1
|
Diaz-Perez JA, Kerr DA. Gene of the month: DDIT3. J Clin Pathol 2024; 77:211-216. [PMID: 38053287 DOI: 10.1136/jcp-2023-208963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
DNA damage-inducible transcript 3 (DDIT3) gene, mapped to the human chromosome 12q13.3, encodes a protein that belongs to the CCAAT/enhancer-binding protein family of transcription factors. DDIT3 is involved in the proliferative control that responds to endoplasmic reticulum stress in normal conditions, dimerising other transcription factors with basic leucine zipper (bZIP) structural motifs. DDIT3 plays a significant role during cell differentiation, especially adipogenesis, arresting the maturation of adipoblasts. In disease, FUS/EWSR1::DDIT3 fusion is the pathogenic event that drives the development of myxoid liposarcoma. The amplification of DDIT3 in other adipocytic neoplasms mediates the presence of adipoblast-like elements. Another fusion, GLI1::DDIT3, has rarely been documented in other tumours. This paper reviews the structure and function of DDIT3, its role in disease-particularly cancer-and its use and pitfalls in diagnostic testing, including immunohistochemistry as a tissue-based marker.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
2
|
Zhang C, Wang T, Cui T, Liu S, Zhang B, Li X, Tang J, Wang P, Guo Y, Wang Z. Genome-Wide Phylogenetic Analysis, Expression Pattern, and Transcriptional Regulatory Network of the Pig C/EBP Gene Family. Evol Bioinform Online 2021; 17:11769343211041382. [PMID: 34471342 PMCID: PMC8404664 DOI: 10.1177/11769343211041382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The CCAAT/enhancer binding protein (C/EBP) transcription factors (TFs) regulate many important biological processes, such as energy metabolism, inflammation, cell proliferation etc. A genome-wide gene identification revealed the presence of a total of 99 C/EBP genes in pig and 19 eukaryote genomes. Phylogenetic analysis showed that all C/EBP TFs were classified into 6 subgroups named C/EBPα, C/EBPβ, C/EBPδ, C/EBPε, C/EBPγ, and C/EBPζ. Gene expression analysis showed that the C/EBPα, C/EBPβ, C/EBPδ, C/EBPγ, and C/EBPζ genes were expressed ubiquitously with inconsistent expression patterns in various pig tissues. Moreover, a pig C/EBP regulatory network was constructed, including C/EBP genes, TFs and miRNAs. A total of 27 feed-forward loop (FFL) motifs were detected in the pig C/EBP regulatory network. Based on the RNA-seq data, gene expression patterns related to FFL sub-network were analyzed in 27 adult pig tissues. Certain FFL motifs may be tissue specific. Functional enrichment analysis indicated that C/EBP and its target genes are involved in many important biological pathways. These results provide valuable information that clarifies the evolutionary relationships of the C/EBP family and contributes to the understanding of the biological function of C/EBP genes.
Collapse
Affiliation(s)
- Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Bing Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Xue Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Jian Tang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Peng Wang
- HeiLongJiang provincial Husbandry Dapartment, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- DaBeiNong Group, Beijing, China
| |
Collapse
|
3
|
Tian Y, Li G, Shen J, Tao Z, Chen L, Zeng T, Lu L. Molecular cloning, characterisation, and expression patterns of pigeon CCAAT/enhancer binding protein-α and -β genes. Br Poult Sci 2019; 60:347-356. [PMID: 31064204 DOI: 10.1080/00071668.2019.1614530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. CCAAT/enhancer binding proteins (C/EBPs), as a family of transcription factors, consists of six functionally and structurally related proteins which share a conserved basic leucine zipper (bZIP) DNA-binding domain. The aim of this study was to clone the full-length coding sequences (CDS) of C/EBP-α and -β genes, and determine the abundance of these two genes in various tissues of white king pigeon (C. livia). 2. The complete cDNA sequences of C/EBP-α and -β genes were cloned from pigeons by using PCR combined with rapid amplification of cDNA ends (RACE). The sequences were bioinformatically analysed, and the tissue distribution determined by quantitative real-time RT-PCR (qRT-PCR). 3. The results showed that the full-length cDNA sequences of pigeon C/EBP-α and -β genes were 2,807bp and 1,778bp, respectively. The open reading frames of C/EBP-α (978 bp) and -β (987bp) encoded 325 amino acids and 328 amino acids, respectively. The pigeon C/EBP-α and C/EBP-β proteins were predicted to have a conserved basic leucine zipper (bZIP) domain, which is a common structure feature of the C/EBP family. Multiple sequence alignments indicated that pigeon C/EBP-α and -β shared more than 90% amino-acid identity with their corresponding homologues in other avian species. Phylogenetic analysis revealed that these two proteins were highly conserved across different species and evolutionary processes. QRT-PCR results indicated that the pigeon C/EBP-α and -β mRNA transcripts were expressed in all investigated organs. The mRNA expression levels of pigeon C/EBP-α in descending order, were in spleen, heart, liver, lung, kidney and muscle. The pigeon C/EBP-β gene had the most abundant expression in lung, followed by the kidney, with minimal expression detected in muscle. 4. This study investigated the full-length cDNA sequences, genetic characteristics and tissue distribution of pigeon C/EBP-α and -β genes and found that they may have functions in various tissues of pigeon. This provides a foundation for further study for regulatory mechanisms of these two genes in birds.
Collapse
Affiliation(s)
- Y Tian
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - G Li
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - J Shen
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - Z Tao
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - L Chen
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China
| | - T Zeng
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| | - L Lu
- a Zhejiang Academy of Agricultural Sciences , Institute of Animal Husbandry and Veterinary Science , Hangzhou , China.,b Key Laboratory of Information Traceability for Agricultural Products , Ministry of Agriculture of China , Hangzhou , China
| |
Collapse
|
4
|
Dalal CK, Johnson AD. How transcription circuits explore alternative architectures while maintaining overall circuit output. Genes Dev 2017; 31:1397-1405. [PMID: 28860157 PMCID: PMC5588923 DOI: 10.1101/gad.303362.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review by Dalal and Johnson focuses on the evolutionary rewiring of transcription regulators and the conservation of patterns of gene expression. They describe how preservation of gene expression patterns in the wake of extensive rewiring is a general feature of transcription circuit evolution. Transcription regulators bind to cis-regulatory sequences and thereby control the expression of target genes. While transcription regulators and the target genes that they regulate are often deeply conserved across species, the connections between the two change extensively over evolutionary timescales. In this review, we discuss case studies where, despite this extensive evolutionary rewiring, the resulting patterns of gene expression are preserved. We also discuss in silico models that reach the same general conclusions and provide additional insights into how this process occurs. Together, these approaches make a strong case that the preservation of gene expression patterns in the wake of extensive rewiring is a general feature of transcription circuit evolution.
Collapse
Affiliation(s)
- Chiraj K Dalal
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
5
|
A tumor suppressor role for C/EBPα in solid tumors: more than fat and blood. Oncogene 2017; 36:5221-5230. [PMID: 28504718 DOI: 10.1038/onc.2017.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) plays a critical role during embryogenesis and is thereafter required for homeostatic glucose metabolism, adipogenesis and myeloid development. Its ability to regulate the expression of lineage-specific genes and induce growth arrest contributes to the terminal differentiation of several cell types, including hepatocytes, adipocytes and granulocytes. CEBPA loss of-function mutations contribute to the development of ~10% of acute myeloid leukemia (AML), stablishing a tumor suppressor role for C/EBPα. Deregulation of C/EBPα expression has also been reported in a variety of additional human neoplasias, including liver, breast and lung cancer. However, functional CEBPA mutations have not been found in solid tumors, suggesting that abrogation of C/EBPα function in non-hematopoietic tissues is regulated by alternative mechanisms. Here we review the function of C/EBPα in solid tumors and focus on the molecular mechanisms underlying its tumor suppressive role.
Collapse
|
6
|
Suske G. NF-Y and SP transcription factors — New insights in a long-standing liaison. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:590-597. [DOI: 10.1016/j.bbagrm.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
|
7
|
Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex. Proc Natl Acad Sci U S A 2016; 113:8182-7. [PMID: 27382175 DOI: 10.1073/pnas.1608987113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Insulin increases lipid synthesis in liver by activating transcription of the gene encoding sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c activates the transcription of all genes necessary for fatty acid synthesis. Insulin induction of SREBP-1c requires LXRα, a nuclear receptor. Transcription of SREBP-1c also requires transcription factor C/EBPβ, but a connection between LXRα and C/EBPβ has not been made. Here we show that LXRα and C/EBPβ form a complex that can be immunoprecipitated from rat liver nuclei. Chromatin immunoprecipitation assays showed that the LXRα-C/EBPβ complex binds to the SREBP-1c promoter in a region that contains two binding sites for LXRα and is known to be required for insulin induction. Knockdown of C/EBPβ in fresh rat hepatocytes or mouse livers in vivo reduces the ability of insulin to increase SREBP-1c mRNA. The LXRα-C/EBPβ complex is bound to the SREBP-1c promoter in the absence or presence of insulin, indicating that insulin acts not by increasing the formation of this complex, but rather by activating it.
Collapse
|
8
|
Friedman AD. C/EBPα in normal and malignant myelopoiesis. Int J Hematol 2015; 101:330-41. [PMID: 25753223 DOI: 10.1007/s12185-015-1764-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
CCAAT/enhancer binding protein α (C/EBPα) dimerizes via its leucine zipper (LZ) domain to bind DNA via its basic region and activate transcription via N-terminal trans-activation domains. The activity of C/EBPα is modulated by several serine/threonine kinases and via sumoylation, its gene is activated by RUNX1 and additional transcription factors, its mRNA stability is modified by miRNAs, and its mRNA is subject to translation control that affects AUG selection. In addition to inducing differentiation, C/EBPα inhibits cell cycle progression and apoptosis. Within hematopoiesis, C/EBPα levels increase as long-term stem cells progress to granulocyte-monocyte progenitors (GMP). Absence of C/EBPα prevents GMP formation, and higher levels are required for granulopoiesis compared to monopoiesis. C/EBPα interacts with AP-1 proteins to bind hybrid DNA elements during monopoiesis, and induction of Gfi-1, C/EBPε, KLF5, and miR-223 by C/EBPα enables granulopoiesis. The CEBPA ORF is mutated in approximately 10 % of acute myeloid leukemias (AML), leading to expression of N-terminally truncated C/EBPαp30 and C-terminal, in-frame C/EBPαLZ variants, which inhibit C/EBPα activities but also play additional roles during myeloid transformation. RUNX1 mutation, CEBPA promoter methylation, Trib1 or Trib2-mediated C/EBPαp42 degradation, and signaling pathways leading to C/EBPα serine 21 phosphorylation reduce C/EBPα expression or activity in additional AML cases.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Cancer Research Building I, Room 253, 1650 Orleans Street, Baltimore, MD, 21231, USA,
| |
Collapse
|
9
|
Awad MM, Aladle DA, Abousamra NK, Elghannam DM, Fawzy IM. CEBPA gene mutations in Egyptian acute myeloid leukemia patients: impact on prognosis. Hematology 2013; 18:61-8. [DOI: 10.1179/1607845412y.0000000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Mohamed M. Awad
- Hematology UnitDepartment of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa A. Aladle
- Hematology UnitDepartment of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nashwa K. Abousamra
- Hematology UnitDepartment of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa M. Elghannam
- Hematology UnitDepartment of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Iman M. Fawzy
- Hematology UnitDepartment of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Fleming JD, Pavesi G, Benatti P, Imbriano C, Mantovani R, Struhl K. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors. Genome Res 2013; 23:1195-209. [PMID: 23595228 PMCID: PMC3730095 DOI: 10.1101/gr.148080.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5000–15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (nonmodified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively colocalizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also coassociates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly used proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve coassociation with FOS.
Collapse
Affiliation(s)
- Joseph D Fleming
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
11
|
Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal 2012; 24:1287-96. [DOI: 10.1016/j.cellsig.2012.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 01/10/2023]
|
12
|
Gandía M, Harries E, Marcos JF. Identification and characterization of chitin synthase genes in the postharvest citrus fruit pathogen Penicillium digitatum. Fungal Biol 2012; 116:654-64. [DOI: 10.1016/j.funbio.2012.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
|
13
|
Miglino N, Roth M, Tamm M, Borger P. Asthma and COPD - The C/EBP Connection. Open Respir Med J 2012; 6:1-13. [PMID: 22715349 PMCID: PMC3377872 DOI: 10.2174/1874306401206010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are the two most prominent chronic inflammatory lung diseases with increasing prevalence. Both diseases are associated with mild or severe remodeling of the airways. In this review, we postulate that the pathologies of asthma and COPD may result from inadequate responses and/or a deregulated balance of a group of cell differentiation regulating factors, the CCAAT/Enhancer Binding Proteins (C/EBPs). In addition, we will argue that the exposure to environmental factors, such as house dust mite and cigarette smoke, changes the response of C/EBPs and are different in diseased cells. These novel insights may lead to a better understanding of the etiology of the diseases and may provide new aspects for therapies.
Collapse
Affiliation(s)
| | | | | | - Peter Borger
- Pulmonary Cell Research, Departments of Biomedicine and Pneumology, University Hospital Basel,
Switzerland
| |
Collapse
|
14
|
Ow DW, Jacobs JD, Howell SH. Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc Natl Acad Sci U S A 2010; 84:4870-4. [PMID: 16578811 PMCID: PMC305207 DOI: 10.1073/pnas.84.14.4870] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cauliflower mosaic virus (CaMV) 35S RNA promoter has been dissected and examined in a transient expression system using the firefly luciferase gene as a reporter of promoter activity. Deletion analysis has shown that the 35S RNA promoter is composed of at least three regions-distal, medial, and proximal-which are essential for activity. The distal region contains three smaller elements homologous to the simian virus 40 "core" enhancer element, the medial region possesses a CCAAT-like box, and the proximal region contains a TATA box. A DNA segment encompassing the distal region is capable of activating the CaMV 35S core promoter in an orientation-independent, but not position-independent, fashion. The distal region can also activate a heterologous weak promoter, the CaMV 19S RNA promoter, albeit not to the high levels of the 35S RNA promoter. Multimers of the distal region are able to activate the 35S RNA promoter core to even greater levels of expression than the native 35S promoter. These experiments demonstrate that elements outside the boundaries of the core promoter (composed of proximal and medial elements) are recognized in a plant cell transient expression system.
Collapse
Affiliation(s)
- D W Ow
- Department of Biology, C016, University of California San Diego, LaJolla, CA 92093
| | | | | |
Collapse
|
15
|
CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev Mol Med 2009; 11:e12. [PMID: 19351437 DOI: 10.1017/s1462399409001033] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CCAAT/enhancer-binding proteins (C/EBPs) are a family of leucine-zipper transcription factors that regulate gene expression to control cellular proliferation, differentiation, inflammation and metabolism. Encoded by an intronless gene, C/EBPbeta is expressed as several distinct protein isoforms (LAP1, LAP2, LIP) whose expression is regulated by the differential use of several in-frame translation start sites. LAP1 and LAP2 are transcriptional activators and are associated with differentiation, whereas LIP is frequently elevated in proliferative tissue and acts as a dominant-negative inhibitor of transcription. However, emerging evidence suggests that LIP can serve as a transcriptional activator in some cellular contexts, and that LAP1 and LAP2 might also have unique actions. The LIP:LAP ratio is crucial for the maintenance of normal growth and development, and increases in this ratio lead to aggressive forms of breast cancer. This review discusses the regulation of C/EBPbeta activity by post-translational modification, the individual actions of LAP1, LAP2 and LIP, and the functions and downstream targets that are unique to each isoform. The role of the C/EBPbeta isoforms in breast cancer is discussed and emphasis is placed on their interactions with receptor tyrosine kinases.
Collapse
|
16
|
Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 2009; 113:6558-66. [PMID: 19304957 DOI: 10.1182/blood-2008-10-184747] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CEBPA mutations have been associated with improved outcome in adult acute myeloid leukemia (AML). We evaluated the prevalence and prognostic significance of CEBPA mutations in 847 children with AML treated on 3 consecutive pediatric trials. Two types of CEBPA mutations-N-terminal truncating mutations and in-frame bZip-domain mutations-were detected in 38 (4.5%) of 847 patients tested; 31 (82%) of 38 patients with mutations harbored both mutation types. Mutation status was correlated with laboratory and clinical characteristics and clinical outcome. CEBPA mutations were significantly more common in older patients, patients with FAB M1 or M2, and patients with normal karyotype. Mutations did not occur in patients with either favorable or unfavorable cytogenetics. Actuarial event-free survival at 5 years was 70% versus 38% (P = .015) with a cumulative incidence of relapse from complete remission of 13% versus 44% (P = .007) for those with and without CEBPA mutations. The presence of CEBPA mutations was an independent prognostic factor for improved outcome (HR = 0.24, P = .047). As CEBPA mutations are associated with lower relapse rate and improved survival, CEBPA mutation analysis needs to be incorporated into initial screening for risk identification and therapy allocation at diagnosis.
Collapse
|
17
|
Gaudreault M, Gingras ME, Lessard M, Leclerc S, Guérin SL. Electrophoretic mobility shift assays for the analysis of DNA-protein interactions. Methods Mol Biol 2009; 543:15-35. [PMID: 19378156 DOI: 10.1007/978-1-60327-015-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electromobility shift assay is a simple, efficient, and rapid method for the study of specific DNA-protein interactions. It relies on the reduction in the electrophoretic mobility conferred to a DNA fragment by an interacting protein. The technique is suitable to qualitative, quantitative, and kinetic analyses. It can also be used to analyze conformational changes.
Collapse
Affiliation(s)
- Manon Gaudreault
- Oncology and Molecular Endocrinology Research Center, CHUL, Centre Hospitalier Universitaire de Québec and Laval University, 2705 Laurier Blvd, Québec, QC, Canada, G1V 4G2
| | | | | | | | | |
Collapse
|
18
|
Hall AJ, Peake IR, Winship PR. Regulation of the human protein S gene promoter by liver enriched transcription factors. Br J Haematol 2007; 135:538-46. [PMID: 17061980 DOI: 10.1111/j.1365-2141.2006.06327.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein S is expressed in a number of tissue types, one of the most physiologically relevant being the liver. However, transcriptional control of protein S gene expression is poorly understood. We have characterised a 638 bp area in the 5' flanking region of the human protein S gene, spanning all 10 previously reported transcription initiation sites, which demonstrates promoter activity in the human liver-derived cell line HepG2. More refined reporter gene analysis of this region enabled the identification of three transcription initiation sites whose absence is associated with significantly reduced promoter activity, together with a number of positively and negatively acting transcriptional regulatory elements. Consistent with these findings, DNaseI footprinting analysis identified eleven sites (I-XI) from within this 638 bp region that show evidence of binding nuclear proteins. We present evidence to show that the liver-specific factors hepatocyte nuclear factor 1 (HNF1) and HNF4 bind regions of the protein S promoter, which lie within the identified protein binding sites V and VIII, respectively, and that HNF4 activates the protein S promoter. Reporter gene analysis suggests that members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors are potent activators of protein S gene transcription in HepG2 cells.
Collapse
Affiliation(s)
- Adrian J Hall
- Academic Unit of Haematology, Henry Wellcome Laboratories for Medical Research, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
19
|
Marcinkowska E, Garay E, Gocek E, Chrobak A, Wang X, Studzinski GP. Regulation of C/EBPbeta isoforms by MAPK pathways in HL60 cells induced to differentiate by 1,25-dihydroxyvitamin D3. Exp Cell Res 2006; 312:2054-65. [PMID: 16624284 PMCID: PMC2814412 DOI: 10.1016/j.yexcr.2006.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 01/30/2023]
Abstract
C/EBPbeta is known to be important for monocytic differentiation and macrophage function. Here, we found that expression of all three C/EBPbeta isoforms induced in HL60 cells by 1,25-dihydroxyvitamin D3 (1,25D) was upregulated in a sustained manner that correlates with the appearance of monocytic phenotype and with the G1 phase cell cycle arrest. In 1,25D-resistant HL60-40AF cells, isoforms beta-1 and beta-3 were expressed at levels comparable to 1,25D-sensitive HL60-G cells, but isoform beta-2 was difficult to detect. Treatment of sensitive HL60 cells with 1,25D resulted in predominantly nuclear localization of C/EBP isoforms beta-2 and beta-3, while a large proportion of C/EBPbeta-1 remained in the cytoplasm. Attenuation of the MEK-ERK MAPK pathway by the inhibitor PD98059 markedly reduced the expression, 1,25D-induced phosphorylation and nuclear localization of C/EBPbeta-2 and C/EBPbeta-3. Interestingly, only the lower molecular mass isoforms of C/EBPbeta phosphorylated on Thr235 were found in the nuclei, while C/EBPbeta-1 was constitutively phosphorylated and was detected principally in the cytoplasmic fraction. Although the role of C/EBPbeta isoforms in 1,25D-induced differentiation is complex, our results taken together strongly suggest that the phosphorylation of C/EBPbeta isoforms on Thr235 takes place mainly via the MEK-ERK pathway and that C/EBPbeta-2 is the principal transcription factor in this cell system.
Collapse
Affiliation(s)
- Ewa Marcinkowska
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Edward Garay
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - Elzbieta Gocek
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Agnieszka Chrobak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl St. 12, 53-114 Wroclaw, Poland
| | - Xuening Wang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - George P. Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
20
|
Lin L, Stringfield T, Shi X, Chen Y. Arsenite induces a cell stress-response gene, RTP801, through reactive oxygen species and transcription factors Elk-1 and CCAAT/enhancer-binding protein. Biochem J 2006; 392:93-102. [PMID: 16008523 PMCID: PMC1317668 DOI: 10.1042/bj20050553] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RTP801 is a newly discovered stress-response gene that is induced by hypoxia and other cell stress signals. Arsenic is a heavy metal that is linked to carcinogenesis in humans. Here, we investigated the mechanism by which arsenic induces RTP801 transcription. In HaCaT human keratinocytes, arsenite was able to induce a rapid rise in the RTP801 mRNA level. Correspondingly, arsenite treatment was capable of stimulating a 2.5 kb human RTP801 promoter. Such a stimulatory effect was inhibited by co-expression of superoxide dismutase or glutathione peroxidase, and was abrogated by N-acetylcysteine, implying that ROS (reactive oxygen species) were involved in transcriptional regulation of the RTP801 gene. A series of deletion studies with the promoter revealed a critical arsenic-responsive region between -1057 and -981 bp of the promoter. Point mutations of the putative Elk-1 site and the C/EBP (CCAAT/enhancer-binding protein) site within this region were able to reduce the stimulatory effect of arsenite, indicating that Elk-1 and C/EBP are involved in transcriptional regulation of the RTP801 gene by arsenite. Furthermore, a gel mobility-shift assay demonstrated that arsenite was able to mount the rapid formation of a protein complex that bound the arsenic-responsive region as well as the C/EBP-containing sequence. The arsenite stimulation on RTP801 transcription was partly mediated by the ERK (extracellular-signal-regulated kinase) pathway, since the effect of RTP801 was inhibited by a selective ERK inhibitor. In addition, overexpression of Elk-1 and C/EBPbeta was able to elevate the promoter activity. Therefore these studies indicate that RTP801 is a transcriptional target of arsenic in human keratinocytes, and that arsenic and ROS production are linked to Elk-1 and C/EBP in the transcriptional control.
Collapse
Affiliation(s)
- Lin Lin
- *Department of Medical and Molecular Genetics, Walther Oncology Center, Indiana University School of Medicine and the Walther Cancer Institute, Indianapolis, IN 46202, U.S.A
| | - Teresa M. Stringfield
- *Department of Medical and Molecular Genetics, Walther Oncology Center, Indiana University School of Medicine and the Walther Cancer Institute, Indianapolis, IN 46202, U.S.A
| | - Xianglin Shi
- †Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, U.S.A
- ‡Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Chen
- *Department of Medical and Molecular Genetics, Walther Oncology Center, Indiana University School of Medicine and the Walther Cancer Institute, Indianapolis, IN 46202, U.S.A
- ‡Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The transcription factor C/EBPalpha controls differentiation and proliferation in normal granulopoiesis in a stage-specific manner. Loss of C/EBPalpha function in myeloid cells in vitro and in vivo leads to a block to myeloid differentiation similar to that which is observed in malignant cells from patients with acute myeloid leukemia. The finding of C/EBPalpha alterations in subgroups of acute myeloid leukemia patients suggests a direct link between critically decreased C/EBPalpha function and the development of the disorder. RECENT FINDINGS Conditional mouse models provide direct evidence that loss of C/EBPalpha function leads to the accumulation of myeloid blasts in the bone marrow. Targeted disruption of the wild type C/EBPalpha protein, while conserving the dominant-negative 30 kDa isoform of C/EBPalpha, induces an AML-like disease in mice. In hematopoietic stem cells C/EBPalpha serves to limit cell self-renewal. Finally, C/EBPalpha function is disrupted at different levels in specific subgroups of acute myeloid leukemia patients. SUMMARY There is evidence that impaired C/EBPalpha function contributes directly to the development of acute myeloid leukemia. Normal myeloid development and acute myeloid leukemia are now thought to reflect opposite sides of the same hematopoietic coin. Restoring C/EBPalpha function represents a promising target for novel therapeutic strategies in acute myeloid leukemia.
Collapse
|
22
|
Abstract
Cell culture models have been developed to study commitment and subsequent differentiation of preadipocytes into adipocytes. Bone morphogenetic protein 4 commits mesenchymal stem cells to the adipose lineage. Other factors, including Wnt signaling, cell density, and cell shape, play a role in lineage commitment. Following commitment to the adipose lineage, growth-arrested preadipocytes can differentiate to adipocytes by treatment with insulin-like growth factor 1, glucocorticoid and an agent that increases cAMP level. This process is characterized by a rapid and transient increase in CCAAT/enhancer binding protein (C/EBP) beta and synchronous re-entry into the cell cycle. Acquisition of DNA-binding by C/EBPbeta occurs after the transcription factor becomes phosphorylated. The cells enter a growth-arrested state and begin terminal differentiation. C/EBPalpha, peroxisome proliferator-activated receptor gamma, and adipocyte determination, and differentiation-dependent factor 1 coordinate the expression of genes that create and maintain the adipocyte phenotype.
Collapse
Affiliation(s)
- Tamara C Otto
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
23
|
Laniel MA, Poirier GG, Guérin SL. A conserved initiator element on the mammalian poly(ADP-ribose) polymerase-1 promoters, in combination with flanking core elements, is necessary to obtain high transcriptional activity. ACTA ACUST UNITED AC 2004; 1679:37-46. [PMID: 15245915 DOI: 10.1016/j.bbaexp.2004.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 11/27/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a conserved nuclear protein present in nearly all eukaryotes. In mammalian cells, its abundant expression and its ability to specifically bind to DNA strand breaks make it an important enzyme in the rapid cellular response to DNA damage. Although the promoter regions of the three known mammalian PARP-1 genes, from human, rat and mouse, are different, they share common features, such as multiple GC-rich regions, lack of a functional TATA box, and presence of a putative initiator element. In this study, we analyzed the core promoter region of the rat PARP-1 gene, and show that it contains a functional initiator element surrounding the transcription start site. This core element lies within an approximately 40-base-pair region that is highly conserved in all three mammalian PARP-1 promoters. Furthermore, we show that other core elements located upstream and downstream of the PARP-1 initiator, including a functional Sp1 target site, synergize to regulate rat PARP-1 transcription. As the initiator region of all three PARP-1 gene promoters is highly conserved, their transcriptional regulation is likely achieved through similar mechanisms.
Collapse
Affiliation(s)
- Marc-André Laniel
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center, 2705 Laurier Blvd., Ste-Foy, QC, Canada G1V 4G2
| | | | | |
Collapse
|
24
|
Inoue Y, Inoue J, Lambert G, Yim SH, Gonzalez FJ. Disruption of hepatic C/EBPalpha results in impaired glucose tolerance and age-dependent hepatosteatosis. J Biol Chem 2004; 279:44740-8. [PMID: 15292250 DOI: 10.1074/jbc.m405177200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C/EBPalpha is highly expressed in liver and regulates many genes that are preferentially expressed in liver. Because C/EBPalpha-null mice die soon after birth, it is impossible to analyze the function of C/EBPalpha in the adult with this model. To address the function of C/EBPalpha in adult hepatocytes, liver-specific C/EBPalpha-null mice were produced using a floxed C/EBPalpha allele and the albumin-Cre transgene. Unlike whole body C/EBPalpha-null mice, mice lacking hepatic C/EBPalpha expression did not exhibit hypoglycemia, nor did they show reduced hepatic glycogen in adult. Expression of liver glycogen synthase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase remained at normal levels. However, these mice exhibited impaired glucose tolerance due in part to reduced expression of hepatic glucokinase, and hyperammonemia from reduced expression of hepatic carbamoyl phosphate synthase-I. These mice also had reduced serum cholesterol and steatotic livers that was exacerbated with aging. This phenotype could be explained by increased expression of hepatic lipoprotein lipase and reduced expression of microsomal triglyceride transfer protein, apolipoproteins B100, and A-IV. These data demonstrate that hepatic C/EBPalpha is critical for ammonia detoxification and glucose and lipid homeostasis in adult mice.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Okumura S, Fujii H, Inokuchi N, Watanabe M, Nishino T, Okazaki T. Molecular cloning and characterization of three adult rat beta-globin gene promoters. ACTA ACUST UNITED AC 2004; 1678:145-9. [PMID: 15157740 DOI: 10.1016/j.bbaexp.2004.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 01/06/2004] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
We analyzed the promoter regions of the adult rat beta (IIbeta, IIIbeta, and 0beta)-globin genes. The results indicated that (1) the activities of the minimal promoters of these three genes are proportional to the gene expression levels in vivo, and (2) erythroid-specific repressor regions are located immediately upstream of the minimal promoter sequences and are regulated by the same transcription factor.
Collapse
Affiliation(s)
- Satoshi Okumura
- Department of First Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo 113-8602, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
In eukaryotes, transcription of the diverse array of tens of thousands of protein-coding genes is carried out by RNA polymerase II. The control of this process is predominantly mediated by a network of thousands of sequence-specific DNA binding transcription factors that interpret the genetic regulatory information, such as in transcriptional enhancers and promoters, and transmit the appropriate response to the RNA polymerase II transcriptional machinery. This review will describe some early advances in the discovery and characterization of the sequence-specific DNA binding transcription factors as well as some of the properties of these regulatory proteins.
Collapse
Affiliation(s)
- James T Kadonaga
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Abstract
Slow transforming retroviruses, such as the Moloney murine leukemia virus (M-MuLV), induce tumors upon infection of a host after a relatively long latency period. The underlying mechanism leading to cell transformation is the activation of proto-oncogenes or inactivation of tumor suppressor genes as a consequence of proviral insertions into the host genome. Cells carrying proviral insertions that confer a selective advantage will preferentially grow out. This means that proviral insertions mark genes contributing to tumorigenesis, as was demonstrated by the identification of numerous proto-oncogenes in retrovirally induced tumors in the past. Since cancer is a complex multistep process, the proviral insertions in one clone of tumor cells also represent oncogenic events that cooperate in tumorigenesis. Novel advances, such as the launch of the complete mouse genome, high-throughput isolation of proviral flanking sequences, and genetically modified animals have revolutionized proviral tagging into an elegant and efficient approach to identify signaling pathways that collaborate in cancer.
Collapse
Affiliation(s)
- Harald Mikkers
- Division of Molecular Genetics and Centre of Biomedical Genetics, Netherlands Cancer Institute 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Miller M, Shuman JD, Sebastian T, Dauter Z, Johnson PF. Structural basis for DNA recognition by the basic region leucine zipper transcription factor CCAAT/enhancer-binding protein alpha. J Biol Chem 2003; 278:15178-84. [PMID: 12578822 DOI: 10.1074/jbc.m300417200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are basic region leucine zipper (bZIP) transcription factors that regulate cell differentiation, growth, survival, and inflammation. To understand the molecular basis of DNA recognition by the C/EBP family we determined the x-ray structure of a C/EBPalpha bZIP polypeptide bound to its cognate DNA site (A(-5)T(-4)T(-3)G(-2)C(-1)G(1)C(2)A(3)A(4)T(5)) and characterized several basic region mutants. Binding specificity is provided by interactions of basic region residues Arg(289), Asn(292), Ala(295), Val(296), Ser(299), and Arg(300) with DNA bases. A striking feature of the C/EBPalpha protein-DNA interface that distinguishes it from known bZIP-DNA complexes is the central role of Arg(289), which is hydrogen-bonded to base A(3), phosphate, Asn(292) (invariant in bZIPs), and Asn(293). The conformation of Arg(289) is also restricted by Tyr(285). In accordance with the structural model, mutation of Arg(289) or a pair of its interacting partners (Tyr(285) and Asn(293)) abolished C/EBPalpha binding activity. Val(296) (Ala in most other bZIPs) contributes to C/EBPalpha specificity by discriminating against purines at position -3 and imposing steric restraints on the invariant Arg(300). Mutating Val(296) to Ala strongly enhanced C/EBPalpha binding to cAMP response element (CRE) sites while retaining affinity for C/EBP sites. Thus, Arg(289) is essential for formation of the complementary protein-DNA interface, whereas Val(296) functions primarily to restrict interactions with related sequences such as CRE sites rather than specifying binding to C/EBP sites. Our studies also help to explain the phenotypes of mice carrying targeted mutations in the C/EBPalpha bZIP region.
Collapse
Affiliation(s)
- Maria Miller
- Protein Structure Section, Macromolecular Crystallography Laboratory, and the Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
29
|
Chandrasekharan MB, Bishop KJ, Hall TC. Module-specific regulation of the beta-phaseolin promoter during embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:853-66. [PMID: 12609027 DOI: 10.1046/j.1365-313x.2003.01678.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phas promoter displays stringent spatial regulation, being very highly expressed during embryogenesis and completely silent during all phases of vegetative development in bean, Phaseolus vulgaris. This pattern is maintained in transgenic tobacco and, as shown here, Arabidopsis. Dimethyl sulphate in vivo footprinting analyses revealed that over 20 cis-elements within the proximal 295 bp of the phas promoter are protected by factor binding in seed tissues whereas none are bound in leaves. The hypothesis that this complex profile represents a summation of several module (cotyledon, hypocotyl, and radicle)-specific factor-DNA interactions has been explored by the incorporation of site-directed substitution mutations into 10 locations within the -295phas promoter. Only 2.6% of -295phas promoter activity remained after mutation of the G-box; the CCAAAT box, the E-box and the RY elements were also found to mediate high levels of expression in embryos. Whereas the CACA element has dual positive and negative regulatory roles, the vicilin box was identified as a strong negative regulatory element. The proximal (-70 to -64) RY motif was found to bestow expression in the hypocotyl while all the RY elements contribute to expression in cotyledons but not to vascular tissue expression during embryogenesis. RY elements at positions -277 to -271, -260 to -254, and -237 to -231 were found to orchestrate radicle-specific repression. The G-box appears to be the functional abscisic acid responsive element and the E-site may be a coupling element. The results substantiate the concept that autarkical cis-element functions generate modular patterning during embryogenesis. They also reflect the existence of both redundancy and hierarchy in cis-element interactions. Importantly, the virtually identical expression patterns observed for the two distantly related plants studied argue strongly for the generality of function for the observed factor-element interactions.
Collapse
Affiliation(s)
- Mahesh B Chandrasekharan
- Department of Biology, Institute of Developmental and Molecular Biology, Texas A&M University, College Station, TX 77843-3155, USA
| | | | | |
Collapse
|
30
|
Petersen RA, Niamsup H, Berenbaum MR, Schuler MA. Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1619:269-82. [PMID: 12573487 DOI: 10.1016/s0304-4165(02)00486-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Papilio polyxenes, a lepidopteran continually exposed to toxic furanocoumarins in its hostplants, owes its tolerance to these compounds to the transcriptional induction of the CYP6B1 gene encoding a P450 capable of metabolizing linear furanocoumarins, such as xanthotoxin, at high rates. Transient expression of various lengths of wild-type and mutant CYP6B1v3 promoter in lepidopteran Sf9 cells defines a positive element (XRE-xan) from -136 to -119 required for both basal and xanthotoxin-inducible transcription and a negative element from -228 to -146 that represses basal transcription. Fusion of the CYP6B1v3 XRE-xan element to the Drosophila melanogaster Eip28/29 core promoter indicates that the XRE-xan functions in conjunction with its own core promoter but not with a heterologous core promoter. Sequence searches of the CYP6B1v3 proximal promoter region revealed a number of putative elements (XRE-AhR, ARE, OCT-1, EcRE, C/EBP, Inr) sharing sequence similarity with those in other regulated vertebrate and insect promoters. Mutation of TGAC nucleotides shared by the overlapping EcRE/ARE/XRE-xan indicates that this sequence is essential for basal and regulated transcription of this gene. Mutagenesis in the non-overlapping region of the EcRE indicates it modulates basal transcription. These findings are incorporated into a working model for regulation of this toxin-inducible promoter.
Collapse
Affiliation(s)
- Rebecca A Petersen
- Department of Entomology, 320 Morrill Hall, 505 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
31
|
Abstract
C/EBP-related transcription factors regulate the balance between cell proliferation and mitotic growth arrest during terminal differentiation. Three new studies give evidence that this regulation is mediated by protein:protein interactions completely distinct from the role of C/EBPs in gene expression.
Collapse
Affiliation(s)
- S L McKnight
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Funaki M, Inukai K, Fukushima Y, Kikuchi M, Oka Y, Asano T. MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem 2001; 276:19800-6. [PMID: 11279172 DOI: 10.1074/jbc.m101087200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p38 mitogen-activated protein kinase (MAPK), which is situated downstream of MAPK kinase (MKK) 6 and MKK3, is activated by mitogenic or stress-inducing stimuli, as well as by insulin. To clarify the role of the MKK6/3-p38 MAPK pathway in the regulation of glucose transport, dominant negative p38 MAPK and MKK6 mutants and constitutively active MKK6 and MKK3 mutants were overexpressed in 3T3-L1 adipocytes and L6 myotubes using an adenovirus-mediated transfection procedure. Constitutively active MKK6/3 mutants up-regulated GLUT1 expression and down-regulated GLUT4 expression, thereby significantly increasing basal glucose transport but diminishing transport induced by insulin. Similar effects were elicited by chronic (24 h) exposure to tumor necrosis factor alpha, interleukin-1beta, or 200 mm sorbitol, all activate the MKK6/3-p38 MAPK pathway. SB203580, a specific p38 MAPK inhibitor, attenuated these effects, further confirming that both MMK6 and MMK3 act via p38 MAPK, whereas they had no effect on the increase in glucose transport induced by a constitutively active MAPK kinase 1 (MEK1) mutant or by myristoylated Akt. In addition, suppression of p38 MAPK activation by overexpression of a dominant negative p38 MAPK or MKK6 mutant did not diminish insulin-induced glucose uptake by 3T3-L1 adipocytes. It is thus apparent that activation of p38 MAPK is not essential for insulin-induced increases in glucose uptake. Rather, p38 MAPK activation leads to a marked down-regulation of insulin-induced glucose uptake via GLUT4, which may underlie cellular stress-induced insulin resistance caused by tumor necrosis factor alpha and other factors.
Collapse
Affiliation(s)
- M Fujishiro
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fernandez-Rachubinski F, Fliegel L. COUP-TFI and COUP-TFII regulate expression of the NHE through a nuclear hormone responsive element with enhancer activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:620-34. [PMID: 11168401 DOI: 10.1046/j.1432-1327.2001.01915.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) are orphan receptors involved in regulation of embryonic development and neuronal cell fate determination. We identified a target of COUP-TF involved in cell proliferation and cell differentiation. Using reporter assays, footprint analysis, and electrophoretic mobility shift assays, we showed that a nuclear hormone-responsive element located at -841/-800 nt of the mouse Na(+)/H(+) exchanger (NHE) promoter binds COUP-TF with enhancer activity. Mutation at -829/-824 nt (and secondarily at -837/-833) prevents COUP binding and activation of the NHE promoter. In vivo expression of COUP isoforms in NIH 3T3 or CV1 cells transactivates from the nuclear hormone-responsive element and from the entire NHE1 promoter. Transactivation is greater for COUP-TFII, is increased for either COUP isoform by the presence of high serum concentrations, and is greatly reduced by mutations preventing COUP binding. In vivo COUP expression in NIH 3T3 cells results in increased synthesis of NHE. Expression of COUP-TFII induced by either retinoic acid or dimethyl sulfoxide in differentiating P19 cells increases NHE expression. The results show that COUP-TF regulates expression of the NHE and provide a mechanism that may be important in physiological and pathological situations linked to its upregulation.
Collapse
Affiliation(s)
- F Fernandez-Rachubinski
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
34
|
Liang F, Schaufele F, Gardner DG. Functional interaction of NF-Y and Sp1 is required for type a natriuretic peptide receptor gene transcription. J Biol Chem 2001; 276:1516-22. [PMID: 11022037 DOI: 10.1074/jbc.m006350200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vasorelaxant and anti-mitogenic activities of the atrial and brain natriuretic peptides depend upon their binding to the type A natriuretic peptide receptor (NPR-A) expressed on the surface of vascular cells. Intervention strategies aimed at controlling NPR-A expression are limited by the paucity of studies in this area. Here we identify a sequence CCAAT between -141 and -137 of the NPR-A promoter that, when mutated, reduces promoter activity by 90% in rat aortic smooth muscle (RASM) cells. Protein/DNA cross-linking and immunoperturbation of electrophoretically shifted complexes formed between RASM nuclear extracts and an oligonucleotide surrounding the CCAAT sequence indicates that the heterotrimeric transcription factor NF-Y binds specifically to the wild-type, but not mutated, CCAAT element. Cotransfection of a dominant negative mutant of the NF-YA subunit results in a concentration-dependent decrease in the activity of the NPR-A promoter in RASM cells confirming that endogenous NF-Y is an activator of the promoter. Mutation of the CCAAT element, in conjunction with mutation of all three Sp1 sites previously shown to be involved in NPR-A promoter regulation, virtually eliminates NPR-A promoter activity in RASM cells. Coexpression of all three NF-Y subunits together with Sp1 in Drosophila cells deficient in these factors indicates that NF-Y and Sp1 act synergistically to reconstitute NPR-A promoter activity. A direct physical association between NF-Y and Sp1 can be demonstrated both in vitro by glutathione S-transferase pull-down assay and in the intact cell by coimmunoprecipitation and functional studies. Together, these studies show that NPR-A promoter activity is dominantly regulated through functional, and possibly physical, interactions of NF-Y and Sp1.
Collapse
Affiliation(s)
- F Liang
- Metabolic Research Unit and Department of Medicine, University of California, San Francisco, California 94143-0540, USA
| | | | | |
Collapse
|
35
|
Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000; 14:973-90. [PMID: 10865962 DOI: 10.1038/sj.leu.2401808] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of mature granulocytes from hematopoietic precursor cells is controlled by a myriad of transcription factors which regulate the expression of essential genes, including those encoding growth factors and their receptors, enzymes, adhesion molecules, and transcription factors themselves. In particular, C/EBPalpha, PU.1, CBF, and c-Myb have emerged as critical players during early granulopoiesis. These transcription factors interact with one another as well as other factors to regulate the expression of a variety of genes important in granulocytic lineage commitment. An important goal remains to understand in greater detail how these various factors act in concert with signals emanating from cytokine receptors to influence the various steps of maturation, from the pluripotent hematopoietic stem cell, to a committed myeloid progenitor, to myeloid precursors, and ultimately to mature granulocytes.
Collapse
Affiliation(s)
- A C Ward
- Institute of Hematology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Wang L, Shao J, Muhlenkamp P, Liu S, Klepcyk P, Ren J, Friedman JE. Increased insulin receptor substrate-1 and enhanced skeletal muscle insulin sensitivity in mice lacking CCAAT/enhancer-binding protein beta. J Biol Chem 2000; 275:14173-81. [PMID: 10747954 DOI: 10.1074/jbc.m000764200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding protein beta (C/EBPbeta) controls gene transcription and metabolic processes in a variety of insulin-sensitive tissues; however, its role in regulating insulin responsiveness in vivo has not been investigated. We performed hyperinsulinemic-euglycemic clamps in awake, non-stressed, chronically catheterized adult mice homozygous for a deletion in the gene for C/EBPbeta (C/EBPbeta(-/-)). Fasting plasma insulin, glucose, and free fatty acid (FFA) levels were significantly lower in C/EBPbeta(-/-) mice compared with wild-type (WT) controls. Acute hyperinsulinemia (4 h) suppressed hepatic glucose production, phosphoenolpyruvate carboxykinase mRNA, and plasma FFA to a similar extent in WT and C/EBPbeta(-/-) mice, suggesting that C/EBPbeta deletion does not alter the metabolic and gene regulatory response to insulin in liver and adipose tissue. In contrast, using submaximal (5 milliunits/kg/min) and maximal (20 milliunits/kg/min) insulin infusions, whole-body glucose disposal was 77% (p < 0.01) and 33% (p < 0.05) higher in C/EBPbeta(-/-) mice, respectively, compared with WT mice. Maximal insulin-stimulated 3-O-methylglucose uptake in isolated soleus muscle was 54% greater in C/EBPbeta(-/-) mice (p < 0.05). Furthermore, insulin-stimulated insulin receptor and Akt Ser(473) phosphorylation and phosphatidylinositol 3-kinase activity were 1.6-2.5-fold greater in skeletal muscle from C/EBPbeta(-/-) mice compared with WT mice. The level of insulin receptor substrate-1 protein was increased 2-fold in skeletal muscle from C/EBPbeta(-/-) mice. These results demonstrate that C/EBPbeta deletion decreases plasma FFA levels and increases insulin signal transduction specifically in skeletal muscle, and both contribute to increased whole-body insulin sensitivity.
Collapse
Affiliation(s)
- L Wang
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Davies HG, Giorgini F, Fajardo MA, Braun RE. A sequence-specific RNA binding complex expressed in murine germ cells contains MSY2 and MSY4. Dev Biol 2000; 221:87-100. [PMID: 10772793 DOI: 10.1006/dbio.2000.9658] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protamine mRNAs are stored for up to 8 days as translationally repressed ribonucleoprotein particles during murine spermatogenesis. Translational repression of the protamine 1, Prm1, mRNA is controlled by sequences in its 3'-untranslated region (UTR). In this study we used the yeast three-hybrid system to clone Msy4, which encodes a novel member of the Y box family of nucleic acid binding proteins. MSY4 specifically binds to a site within the 5' most 37 nucleotides in the Prm1 3' UTR. Msy4 is highly expressed in the testis, and the protein is detected in the cytoplasm of germ cells in both the testis and the ovary, where repressed messages are stored. Analysis of a previously described 48/50-kDa binding activity in testis extracts by electrophoretic mobility shift assays and immunoprecipitation indicates the activity is composed of MSY4 and MSY2, another mouse Y box protein. Polysome analysis demonstrates MSY4 is associated with mRNPs, consistent with MSY4 having a role in storing repressed messages.
Collapse
Affiliation(s)
- H G Davies
- Department of Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
38
|
Zhang J, Miranda K, Ma BY, Fine A. Molecular characterization of the mouse Fas ligand promoter in airway epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:291-301. [PMID: 10684974 DOI: 10.1016/s0167-4781(99)00212-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Constitutively expressed Fas ligand in several distinct epithelial cell types appears to protect tissues by inducing apoptosis of Fas(+) immune cells during inflammatory reactions. To study the transcriptional regulation of Fas ligand gene in airway epithelial cells, a 618-bp 5'-flanking region of mouse Fas ligand gene was cloned, sequenced, and the transcriptional start site was determined by using 5'-RACE. Deletion analysis, gel mobility shift assays and site-directed mutagenesis indicated that a CCAAT box located -214 bp upstream from the transcription start site served as a major positive regulatory cis-element in an airway epithelial cell line. This element was not required for constitutive Fas ligand expression in Sertoli cells. Furthermore, the activity of the site did not involve the NF-Y protein complex or c/EBP protein family. UV-cross linking proteins to this element indicated that a approximately 23-kDa transcription factor bound to the Fas ligand promoter CCAAT box and, thus, likely plays an important role in the regulation of Fas ligand expression in airway epithelial cells.
Collapse
Affiliation(s)
- J Zhang
- The Pulmonary Center and the Department of Biochemistry, Boston University School of Medicine, 80 E. Concord Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
39
|
Su Y, Chang SL, Hsiao HL. Characterization of a 5'-flanking region supporting the transcription of mouse thymosin beta-4 in mouse NIH3T3 cells. Mol Cell Biochem 2000; 203:163-7. [PMID: 10724345 DOI: 10.1023/a:1007020619788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Expression of the gene coding for thymosin beta-4 (Tbeta-4), the major G-actin sequestering peptide in the cell, is regulated mainly at the level of transcription. In this study, we examined the nucleotide sequence of the 5'-flanking region (from -2202 to -881) of the mouse Tbeta-4 gene, and demonstrated that the DNA fragment from -278 to +410 of this gene was capable of directing the expression of a chloramphenicol acetyltransferase reporter gene in NIH3T3 cells. However, expression of the reporter gene in cells cannot be induced by interferon-alpha treatment even though a rapid activation of endogenous Tbeta-4 gene by this cytokine was observed. These results suggest that the projected interferon-stimulated response element (ISRE) might reside in other parts of the mouse Tbeta-4 gene.
Collapse
Affiliation(s)
- Y Su
- Institute of Pharmacology, College of Life Science, National Yang-Ming University, Shih-Pai, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
40
|
Inoue T, Kamiyama J, Sakai T. Sp1 and NF-Y synergistically mediate the effect of vitamin D(3) in the p27(Kip1) gene promoter that lacks vitamin D response elements. J Biol Chem 1999; 274:32309-17. [PMID: 10542271 DOI: 10.1074/jbc.274.45.32309] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D(3) promotes myeloid leukemic cell lines to differentiate terminally into monocytes/macrophages. It has been reported that overexpression of the cdk inhibitor p27(Kip1) results in the differentiation of the myelomonocytic U937 cell line and that this gene is the target of vitamin D(3). To identify the sequences required for the positive regulation of p27(Kip1) transcription by vitamin D(3), a 3.6-kilobase 5'-flanking region of the human p27(Kip1) gene was examined by transiently transfecting luciferase reporter constructs into U937 cells. The transcriptional activity of this construct was activated by vitamin D(3). Deletion and mutational analysis revealed that both a GGGCGG sequence (-545/-539) and a CCAAT sequence (-525/-520) were necessary to induce p27(Kip1) gene expression. Importantly, the region containing both of these elements conferred positive responsiveness to vitamin D(3) to a heterologous promoter. Gel shift assays showed that Sp1 binds to the GGGCGG sequence and that NF-Y binds to the CCAAT sequence. Consistent with the roles of these transcription factors, treatment with vitamin D(3) stimulated the DNA binding activities of these factors to each element and induced the change of one NF-Y subunit. We conclude that vitamin D(3) stimulates transcription of the p27(Kip1) gene by a novel mechanism involving Sp1 and NF-Y, but not the vitamin D receptor, during the early stages of U937 cell differentiation.
Collapse
Affiliation(s)
- T Inoue
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | |
Collapse
|
41
|
Ritsch A, Doppler W, Pfeifhofer C, Sandhofer A, Bodner J, Patsch JR. Cholesteryl ester transfer protein gene expression is not specifically regulated by CCAAT/enhancer-binding protein in HepG2-cells. Atherosclerosis 1999; 146:11-8. [PMID: 10487481 DOI: 10.1016/s0021-9150(99)00107-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cholesteryl ester transfer protein (CETP) mediates the exchange of neutral lipids among plasma lipoproteins and is expressed predominantly in liver and intestine. In band shift assays employing nuclear extracts of HepG2 cells we identified C/EBPbeta as the predominant C/EBP isoform involved in binding to the C/EBP consensus sequence within the 5' upstream region of the CETP gene. This was demonstrated by supershift experiments using antibodies specific for C/EBPalpha, C/EBPbeta and C/EBPdelta and an oligonucleotide containing a single point mutation (CAAT-->CTAT) in this site. Expression of a CETP promoter-fragment/luciferase construct in transiently transfected HepG2 and CaCo-2 cells and enhancement of promoter activity by co-transfection with human C/EBPalpha in HepG2 cells could be influenced neither by the mutation in the consensus sequence nor by elimination of this site together with a second potential binding site for C/EBP. Furthermore, transfection of HepG2 with human C/EBPalpha did not influence the synthesis of CETP by these cells. Our results indicate that the expression of C/EBP in HepG2 cells is not able (1) to influence specifically the expression of a transfected CETP promoter dependent reporter through binding to C/EBP sites in the promoter region and (2) to significantly enhance expression of the endogenous CETP gene.
Collapse
Affiliation(s)
- A Ritsch
- Department of Medicine, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
42
|
Kao CY, Tanimoto A, Arima N, Sasaguri Y, Padmanabhan R. Transactivation of the human cdc2 promoter by adenovirus E1A. E1A induces the expression and assembly of a heteromeric complex consisting of the CCAAT box binding factor, CBF/NF-Y, and a 110-kDa DNA-binding protein. J Biol Chem 1999; 274:23043-51. [PMID: 10438472 DOI: 10.1074/jbc.274.33.23043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play an important role in the eukaryotic cell cycle progression. Cdc2 (CDK1) is expressed in late G(1)/S phase and required for G(2) to M phase transition in higher eukaryotes. The oncoproteins, SV40 large T antigen and adenovirus E1A, induce a 110-kDa protein which specifically recognizes the two inverted CCAAT motifs of the cdc2 promoter in cycling cells and plays an essential role in transactivation of the human cdc2 promoter. Since these CCAAT motifs also conform to the consensus binding sites for the ubiquitous heterotrimeric transcription factor, CBF/NF-Y, the role of CBF/NF-Y in the transactivation of the cdc2 promoter was examined in this study. Our results indicate that CBF/NF-Y and the 110-kDa protein interact with the CCAAT box motif to form a heteromeric complex. However, mutagenesis of the pentanucleotide CCAAT motif or in the presence of urea greater than 2.5 M, no heteromeric complex was formed. In contrast, the 110-kDa protein could still bind the mutant CCAAT motif or with the wild type motif in the presence of 2.5 M urea. Furthermore, E1A.12S induced the gene expression of all three subunits of CBF/NF-Y. Coexpression of E1A and a dominant negative mutant NF-YA subunit significantly reduced the E1A-mediated transactivation of the cdc2 promoter in a dose-dependent manner. These results support the conclusion that E1A protein mediates optimal transactivation of the human cdc2 promoter by inducing the expression and assembly of a heteromeric complex consisting of the 110-kDa protein and the CBF/NF-Y which interacts with the two CCAAT motifs of the cdc2 promoter.
Collapse
Affiliation(s)
- C Y Kao
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | | | |
Collapse
|
43
|
Kamiyama J, Inoue T, Ohtani-Fujita N, Minami S, Yamagishi H, Sakai T. The ubiquitous transcription factor NF-Y positively regulates the transcription of human p27Kip1 through a CCAAT box located in the 5-upstream region of the p27Kip1 gene. FEBS Lett 1999; 455:281-5. [PMID: 10437789 DOI: 10.1016/s0014-5793(99)00899-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abnormally low levels of the cyclin-dependent kinase inhibitor p27Kip1 are found frequently in human carcinomas, and these levels correlate directly with both histological aggressiveness and patient mortality. p27Kip1 is haplo-insufficient for tumor suppression. Thus, p27Kip1 may be a useful molecule for the development of cancer therapies. To know the possible mechanisms underlying transcriptional control, we previously cloned the promoter region of human p27Kip1 gene. We report here the characterization of the 5'-regulatory region of the human p27Kip1 gene. Promoter analysis using 5'-deletion mutants revealed that a 39-bp region between -549 and -511 was required for maximal promoter activity. Point mutation analysis revealed that a CCAAT box within this region was essential for promoter activity. Gel shift assays and cotransfection experiments using a dominant negative form of the NF-Y transcription factor showed that NF-Y directly regulates p27Kip1 transcription through this CCAAT box. This finding might provide a clue to approach the mechanism of tumorigenesis.
Collapse
Affiliation(s)
- J Kamiyama
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Kim SJ, Park T, Lee KK. Identification of a novel cis-acting positive element responsible for the cell-specific expression of the NK-1 homeobox gene. Biochem Biophys Res Commun 1999; 257:538-44. [PMID: 10198247 DOI: 10.1006/bbrc.1999.0501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila NK-1 homeobox gene belongs to the NK-1 class that includes a large number of vertebrate homeobox genes and is shown to be expressed in specific muscle founder cells and a subset of neuronal cells in the ventral nerve cord during embryogenesis. To determine the cis-acting regulatory elements controlling the cell-specific expression of NK-1, we measured transiently expressed chloramphencol acetyl transferase (CAT) reporter gene activities from transfected C2C12 myoblasts and NG108-15 neuroblastoma cells using various CAT constructs containing different 5' upstream regions of NK-1. From the initial analysis of 3.9 kb of the 5' upstream region, we have found that the regions from -1865 to -476 and from -476 to +100 contained strong negative and positive regulatory elements, respectively. Within the positive cis-acting region an 86-bp DNA fragment (from -435 to -350) was sufficient to activate the reporter gene in C2C12 cells, whereas additional regions (from -157 to -28 and from -510 to -425) were required for optimal activity in NG108-15 cells. Gel shift and DNaseI footprinting assays have defined a plausible binding site for C/EBP, 5'-TTTCGCAAG-3' (-424 to -416), and a novel binding site for unknown factors, 5'-AATTACTCACATCC-3' (-370 to -357). Further mutation analysis has revealed that the novel binding sequence for unknown factors is necessary and sufficient for transcriptional activity for reporter gene expression in C2C12 myoblast cells in an orientation-independent manner.
Collapse
Affiliation(s)
- S J Kim
- Molecular Animal Physiology Research Unit, Korea Research Institute of Bioscience and Biotechnology, Taejon, 305-333, Korea.
| | | | | |
Collapse
|
45
|
Papi A, Johnston SL. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription. J Biol Chem 1999; 274:9707-20. [PMID: 10092659 DOI: 10.1074/jbc.274.14.9707] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Virus infections, the majority of which are rhinovirus infections, are the major cause of asthma exacerbations. Treatment is unsatisfactory, and the pathogenesis unclear. Lower airway lymphocyte and eosinophil recruitment and activation are strongly implicated, but the mechanisms regulating these processes are unknown. Intercellular adhesion molecule-1 (ICAM-1) has a central role in inflammatory cell recruitment to the airways in asthma and is the cellular receptor for 90% of rhinoviruses. We hypothesized that rhinovirus infection of lower airway epithelium might induce ICAM-1 expression, promoting both inflammatory cell infiltration and rhinovirus infection. We therefore investigated the effect of rhinovirus infection on respiratory epithelial cell ICAM-1 expression and regulation to identify new targets for treatment of virus-induced asthma exacerbations. We observed that rhinovirus infection of primary bronchial epithelial cells and the A549 respiratory epithelial cell line increased ICAM-1 cell surface expression over 12- and 3-fold, respectively. We then investigated the mechanisms of this induction in A549 cells and observed rhinovirus-induction of ICAM-1 promoter activity and ICAM-1 mRNA transcription. Rhinovirus induction of ICAM-1 promoter activity was critically dependent upon up-regulation of NF-kappaB proteins binding to the -187/-178 NF-kappaB binding site on the ICAM-1 promoter. The principal components of the rhinovirus-induced binding proteins were NF-kappaB p65 homo- or heterodimers. These studies identify ICAM-1 and NF-kappaB as new targets for the development of therapeutic interventions for virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- A Papi
- University Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | | |
Collapse
|
46
|
Choi BH, Park GT, Rho HM. Interaction of hepatitis B viral X protein and CCAAT/ enhancer-binding protein alpha synergistically activates the hepatitis B viral enhancer II/pregenomic promoter. J Biol Chem 1999; 274:2858-65. [PMID: 9915821 DOI: 10.1074/jbc.274.5.2858] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The hepatitis B viral X protein (HBx) is known to exert its transactivation activity by the interaction with several cellular transcription factors. Here we report the interaction of HBx and CCAAT/enhancer-binding protein alpha (C/EBPalpha) and their effects on the enhancer/promoters of hepatitis B virus (HBV). A chloramphenicol acetyltransferase assay showed that the cotransfection of HBx and C/EBPalpha strongly activated the enhancer II/pregenomic promoter of HBV in a synergistic manner. This effect was also observed in the heterologous expression system with promoters of SV40 and herpes simplex virus thymidine kinase genes. Serial deletion analysis of the enhancer II/pregenomic promoter identified the responsible region (nucleotides 1639-1679), in which two C/EBP-binding sites are located. An in vitro interaction assay and electrophoretic mobility shift assay showed that HBx augmented the DNA binding activity of C/EBPalpha by direct interaction with it, and its basic leucine zipper domain was responsible for the interaction with HBx. Domain analysis of HBx showed that the central region (amino acids 78-103) was necessary for direct interaction with C/EBPalpha. However, the complete form of HBx was necessary for the synergistic activation of the HBV pregenomic promoter. These results suggest that the interaction of HBx and C/EBPalpha enhances the transcription of the HBV pregenomic promoter for the effective life cycle of HBV in hepatocytes.
Collapse
Affiliation(s)
- B H Choi
- Department of Molecular Biology and the Research Center for Cell Differentiation, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
47
|
Abstract
Members of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors are pivotal regulators of liver functions such as nutrient metabolism and its control by hormones, acute-phase response and liver regeneration. Recent progress in clarification of regulatory mechanisms for the C/EBP family members gives insight into understanding the liver functions at the molecular level.
Collapse
Affiliation(s)
- M Takiguchi
- Department of Biochemistry, Chiba University School of Medicine, Japan.
| |
Collapse
|
48
|
Li Q, Herrler M, Landsberger N, Kaludov N, Ogryzko VV, Nakatani Y, Wolffe AP. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 1998; 17:6300-15. [PMID: 9799238 PMCID: PMC1170955 DOI: 10.1093/emboj/17.21.6300] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We identify Xenopus NF-Y as a key regulator of acetylation responsiveness for the Xenopus hsp70 promoter within chromatin assembled in Xenopus oocyte nuclei. Y-box sequences are required for the assembly of DNase I-hypersensitive sites in the hsp70 promoter, and for transcriptional activation both by inhibitors of histone deacetylase and by the p300 acetyltransferase. The viral oncoprotein E1A interferes with both of these activation steps. We clone Xenopus NF-YA, NF-YB and NF-YC and establish that NF-Y is the predominant Y-box-binding protein in Xenopus oocyte nuclei. NF-Y interacts with p300 in vivo and is itself a target for acetylation by p300. Transcription from the hsp70 promoter in chromatin can be enhanced further by heat shock factor. We suggest two steps in chromatin modification at the Xenopus hsp70 promoter: first the binding of NF-Y to the Y-boxes to pre-set chromatin and second the recruitment of p300 to modulate transcriptional activity.
Collapse
Affiliation(s)
- Q Li
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Artlett CM, Chen SJ, Varga J, Jimenez SA. Modulation of basal expression of the human alpha1(I) procollagen gene (COL1A1) by tandem NF-1/Sp1 promoter elements in normal human dermal fibroblasts. Matrix Biol 1998; 17:425-34. [PMID: 9840444 DOI: 10.1016/s0945-053x(98)90102-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that a segment of the human alpha1 type I procollagen gene (COL1A1) promoter encompassing nt -174 to -84 is responsible for the highest transcriptional activity in collagen producing cells in vitro. Here, we identified two almost identical tandem NF-1/Sp1 binding sites located between nt -129 to -107 (distal element) and nt -104 to -77 (proximal element) that are responsible for the basal regulation of COL1A1 transcription in normal human dermal fibroblasts. Transient transfection studies revealed that 85% of the basal COL1A1 promoter activity resides within the distal element; however, site-directed mutagenesis within the CCAAT motif in the proximal element resulted in a 98% decrease of the COL1A1 promoter activity. We conclude that each of the NF-1/Sp1 tandem binding sites has a different function. The distal element drives the transcriptional activity of the COL1A1 promoter but is not sufficient for its basal expression, whereas the NF-1 binding site in the proximal element is essential for in vitro COL1A1 gene transcription.
Collapse
Affiliation(s)
- C M Artlett
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
50
|
Buggs C, Nasrin N, Mode A, Tollet P, Zhao HF, Gustafsson JA, Alexander-Bridges M. IRE-ABP (insulin response element-A binding protein), an SRY-like protein, inhibits C/EBPalpha (CCAAT/enhancer-binding protein alpha)-stimulated expression of the sex-specific cytochrome P450 2C12 gene. Mol Endocrinol 1998; 12:1294-309. [PMID: 9731699 PMCID: PMC3464311 DOI: 10.1210/mend.12.9.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In primary hepatocytes, overexpression of an insulin response element-A binding protein (IRE-ABP), a member of the SRY family of high-mobility group (HMG) proteins, inhibits CCAAT/enhancer-binding protein alpha (C/EBPalpha)-mediated activation of the female-specific cytochrome P450 2C12 (CYP2C12) gene, but not the male-specific cytochrome P450 2C11 (CYP2C11) gene. IRE-ABP and C/EBPalpha have overlapping specificity for the C/EBPalpha target site in the CYP2C12 promoter and compete for binding to CYP2C12 DNA in vitro. In contrast, IRE-ABP and C/EBPalpha bind distinct sequences in the CYP2C11 promoter. A single amino acid substitution in the HMG domain of IRE-ABP impairs its ability to bind DNA and to inhibit the effect of C/EBPalpha on CYP2C12 gene expression. Therefore, the ability of IRE-ABP to inhibit C/EBPalpha-stimulated CYP2C12 gene expression requires a functional DNA-binding domain. Taken together, our findings suggest that SRY-like proteins can bind to a subset of sequences recognized by the C/EBP family of DNA-binding proteins and modulate gene transcription in a context-specific manner.
Collapse
Affiliation(s)
- C Buggs
- Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | |
Collapse
|