1
|
Mukherjee A, Gilles-Thomas EA, Kwok HY, Shorter CE, Sontate KV, McSain SL, Honeycutt SC, Loney GC. Bilateral insular cortical lesions reduce sensitivity to the adverse consequences of acute ethanol intoxication in Pavlovian conditioning procedures. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1473-1482. [PMID: 38838083 DOI: 10.1111/acer.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Sensitivity to the adverse post-ingestive effects of ethanol likely serves as a deterrent to initiate alcohol consumption early in drinking and later may contribute to efforts to remain abstinent. Administering ethanol to naïve rats prior to Pavlovian conditioning procedures elicits robust ethanol-conditioned taste and place avoidance (CTA; CPA) mediated by its subjective interoceptive properties. The insular cortex (IC) has been implicated as a region involved in mediating sensitivity to the interoceptive properties of ethanol. Here, we examined whether bilateral lesions of the IC affect the acquisition and expression of taste and place avoidance in ethanol-induced CTA and CPA paradigms. METHODS Adult male and female Wistar rats received bilateral excitotoxic lesions (ibotenic acid; 20 mg/mL; 0.3 μL) of the IC prior to conditioning procedures. Subsequently, rats were conditioned to associate a novel taste stimulus (0.1% saccharin) and context with the effects of ethanol (1.0 g/kg) in a combined CTA/CPP procedure. Conditioning occurred over 8 alternating CS+/CS- days, followed by tests for expression of taste and place preferences. Data from IC-lesioned rats were compared with neurologically intact rats. RESULTS Our findings revealed that neurologically intact rats showed a significantly stronger ethanol-induced CTA than IC-lesioned rats. There were no significant differences in total fluid intake when rats consumed water (CS-). As with CTA effects, intact rats showed a strong CPA, marked by a greater reduction in time spent on the drug-paired context, while IC-lesioned rats failed to display CPA to ethanol. CONCLUSION These results indicate that proper IC functioning is necessary for responding to the adverse interoceptive properties of ethanol regardless of which Pavlovian paradigm is used to assess interoceptive responsivity to ethanol. Blunted IC functioning from chronic ethanol use may reduce interoceptive signaling specifically of ethanol's adverse effects thus contributing to increased alcohol use.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Hay Young Kwok
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Cerissa E Shorter
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Kajol V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Shannon L McSain
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Dornellas APS, Thiele TE, Navarro M. Chemogenetic inhibition of locus coeruleus to rostromedial tegmental nucleus noradrenergic pathway increases light cycle ethanol drinking in male and female mice and blunts ethanol-induced CTA. Neuropharmacology 2024; 244:109809. [PMID: 38048984 PMCID: PMC10829485 DOI: 10.1016/j.neuropharm.2023.109809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
We recently showed that chemogenetic activation of the locus coeruleus (LC) to the rostromedial tegmental nucleus (RMTg) noradrenergic (NE) pathway significantly blunted binge-like ethanol drinking and induced aversive-like behaviors in mice. The aim of the present study is to determine if silencing this TH + LC → RMTg noradrenergic pathway promotes increased levels of binge-like ethanol intake and reduced ethanol-induced conditioned taste aversion (CTA). To this end, both male and female TH-ires-cre mice on a C57BL/6 J background were cannulated in the RMTg and injected in the LC with rAVV viruses that encode cre-dependent Gi-expressing designer receptor exclusively activated by designer drugs (DREADDs), or its control, to directly control the activity of NE neurons. Inhibition of the LC to RMTg pathway had no effect on the binge-ethanol drinking in a "drinking-in-the-dark" (DID) paradigm. However, when using this paradigm during the light cycle, silencing of this circuit significantly increased ethanol intake without altering sucrose drinking. Moreover, we found that inhibition of this circuit significantly attenuated an ethanol-induced CTA. In addition, when compared to control animals, pairing RMTg-directed Clozapine N-oxide (CNO) with an i.p. injection of 1.5 g/kg ethanol reduced c-Fos activation in the LC, and increased c-Fos expression in the ventral tegmental area (VTA) in Gi-expressing mice. Our data show that inhibition of the TH + LC to the RMTg pathway significantly increased ethanol drinking as well as attenuated ethanol-induced CTA, supporting the involvement of the LC to RMTg noradrenergic circuit as an important protective mechanism against excessive ethanol consumption.
Collapse
Affiliation(s)
- Ana Paula S Dornellas
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Montserrat Navarro
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA.
| |
Collapse
|
3
|
Dornellas APS, Burnham NW, Luhn KL, Petruzzi MV, Thiele TE, Navarro M. Activation of locus coeruleus to rostromedial tegmental nucleus (RMTg) noradrenergic pathway blunts binge-like ethanol drinking and induces aversive responses in mice. Neuropharmacology 2021; 199:108797. [PMID: 34547331 PMCID: PMC8583311 DOI: 10.1016/j.neuropharm.2021.108797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
There is strong evidence that ethanol entails aversive effects that can act as a deterrent to overconsumption. We have found that in doses that support the development of a conditioned taste aversion ethanol increases the activity of tyrosine hydroxylase (TH) positive neurons in the locus coeruleus (LC), a primary source of norepinephrine (NE). Using cre-inducible AAV8-ChR2 viruses in TH-ires-cre mice we found that the LC provides NE projections that innervate the rostromedial tegmental nucleus (RMTg), a brain region that has been implicated in the aversive properties of drugs. Because the neurocircuitry underlying the aversive effects of ethanol is poorly understood, we characterized the role of the LC to RMTg circuit in modulating aversive unconditioned responses and binge-like ethanol intake. Here, both male and female TH-ires-cre mice were cannulated in the RMTg and injected in the LC with rAVV viruses that encode for a Gq-expressing designer receptor exclusively activated by designer drugs (DREADDs) virus, or its control virus, to directly control the activity of NE neurons. A Latin Square paradigm was used to analyze both 20% ethanol and 3% sucrose consumption using the "drinking-in-the-dark" (DID) paradigm. Chemogenetic activation of the LC to RMTg pathway significantly blunted the binge-ethanol drinking, with no effect on the sucrose consumption, increased the emission of mid-frequency vocalizations and induced malaise-like behaviors in mice. The present findings indicate an important involvement of the LC to RMTg pathway in reducing ethanol consumption, and characterize unconditioned aversive reactions induced by activation of this noradrenergic pathway.
Collapse
Affiliation(s)
- Ana Paula S Dornellas
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Nathan W Burnham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Kendall L Luhn
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Maxwell V Petruzzi
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Montserrat Navarro
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA.
| |
Collapse
|
4
|
Higher sensitivity to ethanol's aversive properties in WLP (Warsaw Low Preferring) vs. WHP (Warsaw High Preferring) rats. Alcohol 2021; 90:67-73. [PMID: 33352200 DOI: 10.1016/j.alcohol.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
Ethanol can have both an aversive and rewarding effect, which may have a significant relationship to its individual preference. So far, the reasons for the high and low ethanol preference in the WHP (Warsaw High Preferring) and WLP (Warsaw Low Preferring) lines have not been found. WHP rats spontaneously drink over 5 g/kg/day of ethanol, while WLP rats drink under 2 g/kg/day. The purpose of the work was to study the sensitivity of WHP and WLP rats to the aversive effects of ethanol at doses of 1.5 g/kg and 2.0 g/kg in the conditioned taste aversion (CTA) procedure. Lower doses (0.5 and 1.0 g/kg, i.p. [intraperitoneally]) were tested earlier and only 1.0 g/kg produced a slight aversion in WLP rats. The secondary aim was to check the additional potential factors (blood ethanol concentration, pain sensitivity, anxiety-related behavior, learning, and memory) that may constitute an important differentiating feature of the WHP and WLP lines. For this purpose, the following tests were conducted: blood ethanol concentration, novel object recognition (NOR), flinch-jump, hot-plate, and elevated plus maze (EPM). The 1.5 g/kg i.p. dose of ethanol caused the development of an aversion only in WLP rats and the aversion extinguished in the post-conditioning phase. The 2.0 g/kg i.p. dose of ethanol resulted in the development of an aversion in both the tested groups, with the aversion being maintained throughout the whole post-conditioning period only in the WLP rats. There were no differences between the lines in terms of the blood ethanol concentration and the EPM tests. WHP rats had a higher pain sensitivity compared to WLP rats in flinch-jump and hot-plate tests. WLP rats showed a shorter exploration time for both objects compared to WHP in the NOR test. In conclusion, WHP and WLP rats differ in sensitivity to the aversive effects of ethanol. This difference may partially explain their opposite ethanol preference.
Collapse
|
5
|
Parker CC, Lusk R, Saba LM. Alcohol Sensitivity as an Endophenotype of Alcohol Use Disorder: Exploring Its Translational Utility between Rodents and Humans. Brain Sci 2020; 10:E725. [PMID: 33066036 PMCID: PMC7600833 DOI: 10.3390/brainsci10100725] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, relapsing disorder with multiple interacting genetic and environmental influences. Numerous studies have verified the influence of genetics on AUD, yet the underlying biological pathways remain unknown. One strategy to interrogate complex diseases is the use of endophenotypes, which deconstruct current diagnostic categories into component traits that may be more amenable to genetic research. In this review, we explore how an endophenotype such as sensitivity to alcohol can be used in conjunction with rodent models to provide mechanistic insights into AUD. We evaluate three alcohol sensitivity endophenotypes (stimulation, intoxication, and aversion) for their translatability across human and rodent research by examining the underlying neurobiology and its relationship to consumption and AUD. We show examples in which results gleaned from rodents are successfully integrated with information from human studies to gain insight in the genetic underpinnings of AUD and AUD-related endophenotypes. Finally, we identify areas for future translational research that could greatly expand our knowledge of the biological and molecular aspects of the transition to AUD with the broad hope of finding better ways to treat this devastating disorder.
Collapse
Affiliation(s)
- Clarissa C. Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Ryan Lusk
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
6
|
Dilley JE, Nicholson E, Fischer SM, Zimmer R, Froehlich JC. Alcohol Drinking and Blood Alcohol Concentration Revisited. Alcohol Clin Exp Res 2018; 42:260-269. [PMID: 29121399 PMCID: PMC5785465 DOI: 10.1111/acer.13549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND It is widely assumed that the amount of alcohol in the blood reflects the amount of alcohol consumed. However, several factors in addition to amount of alcohol consumed can influence blood alcohol concentration (BAC). This study examines the effect of alcohol dose, concentration, and volume on BAC in rats with a high-alcohol-drinking (HAD) phenotype. METHODS Study 1 examined the relationship between the amount of alcohol consumed and BAC. Alcohol-naïve, male, HAD rats (N = 7) were given access to alcohol for 2 h/d for 9 consecutive days with food and water ad libitum. Alcohol intake and BAC were measured at 30, 60, and 90 minutes after onset of access. Study 2 examined the effects of altering alcohol dose, concentration, and volume on BAC (as measured by area under the curve). Alcohol-naïve, male, HAD rats (N = 39) were infused, via an intragastric cannulus, with 1.16, 2.44, or 3.38 g alcohol/kg body weight (BW), produced by varying alcohol volume while holding concentration constant or by holding volume constant while varying concentration. Other rats were infused with 10, 15, or 20% v/v alcohol solutions while holding dose constant. RESULTS BAC was more strongly correlated with the ratio of alcohol intake (g/kg BW) to total fluid intake (mls) (R = 0.85 to 0.97, p < 0.05 to p < 0.001) than it was with the amount of alcohol consumed (g/kg BW) (R = 0.70 to 0.81, p < 0.05). No effect of alcohol dose was seen during the first hour following the onset of an alcohol infusion regardless of whether dose was achieved by altering alcohol volume or concentration. After 1 hour, higher alcohol doses were predictive of greater BACs. CONCLUSIONS The fact that a 3-fold difference in alcohol dose did not result in significant differences in BACs during the first 30 minutes after ingestion of alcohol has potentially important implications for interpretation of studies that measure alcohol-sensitive end points during this time.
Collapse
Affiliation(s)
- Julian E Dilley
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Emily Nicholson
- Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | | |
Collapse
|
7
|
Zahr NM, Rohlfing T, Mayer D, Luong R, Sullivan EV, Pfefferbaum A. Transient CNS responses to repeated binge ethanol treatment. Addict Biol 2016; 21:1199-1216. [PMID: 26283309 DOI: 10.1111/adb.12290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/14/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
The effects of ethanol (EtOH) on in vivo magnetic resonance (MR)-detectable brain measures across repeated exposures have not previously been reported. Of 28 rats weighing 340.66 ± 21.93 g at baseline, 15 were assigned to an EtOH group and 13 to a control group. Animals were exposed to five cycles of 4 days of intragastric (EtOH or dextrose) treatment and 10 days of recovery. Rats in both groups had structural MR imaging and whole-brain MR spectroscopy (MRS) scans at baseline, immediately following each binge period and after each recovery period (total = 11 scans per rat). Blood alcohol level at each of the five binge periods was ~300 mg/dl. Blood drawn at the end of the experiment did not show group differences for thiamine or its phosphate derivatives. Postmortem liver histopathology provided no evidence for hepatic steatosis, alcoholic hepatitis or alcoholic cirrhosis. Cerebrospinal fluid volumes of the lateral ventricles and cisterns showed enlargement with each binge EtOH exposure but recovery with each abstinence period. Similarly, changes in MRS metabolite levels were transient: levels of N-acetylaspartate and total creatine decreased, while those of choline-containing compounds and the combined resonance from glutamate and glutamine increased with each binge EtOH exposure cycle and then recovered during each abstinence period. Changes in response to EtOH were in expected directions based on previous single-binge EtOH exposure experiments, but the current MR findings do not provide support for accruing changes with repeated binge EtOH exposure.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| | | | - Dirk Mayer
- Neuroscience Program; SRI International; Menlo Park CA USA
- Diagnostic Radiology and Nuclear Medicine; University of Maryland School of Medicine; Baltimore MD USA
| | - Richard Luong
- Department of Comparative Medicine; Stanford University; Stanford CA USA
| | - Edith V. Sullivan
- Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
| | - Adolf Pfefferbaum
- Psychiatry and Behavioral Sciences; Stanford University School of Medicine; Stanford CA USA
- Neuroscience Program; SRI International; Menlo Park CA USA
| |
Collapse
|
8
|
Nelson NG, Suhaidi FA, DeAngelis RS, Liang NC. Appetite and weight gain suppression effects of alcohol depend on the route and pattern of administration in Long Evans rats. Pharmacol Biochem Behav 2016; 150-151:124-133. [DOI: 10.1016/j.pbb.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
9
|
Dyr W, Wyszogrodzka E, Paterak J, Siwińska-Ziółkowska A, Małkowska A, Polak P. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. Alcohol 2016; 51:63-9. [PMID: 26992702 DOI: 10.1016/j.alcohol.2015.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 11/27/2022]
Abstract
The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats.
Collapse
|
10
|
Sheth C, Furlong TM, Keefe KA, Taha SA. Lesion of the rostromedial tegmental nucleus increases voluntary ethanol consumption and accelerates extinction of ethanol-induced conditioned taste aversion. Psychopharmacology (Berl) 2016; 233:3737-3749. [PMID: 27549757 PMCID: PMC5063894 DOI: 10.1007/s00213-016-4406-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
RATIONALE Ethanol has rewarding and aversive properties, and the balance of these properties influences voluntary ethanol consumption. Preclinical and clinical evidence show that the aversive properties of ethanol limit intake. The neural circuits underlying ethanol-induced aversion learning are not fully understood. We have previously shown that the lateral habenula (LHb), a region critical for aversive conditioning, plays an important role in ethanol-directed behaviors. However, the neurocircuitry through which LHb exerts its actions is unknown. OBJECTIVE In the present study, we investigate a role for the rostromedial tegmental nucleus (RMTg), a major LHb projection target, in regulating ethanol-directed behaviors. METHODS Rats received either sham or RMTg lesions and were studied during voluntary ethanol consumption; operant ethanol self-administration, extinction, and yohimbine-induced reinstatement of ethanol-seeking; and ethanol-induced conditioned taste aversion (CTA). RESULTS RMTg lesions increased voluntary ethanol consumption and accelerated extinction of ethanol-induced CTA. CONCLUSIONS The RMTg plays an important role in regulating voluntary ethanol consumption, possibly by mediating ethanol-induced aversive conditioning.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112-5820, USA.
| | - Teri M. Furlong
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| | - Kristen A. Keefe
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| | - Sharif A. Taha
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| |
Collapse
|
11
|
Giuliano C, Goodlett CR, Economidou D, García-Pardo MP, Belin D, Robbins TW, Bullmore ET, Everitt BJ. The Novel μ-Opioid Receptor Antagonist GSK1521498 Decreases Both Alcohol Seeking and Drinking: Evidence from a New Preclinical Model of Alcohol Seeking. Neuropsychopharmacology 2015; 40:2981-92. [PMID: 26044906 PMCID: PMC4864633 DOI: 10.1038/npp.2015.152] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 02/02/2023]
Abstract
Distinct environmental and conditioned stimuli influencing ethanol-associated appetitive and consummatory behaviors may jointly contribute to alcohol addiction. To develop an effective translational animal model that illuminates this interaction, daily seeking responses, maintained by alcohol-associated conditioned stimuli (CSs), need to be dissociated from alcohol drinking behavior. For this, we established a procedure whereby alcohol seeking maintained by alcohol-associated CSs is followed by a period during which rats have the opportunity to drink alcohol. This cue-controlled alcohol-seeking procedure was used to compare the effects of naltrexone and GSK1521498, a novel selective μ-opioid receptor antagonist, on both voluntary alcohol-intake and alcohol-seeking behaviors. Rederived alcohol-preferring, alcohol-nonpreferring, and high-alcohol-drinking replicate 1 line of rats (Indiana University) first received 18 sessions of 24 h home cage access to 10% alcohol and water under a 2-bottle choice procedure. They were trained subsequently to respond instrumentally for access to 15% alcohol under a second-order schedule of reinforcement, in which a prolonged period of alcohol-seeking behavior was maintained by contingent presentations of an alcohol-associated CS acting as a conditioned reinforcer. This seeking period was terminated by 20 min of free alcohol drinking access that achieved significant blood alcohol concentrations. The influence of pretreatment with either naltrexone (0.1-1-3 mg/kg) or GSK1521498 (0.1-1-3 mg/kg) before instrumental sessions was measured on both seeking and drinking behaviors, as well as on drinking in the 2-bottle choice procedure. Naltrexone and GSK1521498 dose-dependently reduced both cue-controlled alcohol seeking and alcohol intake in the instrumental context as well as alcohol intake in the choice procedure. However, GSK1521498 showed significantly greater effectiveness than naltrexone, supporting its potential use for promoting abstinence and preventing relapse in alcohol addiction.
Collapse
Affiliation(s)
- Chiara Giuliano
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK, Tel: +44 (0)1223 65292, Fax: +44 (0)1223 333564, E-mail:
| | - Charles R Goodlett
- Department of Psychology, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| | - Daina Economidou
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK
| | - Maria P García-Pardo
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, School of Psychology, University of Valencia, Valencia, Spain
| | - David Belin
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK
| | - Edward T Bullmore
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, University of Cambridge, Cambridge, UK,Clinical Unit Cambridge and Academic DPU, GlaxoSmithKline R&D, Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Barry J Everitt
- Behavioral and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Phillips TJ, Shabani S. An animal model of differential genetic risk for methamphetamine intake. Front Neurosci 2015; 9:327. [PMID: 26441502 PMCID: PMC4585292 DOI: 10.3389/fnins.2015.00327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
The question of whether genetic factors contribute to risk for methamphetamine (MA) use and dependence has not been intensively investigated. Compared to human populations, genetic animal models offer the advantages of control over genetic family history and drug exposure. Using selective breeding, we created lines of mice that differ in genetic risk for voluntary MA intake and identified the chromosomal addresses of contributory genes. A quantitative trait locus was identified on chromosome 10 that accounts for more than 50% of the genetic variance in MA intake in the selected mouse lines. In addition, behavioral and physiological screening identified differences corresponding with risk for MA intake that have generated hypotheses that are testable in humans. Heightened sensitivity to aversive and certain physiological effects of MA, such as MA-induced reduction in body temperature, are hallmarks of mice bred for low MA intake. Furthermore, unlike MA-avoiding mice, MA-preferring mice are sensitive to rewarding and reinforcing MA effects, and to MA-induced increases in brain extracellular dopamine levels. Gene expression analyses implicate the importance of a network enriched in transcription factor genes, some of which regulate the mu opioid receptor gene, Oprm1, in risk for MA use. Neuroimmune factors appear to play a role in differential response to MA between the mice bred for high and low intake. In addition, chromosome 10 candidate gene studies provide strong support for a trace amine-associated receptor 1 gene, Taar1, polymorphism in risk for MA intake. MA is a trace amine-associated receptor 1 (TAAR1) agonist, and a non-functional Taar1 allele segregates with high MA consumption. Thus, reduced TAAR1 function has the potential to increase risk for MA use. Overall, existing findings support the MA drinking lines as a powerful model for identifying genetic factors involved in determining risk for harmful MA use. Future directions include the development of a binge model of MA intake, examining the effect of withdrawal from chronic MA on MA intake, and studying potential Taar1 gene × gene and gene × environment interactions. These and other studies are intended to improve our genetic model with regard to its translational value to human addiction.
Collapse
Affiliation(s)
- Tamara J. Phillips
- VA Portland Health Care SystemPortland, OR, USA
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | | |
Collapse
|
13
|
Barkley-Levenson AM, Cunningham CL, Smitasin PJ, Crabbe JC. Rewarding and aversive effects of ethanol in High Drinking in the Dark selectively bred mice. Addict Biol 2015; 20:80-90. [PMID: 23910826 DOI: 10.1111/adb.12079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Both rewarding and aversive effects contribute to alcohol consumption. Animals genetically predisposed to be high drinkers show reduced sensitivity to the aversive effects of alcohol, and in some instances, increased sensitivity to alcohol's rewarding effects. The present studies tested the high drinking in the dark (HDID) selected lines, a genetic model of drinking to intoxication, to determine whether intake in these mice was genetically related to sensitivity to alcohol aversion or reward. Male HDID mice from the first and second replicate lines (HDID-1 and HDID-2, respectively) and mice from the heterogeneous progenitor control population (HS/Npt, or HS) were conditioned for a taste aversion to a salt solution using two doses of alcohol, and lithium chloride (LiCl) and saline controls. In separate experiments, male and female HDID-1, HDID-2 and HS mice were conditioned for place preference using alcohol. HDID mice were found to have an attenuated sensitivity to alcohol at a moderate (2 g/kg) dose compared to HS mice, but did not differ on conditioned taste aversion to a high (4 g/kg) dose or LiCl or saline injections. HDID and HS mice showed comparable development of alcohol-induced conditioned place preference. These results indicate that high blood alcohol levels after drinking in the HDID mice is genetically related to attenuated aversion to alcohol, while sensitivity to alcohol reward is not altered in these mice. Thus, HDID mice may find a moderate dose of alcohol to be less aversive than control mice and consequently may drink more because of this reduced aversive sensitivity.
Collapse
Affiliation(s)
- Amanda M. Barkley-Levenson
- Department of Behavioral Neuroscience; Oregon Health & Science University; Portland OR USA
- Portland Alcohol Research Center; VA Medical Center; Portland OR USA
| | | | - Phoebe J. Smitasin
- Department of Behavioral Neuroscience; Oregon Health & Science University; Portland OR USA
| | - John C. Crabbe
- Department of Behavioral Neuroscience; Oregon Health & Science University; Portland OR USA
- Portland Alcohol Research Center; VA Medical Center; Portland OR USA
| |
Collapse
|
14
|
Effect of sex on ethanol consumption and conditioned taste aversion in adolescent and adult rats. Psychopharmacology (Berl) 2014; 231:1831-9. [PMID: 24158502 PMCID: PMC4058910 DOI: 10.1007/s00213-013-3319-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/05/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE Vulnerability to alcoholism is determined by many factors, including the balance of pleasurable vs. aversive alcohol-induced sensations: pleasurable sensations increase intake, while aversive sensations decrease it. Female sex and adolescent age are associated with lower sensitivity to intake-reducing effects and more rapid development of alcohol abuse. OBJECTIVES This study assessed voluntary drinking and the aversive effects of alcohol to determine whether these measures are inversely related across the sexes and development. METHODS Voluntary drinking of 20 % ethanol in an every-other-day (EOD) availability pattern and the dose-response relationship of ethanol conditioned taste aversion (CTA) were assessed in male and female adolescent and adult rats. RESULTS CTA was sex specific in adult but not adolescent rats, with adult females exhibiting less aversion. Voluntary ethanol consumption varied according to age and individual differences but was not sex specific. Adolescents initially drank more than adults, exhibited greater day-to-day variation in consumption, were more susceptible to the alcohol deprivation effect, and took longer to establish individual differences in consumption patterns. CONCLUSIONS These results show that the emergence of intake patterns differs between adolescents and adults. Adolescents as a group initiate drinking at high levels but decrease intake as they mature. A subset of adolescents maintained high drinking levels into adulthood. In contrast, most adults consumed at steady, low levels, but a small subset quickly established and maintained high-consumption patterns. Adolescents also showed marked deprivation-induced increases. Sex differences were not observed in EOD drinking during either adolescence or adulthood.
Collapse
|
15
|
Early ethanol and water consumption: accumulating experience differentially regulates drinking pattern and bout parameters in male alcohol preferring (P) vs. Wistar and Sprague Dawley rats. Physiol Behav 2014; 123:20-32. [PMID: 24095931 DOI: 10.1016/j.physbeh.2013.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/14/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022]
Abstract
Alcohol-preferring (P) rats develop high ethanol intake over several weeks of water/10% ethanol (10E) choice drinking. However, it is not yet clear precisely what components of drinking behavior undergo modification to achieve higher intake. Our concurrent report compared precisely measured daily intake in P vs. non-selected Wistar and Sprague Dawley (SD) rats. Here we analyze their drinking patterns and bouts to clarify microbehavioral components that are common to rats of different genetic backgrounds, vs. features that are unique to each. Under sole-fluid conditions P, Wistar and SD rats all consumed water at a high initial rate followed by a slow maintenance phase, but 10E - in a distinctly different step-like pattern of evenly distributed bouts. During choice period, 10E vs. water patterns for P rat appeared as an overlap of sole-fluid patterns. The SD rat choice patterns resembled sole-fluid patterns but were less regular. Choice patterns in Wistar differed from both P and SD rats, by consisting of intermixed small frequent episodes of drinking both 10E and water. Wistar and SD rats increased choice ethanol intake by elevating the number of bouts. A key finding was that P rat increased choice ethanol intake through a gradual increase of the bout size and duration, but kept bout number constant. This supports the hypothesis that genetic selection modifies microbehavioral machinery controlling drinking bout initiation, duration, and other pattern features. Precision analysis of drinking patterns and bouts allows differentiation between genetic lines, and provides a venue for study of localized circuit and transmitter influences mediating mesolimbic control over ethanol consumption.
Collapse
|
16
|
Verendeev A, Riley AL. The role of the aversive effects of drugs in self-administration: assessing the balance of reward and aversion in drug-taking behavior. Behav Pharmacol 2013; 24:363-74. [PMID: 23863641 DOI: 10.1097/fbp.0b013e32836413d5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the first experimental demonstration that a drug of abuse supports instrumental behavior, drugs have been discussed in the context of their rewarding effects, which are assumed to drive and maintain drug-taking behavior. Indeed, drug reward has been fundamental in the formulation of most models of drug use, abuse, and addiction. Over the last several decades, however, drugs of abuse have been increasingly recognized as complex pharmacological compounds producing multiple stimulus effects, not all of which are rewarding. The aversive effects of such drugs, for example, have been described by a number of researchers working in the field, although few attempts have been made to investigate the role of these aversive effects in drug taking. The present paper offers a historical perspective on the view that drugs of abuse are complex pharmacological compounds with multiple stimulus effects. In doing so, we argue that the discussion of drug reward only may be insufficient in accounting for drug taking and we present evidence for the theoretical position that both the rewarding and the aversive effects of drugs should be taken into consideration in ongoing attempts to model drug-taking behavior. The present review summarizes several decades of research characterizing the aversive effects of major drugs of abuse, as well as more recent studies seeking to assess directly the role of drug aversion in drug taking.
Collapse
Affiliation(s)
- Andrey Verendeev
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | |
Collapse
|
17
|
Radke AK, Holtz NA, Gewirtz JC, Carroll ME. Reduced emotional signs of opiate withdrawal in rats selectively bred for low (LoS) versus high (HiS) saccharin intake. Psychopharmacology (Berl) 2013; 227:117-26. [PMID: 23254375 PMCID: PMC3624049 DOI: 10.1007/s00213-012-2945-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/01/2012] [Indexed: 02/01/2023]
Abstract
RATIONALE Rats bred for high (HiS) and low (LoS) saccharin intake exhibit divergent behavioral responses to multiple drugs of abuse, with HiS rats displaying greater vulnerability to drug taking. Previous research indicates that this effect may be due to increased sensitivity to reward in HiS rats and to the aversive effects of acute drug administration in LoS rats. OBJECTIVE The current study investigated whether HiS and LoS rats also exhibit different behavioral signs of withdrawal following one or repeated opiate exposures. METHODS Emotional signs of opiate withdrawal were assessed with potentiation of the acoustic startle reflex and conditioned place aversion (CPA) in male and female HiS and LoS rats. Startle was measured before and 4 h after a 10-mg/kg injection of morphine on days 1, 2, and 7 of opiate exposure. CPA was induced with a 2-day, naloxone-precipitated conditioning paradigm. Somatic signs of withdrawal and weight loss were also measured. RESULTS Male and female LoS rats exhibited lower startle potentiation than HiS rats on the seventh day of morphine exposure. LoS male rats also failed to develop a CPA to morphine withdrawal. No differences in physical withdrawal signs were observed between HiS and LoS rats, but males of both lines had more physical signs of withdrawal than females. CONCLUSIONS These results suggest that LoS rats are less vulnerable to the negative emotional effects of morphine withdrawal than HiS rats. A less severe withdrawal syndrome may contribute to decreased levels of drug taking in the LoS line.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
,National Institute of Alcohol Abuse and Alcoholism National Institutes of Health 5625 Fishers Lane Rockville, MD 20852 Phone: 301-443-4052 Fax: 301-480-1952
| | - Nathan A. Holtz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan C. Gewirtz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
,Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marilyn E. Carroll
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Moore EM, Forrest RD, Boehm SL. Genotype modulates age-related alterations in sensitivity to the aversive effects of ethanol: an eight inbred strain analysis of conditioned taste aversion. GENES, BRAIN, AND BEHAVIOR 2013; 12:70-7. [PMID: 23171343 PMCID: PMC3553292 DOI: 10.1111/gbb.12004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/18/2012] [Accepted: 11/15/2012] [Indexed: 02/04/2023]
Abstract
Adolescent individuals display altered behavioral sensitivity to ethanol, which may contribute to the increased ethanol consumption seen in this age-group. However, genetics also exert considerable influence on both ethanol intake and sensitivity. Currently there is little research assessing the combined influence of developmental and genetic alcohol sensitivities. Sensitivity to the aversive effects of ethanol using a conditioned taste aversion (CTA) procedure was measured during both adolescence (P30) and adulthood (P75) in eight inbred mouse strains (C57BL/6J, DBA/2J, 129S1/SvImJ, A/J, BALB/cByJ, BTBR T(+) tf/J, C3H/HeJ and FVB/NJ). Adolescent and adult mice were water deprived, and subsequently provided with access to 0.9% (v/v) NaCl solution for 1 h. Immediately following access mice were administered ethanol (0, 1.5, 2.25 and 3 g/kg, ip). This procedure was repeated in 72 h intervals for a total of five CTA trials. Sensitivity to the aversive effects of ethanol was highly dependent upon both strain and age. Within an inbred strain, adolescent animals were consistently less sensitive to the aversive effects of ethanol than their adult counterparts. However, the dose of ethanol required to produce an aversion response differed as a function of both age and strain.
Collapse
Affiliation(s)
- Eileen M. Moore
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University – SUNY Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
- Indiana Alcohol Research Center, Psychobiology of Addictions, Department of Psychology, Purdue School of Science, IUPUI, 402 N. Blackford Street, LD 124, Indianapolis, IN 46202, USA
| | - Robert D. Forrest
- Indiana Alcohol Research Center, Psychobiology of Addictions, Department of Psychology, Purdue School of Science, IUPUI, 402 N. Blackford Street, LD 124, Indianapolis, IN 46202, USA
| | - Stephen L. Boehm
- Indiana Alcohol Research Center, Psychobiology of Addictions, Department of Psychology, Purdue School of Science, IUPUI, 402 N. Blackford Street, LD 124, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Abstract
Animal models have been successfully developed to mimic and study alcoholism. These models have the unique feature of allowing the researcher to control for the genetic characteristics of the animal, alcohol exposure and environment. Moreover, these animal models allow pharmacological, neurochemical and behavioral manipulations otherwise impossible. Unquestionably, one of the major contributions to the understanding of the neurobiological basis of alcoholism comes from data that have been obtained from the study of genetically selected alcohol preferring rat lines and from the consequences that alcohol drinking and environmental manipulations, (i.e., protracted alcohol drinking, intoxication, exposure to stress, etc.) have on them. In fact, if on the one hand genetic factors may account for about 50-60% of the risk of developing alcohol dependence, on the other hand protracted alcohol exposure is a necessary precondition to actually develop the disease, while environmental vulnerability factors may be crucial for disease progression. The present article will offer an overview of the different genetically selected alcohol preferring rat lines developed and used to study alcoholism. The predictive, face and construct validity of these animal models and the translational significance of findings achieved through their use will be critically discussed.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Madonna delle Carceri 9, 62032 Camerino, MC, Italy.
| |
Collapse
|
20
|
de Wit H, Phillips TJ. Do initial responses to drugs predict future use or abuse? Neurosci Biobehav Rev 2012; 36:1565-76. [PMID: 22542906 PMCID: PMC3372699 DOI: 10.1016/j.neubiorev.2012.04.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/09/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Individuals vary in their initial reactions to drugs of abuse in ways that may contribute to the likelihood of subsequent drug use. In humans, most drugs of abuse produce positive subjective states such as euphoria and feelings of well-being, which may facilitate repeated use. In nonhumans, many drugs initially increase locomotor activity and produce discriminative stimulus effects, both of which have been considered to be models of human stimulant and subjective states. Both humans and nonhumans vary in their sensitivity to early acute drug effects in ways that may predict future use or self-administration, and some of these variations appear to be genetic in origin. However, it is not known exactly how the initial responses to drugs in either humans or nonhumans relate to subsequent use or abuse. In humans, positive effects of drugs facilitate continued use of a drug while negative effects discourage use, and in nonhumans, greater genetic risk for drug intake is predicted by reduced sensitivity to drug aversive effects; but whether these initial responses affect escalation of drug use, and the development of dependence is currently unknown. Although early use of a drug is a necessary step in the progression to abuse and dependence, other variables may be of greater importance in the transition from use to abuse. Alternatively, the same variables that predict initial acute drug effects and early use may significantly contribute to continued use, escalation and dependence. Here we review the existing evidence for relations between initial direct drug effects, early use, and continued use. Ultimately, these relations can only be determined from systematic longitudinal studies with comprehensive assessments from early drug responses to progression of problem drug use. In parallel, additional investigation of initial responses in animal models as predictors of drug use will shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, MC3077, Chicago, IL 60637, United States.
| | | |
Collapse
|
21
|
Lopez MF, Griffin WC, Melendez RI, Becker HC. Repeated cycles of chronic intermittent ethanol exposure leads to the development of tolerance to aversive effects of ethanol in C57BL/6J mice. Alcohol Clin Exp Res 2012; 36:1180-7. [PMID: 22309159 PMCID: PMC3527904 DOI: 10.1111/j.1530-0277.2011.01717.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/05/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Repeated cycles of chronic intermittent ethanol (CIE) exposure lead to increased voluntary ethanol (EtOH) intake in C57BL/6J mice. This study evaluates the development of tolerance to EtOH's aversive effects in CIE exposure. METHODS Adult male C57BL/6J mice were trained to drink 15% EtOH (vs. water) in a limited access procedure and then exposed to CIE (EtOH mice) or air (control [CTL] mice) for 5 cycles alternating with weekly access to EtOH drinking. Following the 4th CIE cycle, the aversive effects of EtOH were evaluated using a conditioned taste aversion (CTA) paradigm with 1% saccharin as the conditioned stimulus. Several doses of EtOH (0, 1, 2, and 3 g/kg) and LiCl (0.4 M, 0.02 ml/g) served as unconditioned stimuli. Finally, mice underwent a 5th CIE cycle to measure blood and brain concentrations following a 2 g/kg EtOH dose. RESULTS CIE exposure increased EtOH drinking in EtOH mice while drinking in CTL mice remained stable. The lowest EtOH dose (1 g/kg) did not induce CTA in either group, but the highest dose (3 g/kg) produced CTA in both groups (49% reduction for CTL vs. 25% reduction for EtOH) although the group differences were not statistically significant. However, the 2 g/kg EtOH dose induced a significant aversion in CTL mice (27% reduction) but not in EtOH mice (20% increase), indicating tolerance to EtOH's aversive effects. LiCl caused a similar aversion in CTL and EtOH mice (50% reduction). Finally, blood and brain ethanol concentrations were not different between CTL and EtOH mice following a 2 g/kg EtOH dose. CONCLUSIONS The data indicate that CIE exposure produces tolerance to the aversive effects of 2 g/kg EtOH. This effect does not appear to be related to a learning deficit or altered EtOH pharmacokinetics. These data support the notion that tolerance to EtOH's aversive effects may contribute to excessive EtOH drinking in EtOH-dependent mice.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
22
|
Profound reduction in sensitivity to the aversive effects of methamphetamine in mice bred for high methamphetamine intake. Neuropharmacology 2011; 62:1134-41. [PMID: 22118879 DOI: 10.1016/j.neuropharm.2011.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/03/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Reduced sensitivity to aversive effects of methamphetamine (MA) may increase risk for MA abuse. Studies in two replicate sets of mouse lines that were selectively bred for high and low levels of MA intake support this view. Current studies examined the extent of insensitivity to aversive MA effects of mice bred for high levels of MA drinking. Conditioning procedures in which drugs are delivered shortly after cue exposure have been used to detect aversive drug effects and, in some cases, are more sensitive to such effects. Aversive effects induced by MA injected immediately after exposure to cues from two different sensory modalities were examined. In addition, effects of higher MA doses than those used previously were examined. MA-associated place conditioning utilized tactile cues, whereas MA-induced taste conditioning utilized a novel tastant. Second replicate, MA high drinking (MAHDR-2) and low drinking (MALDR-2) mice were treated with doses of MA up to 4 mg/kg. MAHDR-2 mice were insensitive to aversive effects of MA, except after place conditioning with the 4 mg/kg dose; MALDR-2 mice exhibited sensitivity to aversive effects of MA at doses as low as 1 mg/kg. These studies show that the expression of aversion is dependent upon procedure and MA dose, and that MAHDR-2 mice have markedly reduced sensitivity to the aversive effects of MA. The current and previous results support a strong genetic relationship between level of MA intake and level of sensitivity to aversive effects of MA, a factor that could impact risk for MA use in humans. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
|
23
|
Holstein SE, Spanos M, Hodge CW. Adolescent C57BL/6J mice show elevated alcohol intake, but reduced taste aversion, as compared to adult mice: a potential behavioral mechanism for binge drinking. Alcohol Clin Exp Res 2011; 35:1842-51. [PMID: 21575017 DOI: 10.1111/j.1530-0277.2011.01528.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Binge alcohol drinking during adolescence is a serious health problem that may increase future risk of an alcohol use disorder. Although there are several different procedures by which to preclinically model binge-like alcohol intake, limited-access procedures offer the advantage of achieving high voluntary alcohol intake and pharmacologically relevant blood alcohol concentrations (BACs). Therefore, in the current study, developmental differences in binge-like alcohol drinking using a limited-access cycling procedure were examined. In addition, as alcohol drinking has been negatively correlated with sensitivity to the aversive properties of alcohol, we examined developmental differences in sensitivity to an alcohol-induced conditioned taste aversion (CTA). METHODS Binge-like alcohol consumption was investigated in adolescent (4 weeks) and adult (10 weeks) male C57BL/6J mice for 2 to 4 h/d for 16 days. Developmental differences in sensitivity to an alcohol-induced CTA were examined in adolescent and adult mice, with saline or alcohol (3 or 4 g/kg) repeatedly paired with the intake of a novel tastant (NaCl). RESULTS Adolescent mice showed a significant increase in alcohol intake as compared to adults, with adolescents achieving higher BACs and increasing alcohol consumption over successive cycles of the binge procedure. Conversely, adolescent mice exhibited a dose-dependent reduction in sensitivity to the aversive properties of alcohol, as compared to adult mice, with adolescent mice failing to develop a CTA to 3 g/kg alcohol. Finally, extinction of an alcohol CTA was observed following conditioning with a higher dose of alcohol in adolescent, versus adult, mice. CONCLUSIONS These results indicate that adolescent mice consume more alcohol, per kilogram body weight, than adults in a binge-like model of alcohol drinking and demonstrate a blunted sensitivity to the conditioned aversive effects of alcohol. Overall, this supports a behavioral framework by which heightened binge alcohol intake during adolescence occurs, in part, via a reduced sensitivity to the aversive properties of alcohol.
Collapse
Affiliation(s)
- Sarah E Holstein
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | | | | |
Collapse
|
24
|
Sullivan JM, Risacher SL, Normandin MD, Yoder KK, Froehlich JC, Morris ED. Imaging of alcohol-induced dopamine release in rats:preliminary findings with [(11) C]raclopride PET. Synapse 2011; 65:929-37. [PMID: 21308803 DOI: 10.1002/syn.20921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 12/23/2010] [Indexed: 02/05/2023]
Abstract
Microdialysis studies report that systemic alcohol increases extracellular dopamine (DA) in the rat striatum. The present study examined whether changes in striatal DA could be detected in rats using small animal positron emission tomography (PET). PET images were acquired in 44 alcohol-naïve male Wistar and alcohol-preferring (P) rats. Subjects received up to three [(11) C]raclopride scans (rest, alcohol, and saline). Animals were anesthetized with isoflurane and secured on a stereotactic-like holder during all scans. Blood samples were collected from the tail or lateral saphenous vein of 12 animals 10 min after tracer injection for determination of blood alcohol concentration (BAC). Time activity curves were extracted from the striatum and the cerebellum and binding potential (BP(ND) ) was calculated as a measure of D(2) receptor availability. Wistars given 1.0 g kg(-1) alcohol (20%v/v) i.v. or 3.0 g kg(-1) alcohol (20%v/v) i.p. showed significant alcohol-induced decreases in BP(ND) . In P rats (given 1.5, 2.25, or 3.0 g kg(-1) alcohol), no individual group showed a statistical effect of alcohol on BP(ND) , but taken together, all P rats receiving i.p. alcohol had significantly lower BP(ND) than rest or saline scans. Large decreases in BP(ND) were primarily observed in rats with BAC above 200 mg%. Also, a significant difference was found between baseline BP(ND) of Wistars who had undergone jugular catheterization surgery for i.v. alcohol administration and those who had not. Preliminary results suggest that alcohol-induced DA release in the rat striatum is detectable using small animal PET given sufficiently large cohorts and adequate blood alcohol levels.
Collapse
Affiliation(s)
- Jenna M Sullivan
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lopez MF, Grahame NJ, Becker HC. Development of ethanol withdrawal-related sensitization and relapse drinking in mice selected for high- or low-ethanol preference. Alcohol Clin Exp Res 2011; 35:953-62. [PMID: 21314693 DOI: 10.1111/j.1530-0277.2010.01426.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptibility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. METHODS Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 h/d) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hours after final ethanol (or air) exposure for 5 consecutive days. RESULTS Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared with HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice did not change from baseline levels of intake. In contrast, HAP-2 female and LAP-2 mice of both sexes did not show changes in ethanol intake as a consequence of intermittent ethanol exposure. CONCLUSIONS Overall, these results indicate that the magnitude of ethanol withdrawal-related seizures is inversely related to inherited ethanol intake preference. Additionally, intermittent ethanol vapor exposure appears more likely to affect high-drinking mice (C57BL/6J and HAP-2) than low drinkers, although these animals are less affected by ethanol withdrawal.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 29425, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Pautassi RM, Nizhnikov ME, Truxell E, Varlinskaya EI, Spear NE. Ontogeny of ethanol intake in alcohol preferring (P) and alcohol nonpreferring (NP) rats. Dev Psychobiol 2010; 53:234-45. [PMID: 21400486 DOI: 10.1002/dev.20516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/04/2010] [Indexed: 11/09/2022]
Abstract
There is a scarcity of research on ethanol affinity in alcohol-preferring (P) rats before weaning and it is unknown if neonate P rats exhibit ethanol intake preferences comparable to those observed in adult P rats. This study examined ethanol intake in P and alcohol-nonpreferring (NP) rats 3 hr after birth (Experiment 1, surrogate nipple test), at postnatal days (PD) 8, 12, and 18 (Experiment 2, consumption from the floor procedure) and at adolescence (Experiment 3, two-bottle choice test at PD32). The high-preference genotype was readily expressed 3 hr after birth. P neonates drank twice as much ethanol as their NP counterparts. This heightened ethanol preference transiently reversed at P8, reemerged as weaning approached (P18) and was fully expressed during adolescence. These results help to clarify the ontogeny of genetic predisposition for ethanol. Genetic predisposition for higher ethanol intake in P than in NP rats seems to be present immediately following birth.
Collapse
Affiliation(s)
- Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Córdoba, C.P 5000, Argentina.
| | | | | | | | | |
Collapse
|
28
|
Anderson RI, Varlinskaya EI, Spear LP. Ethanol-induced conditioned taste aversion in male sprague-dawley rats: impact of age and stress. Alcohol Clin Exp Res 2010; 34:2106-15. [PMID: 20860618 DOI: 10.1111/j.1530-0277.2010.01307.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Age-specific characteristics may contribute to the elevation in ethanol intake commonly reported among adolescents compared to adults. This study was designed to examine age-related differences in sensitivity to ethanol's aversive properties using a conditioned taste aversion (CTA) procedure with sucrose serving as the conditioned stimulus (CS). Given that ontogenetic differences in responsiveness to stressors have been previously reported, the role of stressor exposure on the development of CTA was also assessed. METHODS Experiment 1 examined the influence of 5 days of prior restraint stress exposure on the expression of CTA in a 2-bottle test following 1 pairing of a sucrose solution with ethanol. In Experiment 2, the effects of 7 days of social isolation on the development of CTA were observed using a 1-bottle test following multiple sucrose-ethanol pairings. RESULTS This study revealed age-related differences in the development of ethanol-induced CTA. In Experiment 1, adolescents required a higher dose of ethanol than adults to demonstrate an aversion. In Experiment 2, adolescents required not only a higher ethanol dose but also more pairings of ethanol with the sucrose CS. No effects of prior stressor exposure were observed in either experiment. CONCLUSIONS Together, these experiments demonstrate an adolescent-specific insensitivity to the aversive properties of ethanol that elicit CTA, a pattern not influenced by repeated restraint stress or housing in social isolation. This age-related insensitivity to the dysphoric effects of ethanol is consistent with other work from our laboratory, adding further to the evidence that adolescent rats are less susceptible to negative consequences of ethanol that may serve as cues to curb consumption.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, New York 13902-6000, USA
| | | | | |
Collapse
|
29
|
Schramm-Sapyta NL, DiFeliceantonio AG, Foscue E, Glowacz S, Haseeb N, Wang N, Zhou C, Kuhn CM. Aversive effects of ethanol in adolescent versus adult rats: potential causes and implication for future drinking. Alcohol Clin Exp Res 2010; 34:2061-9. [PMID: 20860614 DOI: 10.1111/j.1530-0277.2010.01302.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Many people experiment with alcohol and other drugs of abuse during their teenage years. Epidemiological evidence suggests that younger initiates into drug taking are more likely to develop problematic drug seeking behavior, including binge and other high-intake behaviors. The level of drug intake for any individual depends on the balance of rewarding and aversive effects of the drug in that individual. Multiple rodent studies have demonstrated that aversive effects of drugs of abuse are reduced in adolescent compared to adult animals. In this study, we addressed 2 key questions: First, do reduced aversive effects of ethanol in younger rats correlate with increased ethanol consumption? Second, are the reduced aversive effects in adolescents attributable to reduced sensitivity to ethanol's physiologic effects? METHODS Adolescent and adult rats were tested for ethanol conditioned taste aversion (CTA) followed by a voluntary drinking period, including postdeprivation consumption. Multivariate regression was used to assess correlations. In separate experiments, adolescent and adult rats were tested for their sensitivity to the hypothermic and sedative effects of ethanol, and for blood ethanol concentrations (BECs). RESULTS We observed that in adolescent rats but not adults, taste aversion was inversely correlated with postdeprivation consumption. Adolescents also exhibited a greater increase in consumption after deprivation than adults. Furthermore, the age difference in ethanol CTA was not attributable to differences in hypothermia, sedation, or BECs. CONCLUSIONS These results suggest that during adolescence, individuals that are insensitive to aversive effects are most likely to develop problem drinking behaviors. These results underscore the importance of the interaction between developmental stage and individual variation in sensitivity to alcohol.
Collapse
|
30
|
Crabbe JC, Bell RL, Ehlers CL. Human and laboratory rodent low response to alcohol: is better consilience possible? Addict Biol 2010; 15:125-44. [PMID: 20148776 DOI: 10.1111/j.1369-1600.2009.00191.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
If people are brought into the laboratory and given alcohol, there are pronounced differences among individuals in many responses to the drug. Some participants in alcohol challenge protocols show a cluster of 'low level of responses to alcohol' determined by observing post-drinking-related changes in subjective, motor and physiological effects at a given dose level. Those individuals characterized as having low level of response (LR) to alcohol have been shown to be at increased risk for a lifetime diagnosis of alcohol dependence (AD), and this relationship between low LR and AD appears to be in part genetic. LR to alcohol is an area where achieving greater consilience between the human and the rodent phenotypes would seem to be highly likely. However, despite extensive data from both human and rodent studies, few attempts have been made to evaluate the human and animal data systematically in order to understand which aspects of LR appear to be most directly comparable across species and thus the most promising for further study. We review four general aspects of LR that could be compared between humans and laboratory animals: (1) behavioral measures of subjective intoxication; (2) body sway; (3) endocrine responses; and (4) stimulant, autonomic and electrophysiological responses. None of these aspects of LR provide completely face-valid direct comparisons across species. Nevertheless, one of the most replicated findings in humans is the low subjective response, but, as it may reflect either aversively valenced and/or positively valenced responses to alcohol as usually assessed, it is unclear which rodent responses are analogous. Stimulated heart rate appears to be consistent in animal and human studies, although at-risk subjects appear to be more rather than less sensitive to alcohol using this measure. The hormone and electrophysiological data offer strong possibilities of understanding the neurobiological mechanisms, but the rodent data in particular are rather sparse and unsystematic. Therefore, we suggest that more effort is still needed to collect data using refined measures designed to be more directly comparable in humans and animals. Additionally, the genetically mediated mechanisms underlying this endophenotype need to be characterized further across species.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and VA Medical Center, Portland, OR 97239, USA.
| | | | | |
Collapse
|
31
|
Rezvani AH, Sexton H, Levin ED. Persistent high alcohol consumption in alcohol-preferring (P) rats results from a lack of normal aversion to alcohol. Alcohol Alcohol 2010; 45:219-22. [PMID: 20356869 DOI: 10.1093/alcalc/agq020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS In this study, we tested the impact of pretreatment with alcohol on subsequent alcohol drinking in outbred Sprague-Dawley and selectively bred alcohol-preferring (P) rats. METHODS As a pretreatment, male Sprague-Dawley and P rats were given a passive oral administration of either alcohol (1.0 g/kg) or tap water. Then, they were given free choice of drinking alcohol (5% v/v) or water in their home cages, which was measured over 4 weeks. RESULTS Without alcohol pretreatment, there was no significant strain difference in alcohol preference; both strains preferred 5% (v/v) alcohol solution. The strain difference was only apparent in the groups given alcohol pretreatment. This arose from the fact that alcohol pretreatment significantly reduced alcohol preference in the Sprague-Dawley rats to a level well below 50%, while it did not alter drinking behavior in P rats. The same effects were seen with total alcohol consumption (g/kg/day). These effects persisted throughout the 4 weeks of the study. CONCLUSIONS The principal difference between the Sprague-Dawley and P rats was that the P rats did not show the normal aversion to alcohol after forced exposure to alcohol that the Sprague-Dawley rats showed. One of the potential contributors to high alcohol intake and preference in P rats may be lack of sensitivity to aversive effects of alcohol.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 3412, Durham, NC 27710, USA.
| | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Rats avoid intake of a palatable taste cue when paired with all drugs of abuse tested. Evidence suggests that, at least for morphine and cocaine, rats avoid the taste cue because they are anticipating the rewarding properties of the drug. Thus, the suppressive effects of a rewarding sucrose solution and cocaine, but not those of the putatively aversive agent, lithium chloride (LiCl), are exaggerated in drug-sensitive Lewis rats. Likewise, the suppressive effects of sucrose and morphine, but not those of LiCl, are eliminated by bilateral lesions of the gustatory thalamus. Unlike morphine and cocaine, it is less clear whether rewarding or aversive drug properties are responsible for ethanol-induced suppression of intake of a taste cue. The present set of studies tests whether, like cocaine, ethanol-induced suppression of intake of a taste cue also is greater in the drug-sensitive Lewis rats and whether the suppressive effects of the drug are prevented by bilateral lesions of the taste thalamus. METHODS In Experiment 1, fluid-deprived Lewis and Fischer rats were given 5-minute access to 0.15% saccharin and then injected with saline or a range of doses of ethanol (0.5, 0.75, 1.0, or 1.5 g/kg). There was a total of 6 such pairings. In Experiments 2 and 3, Sprague-Dawley rats received bilateral electrophysiologically guided lesions of the gustatory thalamus. After recovery, suppression of intake of the saccharin cue was evaluated following repeated daily pairings with either a high (1.5 g/kg) or a low (0.75 g/kg) dose of ethanol. RESULTS Ethanol-induced suppression of intake of the saccharin conditioned stimulus (CS) did not differ between the drug-sensitive Lewis rats relative to the less-sensitive Fischer rats. Lesions of the taste thalamus, however, prevented the suppressive effect of the 0.75 g/kg dose of the drug, but had no impact on the suppressive effect of the 1.5 g/kg dose of ethanol. CONCLUSION The results suggest that the suppressive effects of ethanol on CS intake are mediated by both rewarding and aversive consequences, varying as a function of dose.
Collapse
Affiliation(s)
- Chuang Liu
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
33
|
Hipólito L, Sánchez-Catalán MJ, Polache A, Granero L. Induction of brain CYP2E1 changes the effects of ethanol on dopamine release in nucleus accumbens shell. Drug Alcohol Depend 2009; 100:83-90. [PMID: 18990514 DOI: 10.1016/j.drugalcdep.2008.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 01/05/2023]
Abstract
CYP2E1 is an important enzyme involved in the brain metabolism of ethanol that can be induced by chronic consumption of alcohol. Recent works have highlighted the importance of this system in the context of the behavioural effects of ethanol. Unfortunately, the underlying neurochemical events for these behavioural changes, has not been yet explored. In this work, we have started this exploration by analyzing the possible changes in the neurochemical response of the mesolimbic system to ethanol after pharmacological induction of brain CYP2E1. We have used the dopamine extracellular levels in nucleus accumbens (NAc) core and shell, measured by means of microdialysis in vivo, as an index of the effects of ethanol. Acetone 1% in the tap water was used to induce brain CYP2E1. Efficacy of the induction protocol was assessed by immunoblotting. Intravenous administration of 1.5 g/kg of ethanol in control rats provoked a significant increase of the dopamine levels in both the core (up to 127% of baseline) and the shell (up to 122% of baseline) of the NAc. However, the same dose of ethanol in acetone-treated rats only increased the dopamine extracellular levels in the core (up to 142% of baseline) whereas dopamine levels in the shell subregion remain unaltered relative to baseline. The results of this study indicate that induction of CYP2E1 changes the response of the mesolimbic system to ethanol in a region-dependent manner. Two hypotheses are postulated to explain the observed effects.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
34
|
Walker BM, Walker JL, Ehlers CL. Dissociable effects of ethanol consumption during the light and dark phase in adolescent and adult Wistar rats. Alcohol 2008; 42:83-9. [PMID: 18358986 DOI: 10.1016/j.alcohol.2007.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/21/2007] [Accepted: 12/17/2007] [Indexed: 11/15/2022]
Abstract
In adolescence, high levels of drinking over short episodes (binge drinking) is commonly seen in a proportion of the population. Because adolescence is an important neurodevelopmental period, the effects of binge drinking on brain and behavior has become a significant health concern. However, robust animal models of binge drinking in rats are still being developed and therefore further efforts are needed to optimize paradigms for inducing maximal self-administration of alcohol. In the present experiment, 1-h limited-access self-administration sessions were instituted to model excessive drinking behavior in adolescent and adult Wistar rats. In addition to age, the involvement of sex and phase within the light/dark cycle (i.e., drinking in the light or dark) on sweetened 5% ethanol intake were also evaluated over 14 limited-access sessions using a between-groups design. The results of the experiment showed that over 14 limited-access sessions, sweetened ethanol intake (g/kg) was significantly higher for adolescents compared to adults. Females were also found to drink more sweetened ethanol as compared to males. Additionally, drinking in the light produced a robust increase in sweetened ethanol intake (g/kg) in adolescents, as compared to adults during the light phase and as compared to both adolescent and adult rats drinking in the dark. Furthermore, the increase in ethanol consumption observed in adolescents drinking during the light phase was dissociable from sweetened solution intake patterns. These results identify that age, sex, and time of day all significantly influence consumption of sweetened ethanol in Wistar rats. Knowledge of these parameters should be useful for future experiments attempting to evaluate the effects of self-administered ethanol exposure in adult and adolescent rats.
Collapse
Affiliation(s)
- Brendan M Walker
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
35
|
Green AS, Grahame NJ. Ethanol drinking in rodents: is free-choice drinking related to the reinforcing effects of ethanol? Alcohol 2008; 42:1-11. [PMID: 18164576 DOI: 10.1016/j.alcohol.2007.10.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 10/05/2007] [Accepted: 10/10/2007] [Indexed: 12/25/2022]
Abstract
Many studies have used voluntary ethanol consumption by animals to assess the influence of genetic and environmental manipulations on ethanol drinking. However, the relationship between home cage ethanol consumption and more formal assessments of ethanol-reinforced behavior using operant and instrumental conditioning procedures is not always clear. The present review attempted to evaluate whether there are consistent correlations between mouse and rat home cage ethanol drinking on the one hand, and either operant oral self-administration (OSA), conditioned taste aversion (CTA), or conditioned place preference (CPP) with ethanol on the other. We also review literature on intravenous ethanol self-administration (IVSA). To collect data, we evaluated a range of genetic manipulations that can change both genes and ethanol drinking behavior including selective breeding, transgenic and knockout models, and inbred and recombinant inbred strain panels. For a genetic model to be included in the analysis, there had to be published data resulting in differences on home cage drinking and data for at least one of the other behavioral measures. A consistent, positive correlation was observed between ethanol drinking and OSA, suggesting that instrumental behavior is closely genetically related to consummatory and ingestive behavior directed at ethanol. A negative correlation was observed between CTA and drinking, suggesting that ethanol's aversive actions may limit oral consumption of ethanol. A more modest, positive relationship was observed between drinking and CPP, and there were not enough studies available to determine a relationship with IVSA. That some consistent outcomes were observed between widely disparate behavioral procedures and genetic populations may increase confidence in the validity of findings from these assays. These findings may also have important implications when researchers decide which phenotypes to use in measuring alcohol-reward relevant behaviors in novel animal models.
Collapse
Affiliation(s)
- Alexis S Green
- Psychobiology of Addictions, Department of Psychology, Purdue School of Science, IUPUI, 402 North Blackford Street, LD 120F, Indianapolis, IN 46202, USA
| | | |
Collapse
|
36
|
Roma PG, Flint WW, Higley JD, Riley AL. Assessment of the aversive and rewarding effects of alcohol in Fischer and Lewis rats. Psychopharmacology (Berl) 2006; 189:187-99. [PMID: 17013639 DOI: 10.1007/s00213-006-0553-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 07/31/2006] [Indexed: 11/26/2022]
Abstract
RATIONALE Application of the Fischer-Lewis genetic model of drug abuse to the study of alcohol's motivational properties has been limited. OBJECTIVES To assess the aversive and rewarding effects of ethanol in Fischer and Lewis rats. MATERIALS AND METHODS Fischer and Lewis rats underwent a four-trial combined conditioned taste aversion/conditioned place preference procedure (CTA/CPP; 0, 1, 1.25, or 1.5 g/kg IP ethanol). Others received 0, 1, or 1.5 g/kg followed by tail blood sampling at 15-, 60- and 180-min post-injection. In additional groups, hypothermia to 0, 1.5, and 3 g/kg was assessed before and 30- and 60-min post-injection. RESULTS All alcohol-treated groups except low-dose Lewis acquired CTA after one trial. Fischer rats developed stronger CTAs than Lewis at 1.25 and 1.5 g/kg. Ethanol-induced reward in taste or place conditioning was not evident in either strain. Lewis animals showed overall higher peak blood alcohol concentrations, but hypothermia did not vary by strain. CONCLUSION Compared to Fischer, Lewis rats are less sensitive to alcohol's aversive effects as assessed in the CTA paradigm. The behavioral differences observed are not due to hypothermia, but pharmacokinetic differences may contribute. These data underscore the importance of genetic factors and the aversive effects of initial drug exposures in modeling vulnerability to abuse. In addition to its application with other drugs, the Fischer-Lewis model may be useful for investigating the biobehavioral bases of alcohol abuse.
Collapse
Affiliation(s)
- Peter G Roma
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | | | | | |
Collapse
|
37
|
Colombo G, Lobina C, Carai MAM, Gessa GL. Phenotypic characterization of genetically selected Sardinian alcohol-preferring (sP) and -non-preferring (sNP) rats. Addict Biol 2006; 11:324-38. [PMID: 16961762 DOI: 10.1111/j.1369-1600.2006.00031.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sardinian alcohol-preferring (sP) and -non-preferring (sNP) rats are one of the pairs of rat lines selectively bred for high and low alcohol preference and consumption, respectively, under the homecage, continuous two-bottle choice regimen. sP rats meet most of the fundamental criteria for an animal model of alcoholism, in that they voluntarily consume sufficient amounts of alcohol to achieve significant blood alcohol levels and produce psychopharmacological effects, including anxiolysis and motor stimulation. sP rats are also willing to 'work' (such as lever-pressing) for alcohol. Chronic alcohol drinking in sP rats results in the development of tolerance to a given effect of alcohol (specifically, motor incoordination) and relapse-like drinking (the alcohol deprivation effect). Conversely, sNP rats avoid alcohol virtually completely; their avoidance for alcohol being resistant even to an environmental manipulation such as long-term exposure to alcohol plus sucrose. sP and sNP rats have been characterized for different phenotypes, possibly associated to their different alcohol preference and consumption. In comparison with sNP rats, alcohol-naive sP rats displayed (1) more anxiety-related behaviors; (2) higher initial sensitivity to the locomotor stimulating and sedative/hypnotic effects of alcohol; and (3) lower sensitivity to the aversive effects of alcohol. The present paper reviews the data collected to date on alcohol drinking behavior and other alcohol-related behaviors in sP and sNP rats. The behavioral profile of sP rats is also compared with that of other lines of selectively bred alcohol-preferring rats and the heterogeneity resulting from this comparison is discussed in terms of different animal models for the different forms of alcoholism.
Collapse
|
38
|
Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ. The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 2006; 11:270-88. [PMID: 16961759 DOI: 10.1111/j.1369-1600.2005.00029.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The alcohol-preferring, P, rat was developed by selective breeding to study ethanol drinking behavior and its consequences. Characterization of this line indicates the P rat meets all of the criteria put forth for a valid animal model of alcoholism, and displays, relative to their alcohol-non-preferring, NP, counterparts, a number of phenotypic traits associated with alcohol abuse and alcoholism. Behaviorally, compared with NP rats, P rats are less sensitive to the sedative and aversive effects of ethanol and more sensitive to the stimulatory effects of ethanol. Neurochemically, research with the P line indicates the endogenous dopaminergic, serotonergic, GABAergic, opiodergic, and peptidergic systems may be involved in a predisposition for alcohol abuse and alcoholism. Paralleling the clinical literature, genetically selected P rats display levels of ethanol intake during adolescence comparable to that seen during adulthood. Binge drinking has been associated with an increased risk for health and other problems associated with ethanol abuse. A model of binge-like drinking during the dark cycle indicates that P rats will consume 6 g/kg/day of ethanol in as little as three 1-hour access periods/day, which approximates the 24-hour intake of P rats with free-choice access to a single concentration of ethanol. The alcohol deprivation effect (ADE) is a transient increase in ethanol intake above baseline values upon re-exposure to ethanol access after an extended period of deprivation. The ADE has been proposed to be an animal model of relapse behavior, with the adult P rat displaying a robust ADE after prolonged abstinence. Overall, these findings indicate that the P rat can be effectively used in models assessing alcohol-preference, a genetic predisposition for alcohol abuse and/or alcoholism, and excessive drinking using protocols of binge-like or relapse-like drinking.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, USA.
| | | | | | | | | |
Collapse
|
39
|
Sharpe AL, Coste SC, Burkhart-Kasch S, Li N, Stenzel-Poore MP, Phillips TJ. Mice Deficient in Corticotropin-Releasing Factor Receptor Type 2 Exhibit Normal Ethanol-Associated Behaviors. Alcohol Clin Exp Res 2006; 29:1601-9. [PMID: 16205360 DOI: 10.1097/01.alc.0000179371.46716.5e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Stress is believed to influence alcohol use and relapse in alcoholics. Animal studies suggest an interaction between corticotropin-releasing factor (CRF) and its receptors and the behavioral effects and consumption of alcohol. The objective of these studies was to examine the effect of corticotropin-releasing factor receptor type 2 (CRF2) on ethanol consumption, conditioned taste aversion, sedation, and hypothermia. METHODS CRF2-null mutant or knock-out (KO), and wild-type (WT) mice were used to assess consumption of increasing concentrations of ethanol in a two-bottle, 24-hr test and during daily limited-access sessions. Ethanol-induced conditioned taste aversion (CTA), loss of righting reflex (LORR), hypothermia, and ethanol metabolism kinetics were also examined in the CRF2 KO and WT mice. RESULTS CRF2 KO mice did not differ from WT mice in sensitivity to ethanol-induced CTA, LORR, hypothermia, or ethanol metabolism kinetics. There was no genotypic difference in ethanol intake or preference in the 24-hr, two-bottle choice procedure, and only modestly increased [corrected] consumption of the 7.5 and 10% ethanol solutions in KO versus WT mice in the limited-access procedure. CONCLUSIONS CRF2 deficiency had little effect on several ethanol-associated behaviors in CRF2-null mutant compared with WT mice, suggesting that this receptor does not have a primary role in modulating these behaviors. Evidence of a role for this receptor in neural circuits subserving stress-coping behaviors suggest that future studies should focus on the role of endogenous CRF2 in ethanol-associated behaviors in mice that are stressed or withdrawing from dependence on ethanol.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Behavioral Neuroscience, the Portland Alcohol Research Center, Oregon Health & Science University, and the Research Service, Portland VA Medical Center, Portland, Oregon 97239, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Quertemont E, Tambour S, Tirelli E. The role of acetaldehyde in the neurobehavioral effects of ethanol: A comprehensive review of animal studies. Prog Neurobiol 2005; 75:247-74. [PMID: 15882776 DOI: 10.1016/j.pneurobio.2005.03.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 03/24/2005] [Indexed: 01/18/2023]
Abstract
Acetaldehyde has long been suggested to be involved in a number of ethanol's pharmacological and behavioral effects, such as its reinforcing, aversive, sedative, amnesic and stimulant properties. However, the role of acetaldehyde in ethanol's effects has been an extremely controversial topic during the past two decades. Opinions ranged from those virtually denying any role for acetaldehyde in ethanol's effects to those who claimed that alcoholism is in fact "acetaldehydism". Considering the possible key role of acetaldehyde in alcohol addiction, it is critical to clarify the respective functions of acetaldehyde and ethanol molecules in the pharmacological and behavioral effects of alcohol consumption. In the present paper, we review the animal studies reporting evidence that acetaldehyde is involved in the pharmacological and behavioral effects of ethanol. A number of studies demonstrated that acetaldehyde administration induces a range of behavioral effects. Other pharmacological studies indicated that acetaldehyde might be critically involved in several effects of ethanol consumption, including its reinforcing consequences. However, conflicting evidence has also been published. Furthermore, it remains to be shown whether pharmacologically relevant concentrations of acetaldehyde are achieved in the brain after alcohol consumption in order to induce significant effects. Finally, we review current evidence about the central mechanisms of action of acetaldehyde.
Collapse
Affiliation(s)
- Etienne Quertemont
- Laboratoire de Neurosciences Comportementales, et Psychopharmacologie, Université de Liège, Boulevard du Rectorat 5/B32, 4000 Liège, Belgium.
| | | | | |
Collapse
|
41
|
Rodd ZA, Bell RL, Melendez RI, Kuc KA, Lumeng L, Li TK, Murphy JM, McBride WJ. Comparison of intracranial self-administration of ethanol within the posterior ventral tegmental area between alcohol-preferring and Wistar rats. Alcohol Clin Exp Res 2005; 28:1212-9. [PMID: 15318120 DOI: 10.1097/01.alc.0000134401.30394.7f] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A previous study indicated that selectively bred alcohol-preferring (P) rats self-administered ethanol (EtOH) directly into the ventral tegmental area (VTA), whereas the alcohol-nonpreferring line did not. Wistar rats will also self-administer EtOH directly into the posterior VTA. Because Wistar rats also have a low preference for EtOH solutions but self-inject EtOH into the VTA, this study was undertaken to test the hypothesis that there is an association between EtOH preference and sensitivity of the VTA to the reinforcing effects of EtOH. METHODS Adult P and Wistar rats were assigned to groups that received one of the following concentrations of EtOH: 0, 50, 75, 100, 150, or 200 mg/100 ml. Rats were connected to the microinjection system, placed into two-lever (active and inactive) experimental chambers, and given EtOH for the first four sessions (acquisition), artificial cerebrospinal fluid for sessions 5 and 6 (extinction), and EtOH again in session 7 (reinstatement). Responding on the active lever produced a 100-nl injection of the infusate. RESULTS P rats self-infused 75 to 200 mg/100 ml EtOH and demonstrated lever discrimination, whereas Wistar rats reliably self-infused only 150 and 200 mg/100 ml EtOH. Both P and Wistar rats reduced responding on the active lever when artificial cerebrospinal fluid (aCSF) was substituted for EtOH and reinstated responding in session 7 when EtOH was restored, although P rats demonstrated a very robust enhancement of responding for 100 and 150 mg/100 ml EtOH, and this was not found for Wistar rats. CONCLUSIONS These results suggest that, compared with Wistar rats, the posterior VTA of P rats was more sensitive to the reinforcing effects of EtOH. Furthermore, the reinstatement data suggest that the posterior VTA of P rats underwent neuronal alterations as a result of prior EtOH exposure and extinction that changed the reinforcing effects of EtOH within this region.
Collapse
Affiliation(s)
- Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana 46202-4887, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 2005; 103:121-46. [PMID: 15369680 DOI: 10.1016/j.pharmthera.2004.06.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurobiological processes by which ethanol seeking and consumption are established and maintained are thought to involve areas of the brain that mediate motivated behavior, such as the mesolimbic dopamine system. The mesolimbic dopamine system is comprised of cells that originate in the ventral tegmental area (VTA) and project to several forebrain regions, including a prominent terminal area, the nucleus accumbens (NAcc). The NAcc has been subdivided into core and shell subregions. Both areas receive converging excitatory input from the cortex and amygdala and dopamine input from the VTA, with the accumbal medium spiny neuron situated to integrate the signals. Although forced ethanol administration enhances dopamine activity in the NAcc, conclusions regarding the role of mesolimbic dopamine in ethanol reinforcement cannot be made from these experiments. Behavioral experiments consistently show that pharmacological manipulations of the dopamine transmission in the NAcc alter responding for ethanol, although ethanol reinforcement is maintained after lesions of the accumbal dopamine system. Additionally, extracellular dopamine increases in the NAcc during operant self-administration of ethanol, which is consistent with a role of dopamine in ethanol reinforcement. Behavioral studies that distinguish appetitive responding from ethanol consumption show that dopamine is important in ethanol-seeking behavior, whereas neurochemical studies suggest that accumbal dopamine is also important during ethanol consumption before pharmacological effects occur. Cellular studies suggest that ethanol alters synaptic plasticity in the mesolimbic system, possibly through dopaminergic mechanisms, and this may underlie the development of ethanol reinforcement. Thus, anatomical, pharmacological, neurochemical, cellular, and behavioral studies are more clearly defining the role of mesolimbic dopamine in ethanol reinforcement.
Collapse
Affiliation(s)
- Rueben A Gonzales
- Department of Pharmacology, College of Pharmacy, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712-0125, USA.
| | | | | |
Collapse
|
43
|
Phillips TJ, Broadbent J, Burkhart-Kasch S, Henderson C, Wenger CD, McMullin C, McKinnon CS, Cunningham CL. Genetic Correlational Analyses of Ethanol Reward and Aversion Phenotypes in Short-Term Selected Mouse Lines Bred for Ethanol Drinking or Ethanol-Induced Conditioned Taste Aversion. Behav Neurosci 2005; 119:892-910. [PMID: 16187818 DOI: 10.1037/0735-7044.119.4.892] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short-term selective breeding created mouse lines divergent for ethanol drinking (high drinking short-term selected line [STDRHI], low drinking [STDRLO]) or ethanol-induced conditioned taste aversion (CTA; high [HTA], low [LTA]). Compared with STDRLO, STDRHI mice consumed more saccharin and less quinine, exhibited greater ethanol-induced conditioned place preference (CPP), and showed reduced ethanol stimulation and sensitization under some conditions; a line difference in ethanol-induced CTA was not consistently found. Compared with LTA, HTA mice consumed less ethanol but were similar in saccharin consumption, sensitivity to ethanol-induced CPP, and ethanol-induced locomotor stimulation and sensitization. These data suggest that ethanol drinking is genetically associated with several reward-and aversion-related traits. The interpretation of ethanol-induced CTA as more genetically distinct must be tempered by the inability to test the CTA lines beyond Selection Generation 2.
Collapse
Affiliation(s)
- Tamara J Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bell RL, Rodd ZA, Boutwell CL, Hsu CC, Lumeng L, Murphy JM, Li TK, McBride WJ. Effects of Long-Term Episodic Access to Ethanol on the Expression of an Alcohol Deprivation Effect in Low Alcohol???Consuming Rats. Alcohol Clin Exp Res 2004; 28:1867-74. [PMID: 15608603 DOI: 10.1097/01.alc.0000148101.20547.0a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The alcohol-preferring (P) and -nonpreferring (NP) and high alcohol-drinking (HAD) and low alcohol-drinking (LAD) rats have been selectively bred for divergent preference for ethanol over water. In addition, both P and HAD rats display an alcohol deprivation effect (ADE). This study was undertaken to test whether the NP, LAD-1, and LAD-2 lines of rats could display an ADE as well. METHOD Adult female NP, LAD-1, and LAD-2 rats were given concurrent access to multiple concentrations of ethanol [5, 10, 15% (v/v)] and water in an ADE paradigm involving an initial 6 weeks of 24-hr access to ethanol, followed by four cycles of 2 weeks of deprivation from and 2 weeks of re-exposure to ethanol (5, 10, and 15%). A control group had continuous access to the ethanol concentrations (5, 10, and 15%) and water through the end of the fourth re-exposure period. RESULTS For NP rats, a preference for the highest ethanol concentration (15%) was evident by the end of the fifth week of access (approximately 60% of total ethanol fluid intake). Contrarily, LAD rats did not display a marked preference for any one concentration of ethanol. All three lines displayed an ADE after repeated cycles of re-exposure to ethanol, with the general ranking of intake being LAD-1 > NP > LAD-2 (e.g., for the first day of reinstatement of the third re-exposure cycle, intakes were 6.5, 2.9, and 2.4 g/kg/day compared with baseline values of 3.1, 2.0, and 1.3 g/kg/day for each line, respectively). By the 13th week, rats from all three lines, with a ranking of LAD-1 > NP > LAD-2, were drinking more ethanol (3.3, 2.2, and 2.0 g/kg/day, respectively) compared with their consumption during the first week of access (approximately 1.1 g/kg/day for all three lines). CONCLUSION These data indicate that access to multiple concentrations of ethanol and exposure to multiple deprivation cycles can partially overcome a genetic predisposition of NP, LAD-1, and LAD-2 rats for low alcohol consumption. In addition, the findings suggest that genetic control of low alcohol consumption in rats is not associated with the inability to display an ADE.
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Palmer AA, Sharpe AL, Burkhart-Kasch S, McKinnon CS, Coste SC, Stenzel-Poore MP, Phillips TJ. Corticotropin-releasing factor overexpression decreases ethanol drinking and increases sensitivity to the sedative effects of ethanol. Psychopharmacology (Berl) 2004; 176:386-97. [PMID: 15138758 DOI: 10.1007/s00213-004-1896-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 03/27/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE Corticotropin-releasing factor (CRF) may play a significant role in drug and alcohol abuse. OBJECTIVE To evaluate the role of CRF in these processes, we examined several ethanol (EtOH) related behaviors in mice that carry a transgene that causes overexpression of CRF. METHODS We examined voluntary EtOH drinking, loss of the righting reflex (LORR), EtOH-induced conditioned taste aversion (CTA), and EtOH clearance in littermate transgenic (TG) and non-transgenic (non-TG) mice. In addition, because preliminary results indicated that age exacerbated differences in EtOH consumption between the two genotypes, we performed a cross-sectional and longitudinal evaluation of this trait at two ages ( approximately 100 and 200 days old). RESULTS We found that TG mice consumed significantly less EtOH and had a lower preference for EtOH-containing solutions compared with their non-TG littermates. We also found that the older drug-naive TG mice drank less EtOH as compared with the younger mice of the same genotype; however, the same relationship did not exist for drug-naive non-TG mice. Prior experience in drinking EtOH when 100 days old led to decreased EtOH drinking when 200 days old in both genotypes. Duration of LORR was longer in the TG mice, EtOH-induced CTA was marginally greater in non-TG mice at the highest dose tested, and there were significant but small differences in EtOH clearance parameters. CONCLUSIONS These data show that CRF overexpressing mice voluntarily consume less EtOH. This difference is associated with greater sensitivity to the sedative-hypnotic effects of EtOH, but not with increased sensitivity to the aversive effects of EtOH.
Collapse
Affiliation(s)
- Abraham A Palmer
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Rodd ZA, Bell RL, McKinzie DL, Webster AA, Murphy JM, Lumeng L, Li TK, McBride WJ. Low-dose stimulatory effects of ethanol during adolescence in rat lines selectively bred for high alcohol intake. Alcohol Clin Exp Res 2004; 28:535-43. [PMID: 15100603 DOI: 10.1097/01.alc.0000122107.08417.d0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The low-dose stimulatory effect of ethanol (EtOH) in rats has been hypothesized to reflect its hedonic effects and to be associated with a genetic predisposition toward high alcohol preference. To test the hypothesis that phenotypes associated with high alcohol preference in adulthood are also present in adolescent rats at the time of onset of alcohol drinking, the current study examined the effects of EtOH on locomotor activity (LMA) during adolescence in lines of rats selectively bred for divergent alcohol intakes. METHODS Subjects were adolescent (31-40 days of age) rats from the alcohol-preferring (P) and -nonpreferring (NP) lines and from the high-alcohol-drinking (HAD) and low-alcohol-drinking (LAD) replicate lines. On day 1, all subjects (n = 8-10/line/gender/dose) received intraperitoneal saline injections and were placed in the activity monitor for 30 min. On day 2, subjects received intraperitoneal saline or 0.25, 0.50, 0.75, 1.0, or 1.5 g EtOH/kg. RESULTS The LMA of male and female P rats was increased with low doses (0.25-0.75 g/kg) and decreased at the highest dose (1.5 g/kg) of EtOH. Similar effects were observed with low doses of EtOH on the LMA of HAD-1 and HAD-2 rats. None of the EtOH doses stimulated LMA in the NP, LAD-1, or LAD-2 rats, although all of the low-alcohol-intake lines of rats showed decreased LMA at the highest dose of EtOH. Only the P rats among the high-alcohol-consuming lines of rats showed decreased LMA at the highest dose of EtOH. CONCLUSION Selective breeding for high alcohol consumption seems to be associated with increased sensitivity to the low-dose stimulating effects of EtOH and reduced sensitivity to the high-dose motor-impairing effects of ethanol. The expression of these phenotypes emerges during adolescence by the age of onset of alcohol-drinking behavior.
Collapse
Affiliation(s)
- Z A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202-4887, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Crews FT, Collins MA, Dlugos C, Littleton J, Wilkins L, Neafsey EJ, Pentney R, Snell LD, Tabakoff B, Zou J, Noronha A. Alcohol-Induced Neurodegeneration: When, Where and Why? Alcohol Clin Exp Res 2004; 28:350-64. [PMID: 15112943 DOI: 10.1097/01.alc.0000113416.65546.01] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This manuscript reviews the proceedings of a symposium organized by Drs. Antonio Noronha and Fulton Crews presented at the 2003 Research Society on Alcoholism meeting. The purpose of the symposium was to examine recent findings on when alcohol induced brain damage occurs, e.g., during intoxication and/or during alcohol withdrawal. Further studies investigate specific brain regions (where) and the mechanisms (why) of alcoholic neurodegeneration. The presentations were (1) Characterization of Synaptic Loss in Cerebella of Mature and Senescent Rats after Lengthy Chronic Ethanol Consumption, (2) Ethanol Withdrawal Both Causes Neurotoxicity and Inhibits Neuronal Recovery Processes in Rat Organotypic Hippocampal Cultures, (3) Binge Drinking-Induced Brain Damage: Genetic and Age Related Effects, (4) Binge Ethanol-Induced Brain Damage: Involvement of Edema, Arachidonic Acid and Tissue Necrosis Factor alpha (TNFalpha), and (5) Cyclic AMP Cascade, Stem Cells and Ethanol. Taken together these studies suggest that alcoholic neurodegeneration occurs through multiple mechanisms and in multiple brain regions both during intoxication and withdrawal.
Collapse
|
48
|
Tampier L, Quintanilla ME. Involvement of brain ethanol metabolism on acute tolerance development and on ethanol consumption in alcohol-drinker (UChB) and non-drinker (UChA) rats. Addict Biol 2003; 8:279-86. [PMID: 13129829 DOI: 10.1080/13556210310001602185] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acute tolerance that develops in minutes of an ethanol exposure appears to influence voluntary ethanol consumption in our two selected bred lines, UChA (low ethanol drinker) and UChB (high ethanol drinker)rats. We have reported previously that an acute intraperitoneal (ip.) dose of ethanol (2.3 g/kg) induces both an increase in acute tolerance and a long-lasting increase in voluntary ethanol consumption in UChB rats. In the present paper we investigated the involvement of acetaldehyde produced centrally during ethanol oxidation by brain catalase and its oxidation by mitochondrial aldehyde dehydrogenase, on acute tolerance development and on voluntary ethanol consumption by rats. Acute tolerance developed to motor impairment induced by a dose of ethanol of 2.3 g/kg administered ip. was evaluated by the tilting plane test. Voluntary ethanol consumption by the rat with free access to a 10% v/v ethanol was measured daily. Both parameters were evaluated in controls,saline-pretreated and ethanol-injected rats. One group of rats that received the ethanol injection was pretreated with 3-amino-1,2,4-triazole (AT), a catalase inhibitor, and another group was pretreated with disulfiram, an aldehyde dehydrogenase inhibitor. Brain catalase and aldehyde dehydrogenase activities were measured in both groups of rats. Results show that acute tolerance to motor impairment, as well as ethanol consumption induced by ethanol, appears to be the consequence of acetaldehyde formed centrally during ethanol oxidation via the catalase system, because pretreatment of rats with the catalase inhibitor attenuated the increase in acute tolerance development and the increase in voluntary ethanol consumption in UChB rats that received the acute i.p. dose of ethanol. Moreover, the acetaldehyde metabolizing enzyme also appears to be an important factor in the modulation of acute tolerance development and voluntary ethanol consumption in UChA and UChB rats. The results lead us to propose that the possible mechanism by which the ip. injection of ethanol to UChB rats induces an increase in ethanol consumption is the development of acute tolerance, where acetaldehyde formed during brain ethanol metabolism via catalase and its subsequent oxidation via aldehyde dehydrogenase have an important role.
Collapse
Affiliation(s)
- Lutske Tampier
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, School of Medicine, University of Chile, Santiago, Chile.
| | | |
Collapse
|
49
|
Crews FT, Braun CJ. Binge ethanol treatment causes greater brain damage in alcohol-preferring P rats than in alcohol-nonpreferring NP rats. Alcohol Clin Exp Res 2003; 27:1075-82. [PMID: 12878913 DOI: 10.1097/01.alc.0000075826.35688.0d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Genetics is a known risk factor for alcoholism, and human alcoholics are known to suffer from a loss of brain function and mass. A 4 day rat binge drinking model is known to cause brain region-specific damage. To investigate the role of genetics in binge-drinking-induced brain damage, we studied bidirectionally selected rat lines, the alcohol-preferring P and the alcohol-nonpreferring NP rat lines. METHOD P and NP rats were treated with a 4 day binge ethanol protocol. Animals were killed, transcardially perfused, and fixed, and their brains were removed, sectioned, and stained by using the amino cupric silver stain of de Olmos or by using immunohistochemistry for phospho-extracellular signal regulated kinases and other antigens. RESULTS Significant brain damage was found in the olfactory bulbs, posterior perirhinal cortex, and entorhinal cortex in both P and NP rats. P rats were found to have significantly greater brain damage, compared with NP rats, in the posterior perirhinal and posterior entorhinal cortexes, 239% +/- 50% (p < 0.02) and 219% +/- 46% (p < 0.01), respectively. Phospho-extracellular signal regulated kinase immunohistochemistry stained prominently in damaged brain areas. CONCLUSIONS The P rat line, a genetic model of alcoholism, shows greater region-specific brain damage due to binge ethanol treatment than its genetic counterpart, the NP rat line. These findings suggest that genetics contribute to susceptibility for binge-induced brain damage.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcoholic Studies, University of North Carolina at Chapel Hill, Chapel Hill 27599-7178, USA.
| | | |
Collapse
|
50
|
Crankshaw DL, Briggs JE, Olszewski PK, Shi Q, Grace MK, Billington CJ, Levine AS. Effects of intracerebroventricular ethanol on ingestive behavior and induction of c-Fos immunoreactivity in selected brain regions. Physiol Behav 2003; 79:113-20. [PMID: 12818716 DOI: 10.1016/s0031-9384(03)00111-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The early changes in the central nervous system (CNS) following drinking of ethanol (ETOH) are poorly understood. It is known that chronic intracerebroventricular (ICV) administration of ethanol to rats induces preference for imbibed alcohol solutions. These results suggest that ICV ethanol could alter taste preference. In the present study, we tested whether ETOH[ICV] could induce a conditioned taste preference (CTP) or aversion (CTA) and alter c-Fos immunoreactivity (c-Fos-IR) in brain regions associated with feeding, aversion, and/or reward. Acute ETOH[ICV], as tested in the ETOH-naïve rat, did not induce CTA nor affect the amount of water imbibed by treated rats. The effects of ETOH[ICV] on intake and preference were determined using a novel palatable (i.e. sweet) noncaloric 0.1% saccharin solution. A single dose of ETOH[ICV] in the ETOH-nai;ve animal induced a CTP for saccharin. ETOH[ICV] significantly increased c-Fos-IR in a number of brain sites associated with feeding and reward including the bed nucleus of the stria terminalis, lateral dorsal area (BSTLD); nucleus accumbens, shell area (AcbSh); hypothalamic paraventricular nucleus (PVN); and lateral septum, ventral area (LSV). Thus, ETOH induced a CTP, not CTA, via central mechanisms; it increased c-Fos-IR in specific sites associated with feeding and reward.
Collapse
Affiliation(s)
- Daune L Crankshaw
- Department of Food Science and Nutrition, University of Minnesota, Twin Cities, St Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|