1
|
Thompson C, Waldron C, George S, Ouyang Z. Assessment of the hypothetical protein BB0616 in the murine infection of Borrelia burgdorferi. Infect Immun 2024; 92:e0009024. [PMID: 38700336 PMCID: PMC11237664 DOI: 10.1128/iai.00090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Liu L, Bulla LA. Commentary: Analyzing invertebrate bitopic cadherin G protein-coupled receptors that bind Cry toxins of Bacillus thuringiensis. Comp Biochem Physiol B Biochem Mol Biol 2024; 272:110963. [PMID: 38431088 DOI: 10.1016/j.cbpb.2024.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Li Liu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75083, USA.
| | - Lee A Bulla
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75083, USA.
| |
Collapse
|
3
|
Yaş OB, Coleman AS, Lipman RM, Sharma K, Raghunandanan S, Alanazi F, Rana VS, Kitsou C, Yang X, Pal U. A systemic approach to identify non-abundant immunogenic proteins in Lyme disease pathogens. mSystems 2024; 9:e0108723. [PMID: 38078774 PMCID: PMC10805064 DOI: 10.1128/msystems.01087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
Borrelia burgdorferi, the pathogen of Lyme disease, differentially produces many outer surface proteins (Osp), some of which represent the most abundant membrane proteins, such as OspA, OspB, and OspC. In cultured bacteria, these proteins can account for a substantial fraction of the total cellular or membrane proteins, posing challenges to the identification and analysis of non-abundant proteins, which could serve as novel pathogen detection markers or as vaccine candidates. Herein, we introduced serial mutations to remove these abundant Osps and generated a B. burgdorferi mutant deficient in OspA, OspB, and OspC in an infectious 297-isolate background, designated as OspABC- mutant. Compared to parental isolate, the mutant did not reflect growth defects in the cultured medium but showed differential mRNA expression of representative tested genes, in addition to gross changes in cellular and membrane protein profiles. The analysis of differentially detectable protein contents of the OspABC- mutant, as compared to the wild type, by two-dimensional gel electrophoresis followed by liquid chromatography-mass spectrometry, identified several spirochete proteins that are dominated by proteins of unknown functions, as well as membrane transporters, chaperons, and metabolic enzymes. We produced recombinant forms of two of these represented proteins, BBA34 and BB0238, and showed that these proteins are detectable during spirochete infection in the tick-borne murine model of Lyme borreliosis and thus serve as potential antigenic markers of the infection.IMPORTANCEThe present manuscript employed a systemic approach to identify non-abundant proteins in cultured Borrelia burgdorferi that are otherwise masked or hidden due to the overwhelming presence of abundant Osps like OspA, OspB, and OspC. As these Osps are either absent or transiently expressed in mammals, we performed a proof-of-concept study in which their removal allowed the analysis of otherwise less abundant antigens in OspABC-deficient mutants and identified several immunogenic proteins, including BBA34 and BB0238. These antigens could serve as novel vaccine candidates and/or genetic markers of Lyme borreliosis, promoting new research in the clinical diagnosis and prevention of Lyme disease.
Collapse
Affiliation(s)
- Ozlem Buyuktanir Yaş
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Adam S. Coleman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Rachel M. Lipman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Kavita Sharma
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
4
|
Thompson C, Waldron C, George S, Ouyang Z. Role of the Hypothetical Protein BB0563 during Borrelia burgdorferi Infection in Animals. Infect Immun 2023; 91:e0053922. [PMID: 36744894 PMCID: PMC10016080 DOI: 10.1128/iai.00539-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alternative sigma factor RpoS in Borrelia burgdorferi, the etiological agent of Lyme disease, has long been postulated to regulate virulence-associated genes other than ospC and dbpA. Here, we demonstrate that bb0563, a gene encoding a hypothetical protein, is regulated by RpoS and contributes to the optimal infectivity of B. burgdorferi. When B. burgdorferi was exposed to environmental stimuli, bb0563 showed similar expression patterns as rpoS, ospC, and dbpA. Expression of bb0563 was significantly downregulated when rpoS was inactivated and was restored in the complemented strain. By using rapid amplification of cDNA ends (RACE) and luciferase reporter assays, a functional promoter was identified in the regulatory region upstream of bb0563. Gene expression from this promoter was drastically decreased in the rpoS mutant. We next investigated the role of bb0563 during animal infection. By using quantitative reverse transcription-PCR (RT-PCR), we found that bb0563 was highly expressed in mouse tissues during infection. We further created a bb0563-deficient mutant in a bioluminescent B. burgdorferi strain and examined infection dynamics using in vivo imaging. Relative to the parental and complemented strains, the mutant showed a delayed infection pattern and bacterial load was reduced. Another bb0563 deletion mutant was also created in the strain 297 background, and quantitative PCR (qPCR) analysis revealed a significantly lower spirochetal burden in tissue samples collected from animals infected with the mutant. In addition, localization studies indicate that BB0563 is not exposed on the cell surface but is associated with outer membrane. Taken together, these results suggest that bb0563 is required for optimal infectivity of B. burgdorferi during experimental infection.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Zhu K, Yang F, Li F. Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104407. [PMID: 35364134 DOI: 10.1016/j.dci.2022.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Semigranular cells (SGCs) and granular cells (GCs) are two dominant groups of circulating hemocytes in crayfish Cherax quadricarinatus. Molecular markers are required for the clear classification of the hemocytes and the research of their function and differentiation. In this study, we compared the protein content of GCs and SGCs by using two workflows: one-dimensional gel electrophoresis followed by LC-MS/MS and in-solution digestion of cell lysate followed by LC-MS/MS. Cell type-specific proteins were identified, and their expression in SGCs and GCs was further investigated by RT-PCR, Western blotting, and immunofluorescence analysis. Three molecular markers for GCs (peroxinectin, a mannose-binding protein, and prophenoloxidase-activating enzyme 2a) and three molecular markers for SGCs (a vitelline membrane outer layer protein I-like protein, a C-type lectin, and a peptidase) were identified. The application of some of the markers in Eriocheir sinensis was also analyzed. These molecular markers are useful tools for the research of crustaceans hemocytes.
Collapse
Affiliation(s)
- Kun Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
6
|
Ghani MJ, Gu W, Chen Z, Canessa CM. Lipid droplets and autophagosomes together with chaperones fine-tune expression of SGK1. J Cell Mol Med 2022; 26:2852-2865. [PMID: 35393773 PMCID: PMC9097849 DOI: 10.1111/jcmm.17300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Serum-glucocorticoid-induced kinase-1 (SGK1) regulates ion homeostasis and promotes survival under stress conditions. The expression of SGK1 is under transcriptional and post-translational regulations that are frequently altered in cancer and immune disorders. We report that an N-terminal amphipathic alpha-helix determines SGK1 expression levels through two distinct mechanisms. It tethers SGK1 to intracellular organelles generating a large pool of membrane-bound SGK1, which is differentially stabilized in lipid droplets (LD) in fed conditions or degraded in the endoplasmic reticulum by ER-phagy in starvation. Association of the α-helix to organelles does not depend on dedicated receptors or special phospholipids rather, it is intrinsic to its physicochemical properties and depends on the presence of bulky hydrophobic residues for attachment to LDs. The second mechanism is recruitment of protein-chaperones that recognize the α-helix as an unfolded protein promoting survival of the cytosolic SGK1 fraction. Together, the findings unveil an unexpected link between levels of energy storage and abundance of SGK1 and how changes in calorie intake could be used to modulate SGK1 expression, whereas the inhibition of molecular chaperones could serve as an additional enhancer in the treatment of malignancies and autoimmune disorders with high levels of SGK1 expression.
Collapse
Affiliation(s)
| | - Wenxue Gu
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhuyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
| | - Cecilia M Canessa
- School of Medicine, Tsinghua University, Beijing, China.,Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Lal M, Wachtel E, Sheves M, Patchornik G. Reversible Conjugation of Non-ionic Detergent Micelles Promotes Partitioning of Membrane Proteins under Non-denaturing Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2626-2633. [PMID: 35179381 PMCID: PMC8892955 DOI: 10.1021/acs.langmuir.1c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In the decades'-long quest for high-quality membrane protein (MP) crystals, non-ionic detergent micelles have primarily served as a passive shield against protein aggregation in aqueous solution and/or as a conformation stabilizing environment. We have focused on exploiting the physical chemistry of detergent micelles in order to direct intrinsic MP/detergent complexes to assemble via conjugation under ambient conditions, thereby permitting finely tuned control over the micelle cloud point. In the current work, three commercially available amphiphilic, bipyridine chelators in combination with Fe2+ or Ni2+ were tested for their ability to conjugate non-ionic detergent micelles both in the presence and absence of an encapsulated bacteriorhodopsin molecule. Water-soluble chelators were added, and results were monitored with light microscopy and dynamic light scattering (DLS). [Bipyridine:metal] complexes produced micellar conjugates, which appeared as oil-rich globules (10-200 μm) under a light microscope. DLS analysis demonstrated that micellar conjugation is complete 20 min after the introduction of the amphiphilic complex, and that the conjugation process can be fully or partially reversed with water-soluble chelators. This process of controlled conjugation/deconjugation under nondenaturing conditions provides broader flexibility in the choice of detergent for intrinsic MP purification and conformational flexibility during the crystallization procedure.
Collapse
Affiliation(s)
- Mitra Lal
- The
Department of Chemical Sciences, Ariel University, 70400 Ariel, Israel
| | - Ellen Wachtel
- Faculty
of Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Guy Patchornik
- The
Department of Chemical Sciences, Ariel University, 70400 Ariel, Israel
| |
Collapse
|
8
|
Kokubu E, Kikuchi Y, Okamoto-Shibayama K, Nakamura S, Ishihara K. Crawling motility of Treponema denticola modulated by outer sheath protein. Microbiol Immunol 2021; 65:551-558. [PMID: 34499368 DOI: 10.1111/1348-0421.12940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Treponema denticola, a helically shaped motile microorganism, is a major pathogen of chronic periodontitis. Major surface protein (Msp) and dentilisin are virulence factors of T. denticola that are located on the outer sheath. The motility of T. denticola is deeply involved in colonization on and invasion into the host tissue. The outer sheath is located at the interface between the environment and T. denticola, and its components may also contribute to its motility via interaction with the materials outside the cells. The study aimed to clarify whether Msp or dentilisin contributes to the motility of T. denticola on solid surfaces, termed crawling, by investigating their effects using Msp-deficient and dentilisin-deficient T. denticola strains. Motility was analyzed by measuring the colony size in agar plates and velocity was analyzed using dark-field microscopy. The colony area of the mutant strains was smaller than that of the wild-type strain. The crawling velocity of the mutant strains was lower than that of the wild-type strain, with the lowest velocity observed in the dentilisin-deficient strain. Additionally, the ratio of the crawling distance by one revolution to the protoplasmic cylinder pitch (an indicator of the crawling efficiency) in the dentilisin mutant was significantly lower than that in the wild type strain and the Msp mutant. Together, these results indicate that dentilisin facilitates the crawling-dependent surface spreading of T. denticola.
Collapse
Affiliation(s)
- Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Kazuko Okamoto-Shibayama
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
9
|
Śmiełowska M, Zabiegała B. Current trends in analytical strategies for determination of polybrominated diphenyl ethers (PBDEs) in samples with different matrix compositions – Part 1.: Screening of new developments in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2018.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Xu R, Greening DW, Chen M, Rai A, Ji H, Takahashi N, Simpson RJ. Surfaceome of Exosomes Secreted from the Colorectal Cancer Cell Line SW480: Peripheral and Integral Membrane Proteins Analyzed by Proteolysis and TX114. Proteomics 2020; 19:e1700453. [PMID: 30865381 DOI: 10.1002/pmic.201700453] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Exosomes are important bidirectional cell-cell communicators in normal and pathological physiology. Although exosomal surface membrane proteins (surfaceome) enable target cell recognition and are an attractive source of disease marker, they are poorly understood. Here, a comprehensive surfaceome analysis of exosomes secreted by the colorectal cancer cell line SW480 is described. Sodium carbonate extraction/Triton X-114 phase separation and mild proteolysis (proteinase K, PK) of intact exosomes is used in combination with label-free quantitative mass spectrometry to identify 1025 exosomal proteins of which 208 are predicted to be integral membrane proteins (IMPs) according to TOPCONS and GRAVY scores. Interrogation of UniProt database-annotated proteins reveals 124 predicted peripherally-associated membrane proteins (PMPs). Surprisingly, 108 RNA-binding proteins (RBPs)/RNA nucleoproteins (RNPs) are found in the carbonate/Triton X-114 insoluble fraction. Mild PK treatment of SW480-GFP labeled exosomes reveal 58 proteolytically cleaved IMPs and 14 exoplasmic PMPs (e.g., CLU/GANAB/LGALS3BP). Interestingly, 18 RBPs/RNPs (e.g., EIF3L/RPL6) appear bound to the outer exosome surface since they are sensitive to PK proteolysis. The finding that outer surface-localized miRNA Let-7a-5p is RNase A-resistant, but degraded by a combination of RNase A/PK treatment suggests exosomal miRNA species also reside on the outer surface of exosomes bound to RBPs/RNPs.
Collapse
Affiliation(s)
- Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8509, Japan.,Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8538, Japan
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, 3086, Australia.,Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu City, Tokyo, 183-8538, Japan
| |
Collapse
|
11
|
Abstract
The outer membrane (OM) of Treponema pallidum, the uncultivatable agent of venereal syphilis, has long been the subject of misconceptions and controversy. Decades ago, researchers postulated that T. pallidum's poor surface antigenicity is the basis for its ability to cause persistent infection, but they mistakenly attributed this enigmatic property to the presence of a protective outer coat of serum proteins and mucopolysaccharides. Subsequent studies revealed that the OM is the barrier to antibody binding, that it contains a paucity of integral membrane proteins, and that the preponderance of the spirochete's immunogenic lipoproteins is periplasmic. Since the advent of recombinant DNA technology, the fragility of the OM, its low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative outer membrane proteins (OMPs) have complicated efforts to characterize molecules residing at the host-pathogen interface. We have overcome these hurdles using the genomic sequence in concert with computational tools to identify proteins predicted to form β-barrels, the hallmark conformation of OMPs in double-membrane organisms and evolutionarily related eukaryotic organelles. We also have employed diverse methodologies to confirm that some candidate OMPs do, in fact, form amphiphilic β-barrels and are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMP repertoire is more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Sciences, and Immunology, UConn Health, Farmington, CT 06030-3715, USA.
| | - Sanjiv Kumar
- Department of Medicine, UConn Health, Farmington, CT 06030-3715, USA
| |
Collapse
|
12
|
Hu S, Musante L, Tataruch D, Xu X, Kretz O, Henry M, Meleady P, Luo H, Zou H, Jiang Y, Holthofer H. Purification and Identification of Membrane Proteins from Urinary Extracellular Vesicles using Triton X-114 Phase Partitioning. J Proteome Res 2017; 17:86-96. [PMID: 29090927 DOI: 10.1021/acs.jproteome.7b00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.
Collapse
Affiliation(s)
- Shuiwang Hu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | | | | | - Xiaomeng Xu
- Institute of Nephrology and Urology, The Third Affiliated Hospital, Southern Medical University , Guangzhou, China
| | - Oliver Kretz
- III. Medical Clinic, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | | | | | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | - Hequn Zou
- Institute of Nephrology and Urology, The Third Affiliated Hospital, Southern Medical University , Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | - Harry Holthofer
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University , Freiburg, Germany
| |
Collapse
|
13
|
The major outer sheath protein forms distinct conformers and multimeric complexes in the outer membrane and periplasm of Treponema denticola. Sci Rep 2017; 7:13260. [PMID: 29038532 PMCID: PMC5643300 DOI: 10.1038/s41598-017-13550-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
The major outer sheath protein (MOSP) is a prominent constituent of the cell envelope of Treponema denticola (TDE) and one of its principal virulence determinants. Bioinformatics predicts that MOSP consists of N- and C-terminal domains, MOSPN and MOSPC. Biophysical analysis of constructs refolded in vitro demonstrated that MOSPC, previously shown to possess porin activity, forms amphiphilic trimers, while MOSPN forms an extended hydrophilic monomer. In TDE and E. coli expressing MOSP with a PelB signal sequence (PelB-MOSP), MOSPC is OM-embedded and surface-exposed, while MOSPN resides in the periplasm. Immunofluorescence assay, surface proteolysis, and novel cell fractionation schemes revealed that MOSP in TDE exists as outer membrane (OM) and periplasmic trimeric conformers; PelB-MOSP, in contrast, formed only OM-MOSP trimers. Although both conformers form hetero-oligomeric complexes in TDE, only OM-MOSP associates with dentilisin. Mass spectrometry (MS) indicated that OM-MOSP interacts with proteins in addition to dentilisin, most notably, oligopeptide-binding proteins (OBPs) and the β-barrel of BamA. MS also identified candidate partners for periplasmic MOSP, including TDE1658, a spirochete-specific SurA/PrsA ortholog. Collectively, our data suggest that MOSP destined for the TDE OM follows the canonical BAM pathway, while formation of a stable periplasmic conformer involves an export-related, folding pathway not present in E. coli.
Collapse
|
14
|
Iqbal H, Kenedy MR, Lybecker M, Akins DR. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 2016; 102:757-774. [PMID: 27588694 PMCID: PMC5582053 DOI: 10.1111/mmi.13492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
Two outer membrane protein (OMP) transport systems in diderm bacteria assist in assembly and export of OMPs. These two systems are the β-barrel assembly machine (BAM) complex and the translocation and assembly module (TAM). The BAM complex consists of the OMP component BamA along with several outer membrane associated proteins. The TAM also consists of an OMP, designated TamA, and a single inner membrane (IM) protein, TamB. Together TamA and TamB aid in the secretion of virulence-associated OMPs. In this study we characterized the hypothetical protein BB0794 in Borrelia burgdorferi. BB0794 contains a conserved DUF490 domain, which is a motif found in all TamB proteins. All spirochetes lack a TamA ortholog, but computational and physicochemical characterization of BB0794 revealed it is a TamB ortholog. Interestingly, BB0794 was observed to interact with BamA and a BB0794 regulatable mutant displayed altered cellular morphology and antibiotic sensitivity. The observation that B. burgdorferi contains a TamB ortholog that interacts with BamA and is required for proper outer membrane biogenesis not only identifies a novel role for TamB-like proteins, but also may explain why most diderms harbor a TamB-like protein while only a select group encodes TamA.
Collapse
Affiliation(s)
- Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Meghan Lybecker
- Department of Biology, University of Colorado - Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| |
Collapse
|
15
|
LaConte LEW, Chavan V, Liang C, Willis J, Schönhense EM, Schoch S, Mukherjee K. CASK stabilizes neurexin and links it to liprin-α in a neuronal activity-dependent manner. Cell Mol Life Sci 2016; 73:3599-621. [PMID: 27015872 PMCID: PMC4982824 DOI: 10.1007/s00018-016-2183-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 11/28/2022]
Abstract
CASK, a MAGUK family protein, is an essential protein present in the presynaptic compartment. CASK's cellular role is unknown, but it interacts with multiple proteins important for synapse formation and function, including neurexin, liprin-α, and Mint1. CASK phosphorylates neurexin in a divalent ion-sensitive manner, although the functional relevance of this activity is unclear. Here we find that liprin-α and Mint1 compete for direct binding to CASK, but neurexin1β eliminates this competition, and all four proteins form a complex. We describe a novel mode of interaction between liprin-α and CASK when CASK is bound to neurexin1β. We show that CASK phosphorylates neurexin, modulating the interaction of liprin-α with the CASK-neurexin1β-Mint1 complex. Thus, CASK creates a regulatory and structural link between the presynaptic adhesion molecule neurexin and active zone organizer, liprin-α. In neuronal culture, CASK appears to regulate the stability of neurexin by linking it with this multi-protein presynaptic active zone complex.
Collapse
Affiliation(s)
- Leslie E W LaConte
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Vrushali Chavan
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Chen Liang
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | - Jeffery Willis
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA
| | | | - Susanne Schoch
- Institute of Neuropathology, Sigmund Freud Strasse 25, 53105, Bonn, Germany
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, 2 Riverside Cir., Roanoke, VA, 24016, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
16
|
Tamayo Tenorio A, Boom RM, van der Goot AJ. Understanding leaf membrane protein extraction to develop a food-grade process. Food Chem 2016; 217:234-243. [PMID: 27664631 DOI: 10.1016/j.foodchem.2016.08.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/25/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
Leaf membrane proteins are an underutilised protein fraction for food applications. Proteins from leaves can contribute to a more complete use of resources and help to meet the increasing protein demand. Leaf protein extraction and purification is applied by other disciplines, such as proteomics. Therefore, this study analysed proteomic extraction methods for membrane proteins as an inspiration for a food-grade alternative process. Sugar beet leaves were extracted with two proteomic protocols: solvent extraction and Triton X-114 phase partitioning method. Extraction steps contributed to protein purity and/or to selective fractionation, enabling the purification of specific proteins. It was observed that membrane proteins distributed among different solvents, buffers and solutions used due to their physicochemical heterogeneity. This heterogeneity does not allow a total membrane protein extraction by a unique method or even combinations of processing steps, but it enables the creation of different fractions with different physicochemical properties useful for food applications.
Collapse
Affiliation(s)
- Angelica Tamayo Tenorio
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Remko M Boom
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
17
|
Membrane associated cancer-oocyte neoantigen SAS1B/ovastacin is a candidate immunotherapeutic target for uterine tumors. Oncotarget 2016; 6:30194-211. [PMID: 26327203 PMCID: PMC4745790 DOI: 10.18632/oncotarget.4734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/07/2015] [Indexed: 11/25/2022] Open
Abstract
The metalloproteinase SAS1B [ovastacin, ASTL, astacin-like] was immunolocalized on the oolemma of ovulated human oocytes and in normal ovaries within the pool of growing oocytes where SAS1B protein was restricted to follicular stages spanning the primary-secondary follicle transition through ovulation. Gene-specific PCR and immunohistochemical studies revealed ASTL messages and SAS1B protein in both endometrioid [74%] and malignant mixed Mullerian tumors (MMMT) [87%] of the uterus. A MMMT-derived cell line, SNU539, expressed cell surface SAS1B that, after binding polyclonal antibodies, internalized into EEA1/LAMP1-positive early and late endosomes. Treatment of SNU539 cells with anti-SAS1B polyclonal antibodies caused growth arrest in the presence of active complement. A saporin-immunotoxin directed to SAS1B induced growth arrest and cell death. The oocyte restricted expression pattern of SAS1B among adult organs, cell-surface accessibility, internalization into the endocytic pathway, and tumor cell growth arrest induced by antibody-toxin conjugates suggest therapeutic approaches that would selectively target tumors while limiting adverse drug effects in healthy cells. The SAS1B metalloproteinase is proposed as a prototype cancer-oocyte tumor surface neoantigen for development of targeted immunotherapeutics with limited on-target/off tumor effects predicted to be restricted to the population of growing oocytes.
Collapse
|
18
|
Kenedy MR, Scott EJ, Shrestha B, Anand A, Iqbal H, Radolf JD, Dyer DW, Akins DR. Consensus computational network analysis for identifying candidate outer membrane proteins from Borrelia spirochetes. BMC Microbiol 2016; 16:141. [PMID: 27400788 PMCID: PMC4939628 DOI: 10.1186/s12866-016-0762-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/02/2016] [Indexed: 01/15/2023] Open
Abstract
Background Similar to Gram-negative organisms, Borrelia spirochetes are dual-membrane organisms with both an inner and outer membrane. Although the outer membrane contains integral membrane proteins, few of the borrelial outer membrane proteins (OMPs) have been identified and characterized to date. Therefore, we utilized a consensus computational network analysis to identify novel borrelial OMPs. Results Using a series of computer-based algorithms, we selected all protein-encoding sequences predicted to be OM-localized and/or to form β-barrels in the borrelial OM. Using this system, we identified 41 potential OMPs from B. burgdorferi and characterized three (BB0838, BB0405, and BB0406) to confirm that our computer-based methodology did, in fact, identify borrelial OMPs. Triton X-114 phase partitioning revealed that BB0838 is found in the detergent phase, which would be expected of a membrane protein. Proteolysis assays indicate that BB0838 is partially sensitive to both proteinase K and trypsin, further indicating that BB0838 is surface-exposed. Consistent with a prior study, we also confirmed that BB0405 is surface-exposed and associates with the borrelial OM. Furthermore, we have shown that BB0406, the product of a co-transcribed downstream gene, also encodes a novel, previously uncharacterized borrelial OMP. Interestingly, while BB0406 has several physicochemical properties consistent with it being an OMP, it was found to be resistant to surface proteolysis. Consistent with BB0405 and BB0406 being OMPs, both were found to be capable of incorporating into liposomes and exhibit pore-forming activity, suggesting that both proteins are porins. Lastly, we expanded our computational analysis to identify OMPs from other borrelial organisms, including both Lyme disease and relapsing fever spirochetes. Conclusions Using a consensus computer algorithm, we generated a list of candidate OMPs for both Lyme disease and relapsing fever spirochetes and determined that three of the predicted B. burgdorferi proteins identified were indeed novel borrelial OMPs. The combined studies have identified putative spirochetal OMPs that can now be examined for their roles in virulence, physiology, and disease pathogenesis. Importantly, the studies described in this report provide a framework by which OMPs from any human pathogen with a diderm ultrastructure could be cataloged to identify novel virulence factors and vaccine candidates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0762-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Edgar J Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Binu Shrestha
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | - Henna Iqbal
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Justin D Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Genetics and Genomic Science, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
19
|
X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun 2016; 4:30. [PMID: 27036546 PMCID: PMC4818453 DOI: 10.1186/s40478-016-0295-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/07/2023] Open
Abstract
The phenotypic spectrum among girls with heterozygous mutations in the X-linked intellectual disability (XLID) gene CASK (calcium/calmodulin-dependent serine protein kinase) includes postnatal microcephaly, ponto-cerebellar hypoplasia, seizures, optic nerve hypoplasia, growth retardation and hypotonia. Although CASK knockout mice were previously reported to exhibit perinatal lethality and a 3-fold increased apoptotic rate in the brain, CASK deletion was not found to affect neuronal physiology and their electrical properties. The pathogenesis of CASK associated disorders and the potential function of CASK therefore remains unknown. Here, using Cre-LoxP mediated gene excision experiments; we demonstrate that deleting CASK specifically from mouse cerebellar neurons does not alter the cerebellar architecture or function. We demonstrate that the neuron-specific deletion of CASK in mice does not cause perinatal lethality but induces severe recurrent epileptic seizures and growth retardation before the onset of adulthood. Furthermore, we demonstrate that although neuron-specific haploinsufficiency of CASK is inconsequential, the CASK mutation associated human phenotypes are replicated with high fidelity in CASK heterozygous knockout female mice (CASK(+/-)). These data suggest that CASK-related phenotypes are not purely neuronal in origin. Surprisingly, the observed microcephaly in CASK(+/-) animals is not associated with a specific loss of CASK null brain cells indicating that CASK regulates postnatal brain growth in a non-cell autonomous manner. Using biochemical assay, we also demonstrate that CASK can interact with metabolic proteins. CASK knockdown in human cell lines cause reduced cellular respiration and CASK(+/-) mice display abnormalities in muscle and brain oxidative metabolism, suggesting a novel function of CASK in metabolism. Our data implies that some phenotypic components of CASK heterozygous deletion mutation associated disorders represent systemic manifestation of metabolic stress and therefore amenable to therapeutic intervention.
Collapse
|
20
|
Zhao C, Brown RSH, Tang CHA, Hu CCA, Schlieker C. Site-specific Proteolysis Mobilizes TorsinA from the Membrane of the Endoplasmic Reticulum (ER) in Response to ER Stress and B Cell Stimulation. J Biol Chem 2016; 291:9469-81. [PMID: 26953341 DOI: 10.1074/jbc.m115.709337] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Torsin ATPases are the only representatives of the AAA+ ATPase family that reside in the lumen of the endoplasmic reticulum (ER) and nuclear envelope. Two of these, TorsinA and TorsinB, are anchored to the ER membrane by virtue of an N-terminal hydrophobic domain. Here we demonstrate that the imposition of ER stress leads to a proteolytic cleavage event that selectively removes the hydrophobic domain from the AAA+ domain of TorsinA, which retains catalytic activity. Both the pharmacological inhibition profile and the identified cleavage site between two juxtaposed cysteine residues are distinct from those of presently known proteases, suggesting that a hitherto uncharacterized, membrane-associated protease accounts for TorsinA processing. This processing occurs not only in stress-exposed cell lines but also in primary cells from distinct organisms including stimulated B cells, indicating that Torsin conversion in response to physiologically relevant stimuli is an evolutionarily conserved process. By establishing 5-nitroisatin as a cell-permeable inhibitor for Torsin processing, we provide the methodological framework for interfering with Torsin processing in a wide range of primary cells without the need for genetic manipulation.
Collapse
Affiliation(s)
- Chenguang Zhao
- From the Departments of Molecular Biophysics and Biochemistry and
| | | | - Chih-Hang Anthony Tang
- the Department of Translational Tumor Immunology, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Chih-Chi Andrew Hu
- the Department of Translational Tumor Immunology, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Christian Schlieker
- From the Departments of Molecular Biophysics and Biochemistry and Cell Biology, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
21
|
Theilacker C, Diederich AK, Otto A, Sava IG, Wobser D, Bao Y, Hese K, Broszat M, Henneke P, Becher D, Huebner J. Enterococcus faecalis Glycolipids Modulate Lipoprotein-Content of the Bacterial Cell Membrane and Host Immune Response. PLoS One 2015; 10:e0132949. [PMID: 26172831 PMCID: PMC4501811 DOI: 10.1371/journal.pone.0132949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 06/21/2015] [Indexed: 12/25/2022] Open
Abstract
In this study, we investigated the impact of the cell membrane composition of E. faecalis on its recognition by the host immune system. To this end, we employed an E. faecalis deletion mutant (ΔbgsA) that does not synthesize the major cell membrane glycolipid diglycosyl-diacylglycerol (DGlcDAG). Proteomic analysis revealed that 13 of a total of 21 upregulated surface-associated proteins of E. faecalis ΔbgsA were lipoproteins. This led to a total lipoprotein content in the cell membrane of 35.8% in ΔbgsA compared to only 9.4% in wild-type bacteria. Increased lipoprotein content strongly affected the recognition of ΔbgsA by mouse macrophages in vitro with an increased stimulation of TNF-α production by heat-fixed bacteria and secreted antigens. Inactivation of the prolipoprotein diacylglycerol transferase (lgt) in ΔbgsA abrogated TNF-α induction by a ΔbgsA_lgt double mutant indicating that lipoproteins mediate increased activation of mouse macrophages by ΔbgsA. Heat-fixed ΔbgsA bacteria, culture supernatant, or cell membrane lipid extract activated transfected HEK cells in a TLR2-dependent fashion; the same was not true of wild-type bacteria. In mice infected intraperitoneally with a sublethal dose of E. faecalis we observed a 70% greater mortality in mice infected with ΔbgsA compared with wild-type-infected mice. Increased mortality due to ΔbgsA infection was associated with elevated plasma levels of the inflammatory cytokines TNF-α, IL-6 and MIP-2. In summary, our results provide evidence that an E. faecalis mutant lacking its major bilayer forming glycolipid DGlcDAG upregulates lipoprotein expression leading to increased activation of the host innate immune system and virulence in vivo.
Collapse
Affiliation(s)
- Christian Theilacker
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany
- * E-mail:
| | - Ann-Kristin Diederich
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- Department of Microbiology, Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Andreas Otto
- Institute for Microbiology, Department of Microbial Physiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Irina G. Sava
- Research Center for Nutrition and Food Science, Technical University Munich, Freising, Germany
| | - Dominique Wobser
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Yinyin Bao
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Katrin Hese
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Melanie Broszat
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
- Center for Paediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Dörte Becher
- Institute for Microbiology, Department of Microbial Physiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Johannes Huebner
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
22
|
Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, Puthenveetil R, Vinogradova O, Radolf JD. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN. J Biol Chem 2015; 290:12313-31. [PMID: 25805501 PMCID: PMC4424362 DOI: 10.1074/jbc.m114.629188] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/20/2015] [Indexed: 11/06/2022] Open
Abstract
We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael G Malkowski
- the Hauptman-Woodward Medical Research Institute and Department of Structural Biology, State University of New York, Buffalo, New York 14203, and
| | | | - Olga Vinogradova
- Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Justin D Radolf
- From the Departments of Medicine, Pediatrics, Molecular Biology and Biophysics, Genetics and Genomic Science, and Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030,
| |
Collapse
|
23
|
Yordanova D, Smirnova I, Jakobtorweihen S. Molecular Modeling of Triton X Micelles: Force Field Parameters, Self-Assembly, and Partition Equilibria. J Chem Theory Comput 2015; 11:2329-40. [DOI: 10.1021/acs.jctc.5b00026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Yordanova
- Hamburg University of Technology, Institute
of Thermal Separation Processes, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - I. Smirnova
- Hamburg University of Technology, Institute
of Thermal Separation Processes, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| | - S. Jakobtorweihen
- Hamburg University of Technology, Institute
of Thermal Separation Processes, Eissendorfer Strasse 38, 21073 Hamburg, Germany
| |
Collapse
|
24
|
A subtle alternative splicing event gives rise to a widely expressed human RNase k isoform. PLoS One 2014; 9:e96557. [PMID: 24797913 PMCID: PMC4010519 DOI: 10.1371/journal.pone.0096557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022] Open
Abstract
Subtle alternative splicing leads to the formation of RNA variants lacking or including a small number of nucleotides. To date, the impact of subtle alternative splicing phenomena on protein biosynthesis has been studied in frame-preserving incidents. On the contrary, mRNA isoforms derived from frame-shifting events were poorly studied and generally characterized as non-coding. This work provides evidence for a frame-shifting subtle alternative splicing event which results in the production of a novel protein isoform. We applied a combined molecular approach for the cloning and expression analysis of a human RNase κ transcript (RNase κ-02) which lacks four consecutive bases compared to the previously isolated RNase κ isoform. RNase κ-02 mRNA is expressed in all human cell lines tested end encodes the synthesis of a 134-amino-acid protein by utilizing an alternative initiation codon. The expression of RNase κ-02 in the cytoplasm of human cells was verified by Western blot and immunofluorescence analysis using a specific polyclonal antibody developed on the basis of the amino-acid sequence difference between the two protein isoforms. The results presented here show that subtle changes during mRNA splicing can lead to the expression of significantly altered protein isoforms.
Collapse
|
25
|
Milosevic M, Staal KJ, Bargeman G, Schuur B, de Haan AB. Fractionation of aqueous sodium salts by liquid–liquid extraction in aqueous two phase systems. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Structural modeling and physicochemical characterization provide evidence that P66 forms a β-barrel in the Borrelia burgdorferi outer membrane. J Bacteriol 2013; 196:859-72. [PMID: 24317399 DOI: 10.1128/jb.01236-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Borrelia burgdorferi outer membrane (OM) contains numerous surface-exposed lipoproteins but a relatively low density of integral OM proteins (OMPs). Few membrane-spanning OMPs of B. burgdorferi have been definitively identified, and none are well characterized structurally. Here, we provide evidence that the borrelial OMP P66, a known adhesin with pore-forming activity, forms a β-barrel in the B. burgdorferi OM. Multiple computer-based algorithms predict that P66 forms a β-barrel with either 22 or 24 transmembrane domains. According to our predicted P66 topology, a lysine residue (K487) known to be sensitive to trypsin cleavage is located within a surface-exposed loop. When we aligned the mature P66 amino acid sequences from B. burgdorferi and B. garinii, we found that K487 was present only in the B. burgdorferi P66 protein sequence. When intact cells from each strain were treated with trypsin, only B. burgdorferi P66 was trypsin sensitive, indicating that K487 is surface exposed, as predicted. Consistent with this observation, when we inserted a c-Myc tag adjacent to K487 and utilized surface localization immunofluorescence, we detected the loop containing K487 on the surface of B. burgdorferi. P66 was examined by both Triton X-114 phase partitioning and circular dichroism, confirming that the protein is amphiphilic and contains extensive (48%) β-sheets, respectively. Moreover, P66 also was able to incorporate into liposomes and form channels in large unilamellar vesicles. Finally, blue native PAGE (BN-PAGE) revealed that under nondenaturing conditions, P66 is found in large complexes of ∼400 kDa and ∼600 kDa. Outer surface lipoprotein A (OspA) and OspB both coimmunoprecipitate with P66, demonstrating that P66 associates with OspA and OspB in B. burgdorferi. The combined computer-based structural analyses and supporting physicochemical properties of P66 provide a working model to further examine the porin and integrin-binding activities of this OMP as they relate to B. burgdorferi physiology and Lyme disease pathogenesis.
Collapse
|
27
|
Zhu Y, Casey PJ, Kumar AP, Pervaiz S. Deciphering the signaling networks underlying simvastatin-induced apoptosis in human cancer cells: evidence for non-canonical activation of RhoA and Rac1 GTPases. Cell Death Dis 2013; 4:e568. [PMID: 23559002 PMCID: PMC3641326 DOI: 10.1038/cddis.2013.103] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although statins are known to inhibit proliferation and induce death in a number of cancer cell types, the mechanisms through which downregulation of the mevalonate (MVA) pathway activates death signaling remain poorly understood. Here we set out to unravel the signaling networks downstream of the MVA pathway that mediate the death-inducing activity of simvastatin. Consistent with previous reports, exogenously added geranylgeranylpyrophosphate, but not farnesylpyrophosphate, prevented simvastatin's growth-inhibitory effect, thereby suggesting the involvement of geranylgeranylated proteins such as Rho GTPases in the anticancer activity of simvastatin. Indeed, simvastatin treatment led to increased levels of unprenylated Ras homolog gene family, member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42). Intriguingly, instead of inhibiting the functions of Rho GTPases as was expected with loss of prenylation, simvastatin caused a paradoxical increase in the GTP-bound forms of RhoA, Rac1 and Cdc42. Furthermore, simvastatin disrupted the binding of Rho GTPases with the cytosolic inhibitor Rho GDIα, which provides a potential mechanism for GTP loading of the cytosolic Rho GTPases. We also show that the unprenylated RhoA- and Rac1-GTP retained at least part of their functional activities, as evidenced by the increase in intracellular superoxide production and JNK activation in response to simvastatin. Notably, blocking superoxide production attenuated JNK activation as well as cell death induced by simvastatin. Finally, we provide evidence for the involvement of the B-cell lymphoma protein 2 family, Bcl-2-interacting mediator (Bim), in a JNK-dependent manner, in the apoptosis-inducing activity of simvastatin. Taken together, our data highlight the critical role of non-canonical regulation of Rho GTPases and involvement of downstream superoxide-mediated activation of JNK pathway in the anticancer activity of simvastatin, which would have potential clinical implications.
Collapse
Affiliation(s)
- Y Zhu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
28
|
The major outer sheath protein (Msp) of Treponema denticola has a bipartite domain architecture and exists as periplasmic and outer membrane-spanning conformers. J Bacteriol 2013; 195:2060-71. [PMID: 23457251 DOI: 10.1128/jb.00078-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The major outer sheath protein (Msp) is a primary virulence determinant in Treponema denticola, as well as the parental ortholog for the Treponema pallidum repeat (Tpr) family in the syphilis spirochete. The Conserved Domain Database (CDD) server revealed that Msp contains two conserved domains, major outer sheath protein(N) (MOSP(N)) and MOSP(C), spanning residues 77 to 286 and 332 to 543, respectively, within the N- and C-terminal regions of the protein. Circular dichroism (CD) spectroscopy, Triton X-114 (TX-114) phase partitioning, and liposome incorporation demonstrated that full-length, recombinant Msp (Msp(Fl)) and a recombinant protein containing MOSP(C), but not MOSP(N), form amphiphilic, β-sheet-rich structures with channel-forming activity. Immunofluorescence analysis of intact T. denticola revealed that only MOSP(C) contains surface-exposed epitopes. Data obtained using proteinase K accessibility, TX-114 phase partitioning, and cell fractionation revealed that Msp exists as distinct OM-integrated and periplasmic trimers. Msp(Fl) folded in Tris buffer contained slightly less β-sheet structure than detergent-folded Msp(Fl); both forms, however, partitioned into the TX-114 detergent-enriched phase. CDD analysis of the nine Tpr paralogs predicted to be outer membrane proteins (OMPs) revealed that seven have an Msp-like bipartite structure; phylogenetic analysis revealed that the MOSP(N) and MOSP(C) domains of Msp are most closely related to those of TprK. Based upon our collective results, we propose a model whereby a newly exported, partially folded intermediate can be either processed for OM insertion by the β-barrel assembly machinery (BAM) or remain periplasmic, ultimately forming a stable, water-soluble trimer. Extrapolated to T. pallidum, our model enables us to explain how individual Tprs can localize to either the periplasmic (e.g., TprK) or OM (e.g., TprC) compartments.
Collapse
|
29
|
Ning Z, Seebun D, Hawley B, Chiang CK, Figeys D. From cells to peptides: "one-stop" integrated proteomic processing using amphipols. J Proteome Res 2013; 12:1512-9. [PMID: 23394071 DOI: 10.1021/pr301064z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In proteomics, detergents and chaotropes are indispensable for proteome analysis, not only for protein extraction, but also for protein digestion. To increase the protein extraction efficiency, detergents are usually added in the lysis buffer to extract membrane proteins out of membrane structure and to maintain protein in solutions. In general, these detergents need to be removed prior to protein digestion, usually by precipitation or ultrafiltration. Digestion often takes place in the presence of chaotropic reagents, such as urea, which often need to be removed prior to mass spectrometry. The addition and removal of detergents and chaotropes require multiple steps that are time-consuming and can cause sample losses. Amphipols (APols) are a different class of detergents that have physical and solubilization properties that are distinct from conventional detergents. They have primarily been used in protein structure analysis for membrane protein trapping and stabilization. Here, we demonstrate a simple and rapid protocol for total and membrane proteome preparation using APols. We demonstrate that APols added for cell lysis help maintain the proteome in solution, are compatible with protein digestion using trypsin, and can readily be removed prior to mass spectrometry by a one-step acidification and centrifugation. This protocol is much faster, can be performed in a single tube, and can readily replace the conventional detergent/chaotrope approaches for total and membrane proteome analysis.
Collapse
Affiliation(s)
- Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Valentini E, Cherchi S, Possenti A, Dubremetz JF, Pozio E, Spano F. Molecular characterisation of a Cryptosporidium parvum rhoptry protein candidate related to the rhoptry neck proteins TgRON1 of Toxoplasma gondii and PfASP of Plasmodium falciparum. Mol Biochem Parasitol 2012; 183:94-9. [DOI: 10.1016/j.molbiopara.2012.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
|
31
|
Lenhart TR, Kenedy MR, Yang X, Pal U, Akins DR. BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex. BMC Microbiol 2012; 12:60. [PMID: 22519960 PMCID: PMC3356241 DOI: 10.1186/1471-2180-12-60] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/20/2012] [Indexed: 11/24/2022] Open
Abstract
Background Similar to Gram-negative bacteria, the outer membrane (OM) of the pathogenic spirochete, Borrelia burgdorferi, contains integral OM-spanning proteins (OMPs), as well as membrane-anchored lipoproteins. Although the mechanism of OMP biogenesis is still not well-understood, recent studies have indicated that a heterooligomeric OM protein complex, known as BAM (β-barrel assembly machine) is required for proper assembly of OMPs into the bacterial OM. We previously identified and characterized the essential β-barrel OMP component of this complex in B. burgdorferi, which we determined to be a functional BamA ortholog. Results In the current study, we report on the identification of two additional protein components of the B. burgdorferi BAM complex, which were identified as putative lipoproteins encoded by ORFs BB0324 and BB0028. Biochemical assays with a BamA-depleted B. burgdorferi strain indicate that BB0324 and BB0028 do not readily interact with the BAM complex without the presence of BamA, suggesting that the individual B. burgdorferi BAM components may associate only when forming a functional BAM complex. Cellular localization assays indicate that BB0324 and BB0028 are OM-associated subsurface lipoproteins, and in silico analyses indicate that BB0324 is a putative BamD ortholog. Conclusions The combined data suggest that the BAM complex of B. burgdorferi contains unique protein constituents which differ from those found in other proteobacterial BAM complexes. The novel findings now allow for the B. burgdorferi BAM complex to be further studied as a model system to better our understanding of spirochetal OM biogenesis in general.
Collapse
Affiliation(s)
- Tiffany R Lenhart
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
32
|
TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol 2012; 194:2321-33. [PMID: 22389487 DOI: 10.1128/jb.00101-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178-5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprC(Fl)) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprC(Fl) increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprC(N)), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprC(C)). Syphilitic rabbits generate antibodies exclusively against TprC(C), while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host.
Collapse
|
33
|
Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A, McArthur FA, Romano FB, Caimano MJ, Heuck AP, Malkowski MG, Radolf JD. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem 2011; 286:41656-41668. [PMID: 21965687 PMCID: PMC3308875 DOI: 10.1074/jbc.m111.305284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 09/26/2011] [Indexed: 11/06/2022] Open
Abstract
The molecular architecture and composition of the outer membrane (OM) of Treponema pallidum (Tp), the noncultivable agent of venereal syphilis, differ considerably from those of typical Gram-negative bacteria. Several years ago we described TP0453, the only lipoprotein associated with the inner leaflet of the Tp OM. Whereas polypeptides of other treponemal lipoproteins are hydrophilic, non-lipidated TP0453 can integrate into membranes, a property attributed to its multiple amphipathic helices (AHs). Furthermore, membrane integration of the TP0453 polypeptide was found to increase membrane permeability, suggesting the molecule functions in a porin-like manner. To better understand the mechanism of membrane integration of TP0453 and its physiological role in Tp OM biogenesis, we solved its crystal structure and used mutagenesis to identify membrane insertion elements. The crystal structure of TP0453 consists of an α/β/α-fold and includes five stably folded AHs. In high concentrations of detergent, TP0453 transitions from a closed to open conformation by lateral movement of two groups of AHs, exposing a large hydrophobic cavity. Triton X-114 phase partitioning, liposome floatation assay, and bis-1-anilino-8-naphthalenesulfonate binding revealed that two adjacent AHs are critical for membrane sensing/integration. Using terbium-dipicolinic acid complex-loaded large unilamellar vesicles, we found that TP0453 increased efflux of fluorophore only at acidic pH. Gel filtration and cross-linking experiments demonstrated that one AH critical for membrane sensing/insertion also forms a dimeric interface. Based on structural dynamics and comparison with Mycobacterium tuberculosis lipoproteins LprG and LppX, we propose that TP0453 functions as a carrier of lipids, glycolipids, and/or derivatives during OM biogenesis.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Guangyu Zhu
- Hauptman-Woodward Medical Research Institute and Department of Structural Biology, State University of New York, Buffalo, New York 14203
| | - Daniel C Desrosiers
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Christian H Eggers
- Departments of Biomedical Sciences, Quinnipiac University, Hamden, Connecticut 06518
| | - Vishwaroop Mulay
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Fiona A McArthur
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Fabian B Romano
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Melissa J Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Alejandro P Heuck
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Michael G Malkowski
- Hauptman-Woodward Medical Research Institute and Department of Structural Biology, State University of New York, Buffalo, New York 14203
| | - Justin D Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030; Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut 06030; Departments of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030.
| |
Collapse
|
34
|
Asuthkar S, Nalla AK, Gondi CS, Dinh DH, Gujrati M, Mohanam S, Rao JS. Gadd45a sensitizes medulloblastoma cells to irradiation and suppresses MMP-9-mediated EMT. Neuro Oncol 2011; 13:1059-73. [PMID: 21813510 DOI: 10.1093/neuonc/nor109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Medulloblastomas are the most common malignant tumors of the central nervous system during childhood. Radiation-induced medulloblastoma tumor recurrences are aggressive and metastatic in nature. In the present study, we demonstrate that Gadd45a expression can sensitize medulloblastoma cells to radiotherapy. We have elucidated the role of Gadd45a in ionizing radiation (IR)-induced G2-M arrest and invasion and metastatic potential of the medulloblastoma cancer cell lines DAOY and D283. We demonstrate that Gadd45a is induced by IR and results in p53 phosphorylation. The role of IR-induced Gadd45a in G2-M arrest is demonstrated by fluorescence-activated cell sorting analysis in the cells treated with siRNA Gadd45a and Ov-exp Gadd45a. We show that Ov-exp Gadd45a aggravates G2-M blockage and also increases binding of Gadd45a to Cdc2 by immunocytochemistry analysis. Furthermore, we show the anti-tumorigenic role of Gadd45a to be mediated by the negative regulation of IR-induced cancer cell invasion and migration-associated proteins, such as matrix metallopeptidase (MMP)-9 and β-catenin. When compared with IR treatment alone, Ov-exp Gadd45a plus IR treatment resulted in decreased nuclear localization and increased membrane localization of β-catenin, and this was further confirmed by membrane distribution. We also show that Ov-exp Gadd45a resulted in downregulation of MMP-9 and suppression of epithelial-mesenchymal transition (EMT). Alternatively, inhibition of MMP-9 (pM) resulted in upregulation of Gadd45a and suppression of EMT. The anti-tumor effect of pM was correlated with increased expression of Gadd45a protein in nude mice intracranial tumors. Taken together, our studies demonstrate that upregulation of Gadd45a or suppression of MMP-9 (pM) with IR retards medulloblastoma tumor metastatic potential.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Mathias RA, Chen YS, Kapp EA, Greening DW, Mathivanan S, Simpson RJ. Triton X-114 phase separation in the isolation and purification of mouse liver microsomal membrane proteins. Methods 2011; 54:396-406. [DOI: 10.1016/j.ymeth.2011.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022] Open
|
36
|
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MAD, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 2011; 80:1496-515. [PMID: 21488980 PMCID: PMC3115443 DOI: 10.1111/j.1365-2958.2011.07662.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Definitive identification of Treponema pallidum rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in T. pallidum with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modelling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in T. pallidum larger than that of Escherichia coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. T. pallidum-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochaete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity.
Collapse
Affiliation(s)
- Daniel C. Desrosiers
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Arvind Anand
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Amit Luthra
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Star M Dunham-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Morgan LeDoyt
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael A. D. Cummings
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Juan C. Salazar
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030
- Department of Pediatrics, Connecticut Children's Medical Center, Division of Pediatric Infectious Diseases, Hartford, CT 06106
| |
Collapse
|
37
|
Salinas SR, Bianco MI, Barreras M, Ielpi L. Expression, purification and biochemical characterization of GumI, a monotopic membrane GDP-mannose:glycolipid 4-{beta}-D-mannosyltransferase from Xanthomonas campestris pv. campestris. Glycobiology 2011; 21:903-13. [PMID: 21367879 DOI: 10.1093/glycob/cwr022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the first biochemical characterization of the gumI gene product, an essential protein for xanthan polysaccharide synthesis. Cellular fractionation experiments reveal the presence of a protein associated with the membrane fraction, even in the absence of the other proteins responsible for the synthesis of glycolipid intermediates and the proteins involved in the polymerization and transport of the xanthan chains. By alkaline buffer extraction and detergent phase partitioning, GumI was categorized as a monotopic membrane protein. GumI was overexpressed in Escherichia coli, solubilized and purified in an active and stable form using a simple and reproducible two-step procedure. The purified recombinant GumI is a nonprocessive β-mannosyltransferase that uses GDP-Man as a donor substrate and glucuronic acid-β-1,2-mannose-α-1,3-glucose-β-1,4-glucose-PP-polyisoprenyl as an acceptor. We also established the optimal biochemical conditions for GumI enzymatic activity. Sequence analysis revealed the presence of a conserved domain for glycosyltransferases (GTs) of the GT-B superfamily and homologous proteins in several prokaryote organisms. On the basis of this biochemical characterization, GumI may represent the founding member of a new GT family in the Carbohydrate-Active EnZymes classification.
Collapse
Affiliation(s)
- Silvina R Salinas
- Laboratory of Bacterial Genetics, Fundación Instituto Leloir, IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | | | | | | |
Collapse
|
38
|
Mayer PR, Huang N, Dewey CM, Dries DR, Zhang H, Yu G. Expression, localization, and biochemical characterization of nicotinamide mononucleotide adenylyltransferase 2. J Biol Chem 2010; 285:40387-96. [PMID: 20943658 PMCID: PMC3001018 DOI: 10.1074/jbc.m110.178913] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/10/2010] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) adenylyltransferase 2 (Nmnat2) catalyzes the synthesis of NAD from NMN and ATP. The Nmnat2 transcript is expressed predominately in the brain; we report here that Nmnat2 is a low abundance protein expressed in neurons. Previous studies indicate that Nmnat2 localizes to Golgi. As Nmnat2 is not predicted to contain a signal sequence, lipid-binding domain, or transmembrane domain, we investigated the nature of this interaction. These experiments reveal that Nmnat2 is palmitoylated in vitro, and this modification is required for membrane association. Surprisingly, exogenous Nmnat2 is toxic to neurons, indicating that protein levels must be tightly regulated. To analyze Nmnat2 localization in neurons (previous experiments relied on exogenous expression in HeLa cells), mouse brains were fractionated, showing that Nmnat2 is enriched in numerous membrane compartments including synaptic terminals. In HeLa cells, in addition to Golgi, Nmnat2 localizes to Rab7-containing late endosomes. These studies show that Nmnat2 is a neuronal protein peripherally attached to membranes via palmitoylation and suggest that Nmnat2 is transported to synaptic terminals via an endosomal pathway.
Collapse
Affiliation(s)
| | - Nian Huang
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | - Hong Zhang
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Gang Yu
- From the Departments of Neuroscience and
| |
Collapse
|
39
|
Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 2010; 78:5178-94. [PMID: 20876295 DOI: 10.1128/iai.00834-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's "stealth pathogenicity," we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection.
Collapse
|
40
|
Bryksin AV, Tomova A, Godfrey HP, Cabello FC. BmpA is a surface-exposed outer-membrane protein of Borrelia burgdorferi. FEMS Microbiol Lett 2010; 309:77-83. [PMID: 20546313 DOI: 10.1111/j.1574-6968.2010.02020.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BmpA is an immunodominant protein of Borrelia burgdorferi as well as an arthritogenic factor. Rabbit antirecombinant BmpA (rBmpA) antibodies were raised, characterized by assaying their cross reactivity with rBmpB, rBmpC and rBmpD, and then rendered monospecific by absorption with rBmpB. This monospecific reagent reacted only with rBmpA in dot immunobinding and detected a single 39 kDa, pI 5.0, spot on two-dimensional immunoblots. It was used to assess the BmpA cellular location. BmpA was present in both detergent-soluble and -insoluble fractions of Triton X-114 phase-partitioned borrelial cells, suggesting that it was a membrane lipoprotein. Immunoblots of proteinase K-treated intact and Triton X-100 permeabilized cells showed digestion of BmpA in intact cells, consistent with surface exposure. This exposure was confirmed by dual-label immunofluorescence microscopy of intact and permeabilized borrelial cells. Conservation and surface localization of BmpA in all B. burgdorferi sensu lato genospecies could point to its playing a key role in this organism's biology and pathobiology.
Collapse
Affiliation(s)
- Anton V Bryksin
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Bacterial membrane proteins serve vital functions such as nutrient acquisition, sensation of the environment, and in gene regulation, secretion, and attachment. Proteins on the cell surface are instrumental in host-pathogen interactions and many serve as immunogens that confer protection as targets for neutralizing antibodies. Integral membrane and lipidated proteins possess hydrophobic domains or lipid anchors that interact with the lipid bilayer of cellular membranes, allowing the investigator to use hydrophobicity as a means for enrichment. The spirochete Borrelia burgdorferi is a Gram negative-like microorganism that produces many integral and lipidated proteins, several of which have proven important during infection and transmission of the bacterium from the tick vector to the mammalian host. Protocols described in this unit for enriching membrane proteins have been extensively used by investigators in the study of B. burgdorferi, but can be easily adapted to identify and characterize membrane-associated and surface-exposed proteins associated with other bacteria.
Collapse
Affiliation(s)
- James A Carroll
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
|
43
|
Lenhart TR, Akins DR. Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol 2009; 75:692-709. [PMID: 20025662 DOI: 10.1111/j.1365-2958.2009.07015.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outer membrane (OM) of the pathogenic diderm spirochete, Borrelia burgdorferi, contains integral beta-barrel outer membrane proteins (OMPs) in addition to its numerous outer surface lipoproteins. Very few OMPs have been identified in B. burgdorferi, and the protein machinery required for OMP assembly and OM localization is currently unknown. Essential OM BamA proteins have recently been characterized in Gram-negative bacteria that are central components of an OM beta-barrel assembly machine and are required for proper localization and insertion of bacterial OMPs. In the present study, we characterized a putative B. burgdorferi BamA orthologue encoded by open reading frame bb0795. Structural model predictions and cellular localization data indicate that the B. burgdorferi BB0795 protein contains an N-terminal periplasmic domain and a C-terminal, surface-exposed beta-barrel domain. Additionally, assays with an IPTG-regulatable bb0795 mutant revealed that BB0795 is required for B. burgdorferi growth. Furthermore, depletion of BB0795 results in decreased amounts of detectable OMPs in the B. burgdorferi OM. Interestingly, a decrease in the levels of surface-exposed lipoproteins was also observed in the mutant OMs. Collectively, our structural, cellular localization and functional data are consistent with the characteristics of other BamA proteins, indicating that BB0795 is a B. burgdorferi BamA orthologue.
Collapse
Affiliation(s)
- Tiffany R Lenhart
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
44
|
Identification of macrosialin (CD68) on the surface of host macrophages as the receptor for the intercellular adhesive molecule (ICAM-L) of Leishmania amazonensis. Int J Parasitol 2009; 39:1539-50. [PMID: 19540239 DOI: 10.1016/j.ijpara.2009.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/23/2022]
Abstract
The intercellular adhesive molecule, ICAM-L, of Leishmania amazonensis is known to block the attachment as well as internalisation of Leishmania for infection in host macrophages. We employed monoclonal antibodies (mAb) to the surface molecules of a macrophage to block the attachment of ICAM-L to the macrophage surface and identified that CD68 macrosialin is likely the receptor molecule on the macrophage for ICAM-L. We then demonstrated physical interaction between ICAM-L and macrosialin by co-immunoprecipitation of macrosialin with ICAM-L or vice versa. Finally, macrosialin is expressed in macrosialin-negative murine fibroblast cell line NCTC clone 2555 and demonstrates that both ICAM-L and promastigotes of L. amazonensis can bind to the CD68 transfectant. We thus conclude that CD68 macrosialin is the receptor on host macrophages for ICAM-L. Also, involvement of ICAM-L-macrosialin interaction in other Leishmania species and other mammalian macrophages were demonstrated, indicating the biological relevance of this ligand-receptor interaction.
Collapse
|
45
|
Abstract
Macroautophagy, an intracellular bulk degradation process and a typical form of autophagy in eukaryotes, is sensitive to physiological regulation, such as the supply and deprivation of nutrients. Microtubule-associated protein 1 light chain 3 (LC3), a mammalian homologue of yeast Atg8, plays a critical role in macroautophagy formation and is considered a suitable marker for this process. In mammalian cells, there is a limitation for biochemical and morphological methods to monitor autophagy within a short period of time. During analysis of the subcellular distribution of LC3, we found that the cytosolic fraction contains not only a precursor form (LC3-I), but also an apparently active form, denoted as LC3-IIs. Both LC3-I and LC3-IIs in the cytosolic fraction, and thus the LC3-IIs/I ratio (designated the cytosolic LC3 ratio), were more responsive to amino acids than monitoring LC3-II or the LC3-II/I ratio in the total homogenate, and remarkably reflected the total proteolytic flux in fresh rat hepatocytes and the cultured H4-II-E cell line. Thus, in addition to representing a sensitive index of macroautophagy, examining the cytosolic LC3 ratio is an easy and quick quantitative method for monitoring the regulation of this process in hepatocytes and H4-II-E cells.
Collapse
|
46
|
Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, Omura S, Kita K. Novel mitochondrial complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip subunit. J Biol Chem 2009; 284:7255-63. [PMID: 19122194 PMCID: PMC2652292 DOI: 10.1074/jbc.m806623200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/02/2009] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial respiratory enzymes play a central role in energy production in aerobic organisms. They differentiated from the alpha-proteobacteria-derived ancestors by adding noncatalytic subunits. An exception is Complex II (succinate: ubiquinone reductase), which is composed of four alpha-proteobacteria-derived catalytic subunits (SDH1-SDH4). Complex II often plays a pivotal role in adaptation of parasites in host organisms and would be a potential target for new drugs. We purified Complex II from the parasitic protist Trypanosoma cruzi and obtained the unexpected result that it consists of six hydrophilic (SDH1, SDH2N, SDH2C, and SDH5-SDH7) and six hydrophobic (SDH3, SDH4, and SDH8-SDH11) nucleus-encoded subunits. Orthologous genes for each subunit were identified in Trypanosoma brucei and Leishmania major. Notably, the iron-sulfur subunit was heterodimeric; SDH2N and SDH2C contain the plant-type ferredoxin domain in the N-terminal half and the bacterial ferredoxin domain in the C-terminal half, respectively. Catalytic subunits (SDH1, SDH2N plus SDH2C, SDH3, and SDH4) contain all key residues for binding of dicarboxylates and quinones, but the enzyme showed the lower affinity for both substrates and inhibitors than mammalian enzymes. In addition, the enzyme binds protoheme IX, but SDH3 lacks a ligand histidine. These unusual features are unique in the Trypanosomatida and make their Complex II a target for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Jorge Morales
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1. Vet Parasitol 2008; 158:36-43. [DOI: 10.1016/j.vetpar.2008.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022]
|
48
|
Crother TR, Nally JE. Analysis of bacterial membrane proteins produced during mammalian infection using hydrophobic antigen tissue triton extraction (HATTREX). ACTA ACUST UNITED AC 2008; Chapter 12:Unit 12.1. [PMID: 18770532 DOI: 10.1002/9780471729259.mc1201s9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hydrophobic antigen tissue Triton extraction (HATTREX) provides a method to extract and identify hydrophobic bacterial membrane proteins from host-infected tissues. The non-ionic detergent Triton X-114 is used to solubilize host-infected tissues at 4 degrees C. Subsequent phase partitioning of Triton X-114 extracted material at 37 degrees C results in a "detergent poor" aqueous phase and a "detergent rich" detergent phase. While soluble proteins partition to the aqueous phase, hydrophobic proteins, such as proteins of the outer and inner membranes, can be found in the detergent phase. Characterization of the detergent phase sample provides insights into the proteome of bacterial membranes during infection.
Collapse
Affiliation(s)
- Timothy R Crother
- Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California, Los Angeles, California, USA
| | | |
Collapse
|
49
|
Binder EM, Lagal V, Kim K. The prodomain of Toxoplasma gondii GPI-anchored subtilase TgSUB1 mediates its targeting to micronemes. Traffic 2008; 9:1485-96. [PMID: 18532988 DOI: 10.1111/j.1600-0854.2008.00774.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Subtilisin-like proteases have been proposed to play an important role for parasite survival in Toxoplasma gondii (Tg) and Plasmodium falciparum. The T. gondii subtilase TgSUB1 is located in the microneme, an apical secretory organelle whose contents mediate adhesion to the host during invasion. TgSUB1 is predicted to contain a glycosyl-phosphatidylinositol (GPI) anchor. This is unusual as Toxoplasma GPI-anchored proteins are targeted to the parasite's surface. In this study, we report that the subtilase TgSUB1 is indeed a GPI-anchored protein but contains dominant microneme targeting signals. Accurate targeting of TgSUB1 to the micronemes is dependent upon several factors including promoter strength and timing, accurate processing and folding. We analyzed the targeting domains of TgSUB1 using TgSUB1 deletion constructs and chimeras made between TgSUB1 and reporter proteins. The TgSUB1 prodomain is responsible for trafficking to the micronemes and is sufficient for targeting a reporter protein to the micronemes. Trafficking is dependent upon correct folding or other context-dependent conformation as the prodomain expressed alone is unable to reach the micromenes. Therefore, TgSUB1 is a novel example of a GPI-anchored protein in T. gondii that bypasses the GPI-dependent surface trafficking pathway to traffic to micronemes, specialized regulated secretory organelles.
Collapse
Affiliation(s)
- Emily M Binder
- Department of Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | | | | |
Collapse
|
50
|
Zhang D, Howe DK. Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites. Vet Parasitol 2008; 152:210-9. [PMID: 18291589 DOI: 10.1016/j.vetpar.2007.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/26/2022]
Abstract
An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.
Collapse
Affiliation(s)
- Deqing Zhang
- Department of Veterinary Sciences, University of Kentucky, Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | | |
Collapse
|