, Thumanu K, Nakai I, Hokura A. Zinc and/or cadmium accumulation in Gynura pseudochina (L.) DC. studied in vitro and the effect on crude protein. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.11.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Pickering AM, Vojtovich L, Tower J, Davies KJA. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic Biol Med 2013; 55:109-18. [PMID: 23142766 PMCID: PMC3687790 DOI: 10.1016/j.freeradbiomed.2012.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/07/2012] [Accepted: 11/02/2012] [Indexed: 12/15/2022]
Abstract
Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life.
Collapse
Affiliation(s)
- Andrew M. Pickering
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences; The University of Southern California, Los Angeles, CA 90089, USA
| | - Lesya Vojtovich
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089, USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences; The University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J. A. Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences; The University of Southern California, Los Angeles, CA 90089, USA
- Senior author to whom correspondence should be addressed as follows: Prof. Kelvin J. A. Davies, Ethel Percy Andrus Gerontology Center, the University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, U.S.A., Telephone: (213)740-8959, Fax number: (213)740-6462,
| |
Collapse
|
22
|
Umstead TM, Phelps DS, Wang G, Floros J, Tarkington BK. In vitro exposure of proteins to ozone. Toxicol Mech Methods 2012; 12:1-16. [PMID: 20597812 DOI: 10.1080/15376510209167932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
An in vitro system has been developed to expose proteins to ozone. The system is designed to deliver consistent and accurate levels of ozone over a range of concentrations (between 0.1 and >/=10 ppm) with extended exposure times (24 h or longer) in a humidified environment (100%). In the experiment presented in this article, ozone concentrations between 0.1 and 2.0 ppm were used. Ozone was generated by an electrical discharge ozonizer to ensure stability; it was continually monitored by an ultraviolet ozone analyzer and was precisely controlled by mass flow controllers, which gave reproducible results between runs. Humidity was closely regulated in the system to allow small amounts of protein solutions (50 muL or less) to be exposed without significant changes (<0.2%) in sample volume. The degree of surfactant protein-A (SP-A) oxidation by ozone was measured between runs to demonstrate the reproducibility of the system. A detailed description of the system is given, and protein oxidation detection methods and their limitations are discussed. Using these methods, we were able to assess oxidation of SP-A that apparently occurred prior to its isolation from the lung by bronchoalveolar lavage. This in vitro system allowed us to expose small amounts of protein to ozone in a simple, highly controlled, and reproducible manner.
Collapse
Affiliation(s)
- Todd M Umstead
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PennsylvaniaUSA
| | | | | | | | | |
Collapse
|
23
|
Donà G, Sabbadin C, Fiore C, Bragadin M, Giorgino FL, Ragazzi E, Clari G, Bordin L, Armanini D. Inositol administration reduces oxidative stress in erythrocytes of patients with polycystic ovary syndrome. Eur J Endocrinol 2012; 166:703-10. [PMID: 22223702 DOI: 10.1530/eje-11-0840] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Possibly due to a deficiency of insulin mediators, polycystic ovary syndrome (PCOS) is often associated with insulin resistance (IR) and hyperinsulinemia, likely responsible for an elevated production of reactive oxygen species. We investigated oxidative-related alterations in erythrocytes and anti-inflammatory effects of inositol in women with PCOS before and after treatment with myo-inositol (MYO). METHODS Twenty-six normal-weight PCOS patients were investigated before and after MYO administration (1200 mg/day for 12 weeks; n=18) or placebo (n=8) by evaluating serum testosterone, serum androstenedione, fasting serum insulin, fasting serum glucose, insulin area under the curve (AUC), and glucose AUC after oral glucose tolerance test and homeostasis model of assessment-IR. In erythrocytes, band 3 tyrosine phosphorylation (Tyr-P) level, glutathione (GSH) content, and glutathionylated proteins (GSSP) were also assessed. RESULTS Data show that PCOS patients' erythrocytes underwent oxidative stress as indicated by band 3 Tyr-P values, reduced cytosolic GSH content, and increased membrane protein glutathionylation. MYO treatment significantly improved metabolic and biochemical parameters. Significant reductions were found in IR and serum values of androstenedione and testosterone. A significant association between band 3 Tyr-P levels and insulin AUC was found at baseline but disappeared after MYO treatment, while a correlation between band 3 Tyr-P and testosterone levels was detected both before and after MYO treatment. CONCLUSIONS PCOS patients suffer from a systemic inflammatory status that induces erythrocyte membrane alterations. Treatment with MYO is effective in reducing hormonal, metabolic, and oxidative abnormalities in PCOS patients by improving IR.
Collapse
Affiliation(s)
- Gabriella Donà
- Department of Biological Chemistry, University of Padua, Viale G. Colombo 3, Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pickering AM, Davies KJA. A simple fluorescence labeling method for studies of protein oxidation, protein modification, and proteolysis. Free Radic Biol Med 2012; 52:239-46. [PMID: 21988844 PMCID: PMC4212338 DOI: 10.1016/j.freeradbiomed.2011.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/15/2011] [Accepted: 08/18/2011] [Indexed: 10/17/2022]
Abstract
Proteins are sensitive to oxidation, and oxidized proteins are excellent substrates for degradation by proteolytic enzymes such as the proteasome and the mitochondrial Lon protease. Protein labeling is required for studies of protein turnover. Unfortunately, most labeling techniques involve (3)H or (14)C methylation, which is expensive, exposes researchers to radioactivity, generates large amounts of radioactive waste, and allows only single-point assays because samples require acid precipitation. Alternative labeling methods have largely proven unsuitable, either because the probe itself is modified by the oxidant(s) being studied or because the alternative labeling techniques are too complex or too costly for routine use. What is needed is a simple, quick, and cheap labeling technique that uses a non-radioactive marker, binds strongly to proteins, is resistant to oxidative modification, and emits a strong signal. We have devised a new reductive method for labeling free carboxyl groups of proteins with the small fluorophore 7-amino-4-methycoumarin (AMC). When bound to target proteins, AMC fluoresces very weakly but when AMC is released by proteinases, proteases, or peptidases, it fluoresces strongly. Thus, without acid precipitation, the proteolysis of any target protein can be studied continuously, in multiwell plates. In direct comparisons, (3)H-labeled proteins and AMC-labeled proteins exhibited essentially identical degradation patterns during incubation with trypsin, cell extracts, and purified proteasome. AMC-labeled proteins are well suited to studying increased proteolytic susceptibility after protein modification, because the AMC-protein bond is resistant to oxidizing agents such as hydrogen peroxide and peroxynitrite and is stable over time and to extremes of pH, temperature (even boiling), freeze-thaw, mercaptoethanol, and methanol.
Collapse
Affiliation(s)
| | - Kelvin. J. A. Davies
- Senior author to whom correspondence should be addressed as follows: Prof. Kelvin J. A. Davies, Ethel Percy Andrus Gerontology Center, the University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, U.S.A. Telephone: (213)740-8959, Fax number: (213)740-6462,
| |
Collapse
|
25
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
26
|
Proteasome and Neurodegeneratıve Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:397-414. [DOI: 10.1016/b978-0-12-397863-9.00011-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Iyamu EW, Perdew HA, Woods GM. Oxidant-mediated modification of the cellular thiols is sufficient for arginase activation in cultured cells. Mol Cell Biochem 2011; 360:159-68. [PMID: 21918827 DOI: 10.1007/s11010-011-1053-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022]
Abstract
Increased arginase activity in the vasculature has been implicated in the regulation of nitric oxide (NO) homeostasis, leading to the development of vascular disease and the promotion of tumor cell growth. Recently, we showed that cysteine, in the presence of iron, promotes arginase activity by driving the Fenton reaction. In the present report, we showed that induction of oxidative stress in erythroleukemic cells with the thiol-specific oxidant, diamide, led to an increase in arginase activity by 42% (P = 0.02; vs. control). By using specific antibodies, it was demonstrated that this increase correlated with an increase in arginase-1 levels in the cells and with corresponding decreases in glutathione and protein thiol levels. Treatment of cells with aurothiomalate (ATM), a protein thiol-complexing agent, diminished the activity of arginase and arginase-1 levels by 19.5 and 35.2%, respectively (vs. control) and significantly decreased both glutathione and protein thiol levels, further implicating the thiol redox system in the cellular activation of arginase. Furthermore, diamide significantly altered the kinetics of arginase, resulting in the doubling of its V(max) (vs. control). Our presented data demonstrate, for the first time that the intracellular arginase activation is may be enhanced in part, via a cellular thiol-mediated mechanism.
Collapse
Affiliation(s)
- Efemwonkiekie W Iyamu
- Division of Hematology and Oncology, Children's Mercy Hospital, Kansas City, MO 64108, USA.
| | | | | |
Collapse
|
28
|
Inkielewicz-Stępniak I. Impact of fluoxetine on liver damage in rats. Pharmacol Rep 2011; 63:441-7. [PMID: 21602599 DOI: 10.1016/s1734-1140(11)70510-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/31/2010] [Indexed: 12/12/2022]
Abstract
Fluoxetine (Flux) is a fluorine-containing drug that selectively inhibits serotonin reuptake. It is widely prescribed as a treatment for depression disorders. Hepatic side effects have been reported during Flux therapy. These reports led us to investigate the involvement of oxidative stress mechanisms in liver injury caused by Flux. It has been shown that exposure to fluoride (F(-)) induces excessive production of free radicals and affects the antioxidant defense system. Based on this knowledge, we examined the F(-) concentration in serum and urine during administration of Flux. In our study, the effects of one month of Flux treatment on lipid and protein peroxidation, the concentration of uric acid in the liver and the activity of transaminases and transferases in the serum were investigated in rats. Eighteen adult male Wistar rats were divided into three equal groups of six animals each: (I) controls who drank tap water and received 1 ml of tap water intragastrically; (II) animals that received 8 mg Flux/kg bw/day intragastrically; and (III) animals that received 24 mg Flux/kg bw/day intragastrically. Flux treatment increased of the levels of carbonyl groups, thiobarbituric acid reactive species (TBARS) and the uric acid content in the liver. The activities of alanine transaminase (ALT), aspartate transaminase (AST) and glutathione-S transferase (GST) increased in the serum of the treated groups. The Flux levels in the plasma of the treated rats increased significantly in a dose-dependent manner. We observed no changes in the concentration of fluoride in either the serum or the urine of treated rats compared to the control group. In conclusion, our study indicates that Flux induces liver damage and mediates free radical reactions. Our data also indicate that Flux does not release F(-) during metabolism and does not affect physiological levels of F(-) in the serum or urine.
Collapse
|
29
|
The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 2011; 432:585-94. [PMID: 20919990 DOI: 10.1042/bj20100878] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxidized cytoplasmic and nuclear proteins are normally degraded by the proteasome, but accumulate with age and disease. We demonstrate the importance of various forms of the proteasome during transient (reversible) adaptation (hormesis), to oxidative stress in murine embryonic fibroblasts. Adaptation was achieved by 'pre-treatment' with very low concentrations of H2O2, and tested by measuring inducible resistance to a subsequent much higher 'challenge' dose of H2O2. Following an initial direct physical activation of pre-existing proteasomes, the 20S proteasome, immunoproteasome and PA28αβ regulator all exhibited substantially increased de novo synthesis during adaptation over 24 h. Cellular capacity to degrade oxidatively damaged proteins increased with 20S proteasome, immunoproteasome and PA28αβ synthesis, and was mostly blocked by the 20S proteasome, immunoproteasome and PA28 siRNA (short interfering RNA) knockdown treatments. Additionally, PA28αβ-knockout mutants achieved only half of the H2O2-induced adaptive increase in proteolytic capacity of wild-type controls. Direct comparison of purified 20S proteasome and immunoproteasome demonstrated that the immunoproteasome can selectively degrade oxidized proteins. Cell proliferation and DNA replication both decreased, and oxidized proteins accumulated, during high H2O2 challenge, but prior H2O2 adaptation was protective. Importantly, siRNA knockdown of the 20S proteasome, immunoproteasome or PA28αβ regulator blocked 50-100% of these adaptive increases in cell division and DNA replication, and immunoproteasome knockdown largely abolished protection against protein oxidation.
Collapse
|
30
|
Venditti P, Di Stefano L, Di Meo S. Oxidative stress in cold-induced hyperthyroid state. ACTA ACUST UNITED AC 2010; 213:2899-911. [PMID: 20709918 DOI: 10.1242/jeb.043307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of homeothermic animals to low environmental temperature is associated with oxidative stress in several body tissues. Because cold exposure induces a condition of functional hyperthyroidism, the observation that tissue oxidative stress also happens in experimental hyperthyroidism, induced by 3,5,3'-triiodothyronine (T(3)) treatment, suggests that this hormone is responsible for the oxidative damage found in tissues from cold-exposed animals. Examination of T(3)-responsive tissues, such as brown adipose tissue (BAT) and liver, shows that changes in factors favoring oxidative modifications are similar in experimental and functional hyperthyroidism. However, differences are also apparent, likely due to the action of physiological regulators, such as noradrenaline and thyroxine, whose levels are different in cold-exposed and T(3)-treated animals. To date, there is evidence that biochemical changes underlying the thermogenic response to cold as well as those leading to oxidative stress require a synergism between T(3)- and noradrenaline-generated signals. Conversely, available results suggest that thyroxine (T(4)) supplies a direct contribution to cold-induced BAT oxidative damage, but contributes to the liver response only as a T(3) precursor.
Collapse
Affiliation(s)
- P Venditti
- Department of the Biological Sciences, Section of Physiology, University Federico II of Naples, 80134, Naples, Italy.
| | | | | |
Collapse
|
31
|
Lin YL, Chao YY, Kao CH. Exposure of rice seedlings to heat shock protects against subsequent Cd-induced decrease in glutamine synthetase activity and increase in specific protease activity in leaves. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1061-1065. [PMID: 20399533 DOI: 10.1016/j.jplph.2010.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 05/29/2023]
Abstract
In the present study, we investigated the effect of heat shock (HS) on the subsequent Cd-induced decrease in the activity of glutamine synthetase (GS) and increase in the specific activity of protease in rice leaves. HS exposure of rice seedlings for 3h in the dark was effective in reducing subsequent Cd-induced decrease in the activity of glutamine synthetase and increase in the specific activity of protease. The effect of HS can be mimicked by pretreatment of rice seedlings with exogenous H(2)O(2) or reduced glutathione (GSH) under non-HS conditions. We also found that HS protected against subsequent Cd-induced decrease in the activity of GS and increase in the specific activity of protease can be counteracted by imidazole, a NADPH oxidase inhibitor. Pretreatment with buthione sulfoximine (a GSH synthesis inhibitor) under HS conditions enhanced subsequent Cd effects on the activity of GS and the specific activity of protease. Moreover, the effect of BSO can be reversed by the addition of GSH. The mechanisms of the protective effect of HS effect against subsequent Cd effects are discussed.
Collapse
Affiliation(s)
- Ya-Lin Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
32
|
The redox state of the glutathione/glutathione disulfide couple mediates intracellular arginase activation in HCT-116 colon cancer cells. Dig Dis Sci 2010; 55:2520-8. [PMID: 19997976 DOI: 10.1007/s10620-009-1064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 11/20/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Emerging studies have implicated arginase hyperactivity in the dysregulation of nitric oxide synthesis, which can lead to the development of vascular disease and the promotion of tumor cell growth. Recently, we showed that cysteine, in the presence of molecular iron, promotes arginase activity by driving the Fenton reaction. However, the exact mechanism of arginase activation in the cell induced by oxidative stress is unknown. AIM The aim of the present study is to examine whether intracellular arginase is regulated by the cellular redox status of glutathione. METHOD To test this hypothesis, the glutathione/glutathione disulfide redox couple was altered in colon cancer cells with the thiol-specific oxidant, diamide, or the glutathione inhibitor, buthionine-(S,R)-sulfoximine, and the activity of the arginase in the cells was assessed. RESULTS Treatment of cells with diamide, a thiol-specific oxidant, resulted in a dose-dependent decrease in the glutathione/glutathione disulfide ratio that was associated with the loss of glutathione and a coincident increase in arginase activity and arginase-1 levels in drug-treated cells compared with untreated cells. These results show that oxidation-induced redox changes of glutathione are of sufficient magnitude to control the activity of arginase in the cells. Thus, the physiologic modulation of the glutathione/glutathione disulfide ratio could prove to be a fundamental parameter for the control of arginase activity in pathological conditions of increased oxidative stress. CONCLUSION This is the first evidence supporting the ex vivo regulation of arginase activity through the redox modulation of intracellular glutathione. The potential adaptive and pathological consequences of glutathione redox regulation of arginase activity are discussed.
Collapse
|
33
|
Comparative study of the in vitro protective effects of several antioxidants on elongation factor 2 under oxidative stress conditions. Biosci Biotechnol Biochem 2010; 74:1373-9. [PMID: 20622459 DOI: 10.1271/bbb.100054] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the biochemical pathways affected by aging in all organisms is protein synthesis. Previous reports from our laboratory have indicated that the elongation step is specially affected by aging as a consequence of alterations in elongation factor-2 (eEF-2). In the present work, we studied in vitro the effectiveness of several individual nutritional antioxidants in protecting the levels of hepatic eEF-2 subjected to oxidative stress induced by cumene hydroperoxide. The in vitro system employed consisted of rat liver homogenates treated with cumene hydroperoxide. The antioxidants used in this study were lipoic acid, coenzyme Q10, tethrahydrofolic acid, and N-tert-butyl-alpha-phenylnitrone. The results indicate that the antioxidants have different capacities to prevent eEF-2 loss, folic acid being the most effective. A comparison between the antioxidants used and their potential pro-oxidant activity is also discussed, on the basis of the oxidative stress parameters measured.
Collapse
|
34
|
|
35
|
Ogasawara Y, Komiyama M, Funakoshi M, Ishii K. Disruption of Glutathione Homeostasis Causes Accumulation of S-Glutathionyl Proteins in Response to Exposure to Reactive Oxygen Species in Human Erythrocytes. Biol Pharm Bull 2010; 33:1925-31. [DOI: 10.1248/bpb.33.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Ogasawara
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Megumi Komiyama
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Masayo Funakoshi
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| | - Kazuyuki Ishii
- Department of Hygienic Chemistry, Meiji Pharmaceutical University
| |
Collapse
|
36
|
Tomida H, Fujii T, Furutani N, Michihara A, Yasufuku T, Akasaki K, Maruyama T, Otagiri M, Gebicki JM, Anraku M. Antioxidant properties of some different molecular weight chitosans. Carbohydr Res 2009; 344:1690-6. [DOI: 10.1016/j.carres.2009.05.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/27/2009] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
|
37
|
Sommerburg O, Karius N, Siems W, Langhans CD, Leichsenring M, Breusing N, Grune T. Proteasomal degradation of beta-carotene metabolite--modified proteins. Biofactors 2009; 35:449-59. [PMID: 19787777 DOI: 10.1002/biof.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Free radical attack on beta-carotene results in the formation of high amounts of carotene breakdown products (CBPs) having biological activities. As several of the CBPs are reactive aldehydes, it has to be considered that these compounds are able to modify proteins. Therefore, the aim of the study was to investigate whether CBP-modification of proteins is leading to damaged proteins recognized and degraded by the proteasomal system. We used the model proteins tau and ferritin to test whether CBPs will modify them and whether such modifications lead to enhanced proteasomal degradation. To modify proteins, we used crude CBPs as a mixture obtained after hypochloric acid derived BC degradation, as well as several single compounds, as apo8'-carotenal, retinal, or beta-ionone. The majority of the CBPs found in our reaction mixture are well known metabolites as described earlier after BC degradation using different oxidants. CBPs are able to modify proteins, and in in vitro studies, we were able to demonstrate that the 20S proteasome is able to recognize and degrade CBP-modified proteins preferentially. In testing the proteolytic response of HT22 cells toward CBPs, we could demonstrate an enhanced protein turnover, which is sensitive to lactacystin. Interestingly, the proteasomal activity is resistant to treatment with CBP. On the other hand, we were able to demonstrate that supraphysiological levels of CBPs might lead to the formation of protein-CBP-adducts that are able to inhibit the proteasome. Therefore, the removal of CBP-modified proteins seems to be catalyzed by the proteasomal system and is effective, if the formation of CBPs is not overwhelming and leading to protein aggregates.
Collapse
Affiliation(s)
- Olaf Sommerburg
- Department of Pediatric Pulmonology, Children's University Hospital III, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Boparai RK, Kiran R, Bansal DD. Insinuation of exacerbated oxidative stress in sucrose-fed rats with a low dietary intake of magnesium: Evidence of oxidative damage to proteins. Free Radic Res 2009; 41:981-9. [PMID: 17729115 DOI: 10.1080/10715760701447892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High sucrose diets and low magnesium intake have been independently implicated in induction of oxidative stress in animal models. The aim of this study was to investigate whether low dietary magnesium intake exacerbates the prooxidant effects of high sucrose feeding. Rats were fed control (C), high sucrose (HS); low magnesium (LM) and high sucrose low magnesium (HSLM) diets for 90 days and oxidative stress evaluated in terms of formation of TBARS, advanced oxidation protein products and protein carbonyls. HS and LM rats showed evidence of lipid peroxidation and protein oxidation in plasma and liver. Enhanced oxidative injury to lipids and proteins after HSLM feeding was indicated by increased carbonyl content (p <0.01) and significantly (p <0.005) higher levels of TBARS in plasma and hepatic tissue relative to both HS and LM groups. Altogether, these results illustrate the potential detrimental and cumulative effects of low magnesium intake combined with high sucrose consumption on oxidative stress variables.
Collapse
|
39
|
Ogasawara Y, Funakoshi M, Ishii K. Pyruvate kinase is protected by glutathione-dependent redox balance in human red blood cells exposed to reactive oxygen species. Biol Pharm Bull 2008; 31:1875-81. [PMID: 18827347 DOI: 10.1248/bpb.31.1875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the antioxidant role of glutathione (GSH) in human red blood cells (RBCs), we investigated the effect of disrupting GSH homeostasis on the oxidative modification of thiol-dependent enzymes by exposure to tert-butyl hydroperoxide (BHP). When hemolysate was incubated with BHP, significant decreases in enzyme activity were observed. However, the inactivation did not occur in intact RBC suspensions that were exposed to BHP. In this study, we used two independent treatments aimed at decreasing the level of reduced form of GSH, pre-incubation with a glutathione reductase inhibitor or glucose-free medium to examine the influences of preventing GSH-dependent antioxidant and reactivation activity on thiol-dependent enzyme. Pyruvate kinase (PK) activity clearly decreased along with depletion of GSH compared to other glycolytic enzyme activities by BHP exposure in RBCs. The addition of GSH, but not glucose, before BHP exposure completely prevented the inactivation of PK in hemolysate; however, partial reactivation of inactivated PK was observed by post-addition of both GSH and glutaredoxin at an early stage during BHP exposure. Moreover, hydroxyl radicals but not hydrogen peroxide inactivated PK. These results suggest that PK is highly susceptible to radicals and that GSH is essential to protect PK activity by not only directly scavenging radicals but also by systematically reactivating oxidized enzyme in human RBCs.
Collapse
Affiliation(s)
- Yuki Ogasawara
- Department of Environmental Biology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588,Japan.
| | | | | |
Collapse
|
40
|
Antioxidant protection of human serum albumin by chitosan. Int J Biol Macromol 2008; 43:159-64. [DOI: 10.1016/j.ijbiomac.2008.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/02/2008] [Accepted: 04/10/2008] [Indexed: 11/20/2022]
|
41
|
Lev-Goldman V, Mester B, Ben-Aroya N, Hanoch T, Rupp B, Stanoeva T, Gescheidt G, Seger R, Koch Y, Weiner L, Fridkin M. Conjugates of gonadotropin releasing hormone (GnRH) with carminic acid: Synthesis, generation of reactive oxygen species (ROS) and biological evaluation. Bioorg Med Chem 2008; 16:6789-98. [DOI: 10.1016/j.bmc.2008.05.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/15/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
|
42
|
Age‐associated alterations of lipofuscin, membrane‐bound ATPases and intracellular calcium in cortex, striatum and hippocampus of rat brain: protective role of glutathione monoester. Int J Dev Neurosci 2007; 26:211-5. [DOI: 10.1016/j.ijdevneu.2007.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 12/14/2007] [Indexed: 11/22/2022] Open
|
43
|
Johnson IT, Williamson G, Musk SRR. Anticarcinogenic Factors in Plant Foods: A New Class of Nutrients? Nutr Res Rev 2007; 7:175-204. [DOI: 10.1079/nrr19940011] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Zafir A, Banu N. Antioxidant potential of fluoxetine in comparison to Curcuma longa in restraint-stressed rats. Eur J Pharmacol 2007; 572:23-31. [PMID: 17610875 DOI: 10.1016/j.ejphar.2007.05.062] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 05/28/2007] [Accepted: 05/29/2007] [Indexed: 12/14/2022]
Abstract
Stress plays a potential role in the onset and exacerbation of depression. Chronic restraint stress in rats, and psychosocial stress in humans, is implicated in the pathophysiology of mood and anxiety disorders. Oxidative damage is an established outcome of restraint stress, which has been suggested to induce many damaging processes contributing to the pathology of stress-induced depression. However, the modulatory role of clinically effective antidepressants, such as fluoxetine, in attenuating oxidative stress has not been well characterized. Therefore, the current study was designed to investigate the antioxidant effects of chronic treatment with fluoxetine in animals submitted to restraint stress. The antioxidant potential of the antidepressant fluoxetine was compared with that of turmeric, used as a standard since it integrates both antioxidant and antidepressant properties. Chronic fluoxetine administration to stressed animals for 21 days prevented restraint stress-induced oxidative damage with an efficacy similar to that of turmeric, as evidenced by significant enhancement of key endogenous antioxidant defense components, comprising the free-radical scavenging enzymes, superoxide:superoxide oxidoreductase (EC 1.15.1.1), hydrogen-peroxide:hydrogen-peroxide oxidoreductase (EC 1.11.1.6), glutathione S-transferase (EC 2.5.1.18) and glutathione:NADP(+)oxidoreductase (EC 1.8.1.7), as well as non-enzymatic antioxidants, GSH, glucose and uric acid, which were severely depleted by restraint stress in animals receiving no treatment. Oxidative stress markers, (S)-lactate:NAD(+) oxidoreductase activity (EC 1.1.1.27), malondialdehyde levels (lipid peroxidation product) and protein carbonyl content were also significantly decreased following fluoxetine treatment. Both these drugs when given alone to non-stressed animals did not alter basal levels of antioxidant defense components and oxidative stress markers significantly. Our findings suggest that the therapeutic efficacy of fluoxetine may be mediated, at least partially, via reversal of oxidative damage as demonstrated by protective enhancement of antioxidant status following a stress-induced decline. In addition, this study demonstrates important implications for pharmacological interventions targeting cellular antioxidants as a promising strategy for protecting against oxidative insults in stress-induced depression.
Collapse
Affiliation(s)
- Ayesha Zafir
- Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh 202 002, UP, India
| | | |
Collapse
|
45
|
Rahimipour S, Bilkis I, Péron V, Gescheidt G, Barbosa F, Mazur Y, Koch Y, Weiner L, Fridkin M. Generation of Free Radicals by Emodic Acid and its [d-Lys6]GnRH-conjugate¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740226gofrbe2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Xu ZZ, Zhou GS. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. PLANTA 2006; 224:1080-90. [PMID: 16685524 DOI: 10.1007/s00425-006-0281-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/21/2006] [Indexed: 05/03/2023]
Abstract
Drought and high-temperature stresses have been extensively studied; however, little is known about their combined impact on plants. In the present study, we determined the photosynthetic gas exchange, chlorophyll fluorescence, nitrogen level, and lipid peroxidation of the leaves of a perennial grass (Leymus chinensis (Trin.) Tzvel.) subjected to three constant temperatures (23, 29 and 32 degrees C), and five soil-moisture levels (75-80%, 60-65%, 50-55%, 35-40% and 25-30% of field capacity, respectively). High temperature significantly decreased plant biomass, leaf green area, leaf water potential, photosynthetic rate (A), maximal efficiency of PSII photochemistry (F (v)/F (m)), actual PSII efficiency (Phi(PSII)), the activities of nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2), but markedly increased the ratio of leaf area to leaf weight (SLA), endopeptidase (EP; EC 3.4.24.11) activity, and malondialdehyde (MDA) content, especially under severe water stress conditions. The A and F (v)/F (m) were significantly and positively correlated with leaf-soluble protein content, and the activities of NR and GS. However, both photosynthesis parameters were significantly and negatively correlated with EP activity and MDA content (P < 0.05). It is suggested that high temperature, combined with severe soil drought, might reduce the function of PSII, weaken nitrogen anabolism, strengthen protein catabolism, and provoke lipid peroxidation. The results also indicate that severe water stress might exacerbate the adverse effects of high temperature, and their combination might reduce the plant productivity and distribution range of L. chinensis in the future.
Collapse
Affiliation(s)
- Zhen Zhu Xu
- Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, People's Republic of China.
| | | |
Collapse
|
47
|
Martínez-Sánchez G, Giuliani A, Pérez-Davison G, León-Fernández OS. Oxidized proteins and their contribution to redox homeostasis. Redox Rep 2006; 10:175-85. [PMID: 16259785 DOI: 10.1179/135100005x57382] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed.
Collapse
Affiliation(s)
- Gregorio Martínez-Sánchez
- Centre for Research and Biological Evaluations, Institute of Pharmacy and Food Sciences, Havana University, Cuba.
| | | | | | | |
Collapse
|
48
|
Sheets DW, Okamoto T, Dijkgraaf LC, Milam SB, Schmitz JP, Zardeneta G. Free Radical Damage in Facsimile Synovium: Correlation with Adhesion Formation in Osteoarthritic TMJs. J Prosthodont 2006; 15:9-19. [PMID: 16433646 DOI: 10.1111/j.1532-849x.2006.00063.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The purpose of this study was to use the rat air pouch model of facsimile synovium to evaluate oxidative stress as a primary mechanism in the pathogenesis of degenerative temporomandibular joint (TMJ) disease. MATERIALS AND METHODS Forty-nine Sprague-Dawley adult female rats were used to generate the standard rat air pouch model of facsimile synovium. This was accomplished by daily air injections (20 cc) subdermally through the dorsal skin. Hydrogen peroxide and ferrous iron (components of the Fenton reaction which generate free radicals) were introduced into the pouches of the 4-, 7-, and 14-day groups to generate oxidative stress. Control rats were injected with phosphate-buffered solution (PBS), pH 7.4. Either N-acetylcysteine (NAC), a powerful free radical scavenger, or ibuprofen were simultaneously injected with the Fenton reagents into the pouches of the 14-day treatment groups to modulate free radical-mediated protein damage to the synovium. Animals were euthanized at appropriate experimental intervals and biopsies obtained from specimens to analyze: (1) proteins' amino acid modification (carbonyl group formation), (2) protein hydrophobicity, (3) detection of low molecular weight protein degradation products, and (4) histological and gross anatomical observations. RESULTS Free radicals introduced into the rat air pouch interacted with synovial tissues causing oxidation and breakdown of proteins. Clinical evidence of adhesion formation consistent with features found in osteoarthritis of the TMJ developed. The groups subjected to oxidative stress experienced statistically significant (p < 0.05) increases in carbonyl formation, carbonyls/protein, and low molecular weight protein fragments. These groups also showed significant (p < 0.05) hydrophobicity changes consistent with free radical attack. Control synovial tissues were statistically undamaged. The 14-day NAC and ibuprofen treatment groups experienced statistically significant (p < 0.05) decreases in total carbonyl formation, carbonyls/protein, and hydrophobicity. Histological and gross observations in free radical damaged synovium exhibited features consistent with known arthoscopic and arthrocentesis findings in diseased TMJs. CONCLUSIONS This study suggests that the rat air pouch model of facsimile synovium develops clinical evidence of adhesions and biochemical signs of protein modification when subjected to free radical attack. NAC and ibuprofen prevented carbonyl formation as well as hydrophobicity changes indicative of oxidative stress damage in facsimile synovium. These findings are consistent with features of degenerative human TMJ disease. Future direction may be taken from this study to postulate new analysis techniques and treatment modalities for patients with degenerative TMJ disease.
Collapse
Affiliation(s)
- Donald W Sheets
- Department of Prosthodontics, Wilford Hall Medical Center, Lackland AFB, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
49
|
Luccia AD, Alviti G, Lamacchia C, Faccia M, Gambacorta G, Liuzzi V, Musso SS. Effects of the hydration process on water-soluble proteins of preserved cod products. Food Chem 2005. [DOI: 10.1016/j.foodchem.2004.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Grune T, Merker K, Jung T, Sitte N, Davies KJA. Protein oxidation and degradation during postmitotic senescence. Free Radic Biol Med 2005; 39:1208-15. [PMID: 16214036 DOI: 10.1016/j.freeradbiomed.2005.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Oxidized and cross-linked proteinacious materials (lipofuscin, age pigments, ceroid, etc.) have long been known to accumulate in aging and in age-related diseases, and some studies have suggested that age-dependent inhibition of the proteasome and/or lysosomal proteases may contribute to this phenomenon. Cell culture studies trying to model these aging effects have almost all been performed with proliferating (divisionally competent) cell lines. There is little information on nondividing (postmitotic) cells; yet age-related accumulation of oxidized and cross-linked protein aggregates is most marked in postmitotic tissues such as brain, heart, and skeletal muscles. The present investigation was undertaken to test whether oxidized and cross-linked proteins generally accumulate in nondividing, IMR-90 and MRC-5, human cell lines, and whether such accumulation is associated with diminished proteolytic capacities. Since both protein oxidation and declining proteolytic activities might play major roles in the age-associated accumulation of intracellular oxidized materials, we tested for protein carbonyl formation, proteasomal activities, and lysosomal cathepsin activities. For these studies, confluent, postmitotic IMR-90 and MRC-5 fibroblasts (at various population doubling levels) were cultured under hyperoxic conditions to facilitate age-related oxidative senescence. Our results reveal marked decreases in the activity of both the proteasomal system and the lysosomal proteases during senescence of nondividing fibroblasts, but the peptidyl-glutamyl-hydrolyzing activity of the proteasome was particularly inhibited. This decline in proteolytic capacity was accompanied by an increased accumulation of oxidized proteins.
Collapse
Affiliation(s)
- Tilman Grune
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University Berlin, D-10098 Berlin, Germany
| | | | | | | | | |
Collapse
|