1
|
Developing Improved Translational Models of Pain: A Role for the Behavioral Scientist. Perspect Behav Sci 2020; 43:39-55. [PMID: 32440644 DOI: 10.1007/s40614-019-00239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The effective management of pain is a longstanding public health concern. Although opioids have been frontline analgesics for decades, they also have well-known undesirable effects that limit their clinical utility, such as abuse liability and respiratory depression. The failure to develop better analgesics has, in some ways, contributed to the escalating opioid epidemic that has claimed tens of thousands of lives and has cost hundreds of billions of dollars in health-care expenses. A paradigm shift is needed in the pharmacotherapy of pain management that will require extensive efforts throughout biomedical science. The purpose of the present review is to highlight the critical role of the behavioral scientist to devise improved translational models of pain for drug development. Despite high heterogeneity of painful conditions that involve cortical-dependent pain processing, current models often feature an overreliance on simple reflex-based measures and an emphasis on the absence, rather than presence, of behavior as evidence of analgesic efficacy. Novel approaches should focus on the restoration of operant and other CNS-mediated behavior under painful conditions.
Collapse
|
2
|
Mussio CA, Harte SE, Borszcz GS. Regional Differences Within the Anterior Cingulate Cortex in the Generation Versus Suppression of Pain Affect in Rats. THE JOURNAL OF PAIN 2019; 21:121-134. [PMID: 31201992 DOI: 10.1016/j.jpain.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
Abstract
The anterior cingulate cortex (ACC) modulates emotional responses to pain. Whereas, the caudal ACC (cACC) promotes expression of pain affect, the rostral ACC (rACC) contributes to its suppression. Both subdivisions receive glutamatergic innervation, and the present study evaluated the contribution of N-methyl-d-aspartic acid (NMDA) receptors within these subdivisions to rats' expression of pain affect. Vocalizations that follow a brief noxious tail shock (vocalization afterdischarges, VAD) are a validated rodent model of pain affect. The threshold current for eliciting VAD was increased in a dose-dependent manner by injecting NMDA into the rACC, but performance (latency, amplitude, and duration) at threshold was not altered. Alternately, the threshold current for eliciting VAD was not altered following injection of NMDA into the cACC, but its amplitude and duration at threshold were increased in a dose-dependent manner. These effects were limited to Cg1 of the rACC and cACC, and blocked by pretreatment of the ACC with the NMDA receptor antagonist d-2-amino-5-phosphonovalerate. These findings demonstrate that NMDA receptor agonism within the cACC and rACC either increases or decreases emotional responses to noxious stimulation, respectively. PERSPECTIVE: NMDA receptor activation of the rostral and caudal ACC respectively inhibited or enhanced rats' emotional response to pain. These findings mirror those obtained from human neuroimaging studies; thereby, supporting the use of this model system in evaluating the contribution of ACC to pain affect.
Collapse
Affiliation(s)
- Casey A Mussio
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, Michigan
| | - Steven E Harte
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - George S Borszcz
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, Michigan.
| |
Collapse
|
3
|
Armendariz A, Nazarian A. Morphine antinociception on thermal sensitivity and place conditioning in male and female rats treated with intraplantar complete freund's adjuvant. Behav Brain Res 2018; 343:21-27. [PMID: 29378294 DOI: 10.1016/j.bbr.2018.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The experience of pain is characterized by the presence of a noxious sensory stimulus combined with negative affect, which is often treated clinically through administration of drugs such as morphine or other opioids. This study investigated the effects of morphine one and seven days after intraplantar administration of complete freund's adjuvant (CFA) in male and female rats. Hargreaves test for thermal nociception and conditioned place preference (CPP) were performed following subcutaneous administration of saline or morphine (1.0, 4.0, 8.0, 12.0 mg/kg). Hargreaves test results revealed that male rats were more sensitive to morphine antinociceptive actions as compared to female rats one day after CFA treatment; however, this sex difference was not detected seven days after CFA treatment. One day after CFA treatment, morphine doses of 8.0 and 12.0 mg/kg produced a CPP in male rats, while female rats exhibited CPP with only the 12.0 mg/kg dose. Seven days after CFA treatment, both male and female rats exhibited a CPP with morphine doses of 4.0 mg/kg and higher. These results reveal sexually dimorphic properties of morphine in the paw withdrawal latencies and conditioned place preference models, representing reflexive and non-reflexive behavioral assays employed to examine inflammatory nociception. Our findings also suggest that antinociceptive effects of morphine are dynamic across early and later periods of CFA-induced inflammatory pain.
Collapse
Affiliation(s)
- Alexander Armendariz
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
4
|
|
5
|
Harton LR, Richardson JR, Armendariz A, Nazarian A. Dissociation of morphine analgesic effects in the sensory and affective components of formalin-induced spontaneous pain in male and female rats. Brain Res 2017; 1658:36-41. [PMID: 28089665 DOI: 10.1016/j.brainres.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/27/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Sex differences in the analgesic effects of morphine have been previously reported in various models that represent the sensory component of pain. However, pain sensation is a complex process that consists of both sensory and affective components. It is presently unclear whether the analgesic effects of morphine between the sensory and affective components of pain are sexually dimorphic. Moreover, differences in morphine dose-response in the two components of pain have not been examined in male and female rats. Therefore, we examined the analgesic effects of morphine on the sensory and affective components of formalin-induced pain behaviors in male and female rats. To discern the sensory component, rats were pretreated with varying doses of morphine and then intraplantar formalin-induced paw flinches were measured. Morphine reduced the number of formalin-induced paw flinches at a treatment dose of 4.0mg/kg. Morphine analgesia was similar across the sexes in the early (phase 1) and late phase (phase 2) of the formalin test. To examine the affective component, rats were pretreated with varying doses of morphine, and then intraplantar formalin-induced conditioned place aversion (CPA) was examined. Formalin produced CPA, which was blocked by morphine at doses of 1.0mg/kg and higher in male and female rats. Lastly, formalin-induced cFos expression and the effects of systemic morphine were examined in the superficial dorsal horn of the spinal cord. Intraplantar formalin produced robust expression of cFos; however, morphine did not attenuate the cFos expression. These results demonstrate a notable dissociation of the analgesic effects of morphine by detecting a fourfold shift in the minimum effective dose between the sensory and affective components of formalin-induced spontaneous pain, that were similar between male and female rats. The findings further suggest disparate mechanisms involved in systemic morphine-induced analgesia in the two components of formalin-induced pain.
Collapse
Affiliation(s)
- Lisa R Harton
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Janell R Richardson
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Alexander Armendariz
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
6
|
Bonasera SJ, Schenk AK, Luxenberg EJ, Wang X, Basbaum A, Tecott LH. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli. PLoS One 2015; 10:e0142906. [PMID: 26630489 PMCID: PMC4667991 DOI: 10.1371/journal.pone.0142906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023] Open
Abstract
Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways.
Collapse
MESH Headings
- Animals
- Dopamine Antagonists/pharmacology
- Fear/physiology
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Raclopride/pharmacology
- Receptor, Serotonin, 5-HT2C/physiology
- Receptors, Dopamine D2/chemistry
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Ultrasonics
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
- Vocalization, Animal/radiation effects
Collapse
Affiliation(s)
- Stephen J. Bonasera
- Division of Geriatrics, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - A. Katrin Schenk
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Evan J. Luxenberg
- Division of Geriatrics, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xidao Wang
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Allan Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Laurence H. Tecott
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Comparison of operant escape and reflex tests of nociceptive sensitivity. Neurosci Biobehav Rev 2015; 51:223-42. [PMID: 25660956 DOI: 10.1016/j.neubiorev.2015.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 01/17/2023]
Abstract
Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.
Collapse
|
8
|
Spuz CA, Tomaszycki ML, Borszcz GS. N-methyl-D-aspartate receptor agonism and antagonism within the amygdaloid central nucleus suppresses pain affect: differential contribution of the ventrolateral periaqueductal gray. THE JOURNAL OF PAIN 2014; 15:1305-18. [PMID: 25261341 DOI: 10.1016/j.jpain.2014.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/07/2014] [Accepted: 09/16/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED The amygdala contributes to the generation of pain affect, and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study compared the contribution of N-methyl-d-aspartate (NMDA) receptor agonism and antagonism in the CeA to generation of the affective response of rats to an acute noxious stimulus. Vocalizations that occur following a brief tail shock (vocalization afterdischarges) are a validated rodent model of pain affect and were preferentially suppressed, in a dose-dependent manner, by bilateral injection into the CeA of NMDA (.1, .25, .5, or 1 μg/side) or the NMDA receptor antagonist d-(-)-2-amino-5-phosphopentanoic acid (AP5; 1, 2, or 4 μg/side). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of NMDA or AP5 into the CeA. Injection of NMDA, but not AP5, into the CeA increased c-Fos immunoreactivity in the ventrolateral periaqueductal gray, and unilateral injection of the μ-opiate receptor antagonist H-d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; .25 μg) into ventrolateral periaqueductal gray prevented the antinociception generated by injection of NMDA into the CeA. These findings demonstrate that although NMDA receptor agonism and antagonism in the CeA produce similar suppression of pain behaviors, they do so via different neurobiologic mechanisms. PERSPECTIVE The amygdala contributes to production of the emotional dimension of pain. NMDA receptor agonism and antagonism within the CeA suppressed rats' emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders.
Collapse
Affiliation(s)
- Catherine A Spuz
- Department of Psychology, Behavioral & Cognitive Neuroscience Program, Wayne State University, Detroit, Michigan
| | - Michelle L Tomaszycki
- Department of Psychology, Behavioral & Cognitive Neuroscience Program, Wayne State University, Detroit, Michigan
| | - George S Borszcz
- Department of Psychology, Behavioral & Cognitive Neuroscience Program, Wayne State University, Detroit, Michigan.
| |
Collapse
|
9
|
Preclinical assessment of pain: improving models in discovery research. Curr Top Behav Neurosci 2014; 20:101-20. [PMID: 25012511 DOI: 10.1007/7854_2014_330] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To date, animal models have not sufficiently "filtered" targets for new analgesics, increasing the failure rate and cost of drug development. Preclinical assessment of "pain" has historically relied on measures of evoked behavioral responses to sensory stimuli in animals. Such measures can often be observed in decerebrated animals and therefore may not sufficiently capture affective and motivational aspects of pain, potentially diminishing translation from preclinical studies to the clinical setting. Further, evidence indicates that there are important mechanistic differences between evoked behavioral responses of hypersensitivity and ongoing pain, limiting evaluation of mechanisms that could mediate aspects of clinically relevant pain. The mechanisms underlying ongoing pain in preclinical models are currently being explored and may serve to inform decisions towards the transition from drug discovery to drug development for a given target.
Collapse
|
10
|
Schifirneţ E, Bowen SE, Borszcz GS. Separating analgesia from reward within the ventral tegmental area. Neuroscience 2014; 263:72-87. [PMID: 24434773 DOI: 10.1016/j.neuroscience.2014.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/09/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Activation of the dopaminergic mesolimbic reward circuit that originates in the ventral tegmental area (VTA) is postulated to preferentially suppress emotional responses to noxious stimuli, and presumably contributes to the addictive liability of strong analgesics. VTA dopamine neurons are activated via cholinergic afferents and microinjection of carbachol (cholinergic agonist) into VTA is rewarding. Here, we evaluated regional differences within VTA in the capacity of carbachol to suppress rats' affective response to pain (vocalization afterdischarges, VADs) and to support conditioned place preference (CPP) learning. As carbachol is a non-specific agonist, muscarinic and nicotinic receptor involvement was assessed by administering atropine (muscarinic antagonist) and mecamylamine (nicotinic antagonist) into VTA prior to carbachol treatment. Unilateral injections of carbachol (4μg) into anterior VTA (aVTA) and posterior VTA (pVTA) suppressed VADs and supported CPP; whereas, injections into midVTA failed to effect either VADs or CPP. These findings corroborate the hypothesis that the neural substrates underlying affective analgesia and reward overlap. However, the extent of the overlap was only partial. Whereas both nicotinic and muscarinic receptors contributed to carbachol-induced affective analgesia in aVTA, only muscarinic receptors mediated the analgesic action of carbachol in pVTA. The rewarding effects of carbachol are mediated by the activation of both nicotinic and muscarinic receptors in both aVTA and pVTA. The results indicate that analgesia and reward are mediated by separate cholinergic mechanisms within pVTA. Nicotinic receptor antagonism within pVTA failed to attenuate carbachol-induced analgesia, but prevented carbachol-induced reward. As addictive liability of analgesics stem from their rewarding properties, the present findings suggest that these processes can be neuropharmacologically separated within pVTA.
Collapse
Affiliation(s)
- E Schifirneţ
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - S E Bowen
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - G S Borszcz
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
11
|
Spuz CA, Borszcz GS. NMDA or non-NMDA receptor antagonism within the amygdaloid central nucleus suppresses the affective dimension of pain in rats: evidence for hemispheric synergy. THE JOURNAL OF PAIN 2012; 13:328-37. [PMID: 22424916 PMCID: PMC3329962 DOI: 10.1016/j.jpain.2011.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/22/2011] [Accepted: 12/08/2011] [Indexed: 11/23/2022]
Abstract
UNLABELLED The amygdala contributes to generation of affective behaviors to threats. The prototypical threat to an individual is exposure to a noxious stimulus and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study evaluated the contribution of glutamate receptors in CeA to generation of the affective response to acute pain in rats. Vocalizations that occur following a brief noxious tail shock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed by bilateral injection into CeA of the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (AP5, 1 μg, 2 μg, or 4 μg) or the non-NMDA receptor antagonist 6-Cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, .25 μg, .5 μg, 1 μg, or 2 μg). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of AP5 or CNQX into CeA. Unilateral administration of AP5 or CNQX into CeA of either hemisphere also selectively elevated vocalization thresholds. Bilateral administration of AP5 or CNQX produced greater increases in vocalization thresholds than the same doses of antagonists administered unilaterality into either hemisphere indicating synergistic hemispheric interactions. PERSPECTIVE The amygdala contributes to production of emotional responses to environmental threats. Blocking glutamate neurotransmission within the central nucleus of the amygdala suppressed rats' emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders.
Collapse
Affiliation(s)
- Catherine A Spuz
- Department of Psychology, Behavioral & Cognitive Neuroscience Program, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
12
|
Functional interaction between medial thalamus and rostral anterior cingulate cortex in the suppression of pain affect. Neuroscience 2010; 172:460-73. [PMID: 21034797 DOI: 10.1016/j.neuroscience.2010.10.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 11/22/2022]
Abstract
The medial thalamic parafascicular nucleus (PF) and the rostral anterior cingulate cortex (rACC) are implicated in the processing and suppression of the affective dimension of pain. The present study evaluated the functional interaction between PF and rACC in mediating the suppression of pain affect in rats following administration of morphine or carbachol (acetylcholine agonist) into PF. Vocalizations that occur following a brief noxious tailshock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed by injection of morphine or carbachol into PF. Vocalizations that occur during tailshock were suppressed to a lesser degree, whereas, spinal motor reflexes (tail flick and hindlimb movements) were only slightly suppressed by injection of carbachol into PF and unaffected by injection of morphine into PF. Blocking glutamate receptors in rACC (NMDA and non-NMDA) by injecting D-2-amino-5-phosphonovalerate (AP-5) or 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX) produced dose-dependent antagonism of morphine-induced increases in vocalization thresholds. Carbachol-induced increases in vocalization thresholds were not affected by injection of either glutamate receptor antagonist into rACC. The results demonstrate that glutamate receptors in the rACC contribute to the suppression of pain affect produced by injection of morphine into PF, but not to the suppression of pain affect generated by intra-PF injection of carbachol.
Collapse
|
13
|
Munn EM, Harte SE, Lagman A, Borszcz GS. Contribution of the periaqueductal gray to the suppression of pain affect produced by administration of morphine into the intralaminar thalamus of rat. THE JOURNAL OF PAIN 2009; 10:426-35. [PMID: 19231299 DOI: 10.1016/j.jpain.2008.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 11/24/2022]
Abstract
UNLABELLED The parafascicular nucleus (nPf) of the intralaminar thalamus is implicated in the processing of pain affect in both animals and humans. Administration of morphine into nPf results in preferential suppression of the affective reaction to noxious tail shock in rats. The involvement of the ventrolateral periaqueductal gray in mediating the antinociceptive action of morphine injected into nPf was evaluated. Vocalizations that occur after tail shock offset (vocalization afterdischarges) are a validated rodent model of pain affect and were preferentially suppressed by injection of morphine into nPf. Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of morphine into nPf. Inactivation of the vPAG via the microinjection of muscimol (GABA(A) agonist) produced dose-dependent antagonism of morphine-induced increases in vocalization thresholds. The results demonstrate that a functional link between the nPf and vPAG in generating the antinociceptive action of morphine injected into nPf. PERSPECTIVE Microinjection of morphine into nucleus parafascicular preferentially suppressed rats' affective reaction to noxious stimulation. This affective analgesia was reversed by inactivation of the ventrolateral periaqueductal gray. Understanding the neurobiology underlying the suppression of pain affect will provide insights into new treatments for pain and its associated affective disorders.
Collapse
Affiliation(s)
- Elizabeth M Munn
- Department of Psychology, Behavioral and Cognitive Neuroscience Program, Wayne State University, Detroit, Michigan48202, USA
| | | | | | | |
Collapse
|
14
|
Affective analgesia following muscarinic activation of the ventral tegmental area in rats. THE JOURNAL OF PAIN 2008; 9:597-605. [PMID: 18387853 DOI: 10.1016/j.jpain.2008.01.334] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 11/20/2022]
Abstract
UNLABELLED Cholinergic stimulation of dopamine neurons in the ventral tegmental area (VTA) underlies activation of the brain reward circuitry. Activation of this circuit is proposed to preferentially suppress the affective reaction to noxious stimulation. Vocalization afterdischarges (VADs) are a validated model of the affective response of rats to noxious tail shock. The antinociceptive action of the acetylcholine agonist carbachol microinjected into the VTA on VAD threshold was compared with its effect on the thresholds of other tail shock-elicited responses (VDS, vocalizations during shock; SMR, spinal motor reflexes). Whereas VADs are organized within the forebrain, VDSs and SMRs are organized at medullary and spinal levels of the neuraxis, respectively. Carbachol (1 microg, 2 microg, and 4 microg) injected into VTA produced dose-dependent increases in VAD and VDS thresholds, although increases in VAD threshold were significantly greater than increases in VDS threshold. Administration of carbachol into VTA failed to elevate SMR threshold. Elevations in vocalization thresholds produced by intra-VTA carbachol were reversed in a dose-dependent manner by local administration of the muscarinic receptor antagonist atropine sulfate (30 microg and 60 microg). These results provide the first demonstration of the involvement of the VTA in muscarinic-induced suppression of pain affect. PERSPECTIVE Cholinergic activation of the brain reward circuit produced a preferential suppression of rats' affective reaction to noxious stimulation. The neurobiology that relates reinforcement to suppression of pain affect may provide insights into new treatments for pain and its associated affective disorders.
Collapse
|
15
|
Borszcz GS. Contribution of the ventromedial hypothalamus to generation of the affective dimension of pain. Pain 2006; 123:155-68. [PMID: 16564622 PMCID: PMC1534121 DOI: 10.1016/j.pain.2006.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/10/2006] [Accepted: 02/21/2006] [Indexed: 11/16/2022]
Abstract
The ventromedial hypothalamus (VMH) is a core structure underlying the generation of affective behaviors to threats. The prototypical threat to an individual is exposure to a noxious stimulus and the dorsomedial division of the VMH (dmVMH) receives nociceptive input. The present study evaluated the contribution of the dmVMH to generation of the affective reaction to pain in rats. Noxious tailshock elicits from rats vocalization afterdischarges (VADs) that have distinct spectrographic characteristics and are a validated model of the affective reaction to pain. VAD-like vocalizations (vocalizations with the same spectral characteristics of VADs) were elicited by stimulation (electrical or chemical) of the dmVMH. Stimulation in the vicinity of the dmVMH was ineffective in eliciting VADs. Manipulation of GABA(A) neurochemistry within the dmVMH altered the threshold for elicitation of VADs by dmVMH stimulation or tailshock. Administration of the GABA(A) antagonist bicuculline or the GABA(A) agonist muscimol into the dmVMH lowered and elevated VAD thresholds, respectively. These treatments did not alter thresholds of other tailshock elicited responses (vocalizations during tailshock or spinal motor reflexes). Bicuculline and muscimol administered into the dmVMH also elevated and lowered the asymptotic level of fear conditioning supported by dmVMH stimulation or tailshock. These findings demonstrate that the dmVMH contributes to the processing of pain affect and that the affective dimension of pain belongs to a broader class of sensory experience that represents threat to the individual.
Collapse
Affiliation(s)
- George S Borszcz
- Department of Psychology, Behavioral and Cognitive Neuroscience Program, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
16
|
Harte SE, Kender RG, Borszcz GS. Activation of 5-HT1A and 5-HT7 receptors in the parafascicular nucleus suppresses the affective reaction of rats to noxious stimulation. Pain 2005; 113:405-415. [PMID: 15661450 DOI: 10.1016/j.pain.2004.11.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 11/09/2004] [Accepted: 11/29/2004] [Indexed: 11/30/2022]
Abstract
The antinociceptive effects of the serotonin (5-HT)1A/7 receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) administered into the medial thalamus were evaluated. Pain behaviors organized at spinal (spinal motor reflexes, SMRs), medullary (vocalizations during shock, VDSs), and forebrain (vocalization after discharges, VADs) levels of the neuraxis were elicited by tailshock. Administration of 8-OH-DPAT (5, 10, and 20 microg/side) into nucleus parafascicularis (nPf) produced dose-dependent increases in VDS and VAD thresholds, but failed to elevate SMR threshold. The increase in VAD threshold was significantly greater than that of VDS threshold. Similar effects were observed with administration of 8-OH-DPAT (20 microg/side) into the rostral portion of the central lateral thalamic nucleus. The bilateral or unilateral administration of 8-OH-DPAT (20 microg) into other thalamic nuclei, or into sites dorsal to nPf, did not elevate vocalization thresholds. Increases in vocalization thresholds produced by nPf-administered 8-OH-DPAT were mediated by both 5-HT1A and 5-HT7 receptors. Intra-nPf administration of the 5-HT1A receptor antagonist WAY-100635 (0.05 or 0.5 microg/side), or the 5-HT7 receptor antagonist SB-269970 (1 or 2 microg/side), but not the dopamine D2 receptor antagonist raclopride (10 microg/side), reversed 8-OH-DPAT induced elevations in vocalization thresholds. These results provide the first reported evidence of behavioral antinociception following the administration of a 5-HT agonist into the medial thalamus.
Collapse
Affiliation(s)
- Steven E Harte
- Department of Psychology, Behavioral and Cognitive Neuroscience Program, Wayne State University, 71 W. Warren Ave., Detroit, MI 48202, USA
| | | | | |
Collapse
|
17
|
Han JS, Neugebauer V. mGluR1 and mGluR5 antagonists in the amygdala inhibit different components of audible and ultrasonic vocalizations in a model of arthritic pain. Pain 2005; 113:211-22. [PMID: 15621382 DOI: 10.1016/j.pain.2004.10.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/05/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
Pain has a strong emotional component. The amygdala plays a key role in emotionality and is also involved in pain processing and pain modulation. Our previous studies showed an important role of group I metabotropic glutamate receptors (mGluRs) in pain-related synaptic plasticity and sensitization of neurons in the central nucleus of the amygdala (CeA). Here we address the roles of mGluR1 and mGluR5 subtypes in the CeA in the modulation of supraspinally organized behavioral responses in a model of arthritic pain. Audible and ultrasonic (25+/-4 kHz) vocalizations were measured in awake rats during and after innocuous and noxious stimulation (15 s) of the knee joint. Vocalizations were recorded in the same animals before arthritis, 6 h after arthritis induction and during administration of antagonists selective for mGluR1 (CPCCOEt) and mGluR5 (MPEP) into the CeA through stereotaxically implanted microdialysis probes. The duration of audible and ultrasonic vocalizations increased in the arthritic pain state. The duration of vocalizations during stimulation (VDS), which are organized at the brainstem level, was significantly reduced by CPCCOEt but not by MPEP. Vocalizations that continued after stimulation (VAS), which are organized in the limbic forebrain, particularly the amygdala, were inhibited by CPCCOEt and MPEP. These findings suggest differential roles of mGluR1 and mGluR5 in the CeA in pain-related vocalizations. Both mGluR1 and mGluR5 contribute to vocalizations generated in the amygdala whereas mGluR1, but not mGluR5, is involved in the amygdala-mediated modulation of vocalizations originating from activity in the brainstem.
Collapse
Affiliation(s)
- Jeong Seok Han
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd. RT 1069, Galveston, TX 77555-1069, USA
| | | |
Collapse
|
18
|
Harte SE, Hoot MR, Borszcz GS. Involvement of the intralaminar parafascicular nucleus in muscarinic-induced antinociception in rats. Brain Res 2004; 1019:152-61. [PMID: 15306249 DOI: 10.1016/j.brainres.2004.05.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
The thalamic contribution to cholinergic-induced antinociception was examined by microinjecting the acetylcholine (ACh) agonist carbachol into the intralaminar nucleus parafascicularis (nPf) of rats. Pain behaviors organized at spinal (spinal motor reflexes), medullary (vocalizations during shock), and forebrain (vocalization afterdischarges, VADs) levels of the neuraxis were elicited by noxious tailshock. Carbachol (0.5, 1, and 2 microg/side) administered into nPf produced dose-dependent elevations of vocalization thresholds, but failed to elevate spinal motor reflex threshold. Injections of carbachol into adjacent sites dorsal or ventral to nPf failed to alter vocalization thresholds. Elevations in vocalization thresholds produced by intra-nPf carbachol were reversed in a dose-dependent manner by local administration of the muscarinic receptor antagonist atropine (30 and 60 microg/side). These results provide the first direct evidence supporting the involvement of the intralaminar thalamus in muscarinic-induced antinociception. Results are discussed in terms of the contribution of nPf to the processing of the affective dimension of pain.
Collapse
Affiliation(s)
- Steven E Harte
- Behavioral and Cognitive Neuroscience Program, Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
19
|
Nandigama P, Borszcz GS. Affective analgesia following the administration of morphine into the amygdala of rats. Brain Res 2003; 959:343-54. [PMID: 12493624 DOI: 10.1016/s0006-8993(02)03884-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amygdala processes stimuli that threaten the individual and organizes the execution of affective behaviors that permit the individual to cope with the threat. The prototypical threat to an individual is exposure to a noxious stimulus. The present study evaluated the contribution of the amygdala in modulating the affective response of rats to noxious stimulation. Vocalization afterdischarges (VADs) are a validated model of the affective response of rats to noxious tailshock. The antinociceptive action of morphine microinjected into the amygdala on VAD thresholds was compared to its effect on the thresholds of other tailshock-elicited responses (vocalizations during shock, VDS and spinal motor reflexes, SMRs). Whereas VADs are organized within the forebrain, VDSs and SMRs are organized at medullary and spinal levels of the neuraxis, respectively. The bilateral administration of morphine into the basolateral complex of the amygdala (BLC) produced dose-dependent increases in VAD and VDS thresholds, although increases in VAD thresholds were significantly greater than increases in VDS thresholds. Administration of morphine into BLC was ineffective in elevating SMR thresholds. Morphine-induced increases in vocalization thresholds were reversed in a dose-dependent manner by microinjection of the opiate receptor antagonist methylnaloxonium into BLC. Microinjection of morphine in the vicinity to the BLC did not alter vocalization thresholds. The present results provide further evidence for the preferential involvement of the amygdala in modulation of the affective component of the pain experience.
Collapse
Affiliation(s)
- Padmaja Nandigama
- Department of Psychology, Wayne State University, 71 W Warren Avenue, Detroit, MI 48202, USA
| | | |
Collapse
|
20
|
Munn EM, Borszcz GS. Increases in the release and metabolism of serotonin in nucleus parafascicularis thalami following systemically administered morphine in the rat. Neurosci Lett 2002; 332:151-4. [PMID: 12399003 DOI: 10.1016/s0304-3940(02)00949-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of systemically administered morphine on the release and metabolism of serotonin (5-HT) in nucleus parafascicularis thalami were evaluated using in vivo microdialysis. The extracellular concentration of 5-HT and its major metabolite 5-hydroxyindoleacetic acid were increased in a dose-dependent manner following the subcutaneous administration of 2.5 and 5 mg/kg morphine sulfate. These results are consistent with findings that the antinociceptive action of morphine is partially mediated through the action of 5-HT within nucleus parafascicularis.
Collapse
Affiliation(s)
- Elizabeth M Munn
- Department of Psychology, 71 W Warren Avenue, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
21
|
Abstract
The assessment of the effectiveness of analgesics is strongly based on observational data from behavioural tests. These tests are interesting and give a quantification of the effect of the drugs on the whole animal but their use is subject to several difficulties: (i) many results are difficult to analyse as they only correspond to the evaluation of a reflex response; (ii) the tests dealing with more integrated responses are also more difficult to use and closely depend on the experimenter's subjectivity. If automation is widely used in a lot of research fields, this is not the case in behavioural pharmacology. Yet, it can contribute to optimize the tests. The use of signal processing devices allows the automated (and thus objective) measurement of behavioural reactions to nociceptive stimulation (amplitude of a reflex, vocal emission intensity). Mechanical devices based on a computer-driven dynamic force detector allows the recording of some pain behaviours. Video image analysis allows the quantification of more complex behaviours (nociception-induced specific motor behaviours) as well as meaningful information during the same experimentation (exploratory behaviour, total motor activity, feeding behaviour). Moreover, these methods make it possible to obtain a more objective measurement, to reduce animal-experimenter interactions, to ease system use, and to improve effectiveness. The prospects to work in this field are multiple: continuation of the attempts at an automation of the behaviours specifically induced by chronic pain; development of real animal pain monitoring based on analysis of specific and non-specific behavioural modifications induced by pain. In this context, the automation of the behavioural analysis is likely to make possible real ethical progress thanks to an increase in the test's effectiveness and a real taking into account of animal's pain. Nevertheless, there are some limits due to characteristics of the behavioural expression of nociception and technological problems.
Collapse
Affiliation(s)
- D Jourdan
- INSERM EPI9904, Equipe NPPUA, Laboratoire de Pharmacologie Médicale, Faculté de Médecine, Clermont-Ferrand Cedex, 63001, France
| | | | | |
Collapse
|
22
|
Harte SE, Lagman AL, Borszcz GS. Antinociceptive effects of morphine injected into the nucleus parafascicularis thalami of the rat. Brain Res 2000; 874:78-86. [PMID: 10936226 DOI: 10.1016/s0006-8993(00)02583-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The antinociceptive action of morphine microinjected into the nucleus parafascicularis thalami (nPf) on pain behaviors organized at different levels of the neuraxis was examined in the rat. Behaviors organized at spinal (spinal motor reflexes, SMRs), medullary (vocalizations during shock, VDSs), and forebrain (vocalization afterdischarges, VADs) levels were elicited by noxious tailshock. Morphine administered into nPf generated dose-dependent increases in thresholds of VDS and VAD, but failed to elevate SMR thresholds. Increases in vocalization thresholds were reversed in a dose-dependent manner by the microinjection of the mu-opiate receptor antagonist, methylnaloxonium, into nPf. Results are discussed in terms of the relative influence of nPf-administered morphine on nociceptive processing at spinal versus supraspinal levels of the neuraxis.
Collapse
Affiliation(s)
- S E Harte
- Department of Psychology, Wayne State University, 71 W. Warren Avenue, Detroit, MI 48202, USA
| | | | | |
Collapse
|
23
|
Borszcz GS, Streltsov NG. Amygdaloid-thalamic interactions mediate the antinociceptive action of morphine microinjected into the periaqueductal gray. Behav Neurosci 2000; 114:574-84. [PMID: 10883807 DOI: 10.1037/0735-7044.114.3.574] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bilateral administration of the serotonin receptor antagonist methysergide (2.5 microg, 5 microg, and 10 microg) into either the central nucleus of the amygdala (ACe) or nucleus parafascicularis thalami (nPf) produced dose-dependent inhibition of the antinociceptive action of ventrolateral periaqueductal gray (vPAG)-administered morphine. Unilateral administration of these doses of methysergide into either the ACe or nPf had no effect on morphine-induced antinociception. However, the combined unilateral administration of these doses of methysergide into the ACe and nPf produced dose-dependent inhibition of morphine antinociception that was identical to that observed after its bilateral administration into either site. This latter finding is interpreted as evidence that a functional interaction between the ACe and nPf supports the antinociceptive action of morphine administered into the vPAG.
Collapse
Affiliation(s)
- G S Borszcz
- Department of Psychology, Wayne State Unviersity, Detroit, Michigan 48202, USA.
| | | |
Collapse
|
24
|
Millan MJ, Seguin L, Honoré P, Girardon S, Bervoets K. Pro- and antinociceptive actions of serotonin (5-HT)1A agonists and antagonists in rodents: relationship to algesiometric paradigm. Behav Brain Res 1995; 73:69-77. [PMID: 8788480 DOI: 10.1016/0166-4328(96)00073-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In mice injected with formalin into the hindpaw, the 5-HT1A receptor agonists, 8-OH-DPAT and flesinoxan, equipotently inhibited the early phase (EP) and late phase (LP) of licking. At higher doses, they provoked ataxia and inhibited the writhing elicited by intra-abdominal acetic acid. The antagonists, (-)-alprenolol, (-)-tertatolol, WAY-100,135 and S 15931 were more potent against the LP than the EP. They also inhibited writhing, and only at very high doses did they elicit ataxia. In rats, 8-OH-DPAT and flesinoxan increased the current required to elicit vocalisation upon electrical stimulation of the tail. The action of 8-OH-DPAT was blocked by WAY-100,135, which, like other antagonists, was inactive alone. Interestingly, a low dose of 8-OH-DPAT partially inhibited the antinociceptive action of the mu-opioid agonist, morphine, the action of which was dose-dependently facilitated by (-)-alprenolol and S 15931. Administered s.c., 8-OH-DPAT elicited spontaneous tail-flicks (STFs) in rats: these were abolished by WAY-100,135, (-)-tertatolol, (-)-alprenolol and S 15931. STFs were also eliminated by s.c. or i.t. administration of the alpha 2-adrenergic receptor agonist, clonidine, the GABAA agonist, muscimol or the GABAB agonist, baclofen. The mu-opioid, morphine, blocked STFs only at high doses and the kappa-opioid agonists, U 50,488 and U 69,593, even at supra-ataxic doses, were inactive. Antagonists at neurokinin (NK)1 (RP 67580), NK2 (SR 48,968) and bradykinin (BK)2 (Hoe 140) receptors, as well as aspirin, did not block STFs, though indomethacin was effective. Antagonists at the glycine B site coupled to the NMDA receptor, L 687,414, L 701,324 and (+)-HA966, blocked STFs. Furthermore, (+)-HA 966 and the competitive NMDA receptor antagonist, CPP, were active upon i.t. administration. STFs were also blocked by s.c. or i.t. administration of the AMPA antagonists, YM 900 and NBQX. In conclusion, the influence of 5-HT1A ligands upon nociception is dependent upon the algesiometric paradigm. Intriguingly, modulation of 5-HT1A receptor-mediated STFs reveals parallels to neuropathic pain.
Collapse
Affiliation(s)
- M J Millan
- Department of Psychopharmacology, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | | | | | | | | |
Collapse
|
25
|
Miczek KA, Weerts EM, Vivian JA, Barros HM. Aggression, anxiety and vocalizations in animals: GABAA and 5-HT anxiolytics. Psychopharmacology (Berl) 1995; 121:38-56. [PMID: 8539340 DOI: 10.1007/bf02245590] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A continuing challenge for preclinical research on anxiolytic drugs is to capture the affective dimension that characterizes anxiety and aggression, either in their adaptive forms or when they become of clinical concern. Experimental protocols for the preclinical study of anxiolytic drugs typically involve the suppression of conditioned or unconditioned social and exploratory behavior (e.g., punished drinking or social interactions) and demonstrate the reversal of this behavioral suppression by drugs acting on the benzodiazepine-GABAA complex. Less frequently, aversive events engender increases in conditioned or unconditioned behavior that are reversed by anxiolytic drugs (e.g., fear-potentiated startle). More recently, putative anxiolytics which target 5-HT receptor subtypes produced effects in these traditional protocols that often are not systematic and robust. We propose ethological studies of vocal expressions in rodents and primates during social confrontations, separation from social companions, or exposure to aversive environmental events as promising sources of information on the affective features of behavior. This approach focuses on vocal and other display behavior with clear functional validity and homology. Drugs with anxiolytic effects that act on the benzodiazepine-GABAA receptor complex and on 5-HT1A receptors systematically and potently alter specific vocalizations in rodents and primates in a pharmacologically reversible manner; the specificity of these effects on vocalizations is evident due to the effectiveness of low doses that do not compromise other physiological and behavioral processes. Antagonists at the benzodiazepine receptor reverse the effects of full agonists on vocalizations, particularly when these occur in threatening, startling and distressing contexts. With the development of antagonists at 5-HT receptor subtypes, it can be anticipated that similar receptor-specificity can be established for the effects of 5-HT anxiolytics.
Collapse
Affiliation(s)
- K A Miczek
- Tufts University, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
26
|
Abstract
This article is the 17th installment of our annual review of research concerning the opiate system. It includes papers published during 1994 involving the behavioral, nonanalgesic, effects of the endogenous opiate peptides. The specific topics covered this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | |
Collapse
|