1
|
Acevedo-Sánchez Y, Woida PJ, Anderson C, Kraemer S, Lamason RL. Rickettsia parkeri forms extensive, stable contacts with the rough endoplasmic reticulum. J Cell Biol 2025; 224:e202406122. [PMID: 39775737 PMCID: PMC11706211 DOI: 10.1083/jcb.202406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Upon invasion into the host cell, a subset of bacterial pathogens resides exclusively in the cytosol. While previous research revealed how they reshape the plasma membrane during invasion, subvert the immune response, and hijack cytoskeletal dynamics to promote their motility, it was unclear if these pathogens also interacted with the organelles in this crowded intracellular space. Here, we examined if the obligate intracellular pathogen Rickettsia parkeri interacts with the endoplasmic reticulum (ER), a large and dynamic organelle spread throughout the cell. Using live-cell microscopy and transmission and focused-ion-beam scanning electron microscopy, we show that R. parkeri forms extensive contacts with the rough ER that are ∼55 nm apart and cover more than half the bacterial surface. Depletion of the ER-specific tethers VAPA and VAPB reduced rickettsia-ER contacts, and VAPA and VAPB were localized around intracellular rickettsiae. Overall, our findings illuminate an interkingdom ER contact uniquely mediated by rickettsiae that mimics some characteristics of traditional host membrane contact sites.
Collapse
Affiliation(s)
| | - Patrick J. Woida
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Haidar-Ahmad N, Tomaro K, Lavallée-Adam M, Campbell-Valois FX. The promiscuous biotin ligase TurboID reveals the proxisome of the T3SS chaperone IpgC in Shigella flexneri. mSphere 2024; 9:e0055324. [PMID: 39480076 PMCID: PMC11580435 DOI: 10.1128/msphere.00553-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Promiscuous biotin ligases derived from the bacterial enzyme BirA are used to identify proteins vicinal to a bait protein, thereby defining its proxisome. Despite the popularity of this approach, surprisingly little is known about its use in prokaryotes. Here, we compared the activity of four widely used promiscuous biotin ligases in the cytoplasm of Shigella flexneri, a pathogenic subgroup of Escherichia coli. Our data indicate that the kinetics of TurboID's biotinylating activity is the highest of those tested. In addition, TurboID showed reduced interaction with the natural BirA binding partners, BccP and the biotin operator, when compared to its ancestor BioID. We therefore evaluated the ability of TurboID to probe the proxisome of the type III secretion system (T3SS) chaperone IpgC and the transcriptional activator MxiE. When the T3SS is inactive (off-state), these proteins are inhibited by forming complexes with the T3SS substrates OspD1 and IpaBC, respectively. In contrast, when the T3SS is active (on-state), OspD1 and IpaBC are secreted allowing MxiE and IpgC to interact together and activate their target genes. The results obtained with the IpgC and TurboID fusions capture a good fraction of these known interactions. It also suggests that the availability of IpgC increases in the on-state, resulting in a greater number of proteins detected in its vicinity. Among these is the T3SS ATPase SpaL (also known as Spa47 or SctN), further supporting the notion that chaperones escort their substrate to the T3SS. Interestingly, a specific subset of proteins conserved in E. coli completes the IpgC proxisome in the on-state.IMPORTANCEPromiscuous biotin ligases are widely used to study protein function in eukaryotes. Strikingly, their use in prokaryotes has been rare. Indeed, the small volume and the cytoplasmic location of the biotin ligase's natural binding partners in these organisms pose unique challenges that can interfere with the study of the proxisome of proteins of interest. Here, we evaluated four of the most common promiscuous biotin ligases and found TurboID was best suited for use in the cytoplasm of Shigella flexneri. Using this method, we extended the proxisome of IpgC beyond its known direct binding partners involved in the regulation of the type III secretion system (T3SS) signaling cascade. Of particular interest for further study are transcription factors and housekeeping proteins that are enriched around IpgC when the T3SS is active. We propose a model in which the increased availability of IpgC in the on-state may allow cross-talk of the T3SS with other cellular processes.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Miljkovic M, Lozano S, Castellote I, de Cózar C, Villegas-Moreno AI, Gamallo P, Jimenez-Alfaro Martinez D, Fernández-Álvaro E, Ballell L, Garcia GA. Novel inhibitors that target bacterial virulence identified via HTS against intra-macrophage survival of Shigella flexneri. mSphere 2023; 8:e0015423. [PMID: 37565760 PMCID: PMC10597453 DOI: 10.1128/msphere.00154-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 08/12/2023] Open
Abstract
Shigella flexneri is a facultative intracellular pathogen that causes shigellosis, a human diarrheal disease characterized by the destruction of the colonic epithelium. Novel antimicrobial compounds to treat infections are urgently needed due to the proliferation of bacterial antibiotic resistance and lack of new effective antimicrobials in the market. Our approach to find compounds that block the Shigella virulence pathway has three potential advantages: (i) resistance development should be minimized due to the lack of growth selection pressure, (ii) no resistance due to environmental antibiotic exposure should be developed since the virulence pathways are not activated outside of host infection, and (iii) the normal intestinal microbiota, which do not have the targeted virulence pathways, should be unharmed. We chose to utilize two phenotypic assays, inhibition of Shigella survival in macrophages and Shigella growth inhibition (minimum inhibitory concentration), to interrogate the 1.7 M compound screening collection subset of the GlaxoSmithKline drug discovery chemical library. A number of secondary assays on the hit compounds resulting from the primary screens were conducted, which, in combination with chemical, structural, and physical property analyses, narrowed the final hit list to 44 promising compounds for further drug discovery efforts. The rapid development of antibiotic resistance is a critical problem that has the potential of returning the world to a "pre-antibiotic" type of environment, where millions of people will die from previously treatable infections. One relatively newer approach to minimize the selection pressures for the development of resistance is to target virulence pathways. This is anticipated to eliminate any resistance selection pressure in environmental exposure to virulence-targeted antibiotics and will have the added benefit of not affecting the non-virulent microbiome. This paper describes the development and application of a simple, reproducible, and sensitive assay to interrogate an extensive chemical library in high-throughput screening format for activity against the survival of Shigella flexneri 2457T-nl in THP-1 macrophages. The ability to screen very large numbers of compounds in a reasonable time frame (~1.7 M compounds in ~8 months) distinguishes this assay as a powerful tool in further exploring new compounds with intracellular effect on S. flexneri or other pathogens with similar pathways of pathogenesis. The assay utilizes a luciferase reporter which is extremely rapid, simple, relatively inexpensive, and sensitive and possesses a broad linear range. The assay also utilized THP-1 cells that resemble primary monocytes and macrophages in morphology and differentiation properties. THP-1 cells have advantages over human primary monocytes or macrophages because they are highly plastic and their homogeneous genetic background minimizes the degree of variability in the cell phenotype (1). The intracellular and virulence-targeted selectivity of our methodology, determined via secondary screening, is an enormous advantage. Our main interest focuses on hits that are targeting virulence, and the most promising compounds with adequate physicochemical and drug metabolism and pharmacokinetic (DMPK) properties will be progressed to a suitable in vivo shigellosis model to evaluate the therapeutic potential of this approach. Additionally, compounds that act via a host-directed mechanism could be a promising source for further research given that it would allow a whole new, specific, and controlled approach to the treatment of diseases caused by some pathogenic bacteria.
Collapse
Affiliation(s)
- Marija Miljkovic
- Department of Medical Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- GSK Global Health Unit, Madrid, Spain
| | | | | | | | | | | | | | | | | | - George A. Garcia
- Department of Medical Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Cossart P. Raising a Bacterium to the Rank of a Model System: The Listeria Paradigm. Annu Rev Microbiol 2023; 77:1-22. [PMID: 37713460 DOI: 10.1146/annurev-micro-110422-112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium Listeria monocytogenes. All this has been possible thanks to a number of talented team members who ultimately became friends.
Collapse
Affiliation(s)
- Pascale Cossart
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France;
| |
Collapse
|
5
|
Acevedo-Sánchez Y, Woida PJ, Kraemer S, Lamason RL. An obligate intracellular bacterial pathogen forms a direct, interkingdom membrane contact site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543771. [PMID: 37333133 PMCID: PMC10274737 DOI: 10.1101/2023.06.05.543771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interorganelle communication regulates cellular homeostasis through the formation of tightly-associated membrane contact sites 1-3. Prior work has identified several ways that intracellular pathogens alter contacts between eukaryotic membranes 4-6, but there is no existing evidence for contact sites spanning eukaryotic and prokaryotic membranes. Here, using a combination of live-cell microscopy and transmission and focused-ion-beam scanning electron microscopy, we demonstrate that the intracellular bacterial pathogen Rickettsia parkeri forms a direct membrane contact site between its bacterial outer membrane and the rough endoplasmic reticulum (ER), with tethers that are approximately 55 nm apart. Depletion of the ER-specific tethers VAPA and VAPB reduced the frequency of rickettsia-ER contacts, suggesting these interactions mimic organelle-ER contacts. Overall, our findings illuminate a direct, interkingdom membrane contact site uniquely mediated by rickettsia that seems to mimic traditional host MCSs.
Collapse
Affiliation(s)
| | - Patrick J. Woida
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Qin J, Hong Y, Morona R, Totsika M. Cysteine-Dependent Conformational Heterogeneity of Shigella flexneri Autotransporter IcsA and Implications of Its Function. Microbiol Spectr 2022; 10:e0341022. [PMID: 36374106 PMCID: PMC9769942 DOI: 10.1128/spectrum.03410-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Shigella IcsA is a versatile surface virulence factor required for early and late pathogenesis stages extracellularly and intracellularly. Despite IcsA serving as a model Type V secretion system (T5SS) autotransporter to study host-pathogen interactions, its detailed molecular architecture is poorly understood. Recently, IcsA was found to switch to a different conformation for its adhesin activity upon sensing the host stimuli by Shigella Type III secretion system (T3SS). Here, we reported that the single cysteine residue (C130) near the N terminus of the IcsA passenger had a role in IcsA adhesin activity. We also showed that the IcsA passenger (IcsAp) existed in multiple conformations, and the conformation populations were influenced by a central pair of cysteine residues (C375 and C379), which was not previously reported for any Type V autotransporter passengers. Disruption of either or both central cysteine residues altered the exposure of IcsA epitopes to polyclonal anti-IcsA antibodies previously shown to block Shigella adherence, yet without loss of IcsA intracellular functions in actin-based motility (ABM). Anti-IcsA antibody reactivity was restored when the IcsA-paired cysteine substitution mutants were expressed in an ΔipaD background with a constitutively active T3SS, highlighting an interplay between T3SS and T5SS. The work here uncovered a novel molecular switch empowered by a centrally localized, short-spaced cysteine pair in the Type V autotransporter IcsA that ensured conformational heterogeneity to aid IcsA evasion of host immunity. IMPORTANCE Shigella species are the leading cause of diarrheal-related death globally by causing bacillary dysentery. The surface virulence factor IcsA, which is essential for Shigella pathogenesis, is a unique multifunctional autotransporter that is responsible for cell adhesion, and actin-based motility, yet detailed mechanistic understanding is lacking. Here, we showed that the three cysteine residues in IcsA contributed to the protein's distinct functions. The N-terminal cysteine residue within the IcsA passenger domain played a role in adhesin function, while a centrally localized cysteine pair provided conformational heterogeneity that resulted in IcsA molecules with different reactivity to adhesion-blocking anti-IcsA antibodies. In synergy with the Type III secretion system, this molecular switch preserved biological function in distinct IcsA conformations for cell adhesion, actin-based motility, and autophagy escape, providing a potential strategy by which Shigella evades host immunity and targets this essential virulence factor.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Köseoğlu VK, Jones MK, Agaisse H. The type 3 secretion effector IpgD promotes S. flexneri dissemination. PLoS Pathog 2022; 18:e1010324. [PMID: 35130324 PMCID: PMC8853559 DOI: 10.1371/journal.ppat.1010324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/17/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial pathogen Shigella flexneri causes 270 million cases of bacillary dysentery worldwide every year, resulting in more than 200,000 deaths. S. flexneri pathogenic properties rely on its ability to invade epithelial cells and spread from cell to cell within the colonic epithelium. This dissemination process relies on actin-based motility in the cytosol of infected cells and formation of membrane protrusions that project into adjacent cells and resolve into double-membrane vacuoles (DMVs) from which the pathogen escapes, thereby achieving cell-to-cell spread. S. flexneri dissemination is facilitated by the type 3 secretion system (T3SS) through poorly understood mechanisms. Here, we show that the T3SS effector IpgD facilitates the resolution of membrane protrusions into DMVs during S. flexneri dissemination. The phosphatidylinositol 4-phosphatase activity of IpgD decreases PtdIns(4,5)P2 levels in membrane protrusions, thereby counteracting de novo cortical actin formation in protrusions, a process that restricts the resolution of protrusions into DMVs. Finally, using an infant rabbit model of shigellosis, we show that IpgD is required for efficient cell-to-cell spread in vivo and contributes to the severity of dysentery. The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery (blood in stool). Invasion of epithelial cells and cell-to-cell spread are critical determinants of S. flexneri pathogenesis. Cell-to-cell spread relies on the formation of membrane protrusions that project into adjacent cells and resolve into vacuoles. The molecular mechanisms supporting this dissemination process are poorly understood. In this study, we show that S. flexneri employs the phosphatidylinositol phosphatase activity of the T3SS effector protein IpgD to manipulate phosphoinositides in the protrusion membrane. Manipulation of phosphoinositide signaling restricts the formation of actin networks underneath the protrusion membrane, which would otherwise prevent the scission of protrusions into vacuoles. We also demonstrate that IpgD is required for efficient dissemination in the colon of infant rabbits and contributes to the severity of disease. This study exemplifies how manipulation of phosphoinositide signaling by intracellular pathogens supports bacterial pathogenesis.
Collapse
Affiliation(s)
- Volkan K. Köseoğlu
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marieke K. Jones
- Claude Moore Health Sciences Library, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens 2021; 10:pathogens10111353. [PMID: 34832508 PMCID: PMC8621228 DOI: 10.3390/pathogens10111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Significant advancement has been made in the development of vaccines against bacterial pathogens. However, several roadblocks have been found during the evaluation of vaccines against intracellular bacterial pathogens. Therefore, new lessons could be learned from different vaccines developed against unrelated intracellular pathogens. Bacillary dysentery and melioidosis are important causes of morbidity and mortality in developing nations, which are caused by the intracellular bacteria Shigella and Burkholderia pseudomallei, respectively. Although the mechanisms of bacterial infection, dissemination, and route of infection do not provide clues about the commonalities of the pathogenic infectious processes of these bacteria, a wide variety of vaccine platforms recently evaluated suggest that in addition to the stimulation of antibodies, identifying protective antigens and inducing T cell responses are some additional required elements to induce effective protection. In this review, we perform a comparative evaluation of recent candidate vaccines used to combat these two infectious agents, emphasizing the common strategies that can help investigators advance effective and protective vaccines to clinical trials.
Collapse
|
9
|
Pei G, Dorhoi A. NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. Int J Mol Sci 2021; 22:ijms22136714. [PMID: 34201509 PMCID: PMC8268748 DOI: 10.3390/ijms22136714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.
Collapse
Affiliation(s)
- Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| |
Collapse
|
10
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
11
|
Robertin S, Mostowy S. The history of septin biology and bacterial infection. Cell Microbiol 2021; 22:e13173. [PMID: 32185906 DOI: 10.1111/cmi.13173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
Abstract
Investigation of cytoskeleton during bacterial infection has significantly contributed to both cell and infection biology. Bacterial pathogens Listeria monocytogenes and Shigella flexneri are widely recognised as paradigms for investigation of the cytoskeleton during bacterial entry, actin-based motility, and cell-autonomous immunity. At the turn of the century, septins were a poorly understood component of the cytoskeleton mostly studied in the context of yeast cell division and human cancer. In 2002, a screen performed in the laboratory of Pascale Cossart identified septin family member MSF (MLL septin-like fusion, now called SEPT9) associated with L. monocytogenes entry into human epithelial cells. These findings inspired the investigation of septins during L. monocytogenes and S. flexneri infection at the Institut Pasteur, illuminating important roles for septins in host-microbe interactions. In this review, we revisit the history of septin biology and bacterial infection, and discuss how the comparative study of L. monocytogenes and S. flexneri has been instrumental to understand septin roles in cellular homeostasis and host defence.
Collapse
Affiliation(s)
- Stevens Robertin
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
12
|
Duncan-Lowey JK, Wiscovitch AL, Wood TE, Goldberg MB, Russo BC. Shigella flexneri Disruption of Cellular Tension Promotes Intercellular Spread. Cell Rep 2020; 33:108409. [PMID: 33238111 PMCID: PMC7792532 DOI: 10.1016/j.celrep.2020.108409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
During infection, some bacterial pathogens invade the eukaryotic cytosol and spread between cells of an epithelial monolayer. Intercellular spread occurs when these pathogens push against the plasma membrane, forming protrusions that are engulfed by adjacent cells. Here, we show that IpaC, a Shigella flexneri type 3 secretion system protein, binds the host cell-adhesion protein β-catenin and facilitates efficient protrusion formation. S. flexneri producing a point mutant of IpaC that cannot interact with β-catenin is defective in protrusion formation and spread. Spread is restored by chemical reduction of intercellular tension or genetic depletion of β-catenin, and the magnitude of the protrusion defect correlates with membrane tension, indicating that IpaC reduces membrane tension, which facilitates protrusion formation. IpaC stabilizes adherens junctions and does not alter β-catenin localization at the membrane. Thus, Shigella, like other bacterial pathogens, reduces intercellular tension to efficiently spread between cells.
Collapse
Affiliation(s)
- Jeffrey K. Duncan-Lowey
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Present address: Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Alexandra L. Wiscovitch
- Research Scholar Initiative, The Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA,Present address: Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Thomas E. Wood
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA,Correspondence: (M.B.G.), (B.C.R.)
| | - Brian C. Russo
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA,Present address: Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA,Lead Contact,Correspondence: (M.B.G.), (B.C.R.)
| |
Collapse
|
13
|
Mitchell PS, Roncaioli JL, Turcotte EA, Goers L, Chavez RA, Lee AY, Lesser CF, Rauch I, Vance RE. NAIP-NLRC4-deficient mice are susceptible to shigellosis. eLife 2020; 9:e59022. [PMID: 33074100 PMCID: PMC7595732 DOI: 10.7554/elife.59022] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease that is a major cause of diarrhea-associated mortality in humans. Mice are highly resistant to Shigella and the lack of a tractable physiological model of shigellosis has impeded our understanding of this important human disease. Here, we propose that the differential susceptibility of mice and humans to Shigella is due to mouse-specific activation of the NAIP-NLRC4 inflammasome. We find that NAIP-NLRC4-deficient mice are highly susceptible to oral Shigella infection and recapitulate the clinical features of human shigellosis. Although inflammasomes are generally thought to promote Shigella pathogenesis, we instead demonstrate that intestinal epithelial cell (IEC)-specific NAIP-NLRC4 activity is sufficient to protect mice from shigellosis. In addition to describing a new mouse model of shigellosis, our results suggest that the lack of an inflammasome response in IECs may help explain the susceptibility of humans to shigellosis.
Collapse
Affiliation(s)
- Patrick S Mitchell
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Justin L Roncaioli
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elizabeth A Turcotte
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Lisa Goers
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Roberto A Chavez
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science UniversityPortlandUnited States
| | - Russell E Vance
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Immunotherapeutics and Vaccine Research Initiative, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
14
|
Abstract
The bacterial pathogen Shigella flexneri causes more than 250 million cases of bacillary dysentery (blood in stool) every year across the world. This human-specific disease is characterized by profuse bloody diarrhea, dramatic ulceration of the colonic epithelium and immune cell infiltration of the colonic tissue. A major challenge in understanding the mechanisms supporting bacillary dysentery is the reliance on animal models that do not fully recapitulate the symptoms observed in humans, including bloody diarrhea. Here we outline advances provided by a recently developed infant rabbit model of bacillary dysentery. The infant rabbit model defines bacillary dysentery as a critical combination of massive vascular lesions and dramatic epithelial fenestration due to intracellular infection and cell-to-cell spread, respectively. The infant rabbit model provides an unprecedented framework for understanding how the cell biology of Shigella flexneri infection relates to pathogenesis.
Collapse
Affiliation(s)
- Lauren K. Yum
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA,CONTACT Hervé Agaisse Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia22908, USA
| |
Collapse
|
15
|
Kühn S, Enninga J. The actin comet guides the way: How
Listeria
actin subversion has impacted cell biology, infection biology and structural biology. Cell Microbiol 2020; 22:e13190. [DOI: 10.1111/cmi.13190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Sonja Kühn
- Unit of Dynamics of Host‐Pathogen InteractionsInstitut Pasteur Paris France
- Centre National de la Recherche Scientifique (CNRS‐UMR3691) Paris France
| | - Jost Enninga
- Unit of Dynamics of Host‐Pathogen InteractionsInstitut Pasteur Paris France
- Centre National de la Recherche Scientifique (CNRS‐UMR3691) Paris France
| |
Collapse
|
16
|
Kuehl CJ, D'Gama JD, Warr AR, Waldor MK. An Oral Inoculation Infant Rabbit Model for Shigella Infection. mBio 2020; 11:e03105-19. [PMID: 31964739 PMCID: PMC6974573 DOI: 10.1128/mbio.03105-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella species cause diarrheal disease globally. Shigellosis is typically characterized by bloody stools and colitis with mucosal damage and is the leading bacterial cause of diarrheal death worldwide. After the pathogen is orally ingested, it invades and replicates within the colonic epithelium through mechanisms that rely on its type III secretion system (T3SS). Currently, oral infection-based small animal models to study the pathogenesis of shigellosis are lacking. Here, we found that orogastric inoculation of infant rabbits with Shigella flexneri resulted in diarrhea and colonic pathology resembling that found in human shigellosis. Fasting animals prior to S. flexneri inoculation increased the frequency of disease. The pathogen colonized the colon, where both luminal and intraepithelial foci were observed. The intraepithelial foci likely arise through S. flexneri spreading from cell to cell. Robust S. flexneri intestinal colonization, invasion of the colonic epithelium, and epithelial sloughing all required the T3SS as well as IcsA, a factor required for bacterial spreading and adhesion in vitro Expression of the proinflammatory chemokine interleukin 8 (IL-8), detected with in situ mRNA labeling, was higher in animals infected with wild-type S. flexneri versus mutant strains deficient in icsA or T3SS, suggesting that epithelial invasion promotes expression of this chemokine. Collectively, our findings suggest that oral infection of infant rabbits offers a useful experimental model for studies of the pathogenesis of shigellosis and for testing of new therapeutics.IMPORTANCEShigella species are the leading bacterial cause of diarrheal death globally. The pathogen causes bacillary dysentery, a bloody diarrheal disease characterized by damage to the colonic mucosa and is usually spread through the fecal-oral route. Small animal models of shigellosis that rely on the oral route of infection are lacking. Here, we found that orogastric inoculation of infant rabbits with S. flexneri led to a diarrheal disease and colonic pathology reminiscent of human shigellosis. Diarrhea, intestinal colonization, and pathology in this model were dependent on the S. flexneri type III secretion system and IcsA, canonical Shigella virulence factors. Thus, oral infection of infant rabbits offers a feasible model to study the pathogenesis of shigellosis and to develop and test new therapeutics.
Collapse
Affiliation(s)
- Carole J Kuehl
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D D'Gama
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alyson R Warr
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Evolutionary Perspectives on the Moonlighting Functions of Bacterial Factors That Support Actin-Based Motility. mBio 2019; 10:mBio.01520-19. [PMID: 31455648 PMCID: PMC6712393 DOI: 10.1128/mbio.01520-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. It is increasingly recognized that bacterial ABM factors, in addition to having a crucial task during the intracellular phase of infection, display “moonlighting” adhesin functions, such as bacterial aggregation, biofilm formation, and host cell adhesion/invasion. Here, we review our current knowledge of ABM factors and their additional functions, and we propose that intracellular ABM functions have evolved from ancestral, extracellular adhesin functions.
Collapse
|
18
|
Michard C, Yum LK, Agaisse H. WIPF2 promotesShigella flexneriactin‐based motility and cell‐to‐cell spread. Cell Microbiol 2019; 21:e13098. [DOI: 10.1111/cmi.13098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Céline Michard
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia Charlottesville Virginia
| | - Lauren K. Yum
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia Charlottesville Virginia
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia Charlottesville Virginia
| |
Collapse
|
19
|
Sharma A, Puhar A. Plaque Assay to Determine Invasion and Intercellular Dissemination of Shigella flexneri in TC7 Human Intestinal Epithelial Cells. Bio Protoc 2019; 9:e3293. [PMID: 33654806 DOI: 10.21769/bioprotoc.3293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 11/02/2022] Open
Abstract
Shigella flexneri invades the epithelial cells lining the gut lumen and replicates intracellularly. The specialized Type III Secretion System (T3SS) and its effector proteins, encoded on a large virulence plasmid, assist the bacterium to gain access to the cytosol. Thereafter Shigella disseminates to neighboring cells in an epithelial layer without further extracellular steps. Host cell lysis occurs when these bacteria have extensively replicated in the target cell cytosol. Here we describe a simple method to qualitatively as well as quantitatively study the capacity of Shigella to invade and disseminate within an epithelium by assessing the number and size of plaques representing the dead cells in a monolayer of TC7 cells. This classical protocol follows a simple approach of infecting the monolayers of epithelial cell lines with Shigella and visualizing the dead cells as plaques formed against a stained background.
Collapse
Affiliation(s)
- Atin Sharma
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Yum LK, Byndloss MX, Feldman SH, Agaisse H. Critical role of bacterial dissemination in an infant rabbit model of bacillary dysentery. Nat Commun 2019; 10:1826. [PMID: 31015451 PMCID: PMC6478941 DOI: 10.1038/s41467-019-09808-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
The bacterial pathogen Shigella flexneri causes 270 million cases of bacillary dysentery (blood in stool) worldwide every year, resulting in more than 200,000 deaths. A major challenge in combating bacillary dysentery is the lack of a small-animal model that recapitulates the symptoms observed in infected individuals, including bloody diarrhea. Here, we show that similar to humans, infant rabbits infected with S. flexneri experience severe inflammation, massive ulceration of the colonic mucosa, and bloody diarrhea. T3SS-dependent invasion of epithelial cells is necessary and sufficient for mediating immune cell infiltration and vascular lesions. However, massive ulceration of the colonic mucosa, bloody diarrhea, and dramatic weight loss are strictly contingent on the ability of the bacteria to spread from cell to cell. The infant rabbit model features bacterial dissemination as a critical determinant of S. flexneri pathogenesis and provides a unique small-animal model for research and development of therapeutic interventions.
Collapse
Affiliation(s)
- Lauren K Yum
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sanford H Feldman
- Center for Comparative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|
23
|
Affiliation(s)
- Erin Weddle
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Cardiolipin, an anionic phospholipid that resides at the poles of the inner and outer membranes, is synthesized primarily by the putative cardiolipin synthase ClsA in Shigella flexneri. An S. flexneri clsA mutant had no cardiolipin detected within its membrane, grew normally in vitro, and invaded cultured epithelial cells, but it failed to form plaques in epithelial cell monolayers, indicating that cardiolipin is required for virulence. The clsA mutant was initially motile within the host cell cytoplasm but formed filaments and lost motility during replication and failed to spread efficiently to neighboring cells. Mutation of pbgA, which encodes the transporter for cardiolipin from the inner membrane to the outer membrane, also resulted in loss of plaque formation. The S. flexneri pbgA mutant had normal levels of cardiolipin in the inner membrane, but no cardiolipin was detected in the outer membrane. The pbgA mutant invaded and replicated normally within cultured epithelial cells but failed to localize the actin polymerization protein IcsA properly on the bacterial surface and was unable to spread to neighboring cells. The clsA mutant, but not the pbgA mutant, had increased phosphatidylglycerol in the outer membrane. This appeared to compensate partially for the loss of cardiolipin in the outer membrane, allowing some IcsA localization in the outer membrane of the clsA mutant. We propose a dual function for cardiolipin in S. flexneri pathogenesis. In the inner membrane, cardiolipin is essential for proper cell division during intracellular growth. In the outer membrane, cardiolipin facilitates proper presentation of IcsA on the bacterial surface. The human pathogen Shigella flexneri causes bacterial dysentery by invading colonic epithelial cells, rapidly multiplying within their cytoplasm, and then spreading intercellularly to neighboring cells. Worldwide, Shigella spp. infect hundreds of millions of people annually, with fatality rates up to 15%. Antibiotic treatment of Shigella infections is compromised by increasing antibiotic resistance, and there is no approved vaccine to prevent future infections. This has created a growing need to understand Shigella pathogenesis and identify new targets for antimicrobial therapeutics. Here we show a previously unknown role of phospholipids in S. flexneri pathogenesis. We demonstrate that cardiolipin is required in the outer membrane for proper surface localization of IcsA and in the inner membrane for cell division during growth in the host cell cytoplasm.
Collapse
|
25
|
Sunkavalli U, Aguilar C, Silva RJ, Sharan M, Cruz AR, Tawk C, Maudet C, Mano M, Eulalio A. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS Pathog 2017; 13:e1006327. [PMID: 28394930 PMCID: PMC5398735 DOI: 10.1371/journal.ppat.1006327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.
Collapse
Affiliation(s)
- Ushasree Sunkavalli
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Carmen Aguilar
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ricardo Jorge Silva
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ana Rita Cruz
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Claire Maudet
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ana Eulalio
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
26
|
Leupold S, Büsing P, Mas PJ, Hart DJ, Scrima A. Structural insights into the architecture of the Shigella flexneri virulence factor IcsA/VirG and motifs involved in polar distribution and secretion. J Struct Biol 2017; 198:19-27. [PMID: 28268178 DOI: 10.1016/j.jsb.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
IcsA/VirG is a key virulence factor of the human pathogen Shigella flexneri, acting as both an adhesin and actin-polymerizing factor during infection. We identified a soluble expression construct of the IcsA/VirG α-domain using the ESPRIT library screening system and determined its structure to 1.9Å resolution. In addition to the previously characterized autochaperone domain, our structure reveals a new domain, which shares a common fold with the autochaperone domains of various autotransporters. We further provide insight into the previously structurally uncharacterized β-helix domain that harbors the polar targeting motif and passenger-associated transport repeat. This structure is the first of any member of the recently identified passenger-associated transport repeat-containing autotransporters. Thus, it provides new insights into the overall architecture of this class of autotransporters, the function of the identified additional autochaperone domain and the structural properties of motifs involved in polar targeting and secretion of the Shigella flexneri virulence factor IcsA/VirG.
Collapse
Affiliation(s)
- Stefan Leupold
- Structural Biology of Autophagy, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Petra Büsing
- Structural Biology of Autophagy, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Philippe J Mas
- European Molecular Biology Laboratory Grenoble Outstation and Unit of Virus Host-Cell Interactions, University Grenoble Alpes-CNRS-EMBL, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Darren J Hart
- European Molecular Biology Laboratory Grenoble Outstation and Unit of Virus Host-Cell Interactions, University Grenoble Alpes-CNRS-EMBL, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Andrea Scrima
- Structural Biology of Autophagy, Helmholtz-Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
27
|
Milivojevic M, Dangeard AS, Kasper CA, Tschon T, Emmenlauer M, Pique C, Schnupf P, Guignot J, Arrieumerlou C. ALPK1 controls TIFA/TRAF6-dependent innate immunity against heptose-1,7-bisphosphate of gram-negative bacteria. PLoS Pathog 2017; 13:e1006224. [PMID: 28222186 PMCID: PMC5336308 DOI: 10.1371/journal.ppat.1006224] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/03/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria. Epithelial cells line internal body cavities of multicellular organisms. They represent the first line of defense against various pathogens including bacteria and viruses. They can sense the presence of invasive pathogens and initiate the recruitment of immune cells to infected tissues via the local secretion of soluble factors, called chemokines. Although this phenomenon is essential for the development of an efficient immune response, the molecular mechanism underlying this process remains largely unknown. Here we demonstrate that the host proteins ALPK1, TIFA and TRAF6 act sequentially to activate the transcription factor NF-κB and regulate the production of chemokines in response to infection by the pathogens Shigella flexneri, Salmonella typhimurium and Neisseria meningitidis. In addition, we show that the production of chemokines is triggered after detection of the bacterial monosaccharide heptose-1,7-bisphosphate, found in gram-negative bacteria. In conclusion, our study uncovers a new molecular mechanism controlling inflammation during infection by gram-negative bacteria and identifies potential targets for treatments aiming at modulating inflammation during infection.
Collapse
Affiliation(s)
- Milica Milivojevic
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | - Anne-Sophie Dangeard
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | | | | | | | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | | | - Julie Guignot
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, Paris, France, CNRS, UMR8104, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, France
- * E-mail:
| |
Collapse
|
28
|
Mauricio RPM, Jeffries CM, Svergun DI, Deane JE. The Shigella Virulence Factor IcsA Relieves N-WASP Autoinhibition by Displacing the Verprolin Homology/Cofilin/Acidic (VCA) Domain. J Biol Chem 2017; 292:134-145. [PMID: 27881679 PMCID: PMC5217673 DOI: 10.1074/jbc.m116.758003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Shigella flexneri is a bacterial pathogen that invades cells of the gastrointestinal tract, causing severe dysentery. Shigella mediates intracellular motility and spreading via actin comet tail formation. This process is dependent on the surface-exposed, membrane-embedded virulence factor IcsA, which recruits the host actin regulator N-WASP. Although it is clear that Shigella requires N-WASP for this process, the molecular details of this interaction and the mechanism of N-WASP activation remain poorly understood. Here, we show that co-expression of full-length IcsA and the Shigella membrane protease IcsP yields highly pure IcsA passenger domain (residues 53-758). We show that IcsA is monomeric and describe the solution structure of the passenger domain obtained by small-angle X-ray scattering (SAXS) analysis. The SAXS-derived models suggest that IcsA has an elongated shape but, unlike most other autotransporter proteins, possesses a central kink revealing a distinctly curved structure. Pull-down experiments show direct binding of the IcsA passenger domain to both the WASP homology 1 (WH1) domain and the GTPase binding domain (GBD) of N-WASP and no binding to the verprolin homology/cofilin/acidic (VCA) region. Using fluorescence polarization experiments, we demonstrate that IcsA binding to the GBD region displaces the VCA peptide and that this effect is synergistically enhanced upon IcsA binding to the WH1 region. Additionally, domain mapping of the IcsA interaction interface reveals that different regions of IcsA bind to the WH1 and GBD domains of N-WASP. Taken together, our data support a model where IcsA and N-WASP form a tight complex releasing the N-WASP VCA domain to recruit the host cell machinery for actin tail formation.
Collapse
Affiliation(s)
- Rui P M Mauricio
- From the Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| | - Cy M Jeffries
- the European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Hamburg 22067, Germany
| | - Dmitri I Svergun
- the European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Hamburg 22067, Germany
| | - Janet E Deane
- From the Cambridge Institute for Medical Research, Department of Pathology, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom and
| |
Collapse
|
29
|
Lamason RL, Welch MD. Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 2016; 35:48-57. [PMID: 27997855 DOI: 10.1016/j.mib.2016.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Subversion of the host actin cytoskeleton is a critical virulence mechanism used by a variety of intracellular bacterial pathogens during their infectious life cycles. These pathogens manipulate host actin to promote actin-based motility and coordinate motility with cell-to-cell spread. Growing evidence suggests that the tactics employed by pathogens are surprisingly diverse. Here, we review recent advances suggesting that bacterial surface proteins exhibit divergent biochemical mechanisms of actin polymerization and recruit distinct host protein networks to drive motility, and that bacteria deploy secreted effector proteins that alter host cell mechanotransduction pathways to enable spread. Further investigation into the divergent strategies used by bacterial pathogens to mobilize actin will reveal new insights into pathogenesis and cytoskeleton regulation.
Collapse
Affiliation(s)
- Rebecca L Lamason
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Isolation and Characterization of NDM-Positive Escherichia coli from Municipal Wastewater in Jeddah, Saudi Arabia. Antimicrob Agents Chemother 2016; 60:5223-31. [PMID: 27324770 PMCID: PMC4997845 DOI: 10.1128/aac.00236-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
The emergence of resistance to last-resort antibiotics is a public health concern of global scale. Besides direct person-to-person propagation, environmental pathways might contribute to the dissemination of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Here, we describe the incidence of blaNDM-1, a gene conferring resistance to carbapenems, in the wastewater of the city of Jeddah, Saudi Arabia, over a 1-year period. blaNDM-1 was detected at concentrations ranging from 104 to 105 copies/m3 of untreated wastewater during the entire monitoring period. These results indicate the ubiquity and high incidence of blaNDM-1 in the local wastewater. To track the bacteria carrying blaNDM-1, we isolated Escherichia coli PI7, a strain of sequence type 101 (ST101), from wastewater around the Hajj event in October 2013. Genome sequencing of this strain revealed an extensive repertoire of ARGs as well as virulence and invasive traits. These traits were further confirmed by antibiotic resistance profiling and in vitro cell internalization in HeLa cell cultures. Given that this strain remains viable even after a certain duration in the sewerage, and that Jeddah lacks a robust sanitary infrastructure to fully capture all generated sewage, the presence of this bacterium in the untreated wastewater represents a potential hazard to the local public health. To the best of our knowledge, this is the first report of a blaNDM-1-positive E. coli strain isolated from a nonnosocomial environment in Saudi Arabia and may set a priority concern for the need to establish improved surveillance for carbapenem-resistant E. coli in the country and nearby regions.
Collapse
|
31
|
Agaisse H. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination. Front Cell Infect Microbiol 2016; 6:29. [PMID: 27014639 PMCID: PMC4786538 DOI: 10.3389/fcimb.2016.00029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| |
Collapse
|
32
|
Fris ME, Murphy ER. Riboregulators: Fine-Tuning Virulence in Shigella. Front Cell Infect Microbiol 2016; 6:2. [PMID: 26858941 PMCID: PMC4728522 DOI: 10.3389/fcimb.2016.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.
Collapse
Affiliation(s)
- Megan E Fris
- Department of Biological Science, Ohio University Athens, OH, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University Athens, OH, USA
| |
Collapse
|
33
|
Steele S, Radlinski L, Taft-Benz S, Brunton J, Kawula TH. Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens. eLife 2016; 5. [PMID: 26802627 PMCID: PMC4786427 DOI: 10.7554/elife.10625] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo.
Collapse
Affiliation(s)
- Shaun Steele
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Lauren Radlinski
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Sharon Taft-Benz
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jason Brunton
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Thomas H Kawula
- University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
34
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
35
|
Emanuele AA, Garcia GA. Mechanism of Action and Initial, In Vitro SAR of an Inhibitor of the Shigella flexneri Virulence Regulator VirF. PLoS One 2015; 10:e0137410. [PMID: 26352269 PMCID: PMC4564171 DOI: 10.1371/journal.pone.0137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022] Open
Abstract
Shigella spp. are among the main causative agents of acute diarrheal illness and claim more than 1 million lives per year worldwide. There are multiple bacterial genes that control the pathogenesis of Shigella, but the virF gene may be the most important. This gene, located on the primary pathogenicity island of Shigella, encodes VirF, an AraC-family transcriptional activator that is responsible for initiating the pathogenesis cycle in Shigella. We have previously shown that it is possible to attenuate the virulence of Shigella flexneri via small molecule inhibition of VirF. In this study, we probed the mechanism of action of our small molecule inhibitors of VirF. To enable these studies, we have developed a homologous and efficient expression and purification system for VirF and have optimized two different in vitro VirF-DNA binding assays. We have determined that one of our HTS hit compounds inhibits VirF binding to DNA with a calculated Ki similar to the effective doses seen in our transcriptional activation and virulence screens. This is consistent with inhibition of DNA binding as the mechanism of action of this hit compound. We have also screened 15 commercially sourced analogs of this compound and deduced an initial SAR from the approximately 100-fold range in activities. Our four other HTS hit compounds do not inhibit DNA binding and yet they do block VirF activity. This suggests that multiple agents with different molecular mechanisms of inhibition of VirF could be developed. Pursuing hits with different mechanisms of action could be a powerful approach to enhance activity and to circumvent resistance that could develop to any one of these agents.
Collapse
Affiliation(s)
- Anthony A. Emanuele
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
| | - George A. Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
36
|
Doyle MT, Grabowicz M, Morona R. A small conserved motif supports polarity augmentation of Shigella flexneri IcsA. MICROBIOLOGY-SGM 2015; 161:2087-97. [PMID: 26315462 DOI: 10.1099/mic.0.000165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The rod-shaped enteric intracellular pathogen Shigella flexneri and other Shigella species are the causative agents of bacillary dysentery. S. flexneri are able to spread within the epithelial lining of the gut, resulting in lesion formation, cramps and bloody stools. The outer membrane protein IcsA is essential for this spreading process. IcsA is the initiator of an actin-based form of motility whereby it allows the formation of a filamentous actin 'tail' at the bacterial pole. Importantly, IcsA is specifically positioned at the bacterial pole such that this process occurs asymmetrically. The mechanism of IcsA polarity is not completely understood, but it appears to be a multifactorial process involving factors intrinsic to IcsA and other regulating factors. In this study, we further investigated IcsA polarization by its intramolecular N-terminal and central polar-targeting (PT) regions (nPT and cPT regions, respectively). The results obtained support a role in polar localization for the cPT region and contend the role of the nPT region. We identified single IcsA residues that have measurable impacts on IcsA polarity augmentation, resulting in decreased S. flexneri sprading efficiency. Intriguingly, regions and residues involved in PT clustered around a highly conserved motif which may provide a functional scaffold for polarity-augmenting residues. How these results fit with the current model of IcsA polarity determination is discussed.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- 1Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Marcin Grabowicz
- 2Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Renato Morona
- 1Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
37
|
Gerke C, Colucci AM, Giannelli C, Sanzone S, Vitali CG, Sollai L, Rossi O, Martin LB, Auerbach J, Di Cioccio V, Saul A. Production of a Shigella sonnei Vaccine Based on Generalized Modules for Membrane Antigens (GMMA), 1790GAHB. PLoS One 2015; 10:e0134478. [PMID: 26248044 PMCID: PMC4527750 DOI: 10.1371/journal.pone.0134478] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Recently, we developed a high yield production process for outer membrane particles from genetically modified bacteria, called Generalized Modules of Membrane Antigens (GMMA), and the corresponding simple two step filtration purification, enabling economic manufacture of these particles for use as vaccines. Using a Shigella sonnei strain that was genetically modified to produce penta-acylated lipopolysaccharide (LPS) with reduced endotoxicity and to maintain the virulence plasmid encoding for the immunodominant O antigen component of the LPS, scale up of the process to GMP pilot scale was straightforward and gave high yields of GMMA with required purity and consistent results. GMMA were formulated with Alhydrogel and were highly immunogenic in mice and rabbits. In mice, a single immunization containing 29 ng protein and 1.75 ng of O antigen elicited substantial anti-LPS antibody levels. As GMMA contain LPS and lipoproteins, assessing potential reactogenicity was a key aspect of vaccine development. In an in vitro monocyte activation test, GMMA from the production strain showed a 600-fold lower stimulatory activity than GMMA with unmodified LPS. Two in vivo tests confirmed the low potential for reactogenicity. We established a modified rabbit pyrogenicity test based on the European Pharmacopoeia pyrogens method but using intramuscular administration of the full human dose (100 μg of protein). The vaccine elicited an average temperature rise of 0.5°C within four hours after administration, which was considered acceptable and showed that the test is able to detect a pyrogenic response. Furthermore, a repeat dose toxicology study in rabbits using intramuscular (100 μg/dose), intranasal (80 μg/dose), and intradermal (10 μg/dose) administration routes showed good tolerability of the vaccine by all routes and supported its suitability for use in humans. The S. sonnei GMMA vaccine is now in Phase 1 dose-escalation clinical trials.
Collapse
Affiliation(s)
- Christiane Gerke
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
- * E-mail:
| | - Anna Maria Colucci
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Carlo Giannelli
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Silvia Sanzone
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | | | - Luigi Sollai
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Omar Rossi
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Laura B. Martin
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Jochen Auerbach
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Vito Di Cioccio
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| | - Allan Saul
- Sclavo Behring Vaccines Institute for Global Health S.r.l., Siena, Italy
| |
Collapse
|
38
|
Steele S, Brunton J, Kawula T. The role of autophagy in intracellular pathogen nutrient acquisition. Front Cell Infect Microbiol 2015; 5:51. [PMID: 26106587 PMCID: PMC4460576 DOI: 10.3389/fcimb.2015.00051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023] Open
Abstract
Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates, and amino acids). It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral, and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells.
Collapse
Affiliation(s)
- Shaun Steele
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Jason Brunton
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Thomas Kawula
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
39
|
Kuehl CJ, Dragoi AM, Talman A, Agaisse H. Bacterial spread from cell to cell: beyond actin-based motility. Trends Microbiol 2015; 23:558-66. [PMID: 26021574 DOI: 10.1016/j.tim.2015.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023]
Abstract
Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell.
Collapse
Affiliation(s)
- Carole J Kuehl
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Ana-Maria Dragoi
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Arthur Talman
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | - Hervé Agaisse
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Doyle MT, Tran ENH, Morona R. The passenger-associated transport repeat promotes virulence factor secretion efficiency and delineates a distinct autotransporter subtype. Mol Microbiol 2015; 97:315-29. [PMID: 25869731 DOI: 10.1111/mmi.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 11/28/2022]
Abstract
Autotransporters are a superfamily of virulence factors secreted by Gram negative bacteria. They are comprised of an N-terminal passenger domain that is translocated across the outer membrane and a C-terminal domain that inserts into the outer membrane forming a β-barrel anchor. It is still poorly understood how the passenger is efficiently translocated in the absence of external energy inputs. Several mechanisms have been proposed in solution of this problem, yet due to the vast diversity of size, sequence and function of the passenger, it is not clear how widely these mechanisms are employed. In this study we functionally characterize a conserved repeat found in many passengers that we designate the Passenger-associated Transport Repeat (PATR). Using the autotransporter IcsA from the enteropathogen Shigella flexneri, we identified conserved PATR residues that are required for efficient export of the passenger during growth and infection. Furthermore, PATR-containing autotransporters are significantly larger than non-PATR autotransporters, with PATR copy number correlating with passenger size. We also show that PATR-containing autotransporters delineate a subgroup that associates with specific virulence traits and architectures. These results advance our understanding of autotransporter composition and indicate that an additional transport mechanism is important for thousands of these proteins.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Elizabeth Ngoc Hoa Tran
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Renato Morona
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
41
|
The class II phosphatidylinositol 3-phosphate kinase PIK3C2A promotes Shigella flexneri dissemination through formation of vacuole-like protrusions. Infect Immun 2015; 83:1695-704. [PMID: 25667265 DOI: 10.1128/iai.03138-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intracellular pathogens such as Shigella flexneri and Listeria monocytogenes achieve dissemination in the intestinal epithelium by displaying actin-based motility in the cytosol of infected cells. As they reach the cell periphery, motile bacteria form plasma membrane protrusions that resolve into vacuoles in adjacent cells, through a poorly understood mechanism. Here, we report on the role of the class II phosphatidylinositol 3-phosphate kinase PIK3C2A in S. flexneri dissemination. Time-lapse microscopy revealed that PIK3C2A was required for the resolution of protrusions into vacuoles through the formation of an intermediate membrane-bound compartment that we refer to as a vacuole-like protrusion (VLP). Genetic rescue of PIK3C2A depletion with RNA interference (RNAi)-resistant cDNA constructs demonstrated that VLP formation required the activity of PIK3C2A in primary infected cells. PIK3C2A expression was required for production of phosphatidylinositol 3-phosphate [PtdIns(3)P] at the plasma membrane surrounding protrusions. PtdIns(3)P production was not observed in the protrusions formed by L. monocytogenes, whose dissemination did not rely on PIK3C2A. PIK3C2A-mediated PtdIns(3)P production in S. flexneri protrusions was regulated by host cell tyrosine kinase signaling and relied on the integrity of the S. flexneri type 3 secretion system (T3SS). We suggest a model of S. flexneri dissemination in which the formation of VLPs is mediated by the PIK3C2A-dependent production of the signaling lipid PtdIns(3)P in the protrusion membrane, which relies on the T3SS-dependent activation of tyrosine kinase signaling in protrusions.
Collapse
|
42
|
Brotcke Zumsteg A, Goosmann C, Brinkmann V, Morona R, Zychlinsky A. IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe 2015; 15:435-45. [PMID: 24721572 DOI: 10.1016/j.chom.2014.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/20/2014] [Accepted: 02/24/2014] [Indexed: 01/05/2023]
Abstract
Following contact with the epithelium, the enteric intracellular bacterial pathogen Shigella flexneri invades epithelial cells and escapes intracellular phagosomal destruction using its type III secretion system (T3SS). The bacterium replicates within the host cell cytosol and spreads between cells using actin-based motility, which is mediated by the virulence factor IcsA (VirG). Whereas S. flexneri invasion is well characterized, adhesion mechanisms of the bacterium remain elusive. We found that IcsA also functions as an adhesin that is both necessary and sufficient to promote contact with host cells. As adhesion can be beneficial or deleterious depending on the host cell type, S. flexneri regulates IcsA-dependent adhesion. Activation of the T3SS in response to the bile salt deoxycholate triggers IcsA-dependent adhesion and enhances pathogen invasion. IcsA-dependent adhesion contributes to virulence in a mouse model of shigellosis, underscoring the importance of this adhesin to S. flexneri pathogenesis.
Collapse
Affiliation(s)
- Anna Brotcke Zumsteg
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin 13353, Germany
| | - Christian Goosmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin 13353, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin 13353, Germany
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5000, South Australia, Australia
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin 13353, Germany.
| |
Collapse
|
43
|
Abstract
The invasion process of S. flexneri is well characterized, but mechanisms underlying this bacterium's adhesion to host cells have remained obscure. In this issue of Cell Host & Microbe, Brotcke Zumsteg et al. (2014) report a surprising role for the Shigella virulence factor IcsA (VirG) as an adhesin.
Collapse
|
44
|
Kuehl CJ, Dragoi AM, Agaisse H. The Shigella flexneri type 3 secretion system is required for tyrosine kinase-dependent protrusion resolution, and vacuole escape during bacterial dissemination. PLoS One 2014; 9:e112738. [PMID: 25405985 PMCID: PMC4236203 DOI: 10.1371/journal.pone.0112738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/14/2014] [Indexed: 01/29/2023] Open
Abstract
Shigella flexneri is a human pathogen that triggers its own entry into intestinal cells and escapes primary vacuoles to gain access to the cytosolic compartment. As cytosolic and motile bacteria encounter the cell cortex, they spread from cell to cell through formation of membrane protrusions that resolve into secondary vacuoles in adjacent cells. Here, we examined the roles of the Type 3 Secretion System (T3SS) in S. flexneri dissemination in HT-29 intestinal cells infected with the serotype 2a strain 2457T. We generated a 2457T strain defective in the expression of MxiG, a central component of the T3SS needle apparatus. As expected, the ΔmxiG strain was severely affected in its ability to invade HT-29 cells, and expression of mxiG under the control of an arabinose inducible expression system (ΔmxiG/pmxiG) restored full infectivity. In this experimental system, removal of the inducer after the invasion steps (ΔmxiG/pmxiG (Ara withdrawal)) led to normal actin-based motility in the cytosol of HT-29 cells. However, the time spent in protrusions until vacuole formation was significantly increased. Moreover, the number of formed protrusions that failed to resolve into vacuoles was also increased. Accordingly, the ΔmxiG/pmxiG (Ara withdrawal) strain failed to trigger tyrosine phosphorylation in membrane protrusions, a signaling event that is required for the resolution of protrusions into vacuoles. Finally, the ΔmxiG/pmxiG (Ara withdrawal) strain failed to escape from the formed secondary vacuoles, as previously reported in non-intestinal cells. Thus, the T3SS system displays multiple roles in S. flexneri dissemination in intestinal cells, including the tyrosine kinase signaling-dependent resolution of membrane protrusions into secondary vacuoles, and the escape from the formed secondary vacuoles.
Collapse
Affiliation(s)
- Carole J. Kuehl
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| | - Ana-Maria Dragoi
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| | - Hervé Agaisse
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
45
|
Edwards DJ, Streich FC, Ronchi VP, Todaro DR, Haas AL. Convergent evolution in the assembly of polyubiquitin degradation signals by the Shigella flexneri IpaH9.8 ligase. J Biol Chem 2014; 289:34114-28. [PMID: 25342744 DOI: 10.1074/jbc.m114.609164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The human pathogen Shigella flexneri subverts host function and defenses by deploying a cohort of effector proteins via a type III secretion system. The IpaH family of 10 such effectors mimics ubiquitin ligases but bears no sequence or structural homology to their eukaryotic counterpoints. Using rates of (125)I-polyubiquitin chain formation as a functional read out, IpaH9.8 displays V-type positive cooperativity with respect to varying concentrations of its Ubc5B∼(125)I-ubiquitin thioester co-substrate in the nanomolar range ([S]½ = 140 ± 32 nm; n = 1.8 ± 0.1) and cooperative substrate inhibition at micromolar concentrations ([S]½ = 740 ± 240 nm; n = 1.7 ± 0.2), requiring ordered binding to two functionally distinct sites per subunit. The isosteric substrate analog Ubc5BC85S-ubiquitin oxyester acts as a competitive inhibitor of wild-type Ubc5B∼(125)I-ubiquitin thioester (Ki = 117 ± 29 nm), whereas a Ubc5BC85A product analog shows noncompetitive inhibition (Ki = 2.2 ± 0.5 μm), consistent with the two-site model. Re-evaluation of a related IpaH3 crystal structure (PDB entry 3CVR) identifies a symmetric dimer consistent with the observed cooperativity. Genetic disruption of the predicted IpaH9.8 dimer interface reduces the solution molecular weight and significantly ablates the kcat but not [S]½ for polyubiquitin chain formation. Other studies demonstrate that cooperativity requires the N-terminal leucine-rich repeat-targeting domain and is transduced through Phe(395). Additionally, these mechanistic features are conserved in a distantly related SspH2 Salmonella enterica ligase. Kinetic parallels between IpaH9.8 and the recently revised mechanism for E6AP/UBE3A (Ronchi, V. P., Klein, J. M., and Haas, A. L. (2013) E6AP/UBE3A ubiquitin ligase harbors two E2∼ubiquitin binding sites. J. Biol. Chem. 288, 10349-10360) suggest convergent evolution of the catalytic mechanisms for prokaryotic and eukaryotic ligases.
Collapse
Affiliation(s)
| | | | | | - Dustin R Todaro
- From the Department of Biochemistry and Molecular Biology and
| | - Arthur L Haas
- From the Department of Biochemistry and Molecular Biology and the Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| |
Collapse
|
46
|
The serine/threonine kinase STK11 promotes Shigella flexneri dissemination through establishment of cell-cell contacts competent for tyrosine kinase signaling. Infect Immun 2014; 82:4447-57. [PMID: 25114112 DOI: 10.1128/iai.02078-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri is an intracellular pathogen that disseminates in the intestinal epithelium by displaying actin-based motility. We found that although S. flexneri displayed comparable actin-based motilities in the cytosols of HeLa229 and HT-29 epithelial cell lines, the overall dissemination process was much more efficient in HT-29 cells. Time-lapse microscopy demonstrated that as motile bacteria reached the cell cortex in HT-29 cells, they formed membrane protrusions that resolved into vacuoles, from which the bacteria escaped and gained access to the cytosol of adjacent cells. In HeLa229 cells, S. flexneri also formed membrane protrusions that extended into adjacent cells, but the protrusions rarely resolved into vacuoles. Instead, the formed protrusions collapsed and retracted, bringing the bacteria back to the cytosol of the primary infected cells. Silencing the serine/threonine kinase STK11 (also known as LKB1) in HT-29 cells decreased the efficiency of protrusion resolution into vacuoles. Conversely, expressing STK11 in HeLa229 cells, which lack the STK11 locus, dramatically increased the efficiency of protrusion resolution into vacuoles. S. flexneri dissemination in HT-29 cells led to the local phosphorylation of tyrosine residues in protrusions, a signaling event that was not observed in HeLa229 cells but was restored in STK11-expressing HeLa229 cells. Treatment of HT-29 cells with the tyrosine kinase inhibitor imatinib abrogated tyrosine kinase signaling in protrusions, which correlated with a severe decrease in the efficiency of protrusion resolution into vacuoles. We suggest that the formation of STK11-dependent lateral cell-cell contacts competent for tyrosine kinase signaling promotes S. flexneri dissemination in epithelial cells.
Collapse
|
47
|
van Ulsen P, Rahman SU, Jong WS, Daleke-Schermerhorn MH, Luirink J. Type V secretion: From biogenesis to biotechnology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1592-611. [DOI: 10.1016/j.bbamcr.2013.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
|
48
|
Lum M, Morona R. Myosin IIA is essential for Shigella flexneri cell-to-cell spread. Pathog Dis 2014; 72:174-87. [PMID: 24989342 DOI: 10.1111/2049-632x.12202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 11/26/2022] Open
Abstract
A key feature of Shigella pathogenesis is the ability to spread from cell-to-cell post-invasion. This is dependent on the bacteria's ability to initiate de novo F-actin tail polymerisation, followed by protrusion formation, uptake of bacteria-containing protrusion and finally, lysis of the double membrane vacuole in the adjacent cell. In epithelial cells, cytoskeletal tension is maintained by the actin-myosin II networks. In this study, the role of myosin II and its specific kinase, myosin light chain kinase (MLCK), during Shigella intercellular spreading was investigated in HeLa cells. Inhibition of MLCK and myosin II, as well as myosin IIA knockdown, significantly reduced Shigella plaque and infectious focus formation. Protrusion formation and intracellular bacterial growth was not affected. Low levels of myosin II were localised to the Shigella F-actin tail. HeLa cells were also infected with Shigella strains defective in cell-to-cell spreading. Unexpectedly loss of myosin IIA labelling was observed in HeLa cells infected with these mutant strains. This phenomenon was not observed with WT Shigella or with the less abundant myosin IIB isoform, suggesting a critical role for myosin IIA.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
49
|
Lum M, Morona R. Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection. Int J Med Microbiol 2014; 304:530-41. [PMID: 24755420 DOI: 10.1016/j.ijmm.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
Shigella infection in epithelial cells induces cell death which is accompanied by mitochondrial dysfunction. In this study the role of the mitochondrial fission protein, Drp1 during Shigella infection in HeLa cells was examined. Significant lactate dehydrogenase (LDH) release was detected in the culture supernatant when HeLa cells were infected with Shigella at a high multiplicity of infection. Drp1 inhibition with Mdivi-1 and siRNA knockdown significantly reduced LDH release. HeLa cell death was also accompanied by mitochondrial fragmentation. Tubular mitochondrial networks were partially restored when Drp1 was depleted with either siRNA or inhibited with Mdivi-1. Surprisingly either Mdivi-1 treatment or Drp1 siRNA-depletion of HeLa cells also reduced Shigella plaque formation. The effect of Mdivi-1 on Shigella infection was assessed using the murine Sereny model, however it had no impact on ocular inflammation. Overall our results suggest that Drp1 and the mitochondria play important roles during Shigella infection.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
50
|
Lum M, Attridge SR, Morona R. Impact of dynasore an inhibitor of dynamin II on Shigella flexneri infection. PLoS One 2013; 8:e84975. [PMID: 24367704 PMCID: PMC3868620 DOI: 10.1371/journal.pone.0084975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022] Open
Abstract
Shigella flexneri remains a significant human pathogen due to high morbidity among children < 5 years in developing countries. One of the key features of Shigella infection is the ability of the bacterium to initiate actin tail polymerisation to disseminate into neighbouring cells. Dynamin II is associated with the old pole of the bacteria that is associated with F-actin tail formation. Dynamin II inhibition with dynasore as well as siRNA knockdown significantly reduced Shigella cell to cell spreading in vitro. The ocular mouse Sereny model was used to determine if dynasore could delay the progression of Shigella infection in vivo. While dynasore did not reduce ocular inflammation, it did provide significant protection against weight loss. Therefore dynasore's effects in vivo are unlikely to be related to the inhibition of cell spreading observed in vitro. We found that dynasore decreased S. flexneri-induced HeLa cell death in vitro which may explain the protective effect observed in vivo. These results suggest the administration of dynasore or a similar compound during Shigella infection could be a potential intervention strategy to alleviate disease symptoms.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen R. Attridge
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|