1
|
Nakhate KT, Badwaik H, Choudhary R, Sakure K, Agrawal YO, Sharma C, Ojha S, Goyal SN. Therapeutic Potential and Pharmaceutical Development of a Multitargeted Flavonoid Phloretin. Nutrients 2022; 14:nu14173638. [PMID: 36079895 PMCID: PMC9460114 DOI: 10.3390/nu14173638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Phloretin is a flavonoid of the dihydrogen chalcone class, present abundantly in apples and strawberries. The beneficial effects of phloretin are mainly associated with its potent antioxidant properties. Phloretin modulates several signaling pathways and molecular mechanisms to exhibit therapeutic benefits against various diseases including cancers, diabetes, liver injury, kidney injury, encephalomyelitis, ulcerative colitis, asthma, arthritis, and cognitive impairment. It ameliorates the complications associated with diabetes such as cardiomyopathy, hypertension, depression, memory impairment, delayed wound healing, and peripheral neuropathy. It is effective against various microbial infections including Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Escherichia coli, Candida albicans and methicillin-resistant Staphylococcus aureus. Considering the therapeutic benefits, it generated interest for the pharmaceutical development. However, poor oral bioavailability is the major drawback. Therefore, efforts have been undertaken to enhance its bioavailability by modifying physicochemical properties and molecular structure, and developing nanoformulations. In the present review, we discussed the pharmacological actions, underlying mechanisms and molecular targets of phloretin. Moreover, the review provides insights into physicochemical and pharmacokinetic characteristics, and approaches to promote the pharmaceutical development of phloretin for its therapeutic applications in the future. Although convincing experimental data are reported, human studies are not available. In order to ascertain its safety, further preclinical studies are needed to encourage its pharmaceutical and clinical development.
Collapse
Affiliation(s)
- Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Bhilai 490020, Chhattisgarh, India
| | - Rajesh Choudhary
- Department of Pharmacology, Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai 490020, Chhattisgarh, India
| | - Kalyani Sakure
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai 490024, Chhattisgarh, India
| | - Yogeeta O. Agrawal
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.O.); (S.N.G.)
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
- Correspondence: (S.O.); (S.N.G.)
| |
Collapse
|
2
|
Peerce BE, Peerce B, Clarke RD. Phosphophloretin sensitivity of rabbit renal NaPi-IIa and NaPi-Ia. Am J Physiol Renal Physiol 2004; 286:F955-64. [PMID: 15075191 DOI: 10.1152/ajprenal.00245.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of phosphorylated phloretins on Na+-dependent phosphate uptake into rabbit renal brush-border membrane vesicles (BBMV) was examined. Na+-dependent phosphate uptake into isolated rabbit cortex BBMV was sensitive to 2′-phosphophloretin (2′-PP) and 2′-phospho-4′,4,6′-trimethoxy phloretin (PTMP) in a dose-dependent and pH-dependent manner. PTMP inhibition of Na+-dependent phosphate uptake was maximum at alkali pH, and 2′-PP inhibition of Na+-dependent phosphate uptake was maximum at acidic pH. Increasing Na+concentrations did not increase PTMP inhibition of renal cortex BBMV Na+-dependent phosphate uptake at pH 6. The effect of phosphophloretins on Na+-dependent phosphate uptake was examined in BBMV isolated from purified proximal tubules and distal tubules. 2′-PP and PTMP inhibition of Na+-dependent phosphate uptake into BBMV isolated from purified proximal tubules was similar to the inhibition seen with BBMV from renal cortex. 2′-PP, but not PTMP, inhibited Na+-dependent phosphate uptake into BBMV isolated from purified distal tubules. The pH dependence of inhibition, the absence of PTMP inhibition of Na+-dependent phosphate uptake into distal tubule BBMV, and the inhibition of Na+-dependent phosphate uptake into distal tubule BBMV suggest that NaPi-Ia is 2′-PP sensitive and NaPi-IIa is PTMP sensitive.
Collapse
Affiliation(s)
- Brian E Peerce
- Department of Physiology and Biophysics, Univesity of Texas Medical Branch, Galveston, TX 77555-0641, USA.
| | | | | |
Collapse
|
3
|
Peerce BE, Clarke R. A phosphorylated phloretin derivative. Synthesis and effect on intestinal Na(+)-dependent phosphate absorption. Am J Physiol Gastrointest Liver Physiol 2002; 283:G848-55. [PMID: 12223344 DOI: 10.1152/ajpgi.00308.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
2'-Phosphophloretin (2'-PP), a phosphorylated derivative of the plant chalcone, was synthesized. The effect of 2'-PP, on Na(+)-dependent phosphate uptake into intestinal brush-border membrane vesicles (BBMV) isolated from rabbit and rat duodenum and jejunum was examined. 2'-PP decreased Na(+)-dependent phosphate uptake into rabbit BBMV with an IC(50) of 55 nM and into rat BBMV with an IC(50) of 58 nM. 2'-PP did not affect Na(+)-dependent glucose, Na(+)-dependent sulfate, or Na(+)-dependent alanine uptake by rabbit intestinal BBMVs. 2'-PP inhibition of rabbit intestinal BBMV Na(+)-dependent phosphate uptake was sensitive to external phosphate concentration, suggesting that 2'-PP inhibition of Na(+)-dependent phosphate uptake was competitive with respect to phosphate. Binding of [(3)H]2'-PP to rabbit intestinal BBMV was examined. Binding of [(3)H]2'-PP was Na(+)-dependent with a K(0.5) for Na(+)(Na(+) concentration for 50% 2'-PP binding) of 30 mM. The apparent K(s) for Na(+)-dependent [(3)H]2'-PP binding to rabbit BBMVs was 58 nM in agreement with the IC(50) for 2'-PP inhibition of Na(+)-dependent phosphate uptake. These results indicate that 2'-PP bound to rabbit or rat intestinal BBMV Na(+)-phosphate cotransporter and inhibited Na(+)-dependent phosphate uptake. In rats treated with 2'-PP by daily gavage, the effect of 2'-PP on serum phosphate, serum glucose, and serum calcium was examined. In a concentration-dependent manner, 2'-PP reduced serum phosphate by 45% 1 wk after starting treatment. 2'-PP did not alter serum calcium or serum glucose. The apparent IC(50) for 2'-PP in vivo was 3 microM.
Collapse
Affiliation(s)
- Brian E Peerce
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA.
| | | |
Collapse
|
4
|
Vayro S, Lo B, Silverman M. Functional studies of the rabbit intestinal Na+/glucose carrier (SGLT1) expressed in COS-7 cells: evaluation of the mutant A166C indicates this region is important for Na+-activation of the carrier. Biochem J 1998; 332 ( Pt 1):119-25. [PMID: 9576859 PMCID: PMC1219459 DOI: 10.1042/bj3320119] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have exploited two mutants of the rabbit intestinal Na+/glucose carrier SGLT1 to explore the structure/function relationship of this Na+/glucose transporter in COS-7 cells. A functional N-terminal myc-epitope-tagged SGLT1 protein was constructed and used to determine the plasma-membrane localization of SGLT1. The kinetic and specificity characteristics of the myc-tagged SGLT1 mutant were identical with those of wild-type SGLT1. Immunogold labelling and electron microscopy confirmed the topology of the N-terminal region to be extracellular. Expression of the SGLT1 A166C mutant in these cells showed diminished levels of Na+-dependent alpha-methyl-d-glucopyranoside transport activity compared with wild-type SGLT1. For SGLT1 A166C, Vmax was 0.92+/-0.08 nmol/min per mg of protein and Km was 0.98+/-0.13 mM; for wild-type SGLT1, Vmax was 1.98+/-0.47 nmol/min per mg of protein and Km was 0.36+/-0.16 mM. Significantly, phlorrhizin (phloridzin) binding experiments confirmed equal expression of Na+-dependent high-affinity phlorrhizin binding to COS-7 cells expressing SGLT1 A166C or wild-type SGLT1 (Bmax 1.55+/-0.18 and 1.69+/-0.57 pmol/mg of protein respectively); Kd values were 0.46+/-0.15 and 0.51+/-0.11 microM for SGLT1 A166C and wild-type SGLT1 respectively. The specificity of sugar interaction was unchanged by the A166C mutation. We conclude that the replacement of an alanine residue by cysteine at position 166 has a profound effect on transporter function, resulting in a decrease in transporter turnover rate by a factor of 2. Taken as a whole the functional changes observed by SGLT1 A166C are most consistent with the mutation having caused an altered Na+ interaction with the transporter.
Collapse
Affiliation(s)
- S Vayro
- Medical Research Council (M.R.C.) Membrane Biology Group, Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8 Canada
| | | | | |
Collapse
|
5
|
Hoefner DM, Blank ME, Diedrich DF. The anion transporter and a 28 kDa protein are selectively photolabeled by p-azidobenzylphlorizin under conditions that alter RBC morphology, flexibility, and volume. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1327:231-41. [PMID: 9271265 DOI: 10.1016/s0005-2736(97)00068-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tritiated p-azidobenzylphlorizin (p-AzBPhz) was photoactivated in the presence of red blood cells under conditions previously found to alter morphology, flexibility and volume. When less than 0.25 million molecules were added per cell, only a 28 kDa peptide was photolabeled: at 1-2 million molecules added, band 3 also incorporated significant radioactivity. When using leaky ghosts, other proteins became labeled, including those limited to the cytoplasm. Protein N-deglycosylation caused a shift of radiolabeled band 3 to higher Rf values on SDS-PAGE gels but not for the 28 kDa band; the latter was, however, susceptible to enzymatic digestion by NANase (N-acetylneuraminidase) III but not by NANase II. Inhibition of photoincorporation into both receptors by unlabeled p-AzBPhz was dose-dependent. Mercuric chloride and p-CMBS selectively blocked 28 kDa peptide labeling. DIDS partially blocked at band 3; after 15% inhibition, greater DIDS concentrations caused increased incorporation into the 28 kDa peptide. These results, and a temperature-dependent labeling pattern, suggest that: (i) cellular changes occur when p-AzBPhz binds to the exofacial sides of the anion transporter and 28 kDa peptide; (ii) these proteins may be physically associated in the native membrane; (iii) they mediate ligand-induced changes in morphology, flexibility, and volume.
Collapse
Affiliation(s)
- D M Hoefner
- Graduate Center for Toxicology, University of Kentucky, Lexington, 40536, USA.
| | | | | |
Collapse
|
6
|
Panayotova-Heiermann M, Loo DD, Kong CT, Lever JE, Wright EM. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein. J Biol Chem 1996; 271:10029-34. [PMID: 8626557 DOI: 10.1074/jbc.271.17.10029] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
d-Glucose is absorbed across the proximal tubule of the kidney by two Na+/glucose cotransporters (SGLT1 and SGLT2). The low affinity SGLT2 is expressed in the S1 and S2 segments, has a Na+:glucose coupling ratio of 1, a K0.5 for sugar of approximately 2 mM, and a K0.5 for Na+ of approximately 1 mM. The high affinity SGLT1, found in the S3 segment, has a coupling ratio of 2, and K0.5 for sugar and Na+ of approximately 0.2 and 5 mM, respectively. We have constructed a chimeric protein consisting of amino acids 1-380 of porcine SGLT2 and amino acids 381-662 of porcine SGLT1. The chimera was expressed in Xenopus oocytes, and steady-state kinetics were characterized by a two-electrode voltage-clamp. The K0.5 for alpha-methyl-d-glucopyranoside (0.2 mM) was similar to that for SGLT1, and like SGLT1 the chimera transported D-galactose and 3-O-methylglucose. In contrast, SGLT2 transports poorly D-galactose and excludes 3-O-methylglucose. The apparent K0.5Na was 3.5 mM (at -150 mV), and the Hill coefficient ranged between 0.8 and 1.5. We conclude that recognition/transport of organic substrate is mediated by interactions distal to amino acid 380, while cation binding is determined by interactions arising from the amino- and carboxyl-terminal halves of the transporters. Surprisingly, the chimera transported alpha-phenyl derivatives of D-glucose as well as the inhibitors of sugar transport: phlorizin, deoxyphlorizin, and beta-D-glucopyranosylphenyl isothiocyanate are transported with high affinity (K0.5 for phlorizin was 5 microM). Thus, the pocket for organic substrate binding is increased from 10 x 5 x 5 (A) for SGLT1 to 11 x 18 x 5 (A) for the chimera.
Collapse
Affiliation(s)
- M Panayotova-Heiermann
- Department of Physiology, UCLA School of Medicine, Los Angeles, California 90095-1751, USA
| | | | | | | | | |
Collapse
|
7
|
Panayotova-Heiermann M, Loo DD, Wright EM. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J Biol Chem 1995; 270:27099-105. [PMID: 7592962 DOI: 10.1074/jbc.270.45.27099] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The rat Na+/glucose cotransporter (SGLT1) was expressed in Xenopus oocytes and steady-state and transient currents were measured using a two-electrode voltage clamp. The maximal glucose induced Na(+)-dependent inward current was approximately 300-500 nA. The apparent affinity constants for sugar (alpha-methyl-D-glucopyranoside; alpha MDG) (K alpha MDG 0.5) and sodium (KNa0.5) at a membrane potential of -150 mV were 0.2 mM and 4 mM. The KNa0.5 increased continuously with depolarizing potentials reaching 40 mM at -30 mV, K alpha MDG 0.5 was steeply voltage dependent, 0.46 mM at -30 mV and 1 mM at -10 mV. From all tested monovalent cations only Li+ could substitute for Na+, but with lower affinity. The relative substrate specificity was D-glucose > alpha MDG approximately D-galactose > 3-O-Me-Glc >> beta-naphthyl-D-glucoside >> uridine. Phlorizin (Pz), the specific blocker of sugar transport, showed an extremely high affinity for the rat cotransporter with an inhibitor constant (KPzi) of 12 nM. SGLT1 charge movements in the absence of sugar were fitted by the Boltzmann equation with an apparent valence of the movable charge of approximately 1, a potential for 50% maximal charge transfer (V0.5) of -43 mV, and a maximal charge (Qmax) of 9 nanocoulombs. The apparent turnover number for the rat SGLT1 was 30 s-1. Model simulations showed that the kinetics of the rat SGLT1 are described by a six-state ordered nonrapid equilibrium model, and comparison of the kinetics of the rat, rabbit and human cotransporters indicate that they differ mainly in their presteady-state kinetic parameters.
Collapse
|
8
|
Upston JM, Gero AM. Parasite-induced permeation of nucleosides in Plasmodium falciparum malaria. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1236:249-58. [PMID: 7794964 DOI: 10.1016/0005-2736(95)00055-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A mechanism which mediates the transport of the nonphysiological nucleoside, L-adenosine, was demonstrated in Plasmodium falciparum infected erythrocytes and naturally released merozoites. L-Adenosine was not a substrate for influx in freed intraerythrocytic parasites or in normal human erythrocytes nor was L-adenosine transported in a variety of cell types including other parasitic protozoa such as Crithidia luciliae, Trichomonas vaginalis, Giardia intestinalis, or the mammalian cells, Buffalo Green Monkey and HeLa cells. L-Adenosine transport in P. falciparum infected cells was nonsaturable, with a rate of 0.13 +/- 0.01 pmol/microliter cell water per s per microM L-adenosine, yet the transport was inhibited by furosemide, phloridzin and piperine with IC50 values between 1-13 microM, distinguishing the transport pathway from simple diffusion. The channel-like permeation was selective as disaccharides were not permeable to parasitised cells. In addition, an unusual metabolic property of parasitic adenosine deaminase was found in that L-adenosine was metabolised to L-inosine by both P. falciparum infected erythrocytes and merozoites, an activity which was inhibited by 50 nM deoxycoformycin. No other cell type examined displayed this enzymic activity. The results further substantiate that nucleoside transport in P. falciparum infected cells was significantly altered compared to uninfected erythrocytes and that L-adenosine transport and metabolism was a biochemical property of Plasmodium infected cells and merozoites and not found in normal erythrocytes nor any of the other cell types investigated.
Collapse
Affiliation(s)
- J M Upston
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
9
|
Ottallah-Kolac M, Tripier D, Bruhl B, Platte HD, Jouvenal K, Schuh K, Kemmer H, Petzinger E. The 60-kDa Bumetanide-Binding Protein from Rat Liver Membranes is a Catalase. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.00506.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
|
11
|
Hoefner DM, Blank ME, Davis BM, Diedrich DF. Band 3 antagonists, p-azidobenzylphlorizin and DIDS, mediate erythrocyte shape and flexibility changes as characterized by digital image morphometry and microfiltration. J Membr Biol 1994; 141:91-100. [PMID: 7966249 DOI: 10.1007/bf00232877] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two nonpenetrating membrane probes, p-azidobenzylphlorizin (p-AzBPhz) and 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS), have been shown in earlier studies to induce dose-dependent changes in red blood cell (RBC) shape and volume at the same low concentrations that inhibit anion transport. In the present work, these ligand-induced morphology and rheology changes were studied using video digital image morphometry (VDIM) and microfiltration techniques. The results of these experiments corroborate our earlier investigation. RBCs were filmed using a Nomarski optics microscope with video camera attachment and cell size and shape changes were computer analyzed using VDIM. Low microM p-AzBPhz or DIDS levels caused collapse of the cell's biconcave structure and cell flattening occurred within 1-2 sec after drug exposure. Higher doses of either agent converted cells to a new steady-state in which a concurrent limited increase in erythrocyte volume and blunt membrane protrusions were produced. These changes were reversed in less than 2 sec by washing the drug from the membrane. Both ligands increased the deformability of RBCs in a dose-dependent manner as determined by filtration through Nuclepore polycarbonate filters (3 microns pore diameter). The improvement in deformability of drug-treated sickle cells was much more dramatic than for normal cells at low p-AzBPhz concentrations. These results support our earlier conclusions that the ligands, through a common interaction with band 3, induce volume-associated cytoskeletal alterations which lead to changes in morphology and flexibility.
Collapse
Affiliation(s)
- D M Hoefner
- Center of Membrane Sciences, University of Kentucky College of Medicine, Lexington 40506-0057
| | | | | | | |
Collapse
|
12
|
Blank ME, Hoefner DM, Diedrich DF. Morphology and volume alterations of human erythrocytes caused by the anion transporter inhibitors, DIDS and p-azidobenzylphlorizin. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1192:223-33. [PMID: 8018703 DOI: 10.1016/0005-2736(94)90122-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
p-Azidobenzylphlorizin (p-AzBPhz) is a potential photoaffinity labeling agent for the anion and glucose transporters in human RBCs. In the absence of light and at the same low concentrations which block these transport processes (only 1-2 million molecules bound/cell), this impermeable membrane probe produces rapid morphological and volume alterations. This high-affinity activity, called phase 1, can be rapidly and completely reversed by simply diluting the azide-treated cell suspension. Phase 2 effects, including formation of cells with multiple, long spicules (stage 3/4 echinocytes), followed by an influx of salt and water with eventual lysis, occur at two log units higher concentration by a different mechanism, probably by intercalating into and selectively expanding the outer lipid monolayer. Light scattering, electronic cell sizing, microhematocrit measurements and scanning electron microscopy have been employed to compare the effects of the azide and the anion transport inhibitor, DIDS (4,4'-diisothiocyano-2,2'-stilbene disulfonate), on red cells. DIDS produced only those changes analogous to the azide's low dose phase 1 action; cells swell, lose the ability to scatter 800 nm light and undergo a limited shape change (comparable to stage 1 echinocytosis). The mechanism by which the two ligands perturb the membrane is additive, suggesting that a Band 3-mediated transmembrane signaling is involved which leads to altered cytoskeleton dynamics.
Collapse
Affiliation(s)
- M E Blank
- Center of Membrane Sciences, University of Kentucky, Lexington
| | | | | |
Collapse
|
13
|
Kitlar T, Döring F, Diedrich DF, Frank R, Wallmeier H, Kinne RK, Deutscher J. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases. Protein Sci 1994; 3:696-700. [PMID: 8003987 PMCID: PMC2142868 DOI: 10.1002/pro.5560030417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phlorizin is a reversible inhibitor of the renal and small intestinal Na+/D-glucose cotransporter. In an attempt to purify the Na+/D-glucose cotransporter from a pig kidney brush border membrane fraction, we used an Affi-Gel affinity chromatography column to which 3-aminophlorizin had been coupled. A protein, composed according to crosslinking experiments of at least 3 subunits of molecular weight 60 kDa, was found to bind specifically to the phlorizin column. This protein was subsequently identified as catalase by sequence homology of three of its tryptic fragments to the sequence of several mammalian catalases as well as by its enzymatic activity. Although bovine liver catalase was bound tightly to the affinity matrix, phlorizin had no effect on the ability of the enzyme to degrade H2O2. In contrast, the Aspergillus niger and Neurospora crassa catalases did not bind to the phlorizin column. This difference may be related to the fact that mammalian catalases, but not the fungal catalases, contain an NADPH binding site with a yet unknown function. Interestingly, bovine liver catalase could be eluted with 50 microM NADPH from phlorizin columns. Irradiation in the presence of [3H]4-azidophlorizin allowed photolabeling of bovine liver catalase, which was prevented by the presence of 10 microM NADPH. After digestion of photolabeled catalase with chymotrypsin, a radioactive peptide was detected that was absent in catalase protected with NADPH. Docking simulations suggested that phlorizin can bind to the NADPH binding site with high affinity.
Collapse
Affiliation(s)
- T Kitlar
- Max Planck Institut für Molekulare Physiologie, Abteilung Epithelphysiologie, Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|